
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 5, OCTOBER 2014 689

Differential Evolution With Dynamic Parameters
Selection for Optimization Problems

Ruhul A. Sarker, Member, IEEE, Saber M. Elsayed, and Tapabrata Ray

Abstract—Over the last few decades, a number of differential
evolution (DE) algorithms have been proposed with excellent
performance on mathematical benchmarks. However, like any
other optimization algorithm, the success of DE is highly de-
pendent on the search operators and control parameters that
are often decided a priori. The selection of the parameter
values is itself a combinatorial optimization problem. Although
a considerable number of investigations have been conducted
with regards to parameter selection, it is known to be a tedious
task. In this paper, a DE algorithm is proposed that uses
a new mechanism to dynamically select the best performing
combinations of parameters (amplification factor, crossover rate,
and the population size) for a problem during the course of
a single run. The performance of the algorithm is judged by
solving three well known sets of optimization test problems (two
constrained and one unconstrained). The results demonstrate
that the proposed algorithm not only saves the computational
time, but also shows better performance over the state-of-the-art
algorithms. The proposed mechanism can easily be applied to
other population-based algorithms.

Index Terms—Constrained optimization, differential evolution
(DE), parameter adaptation, parameter selection.

I. Introduction

OPTIMIZATION is a challenging area of research span-
ning across the fields of computer science, operations

research, and engineering. Optimization problems can be ei-
ther constrained or unconstrained. Constrained optimization
is different from its unconstrained counterpart, as it needs
to optimize the objective function while satisfying the func-
tional constraints and variable bounds. Constrained optimiza-
tion problems (COPs) can be classified into many different
categories based on the nature of the problems and their
mathematical properties. In any problem, the type of constraint
can be either equality or inequality or both. The objective
and constraint functions may possess different properties such
as linear and/or nonlinear, continuous or discontinuous, and
unimodal or multimodal. The feasible space could be a single
bounded region or a collection of multiple disjoint regions. The
feasible region could even be unbounded in some problems.
The optimal solution may exist either on the boundary or

Manuscript received June 7, 2012; revised September 23, 2012, January
10, 2013, and May 15, 2013; accepted July 2, 2013. Date of publication
September 16, 2013; date of current version September 29, 2014.

The authors are with the School of Engineering and Information Tech-
nology, University of New South Wales, Canberra 2600, Australia (e-mail:
r.sarker@adfa.edu.au; s.elsayed@adfa.edu.au; t.ray@adfa.edu.au).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEVC.2013.2281528

in the interior of the feasible space. A large number of
variables and constraints may also add to the complexity of the
problem.

Evolutionary algorithms (EAs), such as genetic algorithms
(GA) [1], differential evolution (DE) [2], evolution strategies
(ES) [3], and evolutionary programming (EP) [4], have a
long history of successfully solving optimization problems.
Among EAs, DE has shown significant success in solving
different numerical optimization problems (both constrained
and unconstrained, and black-box) [5], [6]. However, the
choice of the control parameters plays a pivotal role in the
performance of DE algorithms. While both the choice of the
search operators and the control parameters affect the perfor-
mance, our focus in this paper is on the control parameters
(such as amplification factor, crossover rate, and the population
size) and not on the search operators (such as mutation and
crossover variants). In solving any optimization problem, the
selection of the right combination of parameters is itself a
combinatorial optimization problem. Parameter tuning, which
is a trial-and-error approach, is widely used for parameter
selection and is known to be tedious [7]. Using such a trial-
and-error approach, a single set of parameters is usually
selected based on the average performance of the algorithm
over the class of test problems. Due to the variability of
the underlying mathematical properties of the optimization
problems, a fixed set of control parameters that suits well for
one problem, or a class of problems does not guarantee that it
will work well for another class, or range of problems. That is,
the best set of parameters is problem dependent. To ensure best
performance of the algorithm, one must choose the right set of
parameters for each and every problem which is a nontrivial
task. In addition, a set of parameters that works well at the
early stages of the evolution process may not perform well at
the later stages and vice versa.

The idea of parameter adaptation was introduced at least
two decades ago in the context of GA [8]. In DE, many
different mechanisms have been introduced to select and/or
manage the dynamic changes of the control parameters. Based
on how the control parameters are adapted, the mechanisms
can be classified into three classes [9]. These classes are
briefly described as follows: 1) deterministic parameter control
in which parameters are changed based on some determin-
istic rules, regardless of any feedback from the algorithm,
i.e., the time-dependent change of the mutation rates [10];
2) adaptive parameter control in which parameters are dy-
namically updated, based on learning from the evolution

1089-778X c© 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but
republication/redistribution requires IEEE permission. See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



690 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 5, OCTOBER 2014

process [11], [12]; and 3) self-adaptive parameter control
in which parameters are directly encoded within individuals
and undergo recombination. The adaptive and self-adaptive
mechanisms outperformed the classical DE algorithms
(without parameter control) in terms of the reliability and
rate of convergence for many benchmark problems [11]–[13].
Some of these algorithms have been applied to unconstrained
problems, where it dynamically adapted either one of the three
control parameters (crossover rate, amplification factor, or the
population size), or two of them together (crossover rate and
amplification factor). To the best of our knowledge, only a
few algorithms reported in the literature adapted all three
control parameters together [14], [15]. In addition, existing
investigations usually suggested a single set of parameters
for all the problems under consideration. Note that some of
the investigations, which determine the parameters using the
traditional parametric analysis concept, require a huge number
of trials.

In this paper, a DE algorithm with dynamic selection of
three control parameters is proposed for solving optimization
problems. We introduce the algorithm as DE-DPS. In the
proposed algorithm, three sets of parameters are considered:
the first set is for the amplification factor, the second is
for the crossover rate, while the third is for the population
size. Each individual in the population is assigned a random
combination of amplification factor (F) and crossover rate
(Cr). The success rate of each combination is recorded for a
certain number of generations and the better performing com-
binations are applied for a number of subsequent generations.
This process is recognized as a cycle. Based on the success
rate, the number of combinations is reduced in subsequent
cycles. At the beginning of each cycle, the success rates of
the current combinations are reinitialized to zero and after
every few cycles, the process restarts with all combinations of
parameters.

To judge the efficiency of the proposed algorithm, three
well known sets of optimization test problems (from the IEEE
CEC competition problem sets: CEC2006 [16] and CEC2010
constrained problem sets [17], and CEC2005 unconstrained
problem set [18]) have been solved. The proposed algo-
rithm shows consistently better performance in comparison
to other state-of-the-art algorithms. Interestingly, on a single
run basis, the proposed algorithm reduces the average com-
putational time significantly in comparison to a DE with a
single set of parameters. The approach outlined in this paper
not only offers an excellent choice for parameter selection,
but also offers a better solution with lower computational
effort. The comparisons based on the performance profiles
indicate that the proposed algorithm performs consistently
better for not only the constrained optimization problems but
also for the unconstrained problem sets considered in this
paper.

This paper is organized as follows. After the introduction,
Section II presents the DE algorithm with an overview of its
parameters. Section III describes the design of the proposed
algorithm. The experimental results and the analysis of those
results are presented in Section IV. Finally, conclusions and
future work are given in Section V.

II. Differential Evolution

In this section, the commonly used operators and parameters
of DE are discussed.

First, we define the key terms that are used in this section.
A target vector ( �Xz,t) is a parent vector in generation t of
an individual z. A mutant vector ( �Vz,t) is the vector obtained
through the mutation operation, which is also known as
the donor vector. A trial vector ( �U) is an offspring that is
obtained by recombining the mutant vector with the parent
vector.

A. Mutation

In the simplest form of mutation, �Vz,t is generated by
multiplying the amplification factor F by the difference of
two random vectors, and the result is added to another third
random vector

�Vz,t = �Xr1,t + F.
( �Xr2,t − �Xr3,t

)
(1)

where r1, r2, r3 are random numbers {1,2, ..., PS}, r1 �= r2 �=
r3 �= z, x is a decision vector, PS is the population size, t is
the current generation, and F is a positive control parameter
(amplification factor) for scaling the difference vectors.

This operation enables DE to explore the search space and
maintain diversity. There are many strategies for mutation,
such as DE/rand-to-best/2 [12], rand/2/dir [19], DE/current-
to-best/1 [20], and DE/Current-to-pbest [21]. For more details,
readers are referred to [5].

B. Crossover

In DE, two crossover operators (exponential and binomial)
are commonly used. These crossover operators are briefly
discussed as follows.

