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Abstract—Protein structure prediction (PSP) is an important 
scientific problem because it helps humans to understand how 
proteins perform their biological functions. This paper models 
the PSP problem as a multi-objective optimization problem with 
three fast and accurate knowledge-based energy functions. This 
way, using evolutionary computation (EC)-based artificial 
intelligence (AI) approach to solve this multi-objective PSP 
problem to find the optimal structure is explainable. Considering 
that the multiple populations for multiple objectives (MPMO) 
framework shows efficient performance in solving lots of multi-
objective benchmarks and real-world problems, this paper 
proposes a new AI approach named improved MPMO-based 
differential evolution (IMPMO-DE) to solve the multi-objective 
PSP problem. To our best knowledge, this is the first time that 
MPMO is applied to PSP, with three novel strategies. First, an 
adaptive archive-based mutation strategy is proposed to better 
balance the exploration and exploitation abilities by adaptively 
using different archive-based mutation operators in different 
evolutionary stages. Second, a mixed individual transfer strategy 
is proposed to share search information among the multiple 
populations to accelerate the convergence speed. Third, an 
evolvable archive update strategy is proposed to generate more 
promising solutions through evolving the archived solutions. 
IMPMO-DE is tested on 28 representative proteins and all the 
available template-free modeling proteins up to 404 residues in 
the famous Critical Assessment of Protein Structure Prediction 
(CASP14) competition. Experimental results show that IMPMO-
DE performs better than the compared state-of-the-art EC-based 
PSP methods and ranks above average compared with all the 
CASP14 competitors. More importantly, IMPMO-DE is a new 
efficient AI approach that opens a promising optimization-based 
evolutionary and explainable way for efficient PSP rather than 
deep learning approaches like AlphaFold2, especially for newly 
discovered proteins without similar known protein structures. 

 
Index Terms—Multi-objective evolutionary algorithm 

(MOEA), evolutionary computation, artificial intelligence, 
protein structure prediction (PSP), multiple populations for 
multiple objectives (MPMO), differential evolution. 
 

I. INTRODUCTION 
ROTEIN is a biological macromolecule that participates in 
many vital functions, such as delivery of substances, 

metabolism, and hormone regulation [1]. Protein functions 
rely on protein structures. Therefore, the determination or 
prediction of protein structures is usually necessary before 
exploring protein functions. There are three typical techniques 
for protein structure determination, which are X-ray 
diffraction [2], three-dimensional reconstruction (cryo-
electron microscopy) [3], and multidimensional nuclear 
magnetic resonance [4]. The X-ray diffraction technique 
derives protein structure from the unique diffraction pattern of 
the protein crystal. The protein purification and crystallization 
steps in the derivation process are very difficult and time-
consuming. The other two techniques, i.e., the three-
dimensional reconstruction and the multidimensional nuclear 
magnetic resonance, require specialized and expensive 
equipment. The amount of resolved protein structure is far less 
than the number of known amino acid sequences due to the 
defects of these determination techniques to some extent. 
Therefore, how to predict protein structure efficiently and 
accurately is a scientific problem worth studying and of great 
practical value. 

Researchers have proposed a variety of methods to solve the 
protein structure prediction (PSP) problem [5]. These methods 
are mainly divided into two types, one is template-based 
modeling (TBM) and the other is template-free modeling 
(TFM). When predicting a protein of unknown structure, TBM 
method can achieve high prediction accuracy if some proteins 
with high homology similarity to this protein can be obtained. 
However, TBM method will not work if the homologous 
proteins are not available in the protein database. Differently, 
TFM method does not rely on homologous proteins, but 
directly predicts protein structure based on the amino acid 
sequence. Some well-known TFM methods, such as QUARK 
[6] and Rosetta [7], have achieved efficient performance with 
the help of Monte Carlo simulations. In recent years, deep 
learning techniques have also been widely used as TFM 
methods in solving PSP problems and achieve high prediction 
accuracies, such as AlphaFold2 [8] and RosettaFold [9]. 
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Although these deep learning-based methods do not need the 
homologous proteins, they need to use a very large number of 
known protein structures to train the prediction model. 

According to the thermodynamic hypothesis [10], the native 
structure of protein is at the lowest energy state. Therefore, 
PSP problem can also be treated as an optimization problem 
that aims to optimize protein energy functions and find the 
native structure of protein with the lowest energy. 
Evolutionary computation (EC) techniques such as genetic 
algorithm (GA), ant colony optimization (ACO), particle 
swarm optimization (PSO), and differential evolution (DE), 
have been successfully applied to solving many complex and 
large-scale optimization problems [11]-[13]. Many researchers 
have also used EC techniques to solve the PSP problem 
through optimizing one protein energy function. These EC-
based PSP methods do not rely on protein templates and are 
TFM methods that can be used to predict newly discovered 
proteins. Some of these single-objective EC-based PSP 
methods have shown considerable results, including HGA [14], 
GLCEA [15], APL [16], HEA [17], ACUE [18], MDE [19], 
LUE [20], and DPDE [21]. 

However, due to that proteins have not been completely and 
clearly understood by human, the energy functions of proteins 
are often inaccurate, resulting in that the native protein may 
not be corresponding to the found one with lowest energy state. 
Therefore, it is necessary to use multiple energy functions to 
comprehensively measure protein structure from different 
aspects so as to reduce the deviation. This leads to the multi-
objective PSP and has also attracted great research attentions. 
For example, the improved Pareto archived evolutionary 
strategy (I-PAES) [22] decomposed chemistry at Harvard 
macromolecular mechanics (CHARMM) [23] into two 
objective functions, i.e., bond and non-bond, and solved the 
PSP problem by optimizing these two objective functions. 
Their results showed that the prediction accuracy was 
generally higher than the previously single-objective 
optimization algorithms. Gao et al. [24] proposed a multi-
objective algorithm named MO3 that pointed out the 
importance of solvent-accessible surface area (SASA) to be an 
energy function. Therefore, MO3 used bond, non-bond, and 
SASA as three objective functions and achieved prediction 
accuracy higher than most previously single-objective and 
two-objective optimization algorithms. Lei et al. [25] recently 
proposed a many-objective algorithm named MO4, which 
utilized four energy functions as objective functions. 
Experimental results show that MO4 outperformed all the 
compared multi-objective algorithms. There have been various 
kinds of multi-objective PSP methods with promising 
performance, including MOEA [26], MOEA-PC [27], 
AIMOES [28], MOPSO [29], and MODE [30]. 

Traditional multi-objective evolutionary algorithms mainly 
contain elitist non-dominated sorting GA (NSGA-II) [31] and 
multi-objective evolutionary algorithm based on 
decomposition (MOEA/D) [32]. In recent years, researchers 
have also proposed novel multi-objective EC algorithms, such 
as EC algorithms based on multiple populations for multiple 
objectives (MPMO) framework [33]. In MPMO, each 
population optimizes its corresponding objective, so that the 
different regions of the Pareto front (PF) can be sufficiently 
explored. Moreover, the MPMO has an information share 

mechanism that all the populations share information with 
each other (e.g. an archive is used to store promising solutions 
found by different populations and is also shared among all 
the populations), so that the whole PF can be approached. 
Zhan et al. [33] the first time proposed the novel and efficient 
MPMO framework and designed a novel coevolutionary 
multiswarm PSO (CMPSO) algorithm, which was an 
integration of the MPMO framework and the PSO algorithm. 
The CMPSO outperforms the traditional NSGA-II algorithm 
and the MOEA/D algorithm on multiple benchmarks. Later, 
Wang et al. [34] followed the MPMO framework and 
proposed the cooperative multi-objective DE. Zhang et al. [35] 
applied the MPMO framework to artificial bee colony 
algorithm. Naidu and Ojha [36] hybridized the MPMO 
framework with invasive weed optimization. Liang et al. [37] 
proposed a new MPMO framework for constrained multi-
objective optimization problems, which designed specific 
evolutionary strategies by learning the problem types, and this 
algorithm demonstrated outstanding performance on various 
problems. Antonio and Coello [38] also made a survey on 
coevolutionary multi-objective EC and pointed out that 
MPMO has been a new and novel multi-objective 
optimization framework. The MPMO-based methods have 
high effectiveness and efficiency on various benchmarks, and 
have also been applied to a variety of real-world application 
problems, including cloud workflow scheduling [39], [40], 
supply chain optimization [41], airline crew rostering [42], job 
shop scheduling [43], and logistic scheduling [44], [45]. All 
these researches show that the MPMO framework has 
excellent and robust performance in multi-objective and 
many-objective optimization problem [46], [47]. 

