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Abstract—In evolutionary multiobjective optimization, it is
very important to be able to visualize approximations of the
Pareto front (called approximation sets) that are found by multi-
objective evolutionary algorithms. While scatter plots can be used
for visualizing 2-D and 3-D approximation sets, more advanced
approaches are needed to handle four or more objectives. This
paper presents a comprehensive review of the existing visualiza-
tion methods used in evolutionary multiobjective optimization,
showing their outcomes on two novel 4-D benchmark approxima-
tion sets. In addition, a visualization method that uses prosection
(projection of a section) to visualize 4-D approximation sets is
proposed. The method reproduces the shape, range, and distribu-
tion of vectors in the observed approximation sets well and can
handle multiple large approximation sets while being robust and
computationally inexpensive. Even more importantly, for some
vectors, the visualization with prosections preserves the Pareto
dominance relation and relative closeness to reference points. The
method is analyzed theoretically and demonstrated on several
approximation sets.

Index Terms—Approximation set, evolutionary algorithm, evo-
lutionary multiobjective optimization, Pareto front, projection,
visualization.

I. INTRODUCTION

IN evolutionary multiobjective optimization, we wish
to simultaneously optimize several (possibly conflicting)

objectives. This can be achieved by means of a multiobjective
evolutionary algorithm (MOEA), which finds an approxima-
tion of the Pareto front, called an approximation set. An
approximation set consists of distinct objective vectors that are
nondominated with regard to each other, each representing a
different trade-off between the objectives. There exist many
measures to assess the quality of an approximation set (i.e.,
how well it approximates the Pareto front in terms of conver-
gence, spread, and distribution of objective vectors) [1], [2].
However, no measure is as effective as the visualization of the
approximation set, especially if the Pareto front is known and
can be visualized as well.
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Visualization in evolutionary multiobjective optimization is
essential in many aspects—it can be used to [3] estimate the
location, range, and shape of the Pareto front, assess conflicts and
trade-offs between objectives, select preferred solutions, moni-
tor the progress or convergence of an optimization run, assess the
relative performance of different MOEAs, etc. As a prerequisite
to accomplish these tasks, a visualization method should be able
to preserve the Pareto dominance relation between objective
vectors. This means that any relation between objective vectors
A and B (A dominates B, B dominates A, or A and B are incom-
parable) should be evident also from their visualization. This is
crucial when comparing two or more approximation sets, since
without dominance preservation of a visualized approximation
set may seem to dominate another one while this is not the case.
Moreover, visualized approximation sets should maintain their
shape, range, and distribution of vectors as any large distortion
of these features affects our perception of the approximation
sets [4]. The shape of the approximation set might be of great
importance to the decision maker as it presents the trade-offs
among the objectives. Further, a visualization method should
be robust, meaning that the addition or removal of a vector
within the range of the approximation set should not produce
a significantly different visualization. As approximation sets
found by MOEAs are often large, a visualization method should
be able to handle large sets in terms of visualization capability
as well as computational complexity. Additionally, simultane-
ous visualization of multiple approximation sets is required
if different approximation sets are to be compared. Finally, a
visualization method should be scalable to multiple dimensions
and simple to understand and use.

When tackling optimization problems with two or three objec-
tives, scatter plots have almost all of the mentioned desired
properties. See scatter plots of two 2-D and 3-D approxima-
tion sets in Fig. 1 (we assume minimization of all objectives).
Both clearly show that the two approximation sets are of dif-
ferent shape and range, have different distribution of vectors,
and are intertwined (in one region, the linear approximation
set dominates the spherical one, while in others the spherical
approximation set dominates the linear one). Moreover, scatter
plots are simple, robust, and able to visualize a large number of
vectors of both sets while being computationally inexpensive.
However, their drawback is their poor scalability.

In fact, when the number of objectives m is four or greater,
such a simple and intuitive visualization of approximation sets
is much harder (if not impossible) to achieve. Since there exists
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Fig. 1. Scatter plots of (a) 2-D and (b) 3-D benchmark approximation sets.

no general Pareto dominance preserving mapping from a higher-
dimensional space to a lower-dimensional space [5], we cannot
preserve the Pareto dominance relation between all vectors of a
4-D approximation set. Instead, we can only aspire to preserve
the Pareto dominance relation between as many vectors as
possible. Similarly, we can only strive to maintain the shape,
range, and distribution of vectors as much as possible. When
mapping a large number of vectors from four or more dimensions
to 2-D or 3-D, robustness and efficiency of this mapping must
be assured. Finally, it is very hard to clearly visualize two (or
more) large approximation sets simultaneously and scale such
a visualization method to any number of objectives.

The task of visualizing approximation sets can be regarded as a
multiobjective (or rather, many-objective) optimization problem
in its own, in which each of the mentioned requirements needs to
be fulfilled as much as possible. Existing visualization methods
generally provide solutions to this problem that favor scalability
over accuracy (preservation of the dominance relation and other
features). We provide a different trade-off with a method that
can visualize 4-D approximation sets in 3-D in an intuitive
way using prosection (projection of a section). The method
is simple, fast, and yet powerful—it is able to preserve the
Pareto dominance relation between some vectors as well as
their relative closeness to reference points while at the same
time reproducing the shape, range, and distribution of vectors in
the observed approximation set well. Moreover, it is robust and
able to handle multiple large approximation sets. As such it is
well suited to comparing different approximation sets. Similarly
to scatter plots, its biggest drawback is its poor scalability.

The contribution of this paper is three-fold. First, Section II
introduces pairs of BASes that can be used to compare visu-
alization methods, second, the existing methods used for
visualizing approximation sets are demonstrated on a pair
of 4-D BASes in Section III, and third, the visualization
method that uses prosections to visualize 4-D approximation
sets is described in detail and illustrated on the BASes as well
as other approximation sets in Section IV. The paper concludes
with a summary and directions for further work in Section V.

II. BENCHMARK APPROXIMATION SETS

A. Background

Let us first provide formal definitions of the terms from the
field of multiobjective optimization that are used in this paper.

The multiobjective optimization problem consists of finding
the optimum of a function

f : X → F

f : (x1, . . . , xn) �→ (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn))

where X is an n-dimensional decision space, and F is an
m-dimensional objective space (m ≥ 2). Each solution x ∈ X
is called a decision vector, while the corresponding element
f (x) ∈ F is an objective vector. Without loss of generality we
assume that F ⊆ R

m and all objectives fi : X → R are to be
minimized for all i ∈ {1, . . . , m}.

As this paper deals with visualization in the objective space,
which can be viewed rather independently from the decision
space, the following definitions are confined to the objective
space.

Definition 1 (Pareto Dominance Relation of Vectors): The
objective vector f A = (f A

1 , . . . , f A
m ) dominates the objective

vector f B = (f B
1 , . . . , f B

m ), i.e. f A ≺ f B, if

f A
i ≤ f B

i for ∀i ∈ {1, . . . , m} and f A �= f B.

Definition 2 (Incomparability of Vectors): The objective
vectors f A = (f A

1 , . . . , f A
m ) and f B = (f B

1 , . . . , f B
m ) are

incomparable, i.e. f A ‖ f B, if

f A �= f B, f A
⊀ f B and f B

⊀ f A.

Definition 3 (Pareto Optimality): The objective vector f∗ is
Pareto optimal if there exists no f ∈ F such that f ≺ f∗.

When the objectives are conflicting, several different objec-
tive vectors can be Pareto optimal. They constitute the Pareto
front. The result of a MOEA is usually a set of solu-
tions with mutually incomparable objective vectors. This is
called the Pareto front approximation or approximation set for
short.

Definition 4 (Approximation Set): A set of objective vec-
tors A ⊆ F is called an approximation set if f A ‖ f B for any
two objective vectors f A, f B ∈ A.

The Pareto dominance relation can be defined also on
approximation sets.

Definition 5 (Pareto Dominance Relation of Approximation
Sets): The approximation set A dominates the approximation
set B, i.e., A ≺ B, if every f B ∈ B is dominated by at least
one f A ∈ A.

Finally, recall the requirement for a Pareto-dominance pre-
serving mapping.

Definition 6 (Pareto-Dominance Preserving Mapping): The
mapping � : R

m → R
n, where n < m is a Pareto-dominance

preserving mapping, if

f A ≺ f B ⇐⇒ �(f A) ≺ �(f B)

for any two vectors f A, f B ∈ R
m.

B. Comparing Visualization Methods

In the field of evolutionary multiobjective optimization,
there exist many benchmark problems (such as, for exam-
ple, the DTLZ [6] and WFG [7] test suites), which are
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used for comparing the performance of MOEAs. However,
there exist no benchmark sets that could analogously be
used for comparing visualization methods. In fact, no seri-
ous attempt to compare visualization methods has been made
in this field so far. For this purpose, we introduce the con-
cept of BASes to be used when comparing visualization
methods.

Based upon the requirements for visualization methods from
the introduction, we can list some specific demands a suite of
BASes should conform to. The idea is that BASes should have
some distinct properties that can be used when assessing how
visualization methods fulfill the aforementioned requirements.
As any BAS can consist only of mutually nondominated vec-
tors, BASes in the same suite need to dominate each other
entirely or in part. This property is important if we wish to
inspect whether the visualization methods manage to (par-
tially) preserve the Pareto dominance relation. Next, to be able
to assess the preservation of the shape of approximation sets,
BASes should be of different shapes, such as linear, concave,
convex, mixed, degenerated, discontinuous, with knees (and
possibly others). In order to visualize a different distribution
of vectors, BASes in the same suite should have uniform as
well as different kinds of nonuniform distributions of vectors.
Also, BASes should be scalable to many dimensions to check
the scalability of the visualization methods. While no spe-
cific requirements are needed to inspect the preservation of the
objective range, robustness, and simplicity of the visualization
methods, in order to assess their capability to visualize multi-
ple large sets, the BASes should be of a large size—appropriate
to their dimensionality.