In an exponential crossover, an integer l is randomly chosen
within the range {1, D}, where D is the number of decision
variables. This integer acts as a starting point in �Xz,t , from
where the crossover or exchange of components with �Vz,t

starts. Another integer L is chosen from the interval {1,
D-l} [5].

The trial vector ( �U) is formed by inheriting the values of
variables in locations l to l+L from the mutant vector and the
remaining ones from the parent vector.

The binomial crossover is performed on each of the jth

variables whenever a randomly picked number (between 0 and
1) is less than or equal to a crossover rate (Cr). The generation
number is indicated here by t. In this case, the number of
parameters inherited from the donor has a (nearly) binomial
distribution

uzj,t =

{
vzj,t, if (rand≤Cr or j = jrand)
xzj,t, otherwise

(2)

where rand ∈ [0, 1], and jrand ∈ {1, 2, . . ., D} is a randomly
chosen index, which ensures �Uz,t gets at least one component
from �Vz,t

C. Brief Review and Analysis

In this subsection, we provide a brief review on the selection
of DE parameters and strategies.



SARKER et al.: DIFFERENTIAL EVOLUTION WITH DYNAMIC PARAMETERS SELECTION FOR OPTIMIZATION PROBLEMS 691

1) DE Parameters Settings: Various studies recommended
different values for each parameter (the amplification factor F ,
the crossover rate Cr, and population size PS). For example,
Storn and Price [2] recommended a population size of 5D–20D
(D denotes the number of variables of the problem) and an F
value of 0.5. Gamperle et al. [22] evaluated different parameter
settings of DE, where they found that a plausible choice
of PS is between 3D and 8D, with the amplification factor
F = 0.6 and the crossover rate Cr bounded between [0.3, 0.9].
Ronkkonen et al. [23] indicated that the amplification factor
(F) is typically between 0.40 and 0.95 with F = 0.9 being a
good first choice. Furthermore, the value of the crossover rate
(Cr) typically lies in the range [0,0.2] when the function is
separable and within the range of [0.9, 1] when the function’s
variables are dependent.

Abbass [24] proposed a self-adaptive operator (crossover
and mutation) for multiobjective optimization problems, where
the amplification factor F is generated using a Gaussian
distribution N(0, 1). This technique has been modified in [25].
Zaharie [26] proposed a parameter adaptation strategy for
DE based on the idea of controlling the population diversity,
and implemented a multiple population approach. Qin et al.
[12] proposed a novel differential evolution algorithm (SaDE),
where the choice of the learning strategy and the two control
parameters F and Cr are not required to be prespecified.
The parameter F, in SaDE, is approximated by a normal
distribution N (0.5, 0.3), and truncated to the interval (0, 2].
Such an approach could maintain both the intensification (with
small F values) and diversity (with large F values) during the
course of search. The crossover probabilities were randomly
generated according to an independent normal distribution
with mean Crm and standard deviation 0.1. The Crm values
remain fixed for five generations before the next regeneration.
Crm was initialized to 0.5, and it was updated every 25
generations based on the recorded successful Cr values since
the last Crm update.

Using fuzzy logic controllers, Liu and Lampinen [27] in-
troduced a fuzzy adaptive differential evolution, whose inputs
incorporated the relative function values and individuals of
successive generations to adapt the parameters for mutation
and crossover.

Brest et al. [11] proposed a self-adaptation scheme for the
DE control parameters, known as jDE. The control parameters
were adjusted by means of evolution of F and Cr. In jDE, a
set of F and Cr values was assigned to each individual in the
population, augmenting the dimensions of each vector. In jDE,
new Ft+1 and Crt+1 were calculated as follows:

Ft+1 =

{
Fl + rand1.Fu, if rand2<τ1

Fi,t, otherwise
(3)

Crt+1 =

{
rand3, if rand4 < τ2

Cri,t, otherwise
(4)

where rand1, rand2, rand3, rand4 are uniform random values
∈ [0, 1], Fl = 0.1, Fu = 0.9, τ1 = τ2 = 0.1.

Zhang et al. [21] proposed an adaptive differential evolution
algorithm with optional external memory (JADE). In JADE,
at each generation, the crossover probability Crz of each
individual xz was independently generated according to a

normal distribution of mean μCr and standard deviation of
0.1, that is

Cr = randnz(μCr, 0.1)z (5)

and then truncated to [0, 1]. μCr was initialized at a value of
0.5 and updated as follows:

μCr = (1 − c) .μCr + c.meanA (SCr) (6)

where c is a positive constant between 0 and 1 and mean A(.)
is the usual arithmetic mean, SCr is the set of all successful
crossover probabilities at generation t.

Similarly, Fz of each individual xz was independently
generated according to a Cauchy distribution with location
parameter μF and scale parameter 0.1

Fz = randci(μF, 0.1) (7)

and then truncated to be 1 if Fz>1, or regenerated if Fz<0. SF
is the set of all successful mutation factors at generation t. The
location parameter μF was initialized to 0.5 and subsequently
updated at the end of each generation as

μF = (1 − c) .μF + c.meanL(SF ) (8)

where mean L(.) is the Lehmer mean

mean L (SF ) =

∑
F∈SF

F 2∑
F∈SF

F
. (9)

Das et al. [28] introduced two schemes for adapting the
scale factor F in DE. In the first scheme, called DERSF, [DE
with a random scale factor (RSF)], F was randomly chosen
between 0.5 and 1.0. In the second scheme, F was initialized
with a value of 1.0, and then linearly reduced to 0.1 during the
process of evolution. Zamuda et al. [29] introduced differential
evolution with self-adaptation and local search for the con-
strained multiobjective optimization algorithm (DECMOSA-
SQP), which incorporates a self-adaptive mechanism from
DEMOwSA algorithm and a SQP local search.

2) DE Operators: Yong et al. [30] developed a composite
DE algorithm (CoDE), wherein a new trial vector was created
by randomly combining three trial DE strategies with three
control parameter settings at each generation. Thus, three
trial vectors were generated for each target vector and the
best among them made its way to the population of the
next generation if it was better than its target vector. The
algorithm demonstrated competitive performance on a set of
unconstrained test problems.

Fialho et al. [31] proposed an adaptive strategy selection
(AdapSS) paradigm, in which an online selection of the mu-
tation strategy was performed for the generation of each new
individual. AdapSS used two components: 1) credit assignment
scheme, and 2) strategy selection method. The algorithm was
assessed on the BBOB test suite and demonstrated good
performance.

Gong et al. [32] used two different techniques (probability
matching and adaptive pursuit) within DE to separately se-
lect the most suitable DE strategy. Furthermore, four credit
assignment methods were assessed based on their relative
fitness improvements. The two variants were evaluated on a set



692 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 5, OCTOBER 2014

of unconstrained problems, and showed superior performance
over other state-of-the-art algorithms.

Da Silva et al. [33] proposed a DE algorithm with an
adaptive penalty technique for solving a set of constrained
problems. Moreover, they introduced a dynamic mechanism
to select the best performing mutation operator, out of four,
during the process of evolution.

Yang et al. [34] introduced a self-adaptive clustering-
based DE with composite trial vector generation strategies
(SaCoCDE), in which the population was divided into different
subsets by a clustering algorithm. The algorithm was tested on
a set of unconstrained problems and showed highly competi-
tive performance when compared with the state-of-the-art DE
algorithms.

Zamuda and Brest [35] proposed an algorithm that in-
corporated two multiple mutation strategies into jDE, and
introduced a population reduction methodology in [15]. The
algorithm was tested on 22 real-world applications. The algo-
rithm showed better performance over two other algorithms.

Based on the original version in [36], Tvrdiı́k and
Polaákovaá [37] proposed a DE based algorithm for solving a
set of constrained optimization problems. In their algorithm,
with a probability (qk), one set of control parameters was
selected out of 12 available sets, and during the evolution
process, qk was updated based on the success rate in previous
steps. The algorithm was ranked eighth in the CEC2010
competition.

Mallipeddi and Suganthan [38] proposed an ensemble of
parallel populations based on a DE algorithm, in which three
different population sizes were used. Each population was
assigned a prescribed number of fitness evaluations, which
were adaptively updated according to the population’s success
in the previous generation.

Mallipeddi et al. [39] proposed an ensemble of mutation
strategies and control parameters within DE (EPSDE). In
EPSDE, a pool of distinct mutation strategies, along with a
pool of values for each control parameter, coexists throughout
the evolution process and competes to produce offspring.
The algorithm has been used to solve a set of unconstrained
problems.