Based on the above considerations, we establish a multi-
objective PSP model and propose an improved MPMO-based 
DE (IMPMO-DE) algorithm for solving the multi-objective 
PSP problem. IMPMO-DE extends the MPMO framework 
through three novel designs, including an adaptive archive-
based mutation (AAM) strategy, a mixed individual transfer 
(MIT) strategy, and an evolvable archive update (EAU) 
strategy. More specifically, in the AAM strategy, three kinds 
of archive-based mutation operators, with different exploration 
and exploitation abilities, are designed to generate new 
individuals with the guidance of both the populations and the 
archive. The AAM strategy can adaptively choose one suitable 
archive-based mutation operator for the current multiple 
populations, which can better balance the exploration and the 
exploitation in different evolutionary stages. The MIT strategy 
is to mix all the individuals and transfer them among all the 
populations, so as to reallocate individuals in multiple 
populations that optimize multiple objectives, which can share 
search information among the multiple populations to 
accelerate the convergence speed. The EAU strategy can 
generate more promising solutions through evolving the 
archived individuals based on random-orient mutation 
operator and crossover operator. Moreover, the EAU strategy 
preserves the promising solutions based on the non-dominated 
sort and crowding distance. 

To sum up, the major contributions of this paper include: 
1) In the problem modeling aspect, the multi-objective PSP 

model is established, where three fast and accurate 
knowledge-based energy functions are elaborately-selected 
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and utilized as three objectives. This is helpful to 
comprehensively evaluate the protein structure from different 
aspects to evolve to the near-native structure of the protein. 

2) In the algorithm designing aspect, the efficient IMPMO-
DE algorithm that integrates DE into the improve MPMO 
framework is proposed to solve the proposed multi-objective 
PSP model. 

3) In the application innovation aspect, the first time, the 
MPMO framework is applied to solve the PSP problem. It 
verifies the effectiveness and efficiency of MPMO framework 
on the PSP problem. More significantly, a new approach has 
been demonstrated to promote the process of PSP application. 

The remainder of this paper includes four parts. Section II 
introduces the preliminaries of PSP problem and multi-
objective optimization. Section III illustrates the proposed 
IMPMO-DE. Section IV presents the prediction results and 
analysis between IMPMO-DE and other methods. Section V 
makes a summarization of this paper. 

II. PRELIMINARIES 

A. Protein Representation 
Proteins are made of amino acids, which contain a great 

deal of atoms. If each atom is represented in three-dimensional 
coordinates, then representing a protein will be a very high-
dimensional problem, which will be hard for optimization-
based approaches to solve it. Moreover, a slight rotation of 
single bond in protein molecules may lead to huge 
conformational changes. The rotation of any single bond 
would lead to a completely different protein conformation. All 
possible conformations of a protein make up the 
conformational space of this protein, which is extremely large. 
How to narrow the conformational search space through 
protein representation is a significant subproblem in PSP. 

Based on the aforementioned considerations, the torsion 
angle model is established to narrow the conformational 
search space, as shown in Fig. 1. The single bond -C-N- has a 
partial double bond property and it cannot rotate freely. Three 
adjacent atoms in the peptide chain (i.e., atom C, atom N, and 
atom C𝜶𝜶) are in the same plane and this plane is called peptide 
plane. The bond length and angle between atoms are assumed 
to be ideal value. Therefore, peptide chain can be regarded as 
the long chain that consists of a series of peptide plane 
connecting through the atom C𝜶𝜶. Only the single bond -C-C𝜶𝜶- 
and the single bond -C𝜶𝜶-N- on the protein backbone can rotate 
freely. The angle that peptide plane C-N-C𝜶𝜶 rotates around the 
single bond -C𝜶𝜶-N- is called 𝞥𝞥; the angle that peptide plane N-
C-C𝜶𝜶 rotates around the single bond -C-C𝜶𝜶- is called 𝟁𝟁; the 

angle around the single bond -C-N- that cannot rotate freely is 
called 𝟂𝟂. These three angles are called torsion angles. Torsion 
angles 𝞥𝞥 and 𝟁𝟁 range in [-180°, 180°], and torsion angle 𝟂𝟂 is 
set as the fixed value 180°. Similarly, sidechains can also be 
represented with torsion angles and the number of side-chain 
torsion angles is determined by the type of residues. 

Besides, the ranges of torsion angles are limited because of 
the existence of steric hindrance. The information of protein 
secondary structures is often utilized to limit the ranges of 
backbone torsion angles and narrow the feasible 
conformational space. Furthermore, the ranges of side-chain 
torsion angles can also be reduced according to the library of 
rotational isomers dependent on the backbone [48]. 

B. Fragment Assembly 
 Fragment assembly is a crucial technique for PSP, which 
can significantly narrow the search space of protein structures 
and decrease the computational time [20]. Fragment assembly 
involves three steps: 1) the amino acid sequence is divided 
into several fragments. Rosetta, which shows efficient 
performance in PSP, also uses the fragment assembly 
technique and sets the fragment length as 3 or 9 [49]. 
Therefore, this setting is also adopted in this paper; 2) specific 
fragment library is constructed for each protein. In this paper, 
the fragment library is constructed through the publicly 
available ROBETTA full-chain PSP server 
(http://robetta.bakerlab.org). For a specific protein, the 
fragment library is generated from the nonhomologous 
proteins with sequence similarity less than 25%, through the 
sequence alignment method. For each position in the target 
sequence, the top 200 fragments with a resolution better than 2 
Å are reserved; 3) the fragments of the protein to be predicted 
are replaced by a randomly selected fragment from the 
fragment library at the corresponding positions. Therefore, 
new structures can be obtained through fragment assembly 
technique and are used in the further optimization. Compared 
with randomly generated structures, these assembled 
structures are more feasible mainly due to that tertiary 
structures of proteins are regular and that nonhomologous 
proteins may have similar folding patterns. 

C. Energy Functions 
In order to solve the PSP problem with EC, single or 

multiple energy functions are selected as objectives to 
evaluate the energy of protein structure. Energy functions of 
protein mainly can be classified as physical-based energy 
functions and knowledge-based energy functions [50]. 
Physics-based functions rely on molecular dynamics and 
physical laws, with clear definitions. Some famous physics-
based functions, such as CHARMM and AMBER [51], 
developed in early years and have been widely studied in 
many early researches [52], [53]. Knowledge-based functions 
rely on statistical laws of known protein structures. Compared 
with physics-based functions, knowledge-based functions 
generally can be calculated faster and the computational 
resources can be saved. Therefore, various kinds of 
knowledge-based functions are developed in recent years, 
such as Rosetta [7], SASA [54], and Rwplus [55]. When EC is 
used to solve the PSP problem, multiple energy functions are 
utilized as multiple objectives to comprehensively evaluate 

 
Fig. 1.  Torsion angle model of proteins. 
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protein structures, mainly for two reasons. One reason is that 
different kinds of energy functions can measure protein 
structures from different aspects; another reason is that energy 
functions may be inaccurate and the native structure of protein 
may not at the lowest energy state of any single energy 
function. Abnormal structures may exist if only one energy 
function is used [56]. 