Following these guidelines, we could come up with a con-
siderable suite of BASes, much like the existing suites of
benchmark problems. However, visualization methods cannot
be compared as efficiently as optimization algorithms because
their outcome on each BAS cannot be measured but must
be visualized. Therefore, the size of such a suite of BASes
is limited by the number of visualization methods we wish
to compare and the amount of space we have to present the
results. It is for this reason that the number of BASes to be
used throughout this paper is limited to two.

The two BASes will be denoted as linear and spherical
according to their shapes. These two (rather simple) shapes
were chosen among the others as they appear most often in
benchmark problems used in the field of evolutionary multi-
objective optimization. The two BASes can be instantiated in
any dimension (see Fig. 1 for their 2-D and 3-D instances) and
have different distributions and ranges of vectors. In addition,
for any dimension m they are intertwined—in one region, the
linear BAS dominates the spherical one, while in others, the
spherical dominates the linear one. In this paper, we deal with
the BASes in four instances of different dimensionality and/or
cardinality: 2-D with 50 vectors in each BAS, 3-D with 500
vectors in each BAS, and 4-D with 300 and 3000 vectors in
each BAS.1

1All BASes as well as the approximation sets from Section IV-F can be
obtained from http://dis.ijs.si/tea/prosections.htm.

Fig. 2. Algorithm for generating a vector in the linear BAS. The
uniformRand() returns a random value in the interval [0, 1) with a uniform
distribution.

C. Linear BAS

The first BAS is linear with all objective vectors satisfying
the following constraint:

m∑

i=1

fi = 1

where each fi ∈ [0, 1] and m is the number of objectives. The
vectors in the linear BAS are created using the algorithm from
Fig. 2 and are uniformly randomly distributed [8].

D. Spherical BAS

The second BAS is spherical with all objective vectors
satisfying the following constraint:

m∑

i=1

f 2
i = 0.752

where each fi ∈ [0, 0.75] and m is the number of objec-
tives. The vectors in the spherical BAS have a nonuniform
distribution—only few vectors are located in the middle of
the approximation set, while most of them are near its corners.
Therefore, an mD spherical BAS has exactly m regions with a
high density of vectors. With this property we try to achieve
two goals: 1) a nonuniform distribution of vectors different
from the uniform one of the linear BAS and 2) a few almost
unconnected regions aimed at mimicking the discontinuous
fronts.

Figs. 3 and 4 present the algorithms used to create the spher-
ical BAS. Step 2) of the algorithm from Fig. 3 assures that m
regions with a high density of vectors are created. These are
then projected on the sphere with radius 0.75 as demonstrated
in Step 3). Fig. 4 shows how the nonuniform “U-shaped”
distribution is created from the Gaussian distribution.2

III. RELATED VISUALIZATION METHODS

There exist numerous methods for visualizing multidimen-
sional data, see for example [9], [10]. As we are interested
only in methods suitable for visualizing approximation sets,
our review is restricted to visualization methods that were pre-
viously used for this purpose. We divide these methods into
two groups: General and specific, according to their ability

2This distribution was preferred to the beta distribution (which is also
“U-shaped”) because its resulting regions with a high density of vectors are
more distinct than those achieved with the beta distribution.

http://dis.ijs.si/tea/prosections.htm
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Fig. 3. Algorithm for generating a vector in the spherical BAS. The
nonuniformRand() function is presented in Fig. 4.

Fig. 4. Algorithm for generating a random value in the interval [0, 1) with
a nonuniform distribution. The gaussianRand() function returns a random
number with a normal distribution.

to handle the unique features of approximation sets. For each
presented method we provide in Figs. 5 and 6 its visualization
of the small 4-D BASes, consisting of 300 vectors each.3 In
addition, Table I summarizes the properties of all methods in
view of the requirements for visualization methods presented
in the introduction.

The overview of the related methods ends with the presenta-
tion of orthogonal prosections as used for visualizing abstract
mathematical models.

A. General Multidimensional Data Visualization Methods

The general multidimensional data visualization methods
are those introduced outside the field of evolutionary multi-
objective optimization and thus make no effort to preserve
the Pareto dominance relation between vectors or any other
feature specific to evolutionary multiobjective optimization.

3The original (large) 4-D BASes consist of 3000 vectors each, but only
their small subsets are used for these visualizations as the whole sets present
a difficulty for most of the methods.

Therefore, we review these methods mainly with regard to
their ability to distinguish between the different shape and
distribution of vectors of the two BASes.

1) Scatter Plot Matrix: A straightforward visualization
method is to project all vectors to a lower-dimensional space
by disregarding all the dimensions of the vector that are
beyond those that can be visualized. If this is done for all
possible combinations of these lower-dimensional spaces, a
scatter plot matrix is obtained [see Fig. 5(a)]. The scatter plot
matrix is a very fast, simple, and robust visualization method
that in our case retains some information on the shape of the
approximation sets (it is easy to distinguish between the spher-
ical and linear BAS) as well as the different distribution of
vectors.

2) Bubble Chart: In a scatter plot, additional dimensions
can be visualized using size (4-D) and color (5-D), thus obtain-
ing a bubble chart (see [11], [12]; in [13] it is called a trade-off
plot). From Fig. 5(b) we can observe that the bubble chart
has the same advantages and disadvantages as the scatter
plot matrix. The main benefit of the bubble chart over the
scatter plot matrix is that all the information is given in a
single plot.

3) Radial Coordinate Visualization (RadViz): The idea for
RadViz [14] comes from physics. The objectives (called
dimensional anchors) are distributed evenly on the circum-
ference of the unit circle. Imagine that each vector is held
with springs that are attached to the anchors and the spring
force is proportional to the value in the corresponding objec-
tive/anchor. The position of the vector is the one where the
spring forces are in equilibrium. For example, vectors that
are placed close to fi have a higher value in fi than in any
other objective, while vectors with all equal values are placed
exactly in the center of the circle. RadViz was used under
the name of barycentric coordinates to visualize approxima-
tion sets in [15] and [16]. While the RadViz of our two
BASes [see Fig. 5(c)] is able to preserve well the distri-
bution of vectors of both sets, we cannot distinguish their
shape.

4) Parallel Coordinates: Using parallel coordinates [17],
each m-dimensional vector is represented as a polyline with
vertices on the parallel axes, where the position of the ver-
tex on the ith axis corresponds to the ith coordinate of
the vector. Parallel coordinates are very useful for repre-
senting (in)dependences between objectives. In our case [see
Fig. 5(d)], the clutter created by numerous polylines conceals
the distribution of vectors, which could be seen otherwise.
Although not able to show the shape of approximation sets,
parallel coordinates are frequently used for visualizing results
in evolutionary multiobjective optimization.

5) Heatmaps: In a heatmap, objective values are shown
using color [18]. Similarly to the parallel coordinates plot,
heatmaps can show (in)dependences between objectives. See
Fig. 5(e), where the vectors in each heatmap are sorted by the
value of the first objective. Although with this visualization no
information is lost, for our two BASes not much information
could be gained either.

The five methods presented so far are very simple to
understand and compute—they do not require sophisticated
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Fig. 5. Visualization of the two small 4-D BASes using general multidimensional data visualization methods (see Section III-A). (a) Scatter plot matrix.
(b) Bubble chart. (c) RadViz. (d) Parallel coordinates. (e) Heatmaps. (f) Self organizing maps (SOMs). (g) Sammon mapping. (h) Neuroscale. (i) Principal
component analysis (PCA). (j) Isomap.

mappings of vectors—and are therefore very fast. RadViz,
parallel coordinates, and heatmaps can also be easily scaled
in many dimensions and the latter two are able to visual-
ize the decision space together with the objective space. In

our case, the combination of the bubble chart and RadViz
provides most information. The next five methods use some
more sophisticated mapping to perform dimension reduction
to the 2-D space.
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6) Sammon Mapping: Sammon mapping [19] aims to min-
imize the stress function, which emphasizes the preservation
of the local distances. This means that distances between
the representation of vectors in the visualization space are
required to be as close as possible to those in the objective
space. The minimization can be performed either by gradi-
ent descent, as proposed initially, or by other means, usually
involving iterative methods. See [20] for the use of Sammon
mapping in evolutionary multiobjective optimization. In our
case [Fig. 5(g)] the Sammon mapping preserves very well the
distribution of vectors—all four regions with a high density of
vectors of the spherical BAS are manifested.

7) Neuroscale: Neuroscale [21] pursues the same goal as
Sammon mapping (the preservation of distances) using a radial
basis function neural network to minimize the stress function.
See [22] for neuroscale representations of an approximation set
and Fig. 5(g) for the visualization of our BASes. Neuroscale
does not differentiate well between the two BASes. Moreover,
it is the only method that skews the distribution of vectors in
the linear BAS.

8) Self Organizing Maps (SOMs): The self organizing maps
(SOMs) [23] are artificial neural networks that provide a
topology preserving mapping from mD to a lower dimension
(usually 2-D). This means that nearby vectors in the input
space are mapped to nearby units (called neurons) in SOM.
While there exist different arrangements of neurons in, we use
the hexagonal grid as in [24]. When trained, the SOMs can
be visualized using different methods. One of the most pop-
ular is the U-matrix (unified distance matrix), in which the
distance between adjacent neurons is presented with different
colorings. Light areas represent clusters of similar neurons and
dark areas indicate cluster boundaries. Fig. 5(f) presents the
U-matrices of our two BASes. The SOM of the linear BAS
correctly puts all neurons in a single cluster, while it is difficult
to interpret the SOM of the spherical BAS (the exact number
of clusters is hard to establish).