III. DE With Dynamic Parameters Selection

In this section, the proposed algorithm (DE-DPS) is de-
scribed, followed by the details of the constraint handling
technique used in this paper.

A. Algorithm

In this paper, our purpose is to find the most appropriate
parameters (F, Cr, and PS) during various stages of evolution
process for any given problem. The sets for the parameters
F, Cr, and PS are defined as Fset, Crset andPSset , where
Fset = {F1, F2, . . ., Fnf }, Crset = {Cr1, Cr2, . . ., Crncr}, and
PSset = {PS1, PS2, . . ., PSnps}. Here, PSi is assumed to be
larger than PSi−1, ∀i = nps, nps − 1, . . ., 2, and nf, ncr, and
nps refer to the cardinality of the set of amplification factors,
crossover rates, and population sizes, respectively. Note that
the population size (PSi−1) is not only smaller than (PSi), but

TABLE I

DE-DPS Algorithm

also a subset of PSi. Similarly, PSi−2 is a subset of PSi−1 and
so on.

The pseudocode of the algorithm is presented in Table I.
In the first step, PSnps (i.e., the population with the largest
size considered in this paper) random individuals are generated
within the variable bounds. Each individual in the population( �Xz

)
is assigned a random F (Fz) and a random Cr (Crz)

(see Fig. 1). The number of combinations (tot.com) for F and
Cr is equal to a nf×ncr. Note that there are nps population
sizes.

For each zth individual in the population, a new offspring
is generated first via a mutation operator that is further
modified via a crossover operation. To perform mutation, three
individuals are used, two of which are randomly selected from
the population, while the third base parent is selected from



SARKER et al.: DIFFERENTIAL EVOLUTION WITH DYNAMIC PARAMETERS SELECTION FOR OPTIMIZATION PROBLEMS 693

Fig. 1. F and Cr assignment (each F and Cr is randomly selected from Fset

and Crset).

Fig. 2. Performance profiles of DE variants with eight different parameters
settings.

between [a, b], where a is set to 10% and b is set to 50% in
this paper, i.e., the performance of the base parent is between
10% and 50% of the individuals in the population (note that
the population is sorted, based on the fitness function and/or
constraint violation, before the mutation step). Following the
mutation operation, the crossover is performed between the
individual generated via the above mutation process and the
zth individual in the population. Mathematically, the process
can be presented as follows:

uzj,t=

{
xϕj,t+Fz.

(
xr1j,t − xr2j ,t

)
, if (rand≤Crz or j = jrand)

xzj,t, otherwise
(10)

where ϕ is a random integer number within a range [a, b]. The
introduction of these parameters (ϕ, a, and b), as discussed
above, will have a balancing effect between two mutation
strategies DE/rand/1 and DE/best/1. They are further discussed
in the next section. z ∈ {1, 2, . . ., PS} and r1 and r2 are random
integer numbers ∈{1, 2, ..., PS}, r1 �= r2 �= z.

If the new offspring is better than its parent, i.e., the
ith individual in the population, it will be accepted and the
success of a combination y (com.sucy) is increased by one,
i.e., com.sucy = com.sucy + 1, where y = 1, 2, . . ., tot.com.

The above process is repeated for CS generations. At the end
of CS generations, the better performing PSnps−1 individuals
are kept in the population, while the remaining individuals
are transferred to an archive. The number of combinations

Fig. 3. Convergence plots for eight different DE variants of (a) g02 and
(b) g10. The x-axis is in a log scale, for only the first 150 000 FEs.

of F and Cr values is also reduced to half, i.e., the better
combinations of F and Cr are preserved based on the success
of the combination. The ranking of any combination (y) is
calculated using the following equation:

Ranky =
com.sucy

the number of individuals used a combination y

(11)

where a higher value of Ranky is a better performing combi-
nation.

Individuals in the population of size PSnps−1 are randomly
assigned F and Cr values from this reduced list. The process
of evolution uses the same mutation and crossover strategy
and is allowed to evolve for CS generations. This process
is repeated until all population sizes are considered. At the
end of this stage, the performance ranking of all population
sizes is computed, using the equation shown in Step 6.1



694 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 5, OCTOBER 2014

Fig. 4. Convergence plots of all the proposed variants for (a) g01 and
(b) g02. (a) g01 (up to 8000 FES); the x-axis is in a log scale.
(b) g02; the x-axis is in a log scale.

in Table I to decide the appropriate population size. The
performance ranking of any population size represents the
average performance per individual in the population for all
parameter combinations over CS generations.

In the event PSnps is selected, the best individuals from the
archive are added to make the current population size (PSi)
equal to PSnps. The numbers of combinations of F and Cr

values are also reduced to half based on the success as de-
scribed earlier. The selected population of size (PSi) is allowed
to evolve for (η − nps) × CS generations wherein after every
CS generation, the numbers of combinations of F and Cr are
reduced to half until the number of combinations reaches 1.
The above steps are referred to as a cycle. At the end of each
cycle, the success tables and the archives are reset to null,
the total number of combinations is reset to tot.com, and the
population size is reset to PSnps. The cycles continue until the
termination criterion is met. To clarify, an example with two
population sizes (100 and 75, i.e., nps = 2) and 64 combina-

tions of y is considered. The population size 100 will evolve
for CS generations with 64 combinations, then the population
size 75 will evolve for CS generations with 32 combinations,
and finally the selected population size (either 100 or 75) will
be fixed for the next (η − 2) ×CS = 4CS generations.

B. Discussions on Related Issues

In this section, we discuss a few issues relevant to the
algorithm design and implementation.

In the evolution process, for a given problem, the rela-
tive performance of each combination may vary with the
progression of generations. This behavior means that one
combination may work well at the early (or some) stages of
the search process and may perform poorly at the later (or
some other) stages, or vice versa. So, it is inappropriate to
give equal emphasis on all of the combinations throughout
the entire process of evolution. To give a higher emphasis on
the better performing combinations in a given stage of the
evolution process, it is proposed that the random assignment
of the parameter combinations is applied for a fixed number
of generations (say CS).

The parameter combinations are assigned randomly to indi-
viduals without replacement. This means that one combination
will be assigned strictly to one individual if the population
size is less than or equal to the number of combinations. If
the population size is larger than the number of combinations,
all combinations are assigned to at least one individual. De-
pending on the number of combinations and population size,
one combination may be assigned to more than one individual
and there is a possibility that some combinations may not be
assigned at all. The ranking of any assigned combination (y)
is calculated using (11) and the ranking of any unassigned
combination is set to zero.

C. Constraint Handling

In this paper, one of the most popular constraint handling
techniques, which was proposed in [40] has been used. The
method of comparison relies on the use of the following
conditions: 1) between two feasible solutions, the fittest one
(according to fitness function) is better; 2) a feasible solution
is always better than an infeasible one; and 3) between
two infeasible solutions, the one having the smaller sum of
constraint violation is preferred.

In this research, the sum of constraint violation is calculated
as follows:

� (�x) =
K∑

k=1

max (0, gk (�x)) +
E∑

e=1

max(0, |he (�x)| − ε) (12)

where ge (�x) is the kth inequality constraint, and he (�x) is
the eth equality constraint. The equality constraints are trans-
formed into inequalities of the form, where ε is a small value

−ε≤he (�x) ≤ε for e = 1, . . ., E. (13)

Note that the superiority of feasible solutions constraint han-
dling technique [40] does not require user-defined parameters.
However, it may lead to premature convergence [41].



SARKER et al.: DIFFERENTIAL EVOLUTION WITH DYNAMIC PARAMETERS SELECTION FOR OPTIMIZATION PROBLEMS 695

TABLE II

Symbols, Meaning, and Possible Values of All Parameters

USED in Proposed Algorithm

TABLE III

Used F and b Values for Seven DE Variants

IV. Experimental Results

In this section, the computational results of different algo-
rithms are presented and analyzed using three different bench-
mark problem sets. Two of them are constrained optimization
problem sets taken from the IEEE-CEC Competition held in
2006 [16] and 2010 [17], while the third is an unconstrained
problem set used in the 2005 [18] competition. First, we ran
different variants of DE for solving 24 benchmark problems
from CEC2006 [16] and analyzed their results. The effect of
the number of parameter combinations, as well as the number
of population sizes, is analyzed. All the algorithms have been
coded using MATLAB 7.8.0 (R2009a), and have been run on
a PC with a 3.0-GHz Core 2 Duo processor, a 3.5-GB RAM,
and windows XP.