Based on the aforementioned considerations, three fast and 
efficient knowledge-based energy functions are elaborately-
selected and utilized as three objectives in this paper. The 
established multi-objective energy model aims to guide the 
algorithm to search efficiently in the conformational space that 
narrowed and constrained by the torsion angle model. 
Moreover, the physical meaning and mathematical formulas of 
these three energy functions are described as follows: 

1) SASA: The energy function SASA aims to calculate the 
solvent free energy, to measure the protein surface that the 
solvent can access. It is assumed that the solvent free energy 
of each atom can be evaluated by its solvent-accessible surface 
area. Solvent free energy is significant to correct and help to 
measure real protein potential energy. Methods that 
incorporate SASA as one of the objectives have showed 
efficient performance [24], [25]. Eisenberg et al. [54], [57] 
summarized the formula as 
 

1
sol i i

i
G Aδ

=

= ⋅∑ ， (1) 

where the 𝛿𝛿𝑖𝑖 is the solvation parameters of atom 𝑖𝑖, 𝐴𝐴𝑖𝑖 is the 
solvent-accessible surface area of atom 𝑖𝑖. In this paper, the 
atomic radius is set to 1.5 angstrom and the energy function 
SASA is calculated through Pyrosetta [58]. 
 2) Rwplus:  Rwplus is an atomic potential that can evaluate 
and select more promising structures from the decoy. Based 
on the knowledge of high-resolution protein structures and an 
ideal random-walk as the reference state, Rwplus has been 
well-tuned and verified its effectiveness to recognize protein 
structures that highly related to the native structures [55]. 

Rwplus consists of two energy terms [59], i.e., the distance-
dependent energy term and the orientation-dependent energy 
term. Rwplus is formulated as 
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where 𝑘𝑘 is the Boltzmann constant, and 𝑇𝑇 is the Kelvin 
temperature. 𝑅𝑅 represents the Euclidean distance between 
atom 𝛼𝛼 and atom 𝛽𝛽. p(𝛼𝛼, 𝛽𝛽, R) and �̅�𝑝(𝛼𝛼, 𝛽𝛽, R) represent the 
observation probability of atom pairs and the expected 
observation probability respectively. N(𝛼𝛼, 𝛽𝛽, R) and 𝑁𝑁�(𝛼𝛼, 𝛽𝛽, R) 
are observation quantity of atom pairs and expected 
observation quantity respectively. (𝐴𝐴, 𝐵𝐵) is a Boolean value 
and is 1 if vector pairs A and B are in contact, OAB is the 
relative orientation of vector pairs A and B. Similarly, p(A, B, 
R) and �̅�𝑝 (A, B, R) represent the observation probability of 
vector pairs and the expected observation probability 
respectively. N(A, B, R) and 𝑁𝑁� (A, B, R) are observation 
quantity of vector pairs and expected observation quantity 
respectively. 

3) AACE18: The atom-atom contact energies (AACE) are 
obtained through maximizing the likelihood of observing the 
native structures in the non-redundant protein set and are able 
to recognize the native structures from the decoy structures set 
[60]. Based on the physicochemical properties of atoms [61], 
the atoms can be classified into 18 types. The energy function 
based on these 18-type atoms is named as AACE18. 

The energy of AACE18, termed as E, can also be 
represented as the difference between two terms [62]. One 
term is the number of atom-water contacts in the extended 
state, while another one is the number of atom-water contacts 
in the native state. Therefore, E is defined as 
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where ev and es are the average energies of the whole atom-
water contacts in the extended state and the folded state 
respectively, and ei is the average contact energy of atoms 
belonging to type i. ni represents the number of atoms that 
belongs to type i, and nir represents the total number of solute 
contacts of atoms that belongs to type i. ni0 and nr0 represent 
the number of atom-solvent contacts and solute-solvent 
contacts respectively. qe,i represents the average number of 
atoms that are excluded contacted with atoms belonging to 
type i. 

D. Multi-objective Optimization 
Based on EC, researchers have used single-objective 

algorithms or multi-/many-objective algorithms to solve the 
PSP problem. In general, multi-/many-objective optimization 
algorithms show higher prediction accuracy than single-
objective optimization algorithms. The IMPMO-DE proposed 
in this paper is also a multi-objective optimization algorithm 
that considers three objectives, i.e., SASA, RWplus, and 
AACE18. 

Multi-objective optimization algorithms optimize two or 
more objectives simultaneously [63]. However, the 
optimization of some objectives often leads to the 
deterioration of other objectives due to the conflicting 
relationship among different objectives. Mathematically, a 
multi-objective minimization problem can be expressed as 

 
{ }

( )
1 2

1 2

( ) ( ), ( ),... ( )
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n
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=
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 x x x x

  x ，
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where x is a decision vector in the decision space Rn and f(x) is 
the objective vector in the objective space RM. n represents the 
dimension of decision variables, and M represents the number 
of objective functions. 
 Moreover, Pareto dominance is used to compare the quality 
of two decision vectors due to that the objectives are conflict. 
For a minimization problem, suppose that a and b are two 
feasible solutions in Rn, a dominates b if and only if  
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 The feasible solution x* is Pareto optimal solution, if and 
only if any decision vector in Rn cannot dominate x*. All the 
Pareto optimal solutions in Rn form the Pareto optimal solution 
set. The Pareto optimal solution set is formulated as 
 { }* *| , dominates .x x x  xn nP R R= ∈ ¬∃ ∈  (6) 
 The Pareto optimal solution set can be mapped to the 
objective space through the objectives and form the PF, i.e. 
 { }( ) | .x xPF f P= ∈  (7) 

A variety of multi-objective evolutionary algorithms have 
been proposed to deal with the multi-objective optimization 
problems. However, most of these algorithms treat multiple 
objectives as a whole and it is hard for these algorithms to 
evaluate and select individuals because that different 
objectives generally conflict with each other. MPMO-based 
methods deal with this difficulty by associating each 
population with only one objective, and the individuals in each 
population are evaluated and selected based on this 
corresponding objective. This is the major superiority of 
MPMO-based methods compared with conventional multi-
objective algorithms. 

The major structure of the MPMO framework is shown as 
Fig. 2. The individuals in the same population are compared 
based on only one objective that is associated with this 
population. So that, the individuals will not be confused by 
different objectives with conflicts, but are able to search 
different regions of the PF under the guidance of the 
corresponding objective. However, since each population only 
focuses on optimizing its single objective, the individuals in 
the same population may converge to the extreme point of the 
corresponding objective, which may result in that the PF not 
being fully explored. In order to solve this issue, the MPMO 
framework also has the information share mechanism that an 
archive is used to store the Pareto optimal individuals found 
by all the populations and is also shared among all the 
populations. New population individuals generated by 
multiple populations are also inserted into the archive, and the 
archive is updated to maintain the non-dominated solutions. 

III. IMPMO-DE FOR PSP 

A. Overview of IMPMO-DE 
In this paper, PSP is modeled as a multi-objective problem 

and the IMPMO-DE algorithm is proposed to solve it. To our 
best knowledge, it’s the first time that MPMO framework is 
applied to the prediction of protein structures. IMPMO-DE 
follows the general framework of MPMO and each population 
adopts the DE to optimize its corresponding objective. There 
are two core issues in the MPMO-based methods, which are 

population update and archive update. Herein, two novel 
strategies named AAM and MIT are proposed to enhance the 
search performance of multiple populations in the population 
update. Moreover, the EAU strategy is proposed for efficiently 
archive update. 

Fig. 3 describes the flowchart of IMPMO-DE. The initial 
multiple populations are obtained through the fragment 
assembly technique. After that, IMPMO-DE goes into a loop 
to optimize the multiple populations until the number of 
fitness evaluations is exhausted. Finally, one structure is 
selected as the predicted structure and is output. The loop of 
optimization includes three parts, i.e., population update, 
archive update, and parameter update. 1) For population 
update, first, trial population is generated according to the 
AAM strategy and the DE crossover and selection operations. 
Then, the MIT strategy is executed to transfer these trial 
individuals to the suitable population and generate the 
offspring population; 2) For archive update, first, new 
archived individuals are generated based on random-orient 
mutation operator and crossover operator. Then, the archive is 
updated based on the non-dominated sort and crowding 
distance; 3) For parameter update, the scaling factor F and 
crossover rate CR of DE are updated. 

B. Population Update 
1) Adaptive Archive-based Mutation Strategy 

IMPMO-DE maintains three populations for three 
objectives and each population adopts DE to optimize its 
corresponding objective. During the population update, the 

 
Fig. 2.  The major structure of MPMO framework. 
 