9) Principal Component Analysis (PCA): Principal com-
ponent analysis (PCA) finds a new lower-dimensional set
of coordinates (the principal components) so that projection
onto the principal components captures the maximum vari-
ance among all linear projections. The principal components
are easily found as the eigenvectors with the highest eigen-
values of the covariance matrix of a set of vectors. PCA was
used for visualization in the field of evolutionary multiobjec-
tive optimization in [25]. The vectors from our BASes are
mapped to the space of the principal components as shown in
Fig. 5(i). Two of the regions of high density of vectors in the
spherical BAS are visualized as one.

10) Isomap: The basic idea behind Isomap [26] is to pre-
serve the intrinsic geometry of the data when mapping to
the 2-D space using multidimensional scaling [27]. In a graph
of vectors, in which each vector is linked only to its clos-
est neighbors, the geodesic distance between two vectors is
calculated as the sum of Euclidean distances of the shortest
path between the two vectors in the graph. The presumption of
Isomap is that the vectors lie on some low-dimensional man-
ifold and the distances between vectors along this manifold

should be preserved. Isomap was used to visualize approxima-
tion sets in [15], while [28] proposes to construct the graph of
vectors using distances in the objective space and calculating
the geodesic distances in the decision space. As no decision
space is given for our BASes, Fig. 5(j) shows the usual Isomap.
We can see all four regions with a high density of vectors of
the spherical BAS.

The latter five visualization methods are also scalable
to many dimensions. However, they are more elaborate,
difficult to understand and implement and computationally
more expensive than the previous methods. They are also less
robust than the previous methods as the mapping used for
visualization depends on the values of the objective vectors in
the approximation sets. Among these five methods, Sammon
mapping was the best to distinguish the distribution of vectors
of the two BASes.

B. Methods Specifically Designed for Visualization of
Approximation Sets

Here, we review the methods that are tailored to the
visualization of multidimensional approximation sets.

1) Distance and Distribution Charts: Reference [29] pro-
poses to plot the vectors from approximation sets against
their distance to some approximation of the Pareto front (dis-
tance chart) and their distance between each other (distribution
chart). As the exact computation of the distribution of vec-
tors is very time consuming when the number of objectives
is high, [29] suggests to use a simpler computation that does
not produce exact results. Using the latter version, the dis-
tance and distribution charts of our BASes are presented in
Fig. 6(a). Here, the approximation of the Pareto front consists
of nondominated vectors from both sets. The distance chart
correctly shows how most of the vectors from the spherical
approximation set are dominated, while this holds for only a
few vectors from the linear approximation set. However, the
distribution chart fails to differentiate between two BASes with
a very different distribution of vectors. This might be due to
the nonexact computation of the distribution metric, however,
despite possible reasons, in our view such charts fail to provide
an intuitive presentation of the 4-D BASes.

2) Interactive Decision Maps: In contrast to other meth-
ods, the interactive decision maps [30], [31] visualize the
Edgeworth–Pareto hull (EPH) instead of the Pareto front (or
an approximation of it). The EPH of an approximation set
contains all vectors from this set as well as all vectors domi-
nated by this set. This means that instead of visualizing only
a finite number of vectors of an approximation set, decision
maps visualize a number of axis-aligned sampling surfaces of
the EPH. As this is possible only for visualizing 2-D and 3-D
approximation sets, interactive choice of the value of the fourth
objective is used for visualizing decision maps of 4-D approxi-
mation sets. See the example of the decision maps with f4 fixed
to 0.5 of our two BASes in Fig. 6(b). They give a good idea on
the shape of the approximation set and also somewhat on the
distribution of vectors. However, from the plots it is impossi-
ble to infer any dominance relation between the vectors of the
two sets.
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Fig. 6. Visualization of the two small 4-D BASes using methods specific for visualization of approximation sets (see Section III-B). (a) Distance and distribution
charts. (b) Interactive decision maps. (c) Hyper-space diagonal counting. (d) Two-stage mapping. (e) Level diagrams. (f) Hyper-radial visualization. (g) Pareto
shells. (h) Seriated heatmaps. (i) Multidimensional scaling (MDS).

The task of visualizing the EPH is similar to the task of
visualizing the attainment surface [32], which is exactly the
surface of the EPH. This was done in [33], but only for the 3-D
case.

3) Hyper-Space Diagonal Counting: This method builds
upon the idea that the set of natural numbers N has the same
cardinality as the set N

m, where m ∈ N. Therefore, the set N
m

can be mapped into N using the hyper-space diagonal counting
as described in [34]. Consider now the case of an approxima-
tion set in 4-D. Its visualization using hyper-space diagonal
counting is performed as follows [35]. First, each objective
is divided into a predefined number of bins. The bins of a
pair of objectives are then counted using hyper-space diagonal
counting producing indices for this pair of objectives. These
indices are plotted on two axes (one for each pair of objec-
tives), while the third axis is used to plot the number of vectors
of the approximation set that fall in the same set of indices.

See Fig. 6(c), where hyper-space diagonal counting is used to
visualize the two BASes. Arguably, the plot captures better
the distribution of vectors than the shape of the approxima-
tion sets. Again, this method does not maintain the dominance
relations between vectors.

4) Two-Stage Mapping: The two-stage mapping from [5]
aims to preserve (as much as possible) the Pareto dominance
and distance relations among vectors. In the first stage, all
nondominated vectors are mapped onto on a quarter-circle. A
MOEA (in their case, NSGA-II [36]) is used to find a per-
mutation of these vectors so that both relations among vectors
(Pareto dominance and distance) are preserved as much as
possible. When a good permutation is found, the nondomi-
nated vectors are mapped onto the circle in the order given
by this permutation (and with distances proportional to their
mutual distances). In the second stage, each dominated vector
is mapped to the minimal vector of all nondominated vectors
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TABLE I
SUMMARY ANALYSIS OF THE VISUALIZATION METHODS WITH REGARD TO THE DESIRABLE PROPERTIES

that dominate it. Fig. 6(d) shows the result of the two-stage
mapping for the two BASes. Unfortunately, other than the split
to dominated and nondominated vectors, not much informa-
tion can be gathered from this plot, while the visualization
method is rather complex (requiring itself to solve a multiob-
jective optimization problem). The two-stage mapping builds
its visualization upon the Pareto dominance relations among
vectors, which means that in case of addition of a vector to
one of the approximation sets (or deletion of a vector from an
approximation set), the visualization of the sets might change
considerably—depending on how well the inherent multiob-
jective optimization problem is solved. In other words, this
method is not robust.

5) Level Diagrams: Reference [37] proposes to plot the
approximation sets on a set of m level diagrams, where m
is the number of objectives (the decision space can be visual-
ized using this method, too). In each such diagram, vectors are
sorted according to their value of the corresponding objective
and plotted against their distance to the ideal point4 (different
norms can be used). Therefore, each vector has the same y
position in all diagrams. See the level diagrams of our two
BASes in Fig. 6(e), where the Euclidean norm is used for
calculating the distance to the ideal point. While the shape
of the approximation sets can be inferred from this diagrams,

4For the minimization problem, the ideal point is the vector of minimal
possible values of this problem in each objective.

this is not the case for the Pareto dominance relations and the
distribution of vectors (particularly for the spherical BAS).
Nevertheless, this method is simple, computationally inexpen-
sive and can help the decision maker, especially if color is
added to show user preferences.

6) Hyper-Radial Visualization: Somewhat similar to level
diagrams is the hyper-radial visualization [38]. Here too the
vectors preserve their distance to the ideal point (their hyper-
radius), but separately for two subsets of objectives. The
resulting visualization on our two BASes [see Fig. 6(f)] is able
to maintain well the shape of the approximation sets, while the
distribution of vectors is correctly represented for the linear
BAS, but not for the spherical one. The findings from level
diagrams can be applied here too. While the Pareto dominance
relations are mostly not preserved, the method is simple, com-
putationally inexpensive and valuable for the decision maker
if user preferences are color coded.

7) Pareto Shells: Using the nondominated sorting proce-
dure from NSGA-II, vectors from different approximation sets
can be sorted into Pareto shells of mutually nondominated vec-
tors. These shells can be visualized using a graph in which
nodes represent vectors (arranged according to the shell they
belong to) and directed edges represent the Pareto dominance
relation between the connected vectors [39]. Our two BASes
are visualized using Pareto shells in Fig. 6(g). While this
method is somewhat cumbersome for visualizing large approx-
imation sets (in the plot we only draw one edge for each



TUŠAR AND FILIPIČ: VISUALIZATION OF PARETO FRONT APPROXIMATIONS 233

dominated vector as drawing all edges would make the plot
too crowded), it clearly shows the Pareto dominance relations
between vectors. Of course, all other information (objective
ranges, distributions of vectors and the shape of the approxi-
mation set) cannot be shown using this method. This too is a
nonrobust method.

8) Seriated Heatmaps: As the amount of information that
can be retrieved from a heatmap heavily depends on the order
of vectors in the heatmap, [16] proposes to seriate heatmaps
so that similar vectors (and similar objectives) are placed
together. Instead of showing actual objective values, seriated
heatmaps present ranks that are assigned to each vector com-
ponent depending on its objective value. The seriated heatmaps
for our two BASes are shown in Fig. 6(h). While seriation
rearranged the objectives and vectors of both sets, we cannot
conclude that seriated heatmaps give us any more information
than the regular ones [already presented in Fig. 5(e)]. Note also
that because of ranking, seriated heatmaps are not as robust
as their predecessors.

9) Multidimensional Scaling (MDS): The classical multidi-
mensional scaling (MDS) [27] tries to find a linear mapping
to the 2-D space that preserves similarities between vectors.
Simply put, the classical MDS is equivalent to performing
PCA on similarities between vectors instead of their distances.
In [16], this is done using dominance similarity, which defines
two vectors as similar if they dominate the same vectors.
Fig. 6(i) shows the MDS of our two BASes using this dom-
inance similarity. Since the dominance similarity takes into
account only the relative dominance relations between vec-
tors, the distribution of vectors is lost in such a visualization
and the method is even less robust than PCA.