For convenience of reading, the parameter symbols and their
possible values considered in this research are provided in
Table II.

A. DE With Different Parameters

Here, a DE algorithm with eight different parameter combi-
nations is tested. The DE uses (10) as a mutation operator and
utilizes the binomial crossover. The eight variants are shown
in Table III. These values are selected based on the literature
discussed in Section II-C.

The motivation of this section is to show that there is no
single combination of DE parameters that is always better for

TABLE IV

Feasibility Ratio of Each Variant

TABLE V

Number of Test Problems That Each Variant

Is Able to Obtain Optimality

all types of problems. To add to this, our purpose is to show
that the proposed algorithm is better than such DE algorithms
in regard to the quality of solutions and the computation time
across a variety of problems.

Considering parameters settings, ϕ is a random integer
number within a range [a, b], a = 10% and b = 50% of PS,
where PS was set to 100 individuals. Twenty-five independent
runs were conducted for each DE variant. For the equality
constraints, the ε parameter was set to 0.0001. The stopping
criterion was to run each test problem for up to 240 000
fitness evaluations (FEs). The detailed results [best, median,
average, worst, and standard deviation (St.d)] are available in
the supplementary document (link is provided at the end of
this paper).

None of the variants could solve g20 and g22 test problems,
and hence these two problems were removed from our analy-
sis. Considering the remaining 22 test problems, the results of
the proposed algorithm are the best for DE1 and DE8 with a
100% feasibility ratio. The feasibility ratios for all the variants
are presented in Table IV.

Based on the number of optimal solutions obtained, DE1
and DE8 performed the best. The number of optimal solutions
for all variants is shown in Table V. As can be seen from
Tables IV and V, although DE5’s feasibility ratio is lower than
DE2, DE3, and DE4, it is able to obtain optimality in more
test problems. It is also clear that the reduction of crossover
rate leads to worse results, as is seen in DE7.

Considering the best and the average results, a comparative
analysis is presented in Table VI. To explain the results, for
example, the variants DE1 and DE2 obtained the best fitness
values in nine and seven test problems, respectively. Both
the variants obtained equal fitness in 13 test problems. From
this table, it is clear that DE1 and DE8 are the best variants
although they are worse for few different problems.

To compare the performance of these algorithms graphi-
cally, the performance profiles [42] are plotted. The perfor-
mance profiles are a tool to compare the performance, of
a set of algorithms using a set of test problems, using a
comparison goal (such as the computational time and the
average number of fitness evaluations) to obtain a certain level,
of a performance indicator (such as optimal fitness). In this
section, our goal is

gs,p =
FFs.Total runs

Successfull runs



696 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 5, OCTOBER 2014

TABLE VI

Comparison Among Eight de Variants (The Numbers Shown in

the Table Are for the First Algorithm in Column One), Where

Dec. Is the Statistical Decision

which is achieved by an algorithm (s) on a test problem (p)
to obtain the optimal fitness with a threshold of 0.0001. Here,
the performance ratio is Rs,p = gA,p

B(gA,p:s∈S) , where B(gA,p) is

the best, and Rhos (τ) = 1
number of problems

|{p ∈ P : Rs,p≤τ} is
the probability for algorithm s ∈ S that a performance ratio
Rs,p is within a factor Tau (τ) ∈ R of the best possible ratio.
The function (Rhos) is the (cumulative) distribution function
for the performance ratio.

Based on the abovementioned measure, the performance
profiles of eight variants of DE are depicted in Fig. 2. From
this figure, although DE5 has the highest probability to be the

TABLE VII

Average Computation Time for Different Variants

(Time Is in Seconds)

optimal variant at the beginning, DE1 and DE8 are able to
reach probability of 1 first with τ of 11 and 11.2, respectively.

To study the difference between any two stochastic algo-
rithms in a more meaningful way, a test based on the statistical
significance of the results is performed. A nonparametric test,
the Wilcoxon signed rank test [43], is chosen that allows us to
judge the difference between paired scores when assumptions
required by the paired-samples t test may not be valid, such
as a normally distributed population. As a null hypothesis,
it is assumed that there is no significant difference between
the best and/or mean values of two samples. Whereas the
alternative hypothesis is that there is a significant difference in
the best and/or mean fitness values of the two samples, with
a significance level of 5%. Based on the test results, one of
three signs (+, −, and ≈) is assigned for the comparison of any
two algorithms (shown in the last column), where the “+” sign
means the first algorithm is significantly better than the second,
the “−” sign means that the first algorithm is significantly
worse, and the “≈” sign means that there is no significant
difference between the two algorithms. The results are shown
in Table VI (the last column). From this table, it is clear that
DE1 and DE8 are the best.

To continue our analysis, the average computational time
for each algorithm is compared. The computational time was
calculated as the average time consumed to reach the best
known solutions with an error 0.0001, i.e., the stopping criteria
is [f (�x) − f (

−→
x∗ )]≤0.0001], where f (

−→
x∗ ) is the best known

solutions, over all test problems. The summary results are
shown in Table VII. From this table, DE1 is the best. Also,
all variants of the proposed algorithm are faster than a DE
algorithm.

Finally, as a sample, a convergence plot for all of the
variants, for problems g02 and g10, is presented in Fig. 3.
It can be seen from this figure that DE5 is able to converge
quickly for these two problems.

B. Effect of ϕ

As introduced earlier, in generating individuals with (10),
we used a parameter φ that will make a balance between
DE/rand/1 and DE/best/1. Here, we would like to show the
impact of this new individual generation scheme by comparing
the DE variant with the proposed scheme (named DE1) with
both DE/rand/1 and DE/best/1. To do this, 22 test problems
from the CEC2006 set were solved by each of these three
variants with F = 0.95, Cr = 0.95, 25 runs and 240K FEs.

Based on the computational results, DE1 is better than
DE/rand/1 for eight and seven test problems in regard to the
best and average results, respectively, and both variants are
the same for the rest of test problems. Considering the best
results obtained, DE1 shows its superiority to DE/best/1 for



SARKER et al.: DIFFERENTIAL EVOLUTION WITH DYNAMIC PARAMETERS SELECTION FOR OPTIMIZATION PROBLEMS 697

two problems, while it is worse for only one test problem. In
addition, DE1 is better than DE/best/1 for 11 test problems,
based on the average results, while both of them are able
to obtain the same average results for the remaining test
problems.

Based on the Wilcoxon test, DE1 is statistically better than
DE/rand/1 for both the best and the average results. Moreover,
DE1 is statistically better than DE/best/1 in regard to the
average results, while there is no significant difference based
on the best results. From the above analysis, it is clear that
the new individual generation scheme has a positive impact
on the performance of the proposed algorithm.

C. Analyzing Effect of Number of Combinations

The effect of the number of combinations (tot.com) on
the performance of DE-DPS is analyzed. For this reason, the
benchmark problems are solved using different variants of
DE-DPS with the following parameter combinations:

1) DE-DPS-9: tot.com= 9, in which Fset = {0.4, 0.9, 0.99}
and Crset = {0.4, 0.9, 0.99}, while PSset = {75, 100}.

2) DE-DPS-16:tot.com = 16, in which Fset = {0.4, 0.5, 0.9,
0.99} and Crset = {0.4, 0.5, 0.9, 0.99}, while PSset = {75,
100}.

3) DE-DPS-36: tot.com = 36, in which Fset = {0.4, 0.5, 0.7,
0.8, 0.9, 0.99} and Crset = {0.4, 0.5, 0.7, 0.8, 0.9, 0.99},
while PSset = {75, 100}.

4) DE-DPS-49: tot.com = 1, in which Fset = {0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 0.99} and Crset = {0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 0.99}, while PSset = {75, 100}.

5) DE-DPS-63: tot.com = 63, in which Fset = {0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 0.99} and Crset = {0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 0.99}, while PSset = {75, 100}.

All of these variants are compared with DE1. All of the
parameter settings are set as those in the previous section,
with an extra parameter CS set to ten generations (this means
that the restart point is every 40 generations). The detailed
results (best, median, average, worst, St.d) are presented in
the supplementary document (link is provided at the end of
this paper).

As seen from the results obtained, none of the versions could
solve g20 and g22. From the literature, there is no feasible
solution for g20, while for g22 it is rare to come across a
feasible solution [16]. So these two problems are excluded
from these comparisons.