 
Fig. 3.  The flowchart of IMPMO-DE. 
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mutation operation has an important impact on the exploring 
ability and also greatly affects the algorithm performance [64], 
[65]. Therefore, researchers have designed different kinds of 
mutation operators to improve the search performance. These 
mutation operators can be roughly divided into two categories: 
one is random-orient mutation represented by “DE/rand/1” 
and the other is greedy-orient mutation represented by 
“DE/best/1”. The “DE/rand/1” mutation operator has the 
ability to efficiently explore the search space, which can 
maintain the population diversity and is likely to find more 
promising solutions. The “DE/best/1” mutation operator has 
strong exploitation ability, which can speed up the 
convergence and improve the precision of the found solutions. 
In recent years, some DE algorithms use adaptive operator 
selection strategy to select different mutation operators in 
different evolutionary stages and have shown promising 
performance [66]-[68]. Based on the aforementioned 
considerations, the AAM strategy is proposed. The AAM 
strategy includes three novel archive-based mutation operators 
and an adaptive switch mechanism. 

One part of the AAM strategy is the three archive-based 
mutation operators, which are defined as 

1) DE/rand-with-archive/1 
 

1 2, , ,( )v x x x ,m i m r Ar m rF= + ⋅ −  (8) 
2) DE/current-to-gbest-with-archive/1 

 
1, , , ,( ) ( )m i m i m m i Ar m rF F= + ⋅ − + ⋅ −v x Gbest x x x ， (9) 

3) DE/gbest-with-archive/1 
 

1, ,( )m i m Ar m rF= + ⋅ −v Gbest x x ， (10) 
where xAr is an individual randomly selected from the archive 
(the details of the archive are presented in Section III-C). xm,i 
and Gbestm represent the i-th individual and best individual in 
the m-th population respectively. xm,r1 and xm,r2 are two 
individuals randomly selected from the m-th population. It’s 
worth noting that r1 should not be equal to r2. vm,i is a mutant 
individual generated through the mutation operator. 

The other part of the AAM strategy is the adaptive switch 
mechanism, which is used to switch the three archive-based 
mutation operators. The switch mechanism is inspired by the 
scale-adaptive fitness evaluation [69] and the stagnation-based 
switch strategy [70]. The idea of scale-adaptive fitness 
evaluation is to locate the promising regions using the low-
accuracy scale evaluation method and improve the precision 
of solutions through the high-accuracy scale evaluation 

method. The stagnation-based switch strategy is to control the 
switch among different fitness evaluation methods. For 
solving the multi-objective PSP problem, a mutation operator 
with strong exploration ability (e.g., DE/rand/1 and DE/rand-
with-archive/1) is befitting in the early evolutionary stage, 
while a mutation operator with strong exploitation ability (e.g., 
DE/best/1 and DE/gbest-with-archive/1) is preferred in the late 
evolutionary stage. Moreover, mutation operator with 
balanced exploration and exploitation abilities (e.g., 
DE/current-to-gbest-with-archive/1) can be used for transition 
in the middle evolutionary stage. 

Therefore, the switch mechanism in AAM strategy is shown 
in Fig. 4 and the detailed descriptions are as follows. IMPMO-
DE is initialized to use the mutation operator “DE/rand-with-
archive/1” with strong exploration ability, in order to locate 
more promising regions in the early evolutionary stage. It’s 
switched to the mutation operator “DE/current-to-gbest-with-
archive/1” if the consecutive stagnation generations s exceeds 
the predefined limit MAX_CSG. Similarly, it’s switched from 
the “DE/current-to-gbest-with-archive/1” to the “DE/gbest-
with-archive/1” if s exceeds the predefined limit again, and 
“DE/gbest-with-archive/1” would be adopted for the late 
evolutionary stage. It’s worth noting that the switch is one-
way because that more exploitations are needed to improve the 
precision of solutions with the generation increases. The 
calculation of consecutive stagnation generations is defined as 

 , 1 ,1, if   ( ) ( )
0, otherwise,

Gbest Gbestm m g m m gs m f f
s ++ ∀ == 


 (11) 

where s is the value of consecutive stagnation generations. It is 
increased by 1 if no better solutions are found for any 
objective. Otherwise, s is reset to 0. The pseudo-code of AAM 
strategy is given in Algorithm 1. 

Based on the mutant individuals, the binary crossover 
operator is used to generate the trial individuals, defined as 

 
, ,

, ,
, ,

, if  or 
, otherwise,

m i j rand
m i j

m i j

v r CR j j
u

x
≤ == 


 (12) 

 
Fig. 4.  The switch mechanism in AAM strategy. 
 

Algorithm 1 Adaptive Archive-based Mutation (P, state) 
// Note that P = {P1, P2, P3}; 
Begin 
1. For m = 1 to 3 Do 
2.     Pm’ = ∅; 
3.     For Each individual xm,i  ∈ Pm 
4.         Randomly select an individual from the archive; 
5.         Randomly select two individuals from Pm; 
6.         If state is equal to 1 Then 
7.             Generate vm,i  via Eq. (8); 
8.         Else if state is equal to 2 Then 
9.             Generate vm,i  via Eq. (9); 

10.         Else if state is equal to 3 Then 
11.             Generate vm,i  via Eq. (10); 
12.         End if 
13.         Pm’ =  Pm’ ∪ {vm,i}; 
14.     End for 
15. End for 
16. P’ = {P1’, P2’, P3’}; 
17. Return P’; 
End 
 

DE/rand-with-archive/1

DE/current-to-gbest-with-archive/1

DE/gbest-with-archive/1

reset s = 0

0 ≤ s < MAX_CSG

0 ≤ s < MAX_CSG

FE < MAX_FEs

s = MAX_CSG

s = MAX_CSG
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where um,i,j is the j-th dimension of the i-th individual, and r is 
a random number uniformly generated in range [0, 1]. CR is 
the crossover rate. jrand is a random integer ranges in [1, D]. 
 Moreover, the selection operator is conducted to compare 
um,i with xm,i, and the better one is saved. The selection 
operator for a minimization problem is defined as 

 
, , ,

,
,

, if ( ) ( )
, otherwise.

u u x
x

x
m i m m i m m i

m i
m i

f f≤= 


 (13) 

Therefore, new individuals are generated through the 
mutation operators, crossover operator, and selection operator.  
2) Mixed Individual Transfer Strategy 

IMPMO-DE maintains M populations, and the individuals 
in each population optimize the corresponding objective. 
However, an individual that is obtained with the guidance of 
another objective may even perform better on this objective 
when comparing with the individual that is obtained with the 
guidance of this corresponding objective. This is mainly 
because that EC is a kind of search technique with randomness. 
For example, as Fig. 5 shows, for a two-objective optimization 
problem, in the g-th generation, the i-th individual in the 
population to optimize the objective 𝑓𝑓1, i.e., x1,i,g, generates a 
new individual for the next generation, i.e., x1,i,g+1. Similarly, 
the i-th individual in the population to optimize the objective 
𝑓𝑓2 , i.e., x2,i,g, generates a new individual for the next 
generation, i.e., x2,i,g+1. Although the two populations perform 
their duties to optimize their corresponding objectives, i.e., 
f1(x1,i,g+1) ≤ f1(x1,i,g), f2(x2,i,g+1) ≤ f2(x2,i,g), better solutions may 
also be obtained for these two  populations through 
exchanging x1,i,g+1 and x2,i,g+1, because that f1(x2,i,g+1) ≤ 
f1(x1,i,g+1), f2(x1,i,g+1) ≤ f2(x2,i,g+1).  