These nine visualization methods are very different from
each other and therefore hard to compare. However, in our
opinion, the most useful information on our BASes comes
from the interactive decision maps and the hyper-radial visu-
alization.

C. Orthogonal Prosections

More than the visualization methods described so far, our
method resembles the orthogonal prosections,5 which were
used for visualizing abstract mathematical models [40]. Their
idea is very simple (see Fig. 7 for the 3-D case): instead of
projecting the whole set of solutions to the orthogonal plane
p1p2, only the solutions from the chosen section are projected.
Because multiple planes can be chosen for the projection (as
in the scatter plot matrix), a prosection matrix is used to visu-
alize all orthogonal prosections simultaneously. In addition,
color coding can be used for distinguishing between feasible
and infeasible solutions.

To our best knowledge, orthogonal prosections were never
before used to visualize approximation sets.

IV. VISUALIZATION WITH PROSECTIONS

As we have seen in the previous section, there exist numer-
ous ways to visualize 4-D approximation sets. However, none

5In [40] they are called prosections, but we added the adjective orthogonal
to make a clear distinction between their method and ours.

Fig. 7. Orthogonal prosection [40]: a section of p3 is projected to the
orthogonal p1p2 plane.

of them can be regarded as a scaled scatter plot with all
of its benefits—a clear and informative presentation of the
shape, range, and distribution of vectors in the observed
approximation sets that preserves the Pareto dominance rela-
tion, and the ability of handling multiple large approximation
sets while being robust and computationally inexpensive.
Moreover, despite all these new visualization possibilities,
most researchers in the field of evolutionary multiobjective
optimization still resort to parallel coordinates when a 4-D (or
higher) approximation set is to be shown. This was our moti-
vation for developing a new visualization method that reduces
one dimension of the approximation set using projection of a
section and rotation.

A. Dimension Reduction

As mentioned before, a prosection is a projection of a sec-
tion (the term was introduced in [41]). Here, the section on the
2-D plane f1f2 with origin a = (a1, a2) is defined by the angle
ϕ and width d (see [42] for two alternative section definitions).
Each vector within the section is orthogonally projected to the
line crossing the origin a and intersecting the f1-axis at angle
ϕ using the mapping pϕ,d,a

pϕ,d,a : (f1, f2) �→ (f ′
1, f ′

2)

where

f ′
1 = cos ϕ((f1 − a1) cos ϕ + (f2 − a2) sin ϕ)

f ′
2 = sin ϕ((f1 − a1) cos ϕ + (f2 − a2) sin ϕ)

for all vectors in the section

|(f1 − a1) sin ϕ − (f2 − a2) cos ϕ| ≤ d.

All the vectors in the section are projected to the mentioned
line, while all other vectors are ignored [see Fig. 8(a)].

After this mapping, the line with projected vectors needs to
be rotated so that this truly becomes a reduction in dimension
[see Fig. 8(b)]

r : (f ′
1, f ′

2) �→
√

(f ′
1)

2 + (f ′
2)

2.

When composing these two functions, the transformation
simplifies to

sϕ,d,a(f1, f2) = r(pϕ,d,a(f1, f2))

= (f1 − a1) cos ϕ + (f2 − a2) sin ϕ

for all vectors in the section. The function sϕ,d,a performs
dimension reduction from a 2-D to a 1-D space. Let us now
show how this can be employed to reduce the mD space to
(m − 1)D.
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Fig. 8. Graphical presentation of the prosection. (a) Projection. (b) Rotation.

Fig. 9. Algorithm for projecting a section of mD approximation sets.

B. Algorithm and Notation

When the number of objectives m > 2, other planes beside
f1f2 are possible. Therefore, we denote with ijk1 . . . km−2 a
permutation of objective indices 1, . . . , m, so that k1 < · · · <

km−2. The prosection is always performed on the fifj plane,
and because of the previous condition, all other objectives are
kept in ascending order. The algorithm from Fig. 9 explains
step by step how to perform prosection on mD approximation
sets.

The prosection affects only two objectives (fi and fj) while
all the others remain intact and in the same order as before
prosection. The new objective that is formed in the prosection
(denoted simply by fifj) still needs to be minimized, i.e., lower
values of fifj are preferred to higher ones.

A prosection of an mD approximation set with origin a,
prosection plane fifj, angle ϕ, and section width d will be
denoted with

mD(a, fifj, ϕ, d)

in the rest of the paper.
Note that for any ϕ ∈ [0◦, 90◦]

mD(a, fifj, ϕ, d) ≡ mD(a, fjfi, (90◦ − ϕ), d).

This means, for example, that the prosection on the plane fifj
with angle 30◦ is equivalent to the prosection on the plane fjfi
with angle 60◦. As a consequence, there is no need to explore
both prosections on the plane fifj and on the plane fjfi.

Fig. 10. Visualization with prosections of the 3-D benchmark approximation
sets under angle ϕ = 45◦. (a) Before prosection (vectors in the section are
emphasized). (b) After prosection 3-D(0, f1f2, 45◦, 0.05).

While this transformation can be performed on an mD
approximation set for an arbitrary m ≥ 2, the resulting
(m − 1)D set can be easily visualized only if m ≤ 4.

C. Visualization of BASes

Let us demonstrate how this method works when projecting
3-D approximation sets to 2-D on the example of the two 3-D
BASes from Fig. 1(b). Assume the section is defined by the
angle ϕ = 45◦ and section width d = 0.05. This section cuts
the plane f1f2 in the middle. Fig. 10(a) shows which of the
vectors fall in the specified section, while the same vectors
after prosection are presented in Fig. 10(b). Essentially, what
the method does is slice through approximation set at angle ϕ

and project this slice so that dimension reduction is achieved.
Prosections of the 3-D BASes are very similar to the scatter
plot of the 2-D BASes [see Fig. 1(a)]. This is desirable since
the 3-D BASes are a generalization of the 2-D ones.

In addition, Fig. 11 presents results of prosections under dif-
ferent angles ϕ. Angles over 45◦ are not shown as the BASes
are nearly symmetric—therefore each 3D(0, f1f2, ϕ, 0.05) plot
is very similar to the corresponding 3D(0, f1f2, 90◦ − ϕ, 0.05)

one. Depending on the angle, the prosections show either one
or two regions of the spherical BAS with a high density of
vectors. We can see that the range, shape, and distribution
of vectors from the visualized part of the objective space are
well preserved, while the preservation of the Pareto dominance
relation will be discussed in more detail later.

Now, let us focus on the 4-D case. Fig. 12 shows the
4D(0, f1f2, 45◦, 0.25) visualization with prosection of the
small 4-D BASes. As the small BASes contain only 300 vec-
tors each, a larger section (d = 0.25) is chosen in order to
show the preservation of the linear and spherical shape of
the approximation sets. The plot clearly shows the differences
in the distribution of vectors from both sets (uniform versus
nonuniform distribution). Similar visualizations are achieved
also on the large 4-D BASes under different angles ϕ and
with the section width d set to 0.05 (see Fig. 13). Depending
on the angle, two or three dense regions of the spherical
BAS are visualized. Note again that these prosections resem-
ble very much the 3-D BASes from Fig. 1(b), showing that
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Fig. 11. Prosections of the 3-D benchmark approximation sets under different angles ϕ. (a) 3D(0, f1f2, 5◦, 0.05). (b) 3D(0, f1f2, 15◦, 0.05).
(c) 3D(0, f1f2, 25◦, 0.05). (d) 3D(0, f1f2, 35◦, 0.05). (e) 3D(0, f1f2, 45◦, 0.05).

Fig. 12. Prosection 4D(0, f1f2, 45◦, 0.25) of the small 4-D benchmark
approximation sets.

they achieve an intuitive visualization of the high dimensional
approximation sets.

D. Parameters

The visualization with prosections depends on four param-
eters: plot origin a, prosection plane fifj, angle ϕ, and section
width d.

1) Plot Origin and Range of Objectives: For a reasonable
result, the plot origin should be set to a vector that dominates
all vectors from the approximation sets to be visualized. The
ideal point is thus a sensible (but not obligatory) choice for
the plot origin. If the origin is chosen to be far better than
the ideal point, prosections under extreme angles (near 0◦ and
90◦) and narrow sections might turn out empty.

While the prosection is well defined for any range of objec-
tives, objectives that have ranges of different magnitude affect
the “meaning” of the angle ϕ. For example, the angle ϕ = 45◦
does not cut the rectangle [ai, bi] × [aj, bj] exactly in half if
(bi−ai) �= (bj−aj). Also, in extreme cases of disproportionate
objectives, the size of the section depends heavily on the cho-
sen angle. Therefore, in cases with a big difference between
the ranges of objectives, it is best to normalize the objectives
prior to visualization.

2) Prosection Plane: In the examples shown so far, we have
always performed prosection on a single prosection plane—
f1f2 (this was not particularly problematic considering the
symmetric nature of our BASes). However, in the general case
more prosection planes need to be explored to gain a com-
plete “mental picture” of the approximation sets. This can be
done simultaneously using a prosection matrix (as in [40]),

where each prosection plane results in one plot. As the pro-
sections are symmetric, half of the matrix suffices (as with
the scatter plot matrix). Two examples of prosection matrices
are provided in Section IV-F. Note also that a chosen pro-
section plot (or even the whole matrix) can be animated by
showing how prosections transform when the angle ϕ changes.
This can further help to construct a mental picture about the
trade-off among objectives when the approximation sets are
not symmetric.

3) Section Definition: The section is defined with the angle
ϕ and width d. The choice of these two parameters influences
greatly the resulting visualization. The angle determines which
part of the approximation set is visualized, while the section
width regulates the amount of vectors that will be included in
the visualization—larger sections produce more crowded plots.
See for example the influence of section width in Fig. 14. The
section width should be chosen so that it includes enough
vectors to visualize the shape of the approximation set and
the distribution of vectors (not the case if d = 0.01), while
at the same time not overcrowding it with too many vectors
(d = 0.25 is too wide). For our BASes, this means choosing
the section width near 0.05 [see Figs. 11(c) and 13(c)].