As observed, all variants are able to obtain a 100% fea-
sibility ratio. The variants DE-DPS-36, DE-DPS-49, and DE-
DPS-63 obtained the optimal solution for all 22 test problems.
However, DE-DPS-9 and DE-DPS-16 obtained the optimal
solution for 21 test problems. All these variants are compared
to each other, with respect to the best and the average fitness
values, in Table VIII. Generally speaking, increasing the
number of combinations leads to slightly better results.

Based on the Wilcoxon test, as is shown in Table VIII, there
is no significant difference among all of the algorithms, except
that DE-DPS-49 and DE-DPS-63 are statistically superior to
DE-DPS-9.

The average computational time is also recorded in
Table IX. From Table IX, DE-DPS-63 and DE-DPS-49 are the

TABLE VIII

comparison Among Different Variants and DE1 (The Numbers

Shown in the Table are for the First Algorithm in Column One)

Fig. 5. Performance profiles comparing DE-DPS with different CS values.

best with savings in time of 9.0101% and 9.0104% in compar-
ison to DE1. It is worth mentioning here that all variants are
faster than the DE1. Interestingly, with the higher the number
of combinations it consumes a lower average computational
time per generation. However, the overall average time to
converge to a quality solution is lower than the variants with
fewer parameter combinations.



698 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 5, OCTOBER 2014

Fig. 6. Best parameter values for different test problems during the evolution process.

TABLE IX

Average Computational Time Comparison for

Different DE-DPS Variants

This finding justifies the research considering many parame-
ter combinations. From the analysis, it is clear that the increase

in the number of combinations leads to better results, as well
as savings in the computational time.

To this end, few convergence patterns for all variants are
presented in Fig. 4. This figure reveals that DE-DPS-63 is
able to quickly reach the optimality. For ease of explanation,
DE-DPS is referred to DE-DPS-63 in the remaining sections
of this paper.

D. Analyzing the Effect of CS

In this section, the effect of CS, which decides the reduction
of the number of combinations, is analyzed. To do this,
different experiments were run by setting CS to 10, 25, 50,



SARKER et al.: DIFFERENTIAL EVOLUTION WITH DYNAMIC PARAMETERS SELECTION FOR OPTIMIZATION PROBLEMS 699

TABLE X

Comparison Among DE-DPS With Different cs Values (10, 25, 50,

and 75). Comparison Is Based Only on the Average Results (The

Numbers Shown in the Table Are for the First Algorithm in

Column One)

Fig. 7. Performance profiles comparing DE-DPS with different state-of-the-
art algorithms based on the average results.

and 75 generations. All other parameters are set as those in
the previous section. The detailed results are shown in the
supplementary document (link is provided at the end of the
paper). For all the 22 test problems considered earlier, all of
those versions could obtain a 100% feasibility ratio. Based
on the best results, all of the variants were able to obtain
the optimal solution for 22 test problems, except DE-DPS
with CS = 10, which obtained the optimal solution for 21 test
problems. The average results are presented in Table X, while
the performance profiles are depicted in Fig. 5. Based on
these results, although using CS = 50 has the second highest
probability at the beginning, using this value has the ability to
solve all problems first, i.e., reaching a probability of 1 when
τ equals to 1.31.

These results show that DE-DPS with CS = 50 is slightly
better. However, the Wilcoxon test does not show any signif-
icant difference among the variants.

In regard to the average computational time (see Table XI),
it is clear that DE-DPS with CS = 50 is the fastest one.

Fig. 8. Average fitness values performance profiles comparing DE-DPS with
different state-of-the-art algorithms for both (a) 10-D and (b) 30-D problems,
respectively. Note that the x-axis is in a log scale.

TABLE XI

Average Computational Time for DE-DPS

With Different cs Values

This means that DE-DPS with CS = 50 is able to save the
computational time by 14.48% in comparison to DE1.

E. Analyzing Effect of η

As mentioned earlier, after η×CS generations, all param-
eters are initialized to their initial settings. Therefore, in this



700 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 5, OCTOBER 2014

Fig. 9. Average number of function evaluations versus the problem dimen-
sion for (a) C07 and (b) C09 using 50 runs. The dashed lines represent the
quadratic regression fitting of the data.

section, the effect of η is analyzed. Note that the maximum
value of η is calculated as follows:

η ≈ log(tot.com)

log(2)
. (14)

For instance, if tot.com is 64, then η is 6 (the reduction
in each step is as follows: 64 →32 → 16 → 8 → 4 → 2
→ 1). Thus, to analyze the effect of this parameter, different
experiments were run by changing η to 3, 4, 5, and 6. This
means that the restart point will be at 150, 200, 250 and 300
generations, respectively, and a comparison summary among
these variants is presented in Table XII. Based on these
results, it is clear that DE-DPS with η = 4 is the best choice.
Furthermore, both the Wilcoxon test results in Table XII, and
the performance profiles based on the average results in Fig. 6,
confirm this conclusion.

The average computational time of each DE-DPS with its
η value is reported in Table XIII. From this table, it is clear
that DE-DPS with η = 4 is the fastest one.

TABLE XII

Comparison Among DE-DPS With Different Values of η

TABLE XIII

Average Computational Time of DE-DPS

With Different η Values

It is also important to observe the variation of F and Cr
during the course of evolution. To do this, the corresponding
best parameter values during the evolution process, for differ-
ent test problems, are presented in Fig. 6. From this figure,
it is clear that no fixed combination is the best during the
entire evolution process for all test problems. For instance,
F ∈ [0.9 − 0.99] is favorable for g03, while it not the case
for g23. As a consequence, the proposed algorithm is able to
adapt the parameters based on the problem type which is the
main purpose of this research.

F. Comparison to State-of-the-Art Algorithms

The first 13 problems of the CEC2006 test set have been
widely used for performance testing. The detailed results of
DE-DPS (DE-DPS-63, with CS = 50, PSset = {75, 100} and
η = 4) are provided in Table XVII, along with that of the state-
of-the-art algorithms such as: 1) modified differential evolution
(MDE) [44]; 2) self-adaptive multioperator differential evolu-
tion (SAMO-DE) [25]; 3) adaptive penalty formulation with
GA (APF-GA) [45]; 4) ensemble of constraint handling tech-
niques based on evolutionary programming (ECHT-EP2) [46];
5) self-adaptive differential evolution (jDE2) [47]; 6) self-
adaptive differential evolution (SaDE) [13]; and 7) adaptive
tradeoff model with evolution strategy (ATMES) [48].

It should be mentioned here that DE-DPS, SAMO-DE,
ECHT-EP2, ATEMS used 240K FEs, while MDE, APF-GA,
jDE, and SaDE use 500K FEs. The parameter ε for DE-DPS,
SAMO-DE, ECHT-EP2, APF-GA, MDE, jDE2, and SaDE was
set to 1.0E-04, while it was set to 5.0E-06 for ATMES. All
algorithms solved 22 test problems, except ATMES, in which
only the 13 test problems were solved.

From Table XVII, as indicated earlier, DE-DPS was able to
obtain the optimal solutions for all of the test problems, while
the algorithms MDE, SAMO-DE, APF-GA, ECHT-EP2, jDE2,
and SaDE were able to obtain the optimal solutions for 20,
21, 17, 19, 20, and 22 test problems, respectively. However,



SARKER et al.: DIFFERENTIAL EVOLUTION WITH DYNAMIC PARAMETERS SELECTION FOR OPTIMIZATION PROBLEMS 701

TABLE XIV

Wilcoxon Sign Rank Test Results for DE-DPSS AGAINST MDE,

SAMO-DE, APF-GA, ECHT-EP2, jDE, SaDE AND ATMES

ATMES obtained the optimal solutions for 11 out of 13 test
problems.

In regard to the average results, DE-DPS is superior to
MDE, SAMO-DE, APF-GA, ECHT-EP2, jDE2, and SaDE
for three, seven, eight, seven, nine, and seven test problems,
respectively, while DE-DPS is inferior to MDE, SAMO-DE,
and ECHT-EP2 for only one test problem. Moreover, DE-
DPS is superior to ATMES for 8 out of 13 test problems,
respectively.

Furthermore, the performance profile is presented in Fig. 7.
From this figure, it is concluded that DE-DPS is the first
algorithm that is able to solve all problems when τ equals
38.4. jDE2, SaDE, and MDE are competitive, while SAMO-
DE and APF-GA are the worst.