Therefore, the MIT strategy is proposed and described as 
follows. The MIT strategy mixes all the individuals in all the 
populations together and then transfers these individuals 
among the populations according to their performance in each 
objective. This can reallocate the individuals among the 
multiple populations to share search information of different 
populations to accelerate the convergence speed. The pseudo-
code of MIT strategy is given in Algorithm 2 and is described 
as follows. Firstly, the MIT mixes all the individuals of all the 
population together in a mixed set. Then, for the m-th 
population, all the individuals in the mixed set are sorted from 
better to worse based on the m-th objective. After the sorting, 
the first |Pm| individuals are regarded as performing well on 
the m-th objective, and are transferred from the mixed set to 
the m-th population, where |Pm| is the size of the m-th 

population. Note that as these |Pm| individuals have transferred 
from the mixed set to the m-th population, they have been 
removed from the mixed set (see Line 6 of Algorithm 2) and 
will not be sorted when dealing with the (m+1)-th population. 

The MIT strategy can fasten the convergence speed of 
multiple populations through transferring the individuals to 
more suitable populations. Moreover, if an individual is 
transferred from one population to another population, its 
search direction is changed in the decision space, and the 
diversity of the Pareto set is improved to some extent. 

C. Evolvable Archive Update 
The first proposed MPMO-based method, i.e., CMPSO 

used archive to store the Pareto solutions and new individuals 
are only generated in the multiple populations. However, the 
individuals in the archive may be underutilized. In fact, these 
archived individuals are also evolvable. Therefore, more 
promising solutions can be generated based on these archived 
individuals through evolution by using suitable mutation 
operator and crossover operator. 

The novel EAU strategy is proposed in this paper. The EAU 
strategy generates more promising solutions through random-
orient mutation operator and crossover operator. The random-
orient mutation operator is defined as 

 
1 2

' ( ),i i i r rF= + ⋅ −a a a a  (14) 
where ai is the i-th individual in the archive and ai’ is the 
corresponding mutant individual. ar1 and ar2 are two different 
individuals randomly selected from the archive. 
 The crossover operator is defined as 

 
'
,''

,
,

, if  or 
, otherwise.

i j i rand
i j

i j

a r CR j j
a

a

 ≤ == 


 (15) 

The scaling factor Fi and crossover rate CRi for the i-th 
individual in the archive are set as 
 [0,1],i iF rand=  (16) 
 [0,1].i iCR rand=  (17) 

All the new evolved individuals are merged into the archive. 
However, this will result in that not all the individuals in the 
archive are non-dominated or the size of the archive excess the 
archive size. Therefore, the EAU strategy also adopts the non-
dominated ranking method [31] on the merged archive to only 
preserve the non-dominated individuals. Moreover, if the 
number of the preserved non-dominated individuals is still 
larger than the archive size, the crowding distance method [71] 

 
Fig. 5.  Illustration of MIT strategy. 
 

Algorithm 2 Mixed Individual Transfer (P) 
// Note that P = {P1, P2, P3}; 
Begin 
1. SP = P1 ∪ P2 ∪ P3; //SP preserves all the mixed individuals 
2. For m = 1 to 3 Do 
3.     SP = sort all the individuals in SP based on 𝑓𝑓𝑚𝑚 from better to worse; 
4.     For i = 1 to |Pm| Do 
5.         xm,i = SPi; //Transfer this individual to population Pm 
6.         Delete SPi from SP; 
7.     End for 
8.     Pm = {xm,1, xm,2, …, xm,|Pm|}; 
9. End for 

10. P = {P1, P2, P3}; 
11. Return P; 
End 
 

Pareto front

x 1 ,i,g+ 1

x 2 ,i,g+ 1

x 1 ,i,g

x 2 ,i,g

f 1

f 2
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is further used to delete some crowding individuals. The 
pseudo-code of evolvable archive update is given in 
Algorithm 3. 

D. Parameter Update 
IMPMO-DE maintains multiple populations, with each 

population adopting the DE to optimize the corresponding 
objective. It’s generally accepted that the scaling factor F and 
crossover rate CR dramatically affect the performance of DE. 
Unsuitable setting of these two parameters may result in the 
stagnation or premature convergence of DE. Therefore, the 
parameter self-adaptive strategy used in JADE [72] is also 
used in IMPMO-DE. 

For the i-th individual in the m-th population, its scaling 
factor is generated through the Cauchy distribution, defined as 
 , ,( ,0.1).m i F mF randc µ=  (18) 

The variance of Cauchy distribution is set as 0.1 and the 
mean is updated in every generation as. 
 , , ,(1 ) ( ),F m F m L F mc c mean Sµ µ= − × + ×  (19) 
where c is set as 0.1. SF,m is the set containing all the scaling 
factors that help the trial individuals defeat the parent 
individuals for the m-th population. meanL(·) refers to the 
Lehmer mean defined as 

 ( ),

,

2| |
,1

, | |
,1

( ) .
F m

F m

S
m ii

L F m S
m ii

F
mean S

F
=

=

= ∑
∑

 (20) 

 Besides, the crossover rate is obtained through the Gaussian 
distribution and is described as 
 , ,( ,0.1).m i CR mCR randn µ=  (21) 

The variance of Gaussian distribution is set as 0.1 and the 
mean is updated in every generation as 
 , , ,(1 ) ( ),CR m CR m A CR mc c mean Sµ µ= − × + ×  (22) 
where c is also equal to 0.1. SCR,m is the set that contains the 
crossover rates of the successfully updated individuals. 
meanA(·) is defined as the arithmetic mean, i.e., 

 
,| |

,1
,

,

( ) .
CR mS

m ii
A CR m

CR m

CR
mean S

S
== ∑  (23) 

E. Predicted Structure Selection 
After optimization based on the three energy functions, a set 

of non-dominated individuals are available in the archive. 
How to choose one protein structure as the representative one 
from these candidate solutions is a remained problem to be 
solved. Many EC-based PSP methods proposed in recent years 
solve this problem through clustering [24],[25],[29],[30]. 
Experimental results of these methods verify the effectiveness 
of the clustering method. The clustering method used in the 
advanced EC-based PSP method, i.e., MO3, is also adopted in 
this paper to select one predicted structure from the candidate 
solution set. 

F. Complete IMPMO-DE and Complexity Analysis 
The framework of IMPMO-DE mainly contains three parts: 

1) population update; 2) archive update; 3) parameter update. 
The pseudo-code of IMPMO-DE is shown in Algorithm 4. 

Algorithm 3 Evolvable Archive Update (A, A’) 
Begin 
1. A = A ∪ P; 
2. A = Non-dominated solutions of A; 
3. For Each a ∈ A Do 
4.     Randomly select two individuals from archive A; 
5.     Generate F and CR via Eqs. (16) and (17); 
6.     Generate mutant individual a’ via Eq. (14); 
7.     Generate new archived individual a’’ based on a’ via Eq. (15); 
8.     Calculate the energy function values of a’’; 
9.     A’ = A’ ∪ {a’’}; 

10. End for 
11. A = A ∪ A’; 
12. A = Non-dominated solutions of A; 
13. If |A| > Predefined Archive Size Then 
14.     Delete some individuals from A based on crowding distance; 
15. End if 
16. Return A; 
End 
 

Algorithm 4 IMPMO-DE 
Begin 
1. Initialize A = ∅, P = {P1, P2, P3}, FE = 0, state = 1, s = 0; 
2. Generate P through fragment assembly; //Section II-A 
3. Evaluate each individual in P and insert all the individuals into A; 
4. FE = FE + |P1| + |P2| + |P3|; 
5. Find the global best individual Gbestm of each Pm; 
6. A = Non-dominated solutions of A; 
7. While FE < MAX_FEs Do 
8.     P’ = Adaptive Archive-based Mutation (P, state); //Algorithm 1 
9.     P’ = {P1’, P2’, P3’}; 

10.     For m = 1 to 3 Do 
11.         Pm

* = Pm; //Pm
* preserves individuals in Pm for parameter update 

12.         For i = 1 to |Pm| Do 
13.             Obtain xm,i from Pm; Obtain vm,i from Pm’; 
14.             Generate um,i based on xm,i and  vm,i via Eq. (12); 
15.             Calculate the energy function values of um,i; 
16.             Generate xm,i based on xm,i and  um,i via Eq. (13); 
17.         End for 
18.         Pm = {xm,1, xm,2, …, xm,|Pm|}; 
19.     End for 
20.     P = {P1, P2, P3}; 
21.     P = Mixed Individual Transfer (P); //Algorithm 2 
22.     A’ = ∅; //A’ aims to preserve new archived individuals 
23.     A = Evolvable Archive Update (A, A’); //Algorithm 3 
24.     FE = FE + |P1| + |P2| + |P3| + |A’|; 
25.     For m = 1 to 3 Do 
26.         SF,m = ∅, SCR,m = ∅; 
27.         For i = 1 to |Pm| Do 
28.             If fm(um,i) < fm(𝒙𝒙𝑚𝑚,𝑖𝑖