Fig. 14(b) demonstrates that approximation sets after pros-
ection with a wide section can be indistinct. This depends not
only on the width of the section, but also on the chosen angle
ϕ and the shape of the approximation set. We will explain the
reasons for this shortly.

E. Properties

The basic difference between the prosections proposed
in this paper and the orthogonal prosections presented in
Section III-C is in the angle ϕ, which was either 0◦ or 90◦
in previous work (hence we called those prosections orthogo-
nal). The fact that an angle ϕ different from 0◦ and 90◦ is used
leads to two important properties of this method, formulated
in the next two theorems (their proofs are in the Appendix).

Theorem 1: Suppose the mD(a, fifj, ϕ, d) prosection is per-
formed, where m ≥ 2 and ϕ ∈ (0◦, 90◦). Then for any two
vectors f A = (f A

1 , . . . , f A
m ), and f B = (f B

1 , . . . , f B
m ) inside the

section the following holds. If

f A ≺ f B

then

mD(a, fifj, ϕ, d)(f A) ≺ mD(a, fifj, ϕ, d)(f B).
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Fig. 13. Prosections of the large 4-D benchmark approximation sets under different angles ϕ. (a) 4D(0, f1f2, 5◦, 0.05). (b) 4D(0, f1f2, 15◦, 0.05).
(c) 4D(0, f1f2, 25◦, 0.05). (d) 4D(0, f1f2, 35◦, 0.05). (e) 4D(0, f1f2, 45◦, 0.05).

Fig. 14. Prosections of the 3-D and the large 4-D BASes using different val-
ues for section width d (d = 0.01 for the left hand side plots and d = 0.25 for
the right hand side plots). (a) 3D(0, f1f2, 25◦, 0.01). (b) 3D(0, f1f2, 25◦, 0.25).
(c) 4D(0, f1f2, 25◦, 0.01). (d) 4D(0, f1f2, 25◦, 0.25).

This means that if one vector dominates the other, the domi-
nance relation is retained after prosection. While it is beneficial
that a visualization method is capable of correctly showing
the dominance relations among vectors, the other way around
(being able to infer the dominance relations from the visual-
ization) is even more important for the correct understanding
of the visualized approximation sets.

As shown in [5], no Pareto-dominance preserving mapping
exists.6 Nevertheless, for prosections we can prove that if one
projected vector dominates another projected vector and the
two are apart enough, the first vector indeed dominates the
second one.

6It is easy to see why the right-to-left direction from Definition 6 does not
hold for prosections. If one vector does not dominate the other, after prosection
the first projected vector might dominate the second projected vector.

Fig. 15. Values of 2d max
{

tan ϕ, tan−1 ϕ
}

depending on the angle ϕ and
section width d.

Theorem 2: Suppose the mD(a, fifj, ϕ, d) prosection is per-
formed, where m ≥ 2 and ϕ ∈ (0◦, 90◦). Then for any two
vectors f A = (f A

1 , . . . , f A
m ), and f B = (f B

1 , . . . , f B
m ) inside the

section the following holds. If

mD(a, fifj, ϕ, d)(f A) ≺ mD(a, fifj, ϕ, d)(f B)

and

s(f B
i , f B

j ) − s(f A
i , f A

j ) ≥ 2d max
{

tan ϕ, tan−1 ϕ
}

then

f A ≺ f B.

“Apart enough” is thus any distance in the new objective
fifj that is greater than 2d max

{
tan ϕ, tan−1 ϕ

}
. Unfortunately,

max
{
tan ϕ, tan−1 ϕ

}
strongly depends on the chosen angle ϕ.

If ϕ = 45◦, then tan ϕ = tan−1 ϕ = 1, which is the small-
est possible value. For all other values of ϕ, the value of
max

{
tan ϕ, tan−1 ϕ

}
is higher, getting unpractical high values

in the proximity of ϕ = 0◦ and ϕ = 90◦. Fig. 15 shows how
the value of 2d max

{
tan ϕ, tan−1 ϕ

}
depends on the values of

ϕ and d.
Theorem 2 tells us that we cannot completely trust the visu-

alized dominance relations. While some vectors may appear
(non)dominated in the prosection plot, this might not be the
case in the original objective space. Only those vectors that are
dominated according to Theorem 2 are truly dominated, while
for the rest we cannot be sure. Fig. 16 shows on the example
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Fig. 16. Prosections of the 3-D and the large 4-D BASes. Vectors from the
spherical BASes that are dominated by the vectors from the linear BASes
according to Theorem 2 are emphasized (drawn using dots instead of small
crosses). (a) 3D(0, f1f2, 45◦, 0.05). (b) 4D(0, f1f2, 45◦, 0.05).

Fig. 17. Prosections of 2-D convex, linear, and concave approximation sets
using different values for angle ϕ. (a) ϕ = 45◦. (b) ϕ = 15◦.

of our BASes which vectors from the spherical BASes are
dominated by the vectors from the linear BASes according to
Theorem 2.

Additionally, Theorem 2 explains the indistinctness men-
tioned before, as 2d max

{
tan ϕ, tan−1 ϕ

}
is exactly the maxi-

mum possible width of indistinctness that an approximation set
can achieve in the new objective. The actual indistinctness of
an approximation set after prosection depends on its shape—
see the example of three 2-D approximation sets of different
shape (convex, linear, and concave) in Fig. 17. When ϕ = 45◦,
all approximation sets after prosection are distinct, since they
are all almost perpendicular to the section. On the other hand,
after prosection with ϕ = 15◦, the concave approximation
is still distinct, but this is not the case for the linear (some
indistinctness) and the convex (a lot of indistinctness) ones.

Note that none of these two theorems is true if ϕ is equal
to 0◦ or 90◦, which means that simple orthogonal prosections
do not share these useful properties.

Next, let us explore the interpretation of the new objective
fifj. Because of the projection, much of the information on fi
and fj is lost, but not all. Assume the mD(a, fifj, ϕ, d) prosec-
tion is performed and we are interested in the original values
in objectives fi and fj of the projected vector with value A in
objective fifj. Then, we know that the original values of fi and
fj lie on the line segment A′A′′, where

A′ = (ai + A cos ϕ − d sin ϕ, aj + A sin ϕ + d cos ϕ)

A′′ = (ai + A cos ϕ + d sin ϕ, aj + A sin ϕ − d cos ϕ).

For example, if we are interested in the point A with value
0.5 in objective f1f2 of the prosection 4D(0, f1f2, 45◦, 0.05),
we know that the original values in fi and fj lie on the line
segment between points (0.318, 0.389) and (0.389, 0.318).

Finally, a note on the transformation of distances. As a pro-
jection from an mD space to a (m − 1)D space is performed,
the distances among arbitrary vectors cannot be preserved.
However, it is trivial to show that the distance between two
vectors after prosection is never greater than the distance
between the original vectors. The distance is preserved when
the line segment bounded by the two original vectors is parallel
to the line intersecting the plane fifj at the angle ϕ.

Theorem 3: Suppose the mD(a, fifj, ϕ, d) prosection is per-
formed, where m ≥ 2. Then for any two vectors f A =
(f A

1 , . . . , f A
m ) and f B = (f B

1 , . . . , f B
m ) inside the section

∥∥∥mD(a, fifj, ϕ, d)(f A) − mD(a, fifj, ϕ, d)(f B)

∥∥∥ ≤
≤

∥∥∥f A − f B
∥∥∥ .

The equality holds iff

f A
j − f B

j

f A
i − f B

i

= tan ϕ.

More importantly, we are able to show that prosections pre-
serve the relative closeness to the reference point for some
vectors. This is especially useful when (one or more) refer-
ence points are given and we wish to visualize them together
with the approximation set.

Theorem 4: Suppose the mD(a, fifj, ϕ, d) prosection is per-
formed, where m ≥ 2. Let f A = (f A

1 , . . . , f A
m ), f B =

(f B
1 , . . . , f B

m ) and f R = (f R
1 , . . . , f R

m ) be three vectors inside
the section and let us assume that

∥∥f A − f R
∥∥ <

∥∥f B − f R
∥∥ .

If
∥∥f B − f R

∥∥2 − ∥∥f A − f R
∥∥2

> 4D2, then
∥∥∥mD(a, fifj, ϕ, d)(f A) − mD(a, fifj, ϕ, d)(f R)

∥∥∥ <
∥∥mD(a, fifj, ϕ, d)(f B) − mD(a, fifj, ϕ, d)(f R)

∥∥ .

On the other hand, if

∥∥mD(a, fifj, ϕ, d)(f B) − mD(a, fifj, ϕ, d)(f R)
∥∥2 −

−
∥∥∥mD(a, fifj, ϕ, d)(f A) − mD(a, fifj, ϕ, d)(f R)

∥∥∥
2

> 4d2

then
∥∥f A − f R

∥∥ <
∥∥f B − f R

∥∥ .

According to Theorem 4, if vectors f A and f B, where f A is
closer to the reference point f R than f B, are “apart enough”
from the perspective of the reference point (‖f B−f R‖2−‖f A−
f R‖2 > 4d2), the vector f A remains closest to the reference
point also after prosection. And vice versa, from the distances
between the vectors and the reference point after prosection we
can infer on their closeness in the original space. This means
that prosections are able to truthfully visualize the closeness
to the reference point for some vectors.

Note that the properties described in the latter two theorems
are independent on the chosen angle ϕ. The proofs to both
theorems can be found in the Appendix.
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F. Usage Examples

Here, we show how prosections can be used for visualizing:
1) solutions to problems with redundant objectives; 2) various
shapes of Pareto fronts (different from the spherical and linear
used until now); and 3) the progress of a MOEA.