It is also interesting to show the significant difference
between DE-DPS and all other algorithms, based on the statis-
tical test. For this purpose, the results’ summary is presented
in Table XIV. This table reveals that DE-DPS is superior
to APF-GA, jDE2, SaDE, and ATMES in regards to the
average results, while there is no significant difference based
on the best average results. Furthermore, there is no significant
difference between DE-DPS and all other algorithms based on
the best and average fitness values.

G. Solving CEC2010 Constrained Problems

As indicated earlier, we also solved another set of 36 test
instances (18 problems each with 10 and 30 dimensions)
that were introduced in CEC2010 [17], and have compared
our results with a DE algorithm which won the CEC2010
Constrained Optimization Competition, as well other two other
algorithms that used dynamic mechanisms to tune the DE
parameters. The algorithm was run 25 times for each test
problem, where the stopping criterion was to run for up to
200K FEs for 10D instances, and 600K FEs for 30D.

The detailed computational results for both the 10D and
the 30D instances are shown in Table XVIII with the detailed
results of ε DEag [49] (CEC2010 competition winner), and

TABLE XV

Comparison Among DE-DPS, and ε DEag, ECHT-DE and jDEsoco

(The Numbers Shown in the Table Are for the First Algorithm

in Column 1)

TABLE XVI

Comparison Among DE-DPS, and JADE, jDE, SaDE, EPSDE, and

CoDE (The Numbers Shown in the Table Are for the First

Algorithm in Column 1)

other two DE algorithms that use a mechanism to adapt the
control parameters. These two algorithms are an ensemble
of constrained handling techniques based on a DE algorithm
(ECHT-DE) [50] and improved jDE (jDEsoco) [51]. It is
important to highlight that DE-DPS was able to reach 100%
feasibility ratio for both the 10-D and 30-D instances, but ε

DEag attained 100% feasibility ratio for only 35 out of the 36
test instances, while it only obtained a 12% feasibility ratio
for C12 with 30-D. The average feasibility ratio for ECHT-DE
is less than 100% for 10-D and 30-D, while jDEsoco obtained
a 98% feasibility ratio. Note that, the “*” in Table XVIII for
C12 means that it includes infeasible solutions in calculating
means and other parameters.

Considering the quality of the solutions obtained, a sum-
mary is reported in Table XV. From this table, DE-DPS shows
superior performance to the other algorithms for majority of
the test problems, especially for the 30-D instances.

Due to lack of appropriate data from the published
algorithms, the performance profiles are defined in this
section with a different comparison goal. In these cases, the
optimal solutions are not known for many problems and no
algorithm recorded the fitness evaluations used to obtain a
predefined fitness value. For this reason, the comparison goal
is defined as the average fitness value obtained after running
the algorithms for a fixed number of fitness evaluations (such
as 200K and 600K FEs for the 10-D and 30-D problems,
respectively). The performance profiles are depicted in Fig. 8.



702 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 5, OCTOBER 2014

Fig. 10. Average fitness values performance profiles comparing DE-DPS
with various DE algorithms.

Fig. 11. Convergence plot of DE-DSP for various test problems.

This figure shows that DE-DPS has the probability of 0.9
or more to obtain the best fitness value for both the 10-D
and 30-D problems, and reached 1 with τ equals to 1700
and 45 000, respectively. It is also clear that ε DEag has the
second best performing algorithm for the 10-D. In addition
to this, with small values of τ, ECHT-DE shows competitive
performance with jDEsoco. However, jDEsoco is better than
ECHT-DE with higher value of τ.

Furthermore, the performance of DE-DPS is statistically
better than ε DEag in regard to both the best and average
results for the 30-D test problems, while the performance of
DE-DPS is statistically better in regard to the average results
for the 10-D test problems. The performance of DE-DPS is
also better than ECHT-DE with regard to the average results
for both the 10-D and the 30-D test problems. In comparison
to jDEsoco, DE-DPS outperforms jDEsoco with regard both
the best and average results.

H. Scaling Analysis

In this analysis, the relationship between the dimensionality
of the test problem and the average number of function

Fig. 12. Convergence plots of DE-DPS with three different sets of popula-
tion sizes for (a) F04 and (b) F11. The y-axis is in a log scale.

evaluations needed to find solutions with the tolerance limit
(here is equal to 0.0001) is derived. Two test problems
from CEC 2010, i.e., C07 and C09, have been chosen for
the purpose. The problems are known to be difficult as the
objective function is nonseparable, multimodal and is shifted
by a matrix shi. Considering the constraints, C07, contains an
in-equality constraint that is separable, multimodal and also
shifted by the same matrix, while C09 contains an equality
constraint with the same properties as in C07. The optimal
solutions of these two problems are at f (x∗) = 0.

Both problems have been solved using different dimensions,
i.e., D = 5, 10, 15, 20, 25, and 30 variables. For each D,
the algorithm was run over 50 trials, and the average fitness
evaluations were recorded to reach the stopping criteria. It
must be mentioned here that up to only 30 variables are used,
as the available data are up to 30 dimensions.



SARKER et al.: DIFFERENTIAL EVOLUTION WITH DYNAMIC PARAMETERS SELECTION FOR OPTIMIZATION PROBLEMS 703

TABLE XVII

Function Values Obtained by DE-DPS, MDE, SAMO-DE, APF-GA, ECHT-EP2, jDE-2, ATMES, and SMES for CEC2006 Test Problems

Fig. 9 shows the average fitness functions for each di-
mension. For a further investigation, the regression line [52]
is fitted to help readers to approximate the average fitness
evaluations that are required for different dimensions.

So, the regression equation for C07 is

FEs = 208.58D2 + 4147D − 9465.6 (15)

and the coefficient of determination [52] is equal to 98.25%.
This means that the line is highly fitted to predict future values.

The regression equation for C09 is

FEs = 146.37D2 + 5363.2D−13 417 (16)

and the coefficient of determination is equal to 98.84%; this
means that the line is highly fitted.

This encouraging result demonstrates that the algorithm
is efficient and scales well with increasing dimension. In
addition, the presented lines appear quite smooth, suggesting
that DE-DPS is well designed.

I. Solving Unconstrained Problems (CEC2005)

In this section, we solve and analyze the algorithm on
25 unconstrained problems (from the CEC2005 competition)
with 30 dimensions [18]. These problems have different math-
ematical properties, in which f01 tof05 are shifted and/or



704 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 5, OCTOBER 2014

TABLE XVIII

Function Values Achieved by DE-DPS, EDEag, ECHT-de, and jDEsoco for CEC2010 Test Problems

rotated unimodal problems, f06 to f12 are shifted and/or
rotated multimodal problems, f13 to f25 are hybrid compo-
sition of different problems with different difficult properties.
Results on all of these test problems were derived based on
25 runs, where the maximum fitness evaluations were set to
300K. The values of the parameters are the same as used in
the previous sections. We have reported the mean error values
from the optimal solutions of our algorithm, as reported by
other researchers, along with other algorithms JADE [21], jDE
[11], SaDE [12], EPSDE [39], and CoDE [28], in Table XIX.

A comparison summary is shown in Table XVI. From
this table, DE-DPS is clearly better for the majority of the

test problems. Furthermore, the performance of DE-DPS is
statistically better than all other algorithms, except EPSDE, in
which there is no significant difference.

The performance profiles are depicted in Fig. 10 with the
comparison goal as the average fitness values after 300 000
fitness evaluations. Note that the data are not available to con-
sider other comparison goals. Based on this figure, DE-DPS
is the best algorithm, as it is able to reach 1 when τ = 6.25.
To add to this, all JADE, SaDE, and CODE are competitive,
while both jDE and EPSDE are the worst algorithms.

To this end, a sample of different convergence plots of
DE-DPS is presented in Fig. 11.