∗ ) Then 
29.                 SF,m = SF,m ∪ {Fm,i}; 
30.                 SCR,m = SCR,m ∪ {CRm,i}; 
31.             End if 
32.         End for 
33.         If SF,m ≠ ∅ and/or SCR,m ≠ ∅ Then 
34.             Update 𝞵𝞵F,m and  𝞵𝞵CR,m  via Eqs. (19) and/or (22); 
35.         End if 
36.     End for 
37.     Find the global best individual Gbestm for each Pm; 
38.     Update consecutive stagnation generations s via Eq. (11); 
39.     If s is equal to MAX_CSG and state is not equal to 3 Then 
40.         s = 0; 
41.         state = state + 1; 
42.     End if 
43. End while 
44. Select one structure as the predicted structure from the archive; 
End 
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Assume that the total size of multiple populations and the 
size of archive are N and NAr respectively, and the number of 
energy functions is M. The complexity within one generation 
is analyzed. For population update, it takes O(N) to generate 
new individuals. Then, it takes O(MNlogN) to sort the 
individuals and takes O(N) to transfer the individuals. For 
archive update, it takes O(NAr) for the archive to generate new 
individuals. Then, it takes O(MN2) for the non-dominated sort 
and takes O(N2) to calculate the crowding distance. For 
parameter update, it takes O(N) to update F and CR. Therefore, 
the overall computational complexity is 
O(N+MNlogN+N+NAr+MN2+N2+N), which is O(MN2+NAr). 
Because that NAr is equal to N in this paper, the complexity 
can be reduced to O(MN2). 

IV. EXPERIMENTAL STUDY 
The parameter setting of IMPMO-DE is summarized as 

follows. The total size of multiple populations is set as 60, and 
the size of each population is 20 because that there are three 
populations for the three corresponding energy functions. The 
size of archive A is set as 60. The maximum fitness evaluation 
number MAX_FEs is set as 18000. The maximum consecutive 
stagnation generations MAX_CSG is set as 5, and state is 
initialized to 1 to use the mutation operator “DE/rand-with-
archive/1”. The initial scaling factor F and crossover rate CR 
for each population are both set as 0.5, and the self-adaptive 
parameter c is set as 0.1. Besides, Pyrosetta [58] is used to 
calculate energy function SASA, while the energy functions 
Rwplus [55] and AACE18 [60] are calculated through the 
executable files. Links to the executable files are provided in 
their published paper respectively, i.e., Rwplus 
(https://zhanggroup.org//RW/) and AACE18 
(http://vakser.compbio.ku.edu/main/resources.php). All the 
experiments are carried out in the same environment, i.e., use 
Core i7 with 8GB RAM on Ubuntu 20.04 LTS and compile 
with Python 3.8.10. 

The IMPMO-DE is measured by three frequently-used 
performance metrics and is compared with five advanced EC-
based PSP methods on 28 representative proteins. The 
parameter and component effects are analyzed to find the 
optimal setting. Moreover, the conflicting relationship among 
any two objectives is also analyzed to verify the feasibility of 
using multi-objective optimization algorithms. Last, the 
IMPMO-DE is tested on all the available TFM proteins up to 
404 residues presented in the 14th Critical Assessment of 
Protein Structure Prediction competition (CASP14) and is 
compared with all the competitors of CASP14. 

A. Performance Metrics 
Three different metrics are adopted in this paper to measure 

the similarity between protein native structure and the 
predicted structure, i.e., root mean squared error (RMSD) [73], 
global distance test total score (GDT_TS) [74], and template 
modeling score (TM-score) [75]. 

RMSD is the most frequently adopted performance metric 
for PSP and is defined as 

 2
1

1RMSD( , ) | | ,n
ai bii

a b r r
n =

= −∑  (24) 

where a and b respectively represent protein native structure 
and predicted structure after rotation matrix transform through 
Kabsch algorithm [73]. n is the number of identical atoms 
between the native structure and predicted structure. rai and rbi 
represent the Cartesian coordinates of the i-th atom of the 
native structure and predicted structure respectively. The unit 
of RMSD is angstrom (Å). 
 Besides, another popular performance metric, i.e., GDT_TS, 
is adopted by the CASP competition and defined as 
 1 2 4 8_ _ _ _

GDT_TS ,
4

GDT P GDT P GDT P GDT P+ + +
=  (25) 

where GDT_Px refers to the proportion of the residue pairs 
that the distance between the predicted structure and native 
structure is smaller than 𝑥𝑥Å. GDT_TS ranges in [0,100]. The 
larger the value of GDT_TS, the higher the similarity between 
the native structure and the predicted structure. 

TM-score measures the topology similarity between the 
native structure and the predicted structure. Compared with 
traditional performance metric (e.g., RMSD), TM-score owns 
two advantages: 1) TM-score pays more attention to 
measuring the overall similarity of structures, rather than local 
structural changes; 2) TM-score introduces a scale related with 
the length of amino acid sequence. The distance between 
residues is normalized, so that the value of TM-score is 
independent of the length of amino acid sequence. TM-score 
is formulated as 
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where 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the number of amino acid residues of the 
predicted structure, and 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐m𝑐𝑐𝑜𝑜 is the same number of 
residues in the predicted structure and the native structure. 
Besides, 𝑑𝑑𝑖𝑖 is the distance between the i-th residue of the 
predicted structure and the i-th residue of the native structure, 
and 𝑑𝑑0 is a predefined parameter to normalize 𝑑𝑑𝑖𝑖. TM-score 
ranges in (0, 1]. According to strict statistical analysis of 
protein databases [76], TM-score less than 0.17 indicates that 
the predicted structure is not related to the native structure, 
while TM-score greater than 0.5 indicates that the predicted 
structure and the native structure generally have the same 
folding pattern. 

B. Comparison with EC-based Approaches 
In order to make comparison with EC-based approaches and 

verify the effectiveness of IMPMO-DE, 28 representative 
proteins are selected as the test set. These proteins are 
representative because that they cover three classes of proteins, 
i.e., 𝜶𝜶 class, 𝜷𝜷 class, and 𝜶𝜶/𝜷𝜷 class. The information of this 

TABLE I 
THE TEST SET OF 28 REPRESENTATIVE PROTEINS 

Protein ID Class Protein 
ID Class Protein 

ID Class Protein 
ID Class 

1AB1 𝜶𝜶/𝜷𝜷 1F7M 𝜷𝜷 1SXD 𝜶𝜶 2MR9 𝜶𝜶 
1BDD 𝜶𝜶 1G26 𝜷𝜷 1UTG 𝜶𝜶 2P5K 𝜶𝜶/𝜷𝜷 
1CRN 𝜶𝜶/𝜷𝜷 1I6C 𝜷𝜷 1ZDD 𝜶𝜶 2P6J 𝜶𝜶 
1DFN 𝜷𝜷 1K36 𝜷𝜷 2GB1 𝜶𝜶/𝜷𝜷 2P81 𝜶𝜶 
1E0G 𝜶𝜶/𝜷𝜷 1MSI 𝜶𝜶/𝜷𝜷 2JUC 𝜶𝜶 2PMR 𝜶𝜶 
1E0M 𝜷𝜷 1Q2K 𝜶𝜶/𝜷𝜷 2JZQ 𝜶𝜶/𝜷𝜷 3P7K 𝜶𝜶 
1ENH 𝜶𝜶 1ROP 𝜶𝜶 2KDL 𝜶𝜶 3V1A 𝜶𝜶 
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test set is presented in TABLE I and more detailed 
information of this test set is available in TABLE S.I in the 
Supplementary File. The prediction results include the 
similarity between the predicted structure and the native 
structure, which is measured by three performance metrics, i.e., 
RMSD, GDT_TS, and TM-score. The prediction results of 
IMPMO-DE on this test set is summarized in TABLE S.II in 
the Supplementary File. 