1) Visualization in Case of Redundant Objectives: Since
our approach slices through approximation sets, we wish to
explore how this affects visualization of solutions to prob-
lems with redundant objectives. An objective is redundant if
its elimination does not affect the Pareto front of the given
problem. The DTLZ5(I, M) problem family [43], [44] presents
problems with redundant objectives, where I denotes the
dimension of the Pareto front, and M is equal to the number of
objectives. Here, we use two 4-D problems, DTLZ5(3, 4) and
DTLZ5(2, 4), which have one and two redundant objectives,
respectively, and are defined with

min f1(x) = (1 + g(x)) cos(θ1(x)) cos(θ2(x)) cos(θ3(x))

min f2(x) = (1 + g(x)) cos(θ1(x)) cos(θ2(x)) sin(θ3(x))

min f3(x) = (1 + g(x)) cos(θ1(x)) sin(θ2(x))

min f4(x) = (1 + g(x)) sin(θ1(x))

g(x) =
n∑

i=4

(xi − 0.5)2

θi(x) =
{

π
2 xi if i = 1, . . . , I − 1

π
4(1+g(x))

(1 + 2g(x)xi) if i = I, . . . , 3

0 ≤ xi ≤ 1, i = 1, 2, . . . , n

where n is the number of decision variables and additional con-
straints apply. The DTLZ5(3, 4) problem has two constraints

f4(x)2 + f3(x)2 + 2f1(x)2 ≥ 1

f4(x)2 + f3(x)2 + 2f2(x)2 ≥ 1

while the DTLZ5(2, 4) problem has three

f4(x)2 + 4f1(x)2 ≥ 1

f4(x)2 + 4f2(x)2 ≥ 1

f4(x)2 + 2f3(x)2 ≥ 1.

In the DTLZ5(3, 4) problem, the Pareto front is characterized
by 2f 2

1 + f 2
3 + f 2

4 = 1 and f1 = f2, which means that either
of the first two objectives is redundant. In the DTLZ5(2, 4)
problem, vectors on the Pareto front comply to 4f 2

1 + f 2
4 = 1

and f1 = f2 =
√

2
2 f3, meaning that two among the first three

objectives are redundant. This implies that the Pareto front is
a surface in the first case and a curve in the second one.

We approximate the two Pareto fronts with two approxima-
tion sets, each consisting of 3000 vectors, and visualize these
sets with a prosection matrix, which enables us to view the
prosections on all prosection planes simultaneously. Fig. 18
shows the prosection matrix using angle ϕ = 45◦ and width
d = 0.05 for all prosection planes. Because using prosections
only slices of approximation sets are visualized, we would
expect the plots to show only a small part of each approxi-
mation set at a time. They mostly do—with the exception of
the first one on the prosection plane f1f2, which coinciden-
tally (because for all vectors f1 = f2, i.e., all vectors lie on

the hyperspace that intersects f1f2 under the angle ϕ = 45◦)
shows the whole approximation sets.

It is interesting to inquire whether the existence of redun-
dant objectives could be inferred solely from visualization with
prosections. In problems with two redundant objectives, this
should be possible. If the Pareto front is a curve, no prosection
will visualize it as a surface. In the other case, the problem
has only one redundant objective and might not be so straight-
forward. As we have seen from Fig. 18, some specific views
might visualize the whole surface. However, if for a chosen
prosection plane, the approximation set is visualized as a strip
of a surface regardless of the angle, we could speculate on the
existence of a single redundant objective.

2) Visualizing the Shape of Pareto Fronts: To show how
prosections visualize approximation sets with a shape differ-
ent from the spherical and linear, two different multiobjective
problems with known Pareto fronts are used: the first is WFG1
from the WFG test problem toolkit [7] and the second is
DEB4DK, a 4-D version of the DEB3DK test problem [45].

a) The WFG1 Test Problem: The WFG test problem
toolkit can be used to create scalable multiobjective test prob-
lems with different characteristics [7]. In this example, we use
the 4-D WFG1 test problem which has an interesting “mixed”
convex and concave shape of the Pareto front. The front is
sampled using 3000 vectors. The objectives of this problem
have different ranges—for the vectors on the Pareto front the
following holds: fi ∈ [0, 2i], i = 1, . . . , 4. Therefore, we nor-
malize all vectors in the approximation set to lie in [0, 1]4

prior to visualization. The normalized approximation set is
visualized with the prosection matrix in Fig. 19.

Depending on the prosection plane, the visualization is capa-
ble of showing the mixed convex and concave shape of the
Pareto front (when f4 is not included in the prosection plane—
the left-hand side and central plots) or not (when f4 is included
in the prosection plane—the right-hand side plots). This is rea-
sonable, since in the first case we “slice through the waves,”
while in the second one, we “slice along them.”

This example shows that it is indeed important to visualize
more than just a single prosection to gain a full understanding
of a non symmetric approximation set. Alternatively, addi-
tional information on the approximation set can be gained
through animation of a chosen prosection plot by changing the
angle ϕ. For example, when the prosection 4D(0, f3f4, ϕ, 0.05)

is animated by changing ϕ from 0◦ to 90◦ using the step 5◦,
we can see that the approximation set “oscillates” (repeatedly
comes closer to the plot origin and then draws away from it).
This indicates that the approximation set is “wavy,” which is a
property of the set that cannot be otherwise easily seen using
only the prosection plane f3f4.

b) The DEB4DK Test Problem: This problem has
knees—regions on the Pareto front where a small improvement
in one objective leads to a large deterioration in at least one
other objective. Knees are especially important for decision-
making purposes as they are usually preferred to other parts of
the Pareto front. It is, therefore, important to be able to show
them when visualizing an approximation set with knees.

The first problems with knees have been defined in [45],
where the DEB2DK and DEB3DK test problems have two
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Fig. 18. Prosection matrix of the approximation sets of the DTLZ5(3, 4) and DTLZ5(2, 4) test problems with redundant objectives.

and three objectives, respectively. For example, the DEB3DK
test problem is defined as

min f1(x) = g(x)r(x) sin
(π

2
x1

)
sin

(π

2
x2

)

min f2(x) = g(x)r(x) sin
(π

2
x1

)
cos

(π

2
x2

)

min f3(x) = g(x)r(x) cos
(π

2
x1

)

g(x) = 1 + 9

n − 1

n∑

i=2

xi

r(x) = r1(x1) + r2(x2)

2

ri(xi) = 5 + 10(xi − 0.5)2 + 2 cos(2Kπxi)

K
0 ≤ xi ≤ 1, i = 1, 2, . . . , n.

Here, n is the number of dimensions of the decision space
and K is a parameter that together with the number of objec-
tives m determines the number of knees in the Pareto front
Km−1. We show the approximation set consisting of 500 vec-
tors from the Pareto front of the DEB3DK problem with
K = 1 in Fig. 20(a). Because K = 1, this Pareto front has
only one knee, which is clearly visible from the plot of the
approximation set.

Since DEB2DK and DEB3DK are based on the DTLZ prob-
lems, they are scalable to any number of objectives. However,
they haven’t been scaled to more than 3-D by their authors.

Here, we introduce the 4-D version of this problem (we call
it DEB4DK)

min f1(x) = g(x)r(x) sin
(π

2
x1

)
sin

(π

2
x2

)
sin

(π

2
x3

)

min f2(x) = g(x)r(x) sin
(π

2
x1

)
sin

(π

2
x2

)
cos

(π

2
x3

)

min f3(x) = g(x)r(x) sin
(π

2
x1

)
cos

(π

2
x2

)

min f4(x) = g(x)r(x) cos
(π

2
x1

)

g(x) = 1 + 9

n − 1

n∑

i=2

xi

r(x) = r1(x1) + r2(x2) + r3(x3)

3

ri(xi) = 5 + 10(xi − 0.5)2 + 3 cos(2Kπxi)

K
0 ≤ xi ≤ 1, i = 1, 2, . . . , n.

Again, we use the DEB4DK problem with K = 1, which
means that the Pareto front of this problem has only one knee,
too. The Pareto front is again sampled with 3000 vectors, but
normalization is not needed since all objectives have similar
ranges.7 Note however, that larger objective values require a

7The ranges of objectives of the DEB3DK and DEB4DK problems in this
paper differ from the ones presented in [45]. This might be due to an unwanted
integer division in the original implementation of these two problems (more
specifically, in the calculation of the g(x) function).
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Fig. 19. Prosection matrix of the approximation sets of the WFG1 test problem.

Fig. 20. Approximation sets of the DEB3DK and DEB4DK test problems.
(a) 3-D. (b) 4D(0, f1f2, 45◦, 2.5).

larger section width than usual (we choose d = 0.05 × 50 =
2.5). Fig. 20(b) presents the visualization of this approximation
set using prosections. We show only the visualization on one
prosection plane as the others produce very similar results. We
can see that under the angle 45◦ the knee is nicely visualized.

In summary, the WFG1 and DEB4DK test problems have
shown the potential of prosections for visualizing the shape of
Pareto fronts.

3) Visualizing the Progress of MOEA: So far we have used
only “artificial” approximation sets that were not achieved as
a result of a MOEA. Therefore, in this last usage example
we wish to show how prosections can be used to visualize
the progress of a true MOEA. To this end we use the dif-
ferential evolution for multiobjective optimization (DEMO)
algorithm [46] on the DTLZ7 benchmark optimization prob-
lem with four objectives [6]. The Pareto front of this problem
has eight disconnected regions and disproportionate objective

values (f1, f2, f3 ∈ [0, 1] while f4 ∈ [2.9, 8]), therefore
normalization is required for the fourth objective.

The DEMO algorithm with the population of 100 vectors
was run on this problem. To visualize the progress of DEMO,
we plot the approximation sets achieved by the algorithm after
50, 100, and 300 generations, which have 329, 1022, and 3616
vectors, respectively (see Fig. 21).