SARKER et al.: DIFFERENTIAL EVOLUTION WITH DYNAMIC PARAMETERS SELECTION FOR OPTIMIZATION PROBLEMS 705

TABLE XIX

Mean Error to Optimal Solutions and Standard Deviation Results of DE-DPS, JADE, jDE, SaDE, EPSDE, and CoDE Over 25

Independent Runs on 25 Test Functions With 30 Variables for CEC2005 Test Set With 300 000 FES

J. Contribution of Population Size Switching

The benefit of switching the population size, during the
evolution process, is demonstrated using two test problems
(F04 and F11). We have solved these two test problems using
our algorithm with fixed population sizes of 75 and 100 (i.e.,
without population adaptation option), and with an option of
switching between these two population sizes (as of the pro-
posed DP-DPS algorithm). The convergence plots, comparing
these three population size options, are shown in Fig. 12.
In the figure, the x-axis represents the number of fitness
evaluations and the y-axis represents the deviation from the
optimal fitness value (in log scale). In this figure, it shows that
the population switching option (with two population sizes, 75

and 100) converges much faster than single population option
with size of either 75 or 100. When comparing between two
single population options, population size 100 has a slower
convergence pattern than population size 75. From this result,
it can be concluded that DP-DPS with the population size
switching option helps converge quickly to optimality (or near
optimality) compared to the fixed population size option.

V. Conclusion and Future Work

During the last few decades, DE algorithms have shown
superior performance over other nature inspired algorithms in
solving constrained and unconstrained optimization problems.
Selection of appropriate control parameters in any DE is



706 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 5, OCTOBER 2014

known to be a difficult problem. To overcome this, a consid-
erable number of differential evolution algorithms have been
introduced, which use adaptive or self-adaptive mechanisms
to adapt the control parameters. Although the self-adaptive
variants demonstrated better performances in comparison to
DE forms with fixed control parameters, not all the parameters
were adapted in one single run. Furthermore, only a handful
of such algorithms have been used to solve constrained opti-
mization problems.

In our proposed approach, three sets of parameter val-
ues were initialized, one each for the amplification factor,
crossover rate, and population size. For a defined number of
generations, each individual in the population was assigned
to a random combination, and the normalized success for
each combination was recorded. Subsequently, the number
of combinations was reduced until a restart point, where the
success counters were reset.

The performance of the proposed algorithm was analyzed
on three well known benchmark problem sets. Two of them are
constrained problem sets and the third one is an unconstrained
problem set. Based on the obtained results, the best number
of combinations were 63 (Fsst = {0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
0.99} and CRset = {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99}).
An interesting conclusion was that the proposed algorithm was
able to save the computational time by 14.48% in comparison
to a DE algorithm with a single combination of parameters,
based on a comparative study of CEC2006 test problems.

Based on the CEC2010 test problems, the proposed algo-
rithm showed outstanding performance on the small scale test
problems with several characteristics (rotated and/or shifted
and/or multimodal). In addition to this, the algorithm showed
superior performance as compared to the state-of-the-art algo-
rithms in the context of problems with large dimensions. As
for the CEC2005 test problems, the algorithm confirmed its
superiority over the state-of-the-art algorithms.

Finally, our approach started with the parameter settings
suggested in the literature and was able to find better control
parameter settings. These control parameters helped improve
the efficiency of DE when solving both constrained and un-
constrained optimization problems considered in this research.

As a future work, we intend to apply this concept with
different population based algorithms and use them to solve
real-world optimization problems. We also intend to extend
this paper by combining operator adaptation (such as mutation
and crossover) in DE. Finally, solving other problems, such as
multiobjective and dynamic problems, will be an interesting
future direction.

Link for supplementary materials: http://seit.unsw.adfa.
edu.au/staff/sites/rsarker/SM-TEC-Sarker.pdf.

References

[1] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning. Reading, MA, USA: Addison-Wesley, 1989.

[2] R. Storn and K. Price, “Differential evolution: A simple and efficient
adaptive scheme for global optimization over continuous spaces,” Int.
Comput. Sci. Instit., Berkeley, CA, USA, Tech. Rep. TR-95-012, 1995.

[3] I. Rechenberg, Evolutions Strategie: Optimierung Technischer Sys-
teme Nach Prinzipien der Biologischen Evolution. Stuttgart, Germany:
Fromman-Holzboog, 1973.

[4] L. Fogel, J. Owens, and M. Walsh, Artificial Intelligence Through
Simulated Evolution. New York, NY, USA: Wiley, 1966.

[5] S. Das and P. N. Suganthan, “Differential evolution: A survey of the
state-of-the-art,” IEEE Trans. Evol. Comput., vol. 15, no. 1, pp. 4–31,
Feb. 2011.

[6] N. Hansen, A. Auger, S. Finck, and R. Ros, “Real-parameter black-
box optimization benchmarking: Noiseless functions definitions,” TAO-
INRIA Saclay-Ile de France, Microsoft Research-Inria Joint Centre-
MSR-INRIA. Instit., France, Tech. Rep. RR-6829, 2009.

[7] J. A. Vrugt, B. A. Robinson, and J. M. Hyman, “Self-adaptive multi-
method search for global optimization in real-parameter spaces,” IEEE
Trans. Evol. Comput., vol. 13, no. 2, pp. 243–259, Apr. 2009.

[8] L. Davis, “Adapting operator probabilities in genetic algorithms,” pre-
sented at the 3rd Int. Conf. Genetic Algorithms, Fairfax, VA, USA,
1989.

[9] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing.
Berlin, Germany: Springer, 2003.

[10] J. H. Holland, Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis With Applications to Biology, Control and Artificial
Intelligence. Ann Arbor, MI, USA: Univ. Michigan Press, 1975.

[11] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-
adapting control parameters in differential evolution: A comparative
study on numerical benchmark problems,” IEEE Trans. Evol. Comput.,
vol. 10, no. 6, pp. 646–657, Dec. 2006.

[12] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution
algorithm with strategy adaptation for global numerical optimization,”
IEEE Trans. Evol. Comput., vol. 13, no. 2, pp. 398–417, Apr. 2009.

[13] V. L. Huang, A. K. Qin, and P. N. Suganthan, “Self-adaptive differential
evolution algorithm for constrained real-parameter optimization,” in
Proc. IEEE Congr. Evol. Comput., 2006, pp. 17–24.

[14] J. Teo, “Exploring dynamic self-adaptive populations in differential
evolution,” Soft Comput., vol. 10, no. 8, pp. 673–686, Jun. 2006.

[15] J. Brest and M. Sepesy Maučec, “Population size reduction for
the differential evolution algorithm,” Appl. Intell., vol. 29, no. 3,
pp. 228–247, Dec. 2008.

[16] J. J. Liang, T. P. Runarsson, E. Mezura-Montes, M. Clerc,
P. N. Suganthan, C. A. Coello Coello, and K. Deb, “Problem defi-
nitions and evaluation criteria for the CEC 2006 special session on
constrained real-parameter optimization,” Dept. School Elect. Electrn.
Eng., Nanyang Technol. Univ., Singapore, Tech. Rep., 2005.

[17] R. Mallipeddi and P. N. Suganthan, “Problem definitions and evaluation
criteria for the CEC 2010 competition and special session on single
objective constrained real-parameter optimization,” Dept. School Elect.
Electron. Eng., Nangyang Technol. Univ., Singapore, Tech. Rep., 2010.

[18] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. Chen, A. Auger,
and S. Tiwari, “Problem definitions and evaluation criteria for the CEC
2005 special session on real-parameter optimization,” KanGAL Report
2005005, IIT, Kanpur, India, 2005.

[19] V. Feoktistov and S. Janaqi, “Generalization of the strategies in differen-
tial evolution,” in Proc. 18th Parallel Distributed Process. Symp., 2004,
p. 165.

[20] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution: A
Practical Approach to Global Optimization. Berlin, Germany: Springer,
2005.

[21] Z. Jingqiao and A. C. Sanderson, “JADE: Adaptive differential evolution
with optional external archive,” IEEE Trans. Evol. Comput., vol. 13,
no. 5, pp. 945–958, Oct. 2009.

[22] R. Gämperle, S. D. Müller, and P. Koumoutsakos, “Parameter study for
differential evolution,” in Proc. WSEAS Int. Conf. Advances Intell. Syst.
Fuzzy Syst. Evol. Comput. 2002, pp. 293–298.

[23] J. Rönkkönen, “Continuous multimodal global optimization with differ-
ential evolution-based methods,” Doctor of Science thesis, Dept. Inform.
Technol., Lappeenranta Univ. Lappeenranta, Finland, 2009.

[24] H. A. Abbass, “The self-adaptive Pareto differential evolution algo-
rithm,” in Proc. IEEE CEC, 2002, pp. 831–836.

[25] S. M. Elsayed, R. A. Sarker, and D. L. Essam, “Multi-operator based
evolutionary algorithms for solving constrained optimization problems,”
Comput. Oper. Res., vol. 38, no. 12, pp. 1877–1896, 2011.