IMPMO-DE is compared with five advanced EC-based PSP 
approaches (i.e., AIMOES [28], MO3 [24], MOPSO [29], 
MODE [30], MO4 [25]) to measure the performance of 
IMPMO-DE. TABLE II summarizes the RMSD results of 
IMPMO-DE and five compared methods, with the best results 
indicated by boldface. Moreover, Wilcoxon signed rank test 
[77] is used to analyze the significant differences between 
IMPMO-DE and the five compared methods. If the p value of 
Wilcoxon signed rank test is smaller than 0.05, it indicates that 

IMPMO-DE significantly outperforms the compared method. 
It’s worth noting that the results of the compared methods are 
obtained directly from their published papers and the results 
not provided in these published papers are marked with “-”. 
According to the Wilcoxon signed rank test results, IMPMO-
DE significantly outperforms all the five advanced EC-based 
PSP methods, with all the p-values smaller than 0.05.  

Moreover, in order to show the prediction performance of 
IMPMO-DE more visually, the predicted structure is aligned 
with the native structure for each protein. The alignment 
results of the first two proteins in this test set, i.e., protein 
1AB1 and protein 1BDD are presented in Fig. 6. The native 
structures are colored white and the structures predicted by 
IMPMO-DE are colored blue. The alignment results of all the 
proteins are available in Fig. S.I in the Supplementary File. 

C. Component Effects 
IMPMO-DE follows the framework of MPMO, with some 

improved components are made and integrated. Therefore, 
these components are worth to discuss and analyze. The 
components include: 1) The AAM strategy, which may make 
better balance of exploration and exploitation abilities of 
IMPMO-DE; 2) The MIT strategy, which may accelerate the 
convergence speed; and 3) The EAU strategy, which may 
generate more promising solutions based on archive 
individuals. TABLE III shows the p-value results between 
IMPMO-DE and its five variants with different components, 
and the detailed experimental results to calculate the p-value 
are available in TABLE S.III in the Supplementary File. 
IMPMO-DE-i (i=1,2,3) represent the IMPMO-DE method 
with “DE/rand-with-archive/1”, “DE/current-to-gbest-with-
archive/1”, and “DE/gbest-with-archive/1” respectively. 
IMPMO-DE-no-MIT represents the IMPMO-DE method 
without MIT strategy. IMPMO-DE-no-EAU represents the 
IMPMO-DE methods without EAU strategy, i.e., the archive 
individuals are not updated through the EAU strategy and only 
the non-dominated sort is carried out in the archive update 
process. Experimental results show that, IMPMO-DE 
outperforms all its compared methods, with p value smaller 
than 0.05, which significantly support the effectiveness of 
each component. 

Moreover, the specific roles of these novel strategies are 
further discussed. The AAM strategy includes three archive-
based mutation operators and adaptively switch among these 
mutation operators to better balance the exploration and 
exploitation abilities. Compared with the method that use 
single mutation operator “DE/rand-with-archive/1”, IMPMO-
DE can convergence faster during the search process. 
Compared with the method that use single mutation operator 
“DE/gbest-with-archive/1”, IMPMO-DE can obtain better 
results with smaller RMSD and smaller energy function value 
after the complete search, because that IMPMO-DE has a 

TABLE II 
THE RMSD AND P-VALUE RESULTS BETWEEN IMPMO-DE AND FIVE EC-

BASED PSP METHODS 
Protein ID IMPMO-

DE AIMOES MO3 MOPSO MODE MO4 

1AB1 6.84 6.77 7.52 9.80 7.38 6.82 
1BDD 3.97 6.95 - 5.64 4.98 4.66 
1CRN 6.70 - 5.56 7.57 - 6.79 
1DFN 4.53 7.65 7.45 - - 8.33 
1E0G 6.77 7.28 - - 8.10 8.88 
1E0M 5.55 5.94 8.00 - 6.49 7.52 
1ENH 3.54 6.67 11.99 8.92 7.80 4.60 
1F7M 7.41 9.71 - - - 10.95 
1G26 8.54 5.57 - - - 5.89 
1I6C 7.30 8.02 - 8.47 7.76 6.93 
1K36 7.75 10.15 - - 8.34 9.04 
1MSI 9.58 9.59 - - - 10.38 
1Q2K 5.78 4.27 7.93 - - 6.53 
1ROP 2.09 - 3.22 3.51 3.01 2.73 
1SXD 9.09 12.12 - - 10.82 12.35 
1UTG 6.02 - - 11.13 - 7.91 
1ZDD 2.64 4.45 3.26 2.15 2.50 1.87 
2GB1 5.76 6.48 - - 8.26 7.62 
2JUC 5.92 7.54 10.80 - - 7.70 
2JZQ 3.66 9.62 - - - 7.87 
2KDL 6.49 - - 10.29 7.72 7.12 
2MR9 5.31 7.42 6.68 - - 5.19 
2P5K 8.84 8.52 9.23 - - 8.89 
2P6J 3.14 10.82 6.54 9.44 6.29 6.20 
2P81 4.06 6.43 4.64 6.28 4.76 4.67 

2PMR 5.98 6.43 10.12 - - 7.74 
3P7K 2.46 - 3.01 - - 1.51 
3V1A 2.24 3.96 2.23 - - 3.72 

+(IMPMO-DE is better) 19 14 10 13 22 
-(IMPMO-DE is worse) 4 2 1 1 6 

p-value 2.76E-04 5.04E-04 9.77E-04 1.22E-04 4.61E-04 
 

  

PDB ID: 1AB1 
RMSD=6.84Å 

PDB ID: 1BDD 
RMSD=3.97Å 

Fig. 6.  The alignment results of protein 1AB1 and 1BDD. The native 
structures are colored white and the structures predicted by IMPMO-
DE are colored blue. 

TABLE III 
THE P-VALUE RESULTS BETWEEN IMPMO-DE AND ITS FIVE VARIANTS 

WITH DIFFERENT COMPONENTS 
IMPMO-

DE 
IMPMO-

DE-1 
IMPMO-

DE-2 
IMPMO-

DE-3 
IMPMO-
DE-no-

MIT 

IMPMO-
DE-no-
EAU 

+ 22 21 20 20 26 
- 6 7 8 8 2 

p-value 1.37E-04 2.13E-04 2.55E-04 8.71E-04 3.44E-06 
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smaller probability to fall into the local minimum. Compared 
with the method that use single mutation operator 
“DE/current-to-gbest-with-archive/1”, IMPMO-DE may have 
a better balance on exploration and exploitation based on the 
suitable setting of consecutive stagnation generations s. 
Compared with the method that does not use MIT strategy, 
IMPMO-DE has a faster convergence speed, especially in the 
early stage of the search process. Compared with the method 
that does not use EAU strategy, IMPMO-DE can generate 
more promising individuals based on the archives and obtain 
smaller energy function value. 

 Fig. 7 shows the convergence curve of IMPMO-DE and 
five variants of protein 1AB1 on the energy function SASA. 
Similar results can be obtained on all the energy functions for 
all the proteins and are available in Fig. S.III in the 
Supplementary File. Experimental results show that, on 
average, The IMPMO-DE-3 that use “DE/gbest-with-
archive/1” convergence fastest in the early stage, while it has a 
bigger energy function value in the end because that this 
method is easy to fall into the local minimum; The IMPMO-
DE-1 that use “DE/rand-with-archive/1”, the IMPMO-DE-no-
MIT that does not use MIT strategy, and the IMPMO-DE-no-
EAU that does not use EAU strategy, have slow convergence 
speed and perform worse than IMPMO-DE in the end, 
because that these three methods have fewer fitness 
evaluations on refining the solutions; The IMPMO-DE-2 that 
use “DE/current-to-gbest-with-archive/1” obtain relative good 
performance, while still worse than the IMPMO-DE. To sum 
up, these three novel strategies of IMPMO-DE, i.e., the AAM 
strategy, the MIT strategy, and the EAU strategy, improve the 
optimizing ability and therefore improve the prediction 
accuracy of IMPMO-DE. 