Again, we show only the visualizations on two prosection
planes as the objectives f1, f2, and f3 are symmetric and produce
very similar plots. The first prosection [using f1f2, see Fig. 21(a)]
shows four different regions. It is easy to see that with increasing
generations the algorithm was able to converge better. Note also
that the increasing number of vectors in the approximation sets
is properly visualized. While the second prosection [using f3f4,
see Fig. 21(b)] exhibits similar characteristics, it is interestingly
able to show five regions simultaneously.

G. Discussion

We can look at visualization with prosections in view of the
desired properties for a visualization method (see Introduction
and Table I). As shown in Section IV-E (and proven in the
Appendix), visualization with prosections is able to preserve
the Pareto dominance relation and relative closeness to refer-
ence points for some vectors, which is crucial for the correct
interpretation of the visualized results in the decision-making
process following optimization. In addition, all the visualized
approximation sets have demonstrated that this method is also
good at maintaining their shape characteristics (for example,
knees) and distribution of vectors. However, because the pros-
ection is done under an angle, the ranges of the two objectives



TUŠAR AND FILIPIČ: VISUALIZATION OF PARETO FRONT APPROXIMATIONS 241

Fig. 21. Prosections of the approximation sets at 50, 100, and
300 generations of the DEMONS-II algorithm on the DTLZ7 problem.
(a) 4D(0, f1f2, 45◦, 0.05). (b) 4D(0, f3f4, 45◦, 0.05).

included in the prosection lose some of their meaning (see
Section IV-E).

Further, prosections are as robust as scatter plots—addition
or removal of a vector does not importantly change the visu-
alization. Because only a part of the approximation set is
visualized at a time, they are able to visualize large approxi-
mation sets. Moreover, they are computational inexpensive as
they require only a simple mapping to be performed on the
chosen two objectives.

One of the best properties of prosections is that they are able
to visualize two (or more) approximation sets simultaneously,
therefore allowing for direct comparison between different
approximation sets. This means that they can be used to study
the quality of convergence to the Pareto front (if known),
to compare different MOEAs and visualize the progress of
a single MOEA (as we have done in Section IV-F3).

On the other hand, their biggest disadvantage in their present
form is that they are limited to 4-D approximation sets.
Scalability to five or more dimensions is challenging for two
reasons. First, applying prosection multiple times might result
in a loss of ability to preserve the Pareto dominance relation
and maintain the shape, range, and distribution of vectors,
which is essential for producing meaningful visualizations.
Second, because only a small part of the objective space is
visualized at a time, this would scale too, meaning that it
would become impractical to show enough views to gain a

good understanding of the approximation set. Handling these
challenges is a task for future work.

Finally, a note on whether prosections are simple to under-
stand and use. The idea behind prosections is very simple—
they slice through the 4-D approximation set and visualize
this slice in 3-D. However, in practice some parameters need
to be set (see Section IV-D) and several prosection planes and
angles should be explored to gain a full understanding of an
approximation set. This makes them less simple to use. To
enhance their usability, we suggest to follow this procedure
for visualization of a 4-D approximation set, in which all four
objectives need to be minimized.8

1) If the objectives are disproportionate, normalize the
approximation sets to the interval [0, 1]4 (for the sake of
brevity we assume the approximation sets are normal-
ized from this point on).

2) Set the point 0 as the origin and choose d depending
on the size of the approximation sets (for example, d ∈
[0.02, 0.05] for approximation sets with 3000 vectors—
d can be smaller for larger sets and larger for smaller
sets).

3) Look at the prosection matrix at different angles (for
example ϕ = 0◦, 10◦, . . . , 90◦) either with separate plots
or animation.

4) Choose the prosection plane and angle ϕ that give most
information and visualize and analyze only this one.

5) Repeat the previous step if needed.
Using this procedure the user gets a small number of mean-
ingful visualizations that can help understand better the 4-D
approximation sets.

V. CONCLUSION

Visualization of Pareto front approximations has differ-
ent requirements than visualization of other multidimensional
data. We are interested not only in the distribution of vec-
tors in the objective space but also in the dominance relations
between them (to be able to compare different approxima-
tion sets) and in the shape of approximation sets (we wish
to see their knees, discontinuities, etc.). Moreover, visualiza-
tion methods need to handle large approximations sets as the
sets found by MOEAs are usually large. To inspect how visu-
alization methods comply with these requirements we have
introduced two novel 4-D BASes. They are close together in
the objective space, but have a different shape and distribution
of vectors. Therefore, a good visualization method should be
able to recognize their features and differentiate well between
them.

We have shown the visualizations of the existing methods
on the two BASes and summarized their properties in a table.
Most of the presented methods are scalable to any number of
objectives, but fail to correctly show the dominance relations
between vectors, the approximation set shape or the distribu-
tion of vectors. Moreover, some are not suitable for comparing
two or more approximation sets and face difficulties when
visualizing large sets.

8A few gnuplot scripts to support this visualization procedure can be
found at http://dis.ijs.si/tea/prosections.htm

http://dis.ijs.si/tea/prosections.htm
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The presented visualization with prosections has just the
opposite properties: it is able to correctly show the domi-
nance relations between many vectors, the approximation set
shape and the distribution of vectors, but is not easily scal-
able to more than 4-D. In addition, it can handle multiple
large approximation sets while being robust and computation-
ally inexpensive. Because of this, prosections are best used to
study the quality of convergence to the Pareto front (if known),
to compare different MOEAs and visualize the progress of a
single MOEA. This was demonstrated on some well-known
multiobjective optimization problems as well a problem with
knees and problems with redundant objectives, while the par-
tial preservation of the dominance relation and the relative
closeness to reference points was formally proven.

This paper tackled visualization in a somehow limited scope
as only four objectives were considered. However, in our opin-
ion, we should be able to first understand and really see
the 4-D approximation sets before moving on to more than
four dimensions. Also, while the step from 3-D to 4-D might
seem small, it is very important. Most MOEAs that work
well in 2-D and 3-D fail to reach good results in 4-D. Being
able to visualize their outcome on 4-D problems would give
researchers a powerful tool for finding pitfalls and improv-
ing the performance of these algorithms on 4-D optimization
problems.

Nevertheless, we are interested in exploring how prosec-
tions can be extended beyond 4-D. While at the first glance
this seems straightforward—just apply prosection twice—we
wish to find a way that will retain all the good properties
of 4-D prosections while at the same time not introduce new
parameters to keep the method as simple and manageable as
possible. One way to do this would be to construct some kind
of a “recommendation function” that would provide a ranking
of views with regard to their importance to the user. This rank-
ing would be based on the properties of the approximation sets
to be visualized. In this way, the user would not have to set
any parameters of the method or look at the prosection matrix,
but would simply visualize the top recommended views.

APPENDIX

PROOFS OF THEOREMS

In the proofs, we will denote with ijk1 . . . km−2 the permu-
tation of indices 1, . . . , m so that k1 < · · · < km−2 and use
the following abbreviations:

sA := sϕ,d,a(f
A
i , f A

j ) = (f A
i − ai) cos ϕ + (f A

j − aj) sin ϕ

sB := sϕ,d,a(f
B
i , f B

j ) = (f B
i − ai) cos ϕ + (f B

j − aj) sin ϕ

σA := mD(a, fifj, ϕ, d)(f A) = (sA, f A
k1

, . . . , f A
km−2

)

σB := mD(a, fifj, ϕ, d)(f B) = (sB, f B
k1

, . . . , f B
km−2

).

Definition 7 (Weak Pareto Dominance Relation of Vectors):
The objective vector f A = (f A

1 , . . . , f A
m ) weakly dominates the

objective vector f B = (f B
1 , . . . , f B

m ), i.e. f A � f B, if

f A
i ≤ f B

i for ∀i ∈ {1, . . . , m}.
Theorem 1: Suppose the mD(a, fifj, ϕ, d) prosection is per-

formed, where m ≥ 2 and ϕ ∈ (0◦, 90◦). Then for any two

vectors f A = (f A
1 , . . . , f A

m ), and f B = (f B
1 , . . . , f B

m ) inside the
section the following holds. If

f A ≺ f B

then

mD(a, fifj, ϕ, d)(f A) ≺ mD(a, fifj, ϕ, d)(f B).

Proof: First, because f A ≺ f B, it follows that f A
i ≤ f B

i ,
f A
j ≤ f B

j and f A
kl

≤ f B
kl

for l ∈ {1, . . . , m − 2}. Also, because
ϕ ∈ (0◦, 90◦), sin ϕ > 0 and cos ϕ > 0. Therefore

sB − sA = (f B
i − f A

i )︸ ︷︷ ︸
≥0

cos ϕ︸ ︷︷ ︸
>0

+ (f B
j − f A

j )
︸ ︷︷ ︸

≥0

sin ϕ︸︷︷︸
>0

≥ 0.

This means that σA � σB. Now, we only have to prove that
σA �= σB. If there exists an index l so that f A

kl
< f B

kl
, then

σA �= σB. Otherwise, if f A
kl

= f B
kl

for all l ∈ {1, . . . , m − 2},
then either f A

i < f B
i or f A

j < f B
j . In either case this means that

sB − sA > 0, which proves the theorem.
Theorem 2: Suppose the mD(a, fifj, ϕ, d) prosection is per-

formed, where m ≥ 2 and ϕ ∈ (0◦, 90◦). Then for any two
vectors f A = (f A

1 , . . . , f A
m ), and f B = (f B

1 , . . . , f B
m ) inside the

section the following holds. If

mD(a, fifj, ϕ, d)(f A) ≺ mD(a, fifj, ϕ, d)(f B)

and

s(f B
i , f B

j ) − s(f A
i , f A

j ) ≥ 2d max
{

tan ϕ, tan−1 ϕ
}

then

f A ≺ f B.