[26] D. Zaharie, “Control of population diversity and adaptation in differen-
tial evolution algorithms,” in Proc. 9th Int. Conf. Soft Comput., 2003,
pp. 41–46.

[27] J. Liu and J. Lampinen, “A fuzzy adaptive differential evolution algo-
rithm,” Soft Comput. A Fusion Found. Methodol. Appl., vol. 9, no. 6,
pp. 448–462, 2005.

[28] S. Das, A. Konar, and U. K. Chakraborty, “Two improved differential
evolution schemes for faster global search,” presented at the Conf.
Genetic and Evolutionary Computation, Washington, DC, USA, 2005.



SARKER et al.: DIFFERENTIAL EVOLUTION WITH DYNAMIC PARAMETERS SELECTION FOR OPTIMIZATION PROBLEMS 707

[29] A. Zamuda, J. Brest, B. Boskovic, and V. Zumer, “Differential evolution
with self-adaptation and local search for constrained multiobjective
optimization,” in Proc. IEEE CEC, 2009, pp. 195–202.

[30] W. Yong, C. Zixing, and Z. Qingfu, “Differential evolution with com-
posite trial vector generation strategies and control parameters,” IEEE
Trans. Evol. Comput., vol. 15, no. 1, pp. 55–66, Feb. 2011.

[31] Á. Fialho, R. Ros, M. Schoenauer, and M. Sebag, “Comparison-
based adaptive strategy selection with bandits in differential evolution,”
presented at the 11th Int. Conf. Parallel Problem Solving From Nature:
Part I, 2010.

[32] W. Gong, Á. Fialho, Z. Cai, and H. Li, “Adaptive strategy selection in
differential evolution for numerical optimization: An empirical study,”
Inf. Sci., vol. 181, no. 24, pp. 5364–5386, Dec. 2011.

[33] E. da Silva, H. Barbosa, and A. Lemonge, “An adaptive constraint han-
dling technique for differential evolution with dynamic use of variants in
engineering optimization,” Optimization Eng., vol. 12, no. 1, pp. 31–54,
2011.

[34] X. Yang and G. Liu, “Self-adaptive clustering-based differential evo-
lution with new composite trial vector generation strategies,” in
Proc. 2nd Int. Congr. Comput. Appl. Comput. Sci., 2012, vol. 144,
pp. 261–267.

[35] A. Zamuda and J. Brest, “Population reduction differential evo-
lution with multiple mutation strategies in real world industry
challenges,” in Swarm Evolutionary Computation, L. Rutkowski,
M. Korytkowski, R. Scherer, R. Tadeusiewicz, L. Zadeh, J. Zurada, Eds.
Berlin/Heidelberg, Germany: Springer, 2012, vol. 7269, pp. 154–161.

[36] J. Tvrdı́k, “Adaptation in differential evolution: A numerical compari-
son,” Appl. Soft Comput., vol. 9, no. 3, pp. 1149–1155, 2009.

[37] J. Tvrdı́k and R. Poláková, “Competitive differential evolution for
constrained problems,” in Proc. IEEE CEC, 2010, pp. 1–8.

[38] R. Mallipeddi and P. N. Suganthan, “Differential evolution algorithm
with ensemble of populations for global numerical optimization,”
OPSEARCH, vol. 46, no. 2, pp. 184–213, 2009.

[39] R. Mallipeddi, S. Mallipeddi, P. N. Suganthan, and M. F. Tasgetiren,
“Differential evolution algorithm with ensemble of parameters and
mutation strategies,” Appl. Soft Comput., vol. 11, pp. 1679–1696, Mar.
2011.

[40] K. Deb, “An efficient constraint handling method for genetic algorithms,”
Comput. Methods Appl. Mech. Eng., vol. 186, nos. 2–4, pp. 311–338,
Jun. 2000.

[41] E. Mezura-Montes and C. A. Coello Coello, “Constraint-handling in
nature-inspired numerical optimization: Past, present and future,” Swarm
Evol. Comput., vol. 1, no. 4, pp. 173–194, 2011.

[42] H. J. C. Barbosa, H. S. Bernardino, and A. M. S. Barreto, “Using
performance profiles to analyze the results of the 2006 CEC constrained
optimization competition,” in Proc. IEEE CEC, 2010, pp. 1–8.

[43] G. W. Corder and D. I. Foreman, Nonparametric Statistics for Non-
Statisticians: A Step-by-Step Approach. Hoboken, NJ, USA: Wiley,
2009.

[44] E. Mezura-Montes, J. Velazquez-Reyes, and C. A. Coello Coello,
“Modified differential evolution for constrained optimization,” in Proc.
IEEE CEC, 2006, pp. 25–32.

[45] B. Tessema and G. G. Yen, “An adaptive penalty formulation for
constrained evolutionary optimization,” IEEE Trans. Syst., Man, Cybern.
A Syst., Humans, vol. 39, no. 3, pp. 565–578, Feb. 2009.

[46] R. Mallipeddi and P. N. Suganthan, “Ensemble of constraint handling
techniques,” IEEE Trans. Evol. Comput., vol. 14, no. 4, pp. 561–579,
Aug. 2010.

[47] J. Brest, V. Zumer, and M. S. Maucec, “Self-adaptive differential
evolution algorithm in constrained real-parameter optimization,” in Proc.
IEEE CEC, 2006, pp. 215–222.

[48] W. Yong, C. Zixing, Z. Yuren, and Z. Wei, “An adaptive tradeoff model
for constrained evolutionary optimization,” IEEE Trans. Evol. Comput.,
vol. 12, no. 1, pp. 80–92, Feb. 2008.

[49] T. Takahama and S. Sakai, “Constrained optimization by the ε con-
strained differential evolution with an archive and gradient-based muta-
tion,” in Proc. IEEE CEC, 2010, pp. 1–9.

[50] R. Mallipeddi and P. N. Suganthan, “Differential evolution with ensem-
ble of constraint handling techniques for solving CEC 2010 benchmark
problems,” in Proc. IEEE CEC, 2010, pp. 1–8.

[51] J. Brest, B. Boškovič, and V. Žumer, “An improved self-adaptive
differential evolution algorithm in single objective constrained real-
parameter optimization,” in Proc. IEEE CEC, 2010, pp. 1–8.

[52] D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to
Linear Regression Analysis, 4th ed. New York, NY, USA: Wiley,
2006.

Ruhul A. Sarker (M’03) received the Ph.D. degree
from DalTech, Dalhousie University, Halifax, NS,
Canada, in 1991.

He is currently an Associate Professor and the
Deputy Head of the School (Research) at the School
of Engineering and Information Technology, Uni-
versity of New South Wales, Canberra, Australia.
He is the Lead Author of the book Optimization
Modelling: A Practical Approach. He has published
more than 220 refereed articles in international
journals, edited books, and conference proceedings.

His current research interests include evolutionary optimization and applied
operations research.

Dr. Sarker is currently an Associate Editor of the Memetic Computing
Journal and the Flexible Service and Manufacturing Journal. He is a member
of the INFORMS.

Saber M. Elsayed received the bachelor’s degree in
information systems and technology from Zagazig
University, Zagazig, Egypt, in 2004, the master’s
degree in computer science from Menoufiya Univer-
sity, Shibin El Kom, Egypt, in 2008, and the Ph.D.
degree in computer science from the University of
New South Wales (UNSW), Canberra, Australia, in
2012.

Currently, he is a Research Associate with the
School of Engineering and Information Technology,
UNSW. His research interests include evolutionary

algorithms, ensemble strategies of evolutionary algorithms, constrained and
unconstrained optimization, and multiobjective optimization.

Dr. Elsayed is a member of the IEEE Computer Society. He was the winner
of the IEEE-CEC2011 Competition on Testing Evolutionary Algorithms on
Real-World Numerical Optimization Problems.

Tapabrata Ray received the Ph.D. degree from the
Indian Institute of Technology Kharagpur, Kharag-
pur, India.

He is currently an ARC Future Fellow with the
School of Engineering and Information Technology,
University of New South Wales (UNSW), Canberra,
Australia. He is the Founder and Leader of the Mul-
tidisciplinary Design Optimization Research Group,
UNSW. His research interests include multidisci-
plinary design optimization, evolutionary computa-
tion, multiobjective optimization, constrained opti-

mization, robust design optimization, surrogate assisted optimization, shape
representation and optimization, and bioinspired models for optimization.