Proof: First, let us show that under the assumptions of the
theorem f A � f B. Because σA ≺ σB, it follows that f A

kl
≤ f B

kl

for l ∈ {1, . . . , m − 2}. We need to show that f A
i ≤ f B

i and
f A
j ≤ f B

j .
If d > 0, (f A

i , f A
j ) is not the only vector to be projected into

the value sA. In fact, the whole line segment

fj = aj − fi − ai

tan ϕ
+ sA

sin ϕ

where

fi ∈ [ai + sA cos ϕ − d sin ϕ, ai + sA cos ϕ + d sin ϕ]

fj ∈ [aj + sA sin ϕ − d cos ϕ, aj + sA sin ϕ + d cos ϕ]

is projected into the same value sA (see Fig. 22). We will
denote this as line segment A. Analogously, the whole line
segment

fj = aj − fi − ai

tan ϕ
+ sB

sin ϕ

where

fi ∈ [ai + sB cos ϕ − d sin ϕ, ai + sB cos ϕ + d sin ϕ]

fj ∈ [aj + sB sin ϕ − d cos ϕ, aj + sB sin ϕ + d cos ϕ]
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Fig. 22. Line segments A and B.

is projected into the value sB. This is line segment B. Note
that if d = 0, the line segments A and B consist of only one
vector each, which are equal to (ai + sA cos ϕ, aj + sA sin ϕ)

and (ai + sB cos ϕ, aj + sB sin ϕ), respectively.
Showing that all vectors from line segment A weakly dom-

inate the whole line segment B proves that f A
i ≤ f B

i and
f A
j ≤ f B

j . Since the weak dominance relation is transitive, this
can be done in two steps.

1) Line segment A weakly dominates a vector (f C
i , f C

j ).
2) The vector (f C

i , f C
j ) weakly dominates line segment B.

We can show that this holds for the vector

(f C
i , f C

j ) = (ai + sA cos ϕ + d sin ϕ, aj + sA sin ϕ + d cos ϕ).

Proof of step 1: It is trivial to see that all vectors from the
line segment A weakly dominate the vector (f C

i , f C
j ).

Proof of step 2: The vector (f C
i , f C

j ) weakly dominates the
line segment B when the following two inequalities hold:

f C
i ≤ ai + sB cos ϕ − d sin ϕ f C

j ≤ aj + sB sin ϕ − d cos ϕ

f C
i ≤ ai + sB cos ϕ − d sin ϕ

ai + sA cos ϕ + d sin ϕ ≤ ai + sB cos ϕ − d sin ϕ

(sB − sA) cos ϕ ≥ 2d sin ϕ

sB − sA ≥ 2d tan ϕ

f C
j ≤ aj + sB sin ϕ − d cos ϕ

aj + sA sin ϕ + d cos ϕ ≤ aj + sB sin ϕ − d cos ϕ

(sB − sA) sin ϕ ≥ 2d cos ϕ

sB − sA ≥ 2d tan−1 ϕ.

Both inequalities hold because of the condition from the
theorem

sB − sA ≥ 2d max
{

tan ϕ, tan−1 ϕ
}

.

Now, we only need to show that f A �= f B. If there exists an
index l so that f A

kl
< f B

kl
, then f A �= f B. Otherwise, if f A

kl
= f B

kl

for all l ∈ {1, . . . , m − 2}, then sA < sB. Since ϕ ∈ (0◦, 90◦),

sin ϕ > 0 and cos ϕ > 0

sB − sA = (f B
i − f A

i )︸ ︷︷ ︸
≥0

cos ϕ︸ ︷︷ ︸
>0

+ (f B
j − f A

j )
︸ ︷︷ ︸

≥0

sin ϕ︸︷︷︸
>0

> 0.

Because of this, (f B
i − f A

i ) and (f B
j − f A

j ) cannot be 0 at the
same time, which means that f A ≺ f B.

Theorem 3: Suppose the mD(a, fifj, ϕ, d) prosection is per-
formed, where m ≥ 2. Then for any two vectors f A =
(f A

1 , . . . , f A
m ) and f B = (f B

1 , . . . , f B
m ) inside the section

∥∥∥mD(a, fifj, ϕ, d)(f A) − mD(a, fifj, ϕ, d)(f B)

∥∥∥ ≤
≤

∥∥∥f A − f B
∥∥∥ .

The equality holds iff

f A
j − f B

j

f A
i − f B

i

= tan ϕ.

Proof: Let us first provide the proof for the inequality
∥∥∥f A − f B

∥∥∥
2 −

∥∥∥σA − σB
∥∥∥

2 =
= (f A

1 − f B
1 )2 + · · · + (f A

m − f B
m )2 −

−
(
(sA − sB)2 + (f A

k1
− f B

k1
)2 + · · · + (f A

km−2
− f B

km−2
)2

)
=

= (f A
i − f B

i )2 + (f A
j − f B

j )2 − (sA − sB)2 =
= (f A

i − f B
i )2 + (f A

j − f B
j )2 −

−
(
(f A

i − f B
i ) cos ϕ + (f A

j − f B
j ) sin ϕ

)2 =
=

(
(f A

i − f B
i )2 + (f A

j − f B
j )2

)
(sin2 ϕ + cos2 ϕ) −

−
(
(f A

i − f B
i ) cos ϕ + (f A

j − f B
j ) sin ϕ

)2 =
= (f A

i − f B
i )2 sin2 ϕ + (f A

j − f B
j )2 sin2 ϕ +

+ (f A
i − f B

i )2 cos2 ϕ + (f A
j − f B

j )2 cos2 ϕ −
− (f A

i − f B
i )2 cos2 ϕ − 2(f A

i − f B
i )(f A

j − f B
j ) sin ϕ cos ϕ −

− (f A
j − f B

j )2 sin2 ϕ =
= (f A

i − f B
i )2 sin2 ϕ + (f A

j − f B
j )2 cos2 ϕ −

− 2(f A
i − f B

i )(f A
j − f B

j ) sin ϕ cos ϕ =
=

(
(f A

i − f B
i ) sin ϕ − (f A

j − f B
j ) cos ϕ

)2 ≥ 0.

This means that
∥∥f A − f B

∥∥2 ≥ ∥∥σA − σB
∥∥2

, from which it
follows that

∥∥f A − f B
∥∥ ≥ ∥∥σA − σB

∥∥.
The equality holds when

(f A
i − f B

i ) sin ϕ − (f A
j − f B

j ) cos ϕ = 0

which is equivalent to

f A
j − f B

j

f A
i − f B

i

= tan ϕ.

Theorem 4: Suppose the mD(a, fifj, ϕ, d) prosection is per-
formed, where m ≥ 2. Let f A = (f A

1 , . . . , f A
m ), f B =

(f B
1 , . . . , f B

m ) and f R = (f R
1 , . . . , f R

m ) be three vectors inside
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the section and let us assume that
∥∥f A − f R

∥∥ <
∥∥f B − f R

∥∥ .

If
∥∥f B − f R

∥∥2 − ∥∥f A − f R
∥∥2

> 4D2, then
∥∥∥mD(a, fifj, ϕ, d)(f A) − mD(a, fifj, ϕ, d)(f R)

∥∥∥ <
∥∥mD(a, fifj, ϕ, d)(f B) − mD(a, fifj, ϕ, d)(f R)

∥∥ .

On the other hand, if
∥∥mD(a, fifj, ϕ, d)(f B) − mD(a, fifj, ϕ, d)(f R)

∥∥2 −
−

∥∥∥mD(a, fifj, ϕ, d)(f A) − mD(a, fifj, ϕ, d)(f R)

∥∥∥
2

> 4d2

then
∥∥f A − f R

∥∥ <
∥∥f B − f R

∥∥ .

Proof: First, note that for any vector in the section the
following holds:

∥∥σ − σR
∥∥2 + 4d2 ≥ ∥∥f − f R

∥∥2 ≥ ∥∥σ − σR
∥∥2

.

Let us provide the proof for the first affirmation. From the pre-
vious inequality and the assumption in the theorem it follows
that:

∥∥σB − σR
∥∥2 + 4d2 ≥ ∥∥f B − f R

∥∥2
>

∥∥∥f A − f R
∥∥∥

2 + 4d2.

Therefore,
∥∥σB − σR

∥∥ >
∥∥f A − f R

∥∥.
The second affirmation can be proven in a similar way

using the same inequality as before and the assumption in
the theorem

∥∥f B − f R
∥∥2 ≥ ∥∥σB − σR

∥∥2
>

∥∥∥σA − σR
∥∥∥

2 + 4d2 ≥

≥
∥∥∥f A − f R

∥∥∥
2
.

This means that
∥∥f B − f R

∥∥ >
∥∥f A − f R

∥∥.
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TUŠAR AND FILIPIČ: VISUALIZATION OF PARETO FRONT APPROXIMATIONS 245

[36] K. Deb, A. Pratap, S. Agrawal, and T. Meyarivan, “A fast and elitist mul-
tiobjective genetic algorithm: NSGA–II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[37] X. Blasco, J. M. Herrero, J. Sanchis, and M. Martínez, “A new graph-
ical visualization of n-dimensional Pareto front for decision-making in
multiobjective optimization,” Inf. Sci., vol. 178, no. 20, pp. 3908–3924,
Oct. 2008.

[38] P.-W. Chiu and C. Bloebaum, “Hyper-radial visualization (HRV) method
with range-based preferences for multi-objective decision making,”
Struct. Multidiscip. Optim., vol. 40, nos. 1–6, pp. 97–115, 2010.

[39] D. J. Walker, R. M. Everson, and J. E. Fieldsend, “Visualisation and
ordering of many-objective populations,” in Proc. CEC, Barcelona,
Spain, 2010, pp. 1–8.

[40] L. Tweedie, R. Spence, H. Dawkes, and H. Su, “Externalising abstract
mathematical models,” in Proc. Conf. SIGCHI, San Francisco, CA, USA,
1996, pp. 406–412.

[41] G. W. Furnas and A. Buja, “Prosection views: Dimensional inference
through sections and projections,” J. Comput. Graph. Stat., vol. 3, no. 4,
pp. 323–353, 1994.
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