D. Influence of Parameter Settings 
IMPMO-DE has one parameter MAX_CSG that may affect 

its performance. MAX_CSG means the maximum consecutive 
stagnation generations, and determines when the mutation 
operator is switched. A parameter sensitivity analysis is 
executed to find the best MAX_CSG, and the Wilcoxon 
signed rank test is used to analyze the significant differences 

among different parameter settings. MAX_CSG is set as 0, 3, 
5, and 7 respectively. When MAX_CSG equals to 0, it means 
to use mutation operator “DE/rand-with-archive/1” in the 
whole process. The p-value results between IMPMO-DE and 
its three variants with different parameter settings are 
presented in TABLE IV, and the detailed experimental results 
to calculate the p-value are available in TABLE S.IV in the 
Supplementary File. When MAX_CSG is set as 5, the method 
outperforms the compared method that set MAX_CSG as 0. 
However, there is no significant difference on p value among 
the settings that MAX_CSG equals to 3, 5, and 7 respectively. 
IMPMO-DE with MAX_CSG equals to 5 performs slightly 
better than the other two compared methods, although it’s no 
significant. Therefore, MAX_CSG is set as 5 in this paper. 

E. Conflicting Relationship of Objectives 
IMPMO simultaneously optimizes three objectives, i.e., 

SASA, Rwplus, and AACE18. The conflicting relationship 
between any two objectives should be verified. Therefore, the 
parallel coordinate plot [78] is adopted to analyze the 
conflicting relationship. Parallel coordinate plot is frequently 
used to visualize high-dimensional multivariate data. The 
parallel coordinate plot contains multiple vertical axes with 
parallel and equidistant distribution, and different vertical axes 
represent different normalized objectives. A predicted 
structure is described by a broken line with vertices on vertical 
axes. Two objectives are conflict if the line segments between 
the corresponding and adjacent vertical axes are crossed. Fig. 
8 describes the parallel coordinate plots of proteins 1AB1. 
Similar plots can be obtained for other proteins and are 
available in Fig. S. IV in the Supplementary File. These plots 
show that line segments between any two adjacent vertical 

 
Fig. 7.  Convergence curve of protein 1AB1 on energy function SASA. 
 

TABLE IV 
THE P-VALUE RESULTS BETWEEN IMPMO-DE AND ITS THREE VARIANTS 

WITH DIFFERENT PARAMETER SETTINGS 
IMPMO-DE  

(MAX_CSG=5) MAX_CSG = 0 MAX_CSG = 3 MAX_CSG = 7 

+ 22 18 17 
- 6 10 11 

p-value 1.37E-04 5.68E-02 9.93E-02 
 

 
Fig. 8. Parallel coordinate plot of protein 1AB1. 
 

  

Protein ID: T1027 
GDT_TS=34.85 

Protein ID: T1029 
GDT_TS=39.00 

Fig. 9. The alignment results of protein T1027 and T1029. The native 
structures are colored white and the structures predicted by IMPMO-
DE are colored blue. 
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axes are crossed, which means that any two objective 
functions are conflict with each other. 

F. Comparison with CASP Approaches 
In order to further verify the effectiveness of the proposed 

IMPMO-DE, we compare IMPMO-DE with the advanced 
approaches that participated in the CASP14 competition and 
test the approaches on all available TFM proteins up to 404 
residues. Detailed prediction results of IMPMO-DE on this 
test set are available in TABLE S.V in the Supplementary File. 
Herein, to show the prediction performance of IMPMO-DE 
more visually, the native structures and the predicted 
structures of the first two proteins in this test set, i.e., protein 
T1027 and protein T1029, are aligned respectively and 
presented in Fig. 9. The native structures are colored white 
and the predicted structures are colored blue. The alignment 
results of all the proteins are available in Fig. S.II in the 
Supplementary File. 

Moreover, three advanced approaches, i.e., AlphaFold2, 
Yang-Server (http://yanglab.qd.sdu.edu.cn/index.html), and 
BAKER-ROSETTASERVER (http://robetta.bakerlab.org/), 
are selected to make comparison with IMPMO-DE, and the 
GDT_TS analysis of these four approaches are described in 
TABLE V. TABLE V shows that IMPMO-DE can generate 
structures with high accuracy for small-size proteins, such as 
T1029, T1031, T1033, T1040, T1064, and T1070-D1, and 
shows competitive performance compared with the Yang-
Server and BAKER-ROSETTASERVER. The primary cause 
is that proteins with small number of residues generally have 
small conformational search space, which enables IMPMO-
DE to generate proteins with high accuracy. However, the 
prediction accuracy of IMPMO-DE on large-size proteins such 
as T1037 and T1042 remains limited, which still leaving room 
for further study. 

Moreover, we calculate the average Z-score with threshold 
of -2.0 to rank IMPMO-DE among all the approaches 
participated in the CASP14 TFM competition. The Z-score is 
calculated according to the mean and standard deviation of 
GDT_TS results, and models with Z-score below the tolerance 
threshold would be set to -2.0. All the GDT_TS results are 
available on the CASP14 website 
(https://predictioncenter.org/casp14/results.cgi?view=targets&
model=first&groups_id=&tr_type=all&dm_class=fm). Fig. 10 
shows the average Z-score (>-2.0) for IMPMO-DE (colored 
with red) and all the approaches (colored with white) that 

participated in CASP14 TFM competition. IMPMO-DE ranks 
56th among all the 140 approaches, and the average Z-score 
(>-2.0) of IMPMO-DE is 0.2094. Three advanced approaches, 
i.e., AlphaFold2, Yang-Server, and BAKER-
ROSETTASERVER, rank 1th, 53th, and 74th, respectively. 
Therefore, it can be concluded that the proposed IMPMO-DE 
show competitiveness and can perform better than half of the 
approaches in this CASP14 TFM test even though it is still 
worse than some very famous but maybe very complex 
approaches, e.g., AlphaFold2. In CASP 14, AlphaFold2 leaved 
other approaches far behind, mainly owing to the design and 
utilization of end-to-end architecture and attention mechanism. 

Although IMPMO-DE cannot achieve high prediction 
accuracy especially on large-size proteins when comparing 
with some deep-learning approaches, IMPMO-DE owns two 
advantages compared with deep-learning approaches: 1) 
IMPMO-DE is a more general approach because it is 
independent on protein templates and is suitable to deal with 
newly discovered proteins without similar known protein 
structures; and 2) IMPMO-DE is more explainable and 
straightforward because it simulates the process of biological 
evolution and folds a protein from one-dimensional amino 
acid sequence to three-dimensional structure directly. 
Therefore, we believe that IMPMO-DE is a new artificial 
intelligence (AI) approach that opens a promising 
optimization-based evolutionary and explainable way for 
efficient PSP rather than deep learning approaches like 

TABLE V 
THE GDT_TS RESULTS BETWEEN IMPMO-DE AND THREE ADVANCED 

METHODS 

Protein ID 
Number  

of  
residues 

IMPMO-
DE 

Yang-
Server 

BAKER-
ROSETTA 
SERVER 

AlphaFold2 

T1027 99 34.85 32.83 35.35 61.11 
T1029 125 39.00 40.40 43.60 44.60 
T1031 95 49.21 28.16 25.00 87.37 
T1033 100 34.50 30.75 46.25 87.50 
T1037 404 22.09 52.97 16.46 87.62 

T1038-D1 114 31.14 34.65 23.25 89.47 
T1039 161 21.43 28.57 39.75 82.30 
T1040 130 35.38 23.27 20.19 71.73 
T1041 242 23.97 53.93 25.00 90.70 
T1042 276 20.76 46.01 14.58 84.51 
T1043 148 26.35 11.65 20.78 83.45 
T1049 134 49.63 58.95 66.60 93.10 
T1064 92 29.35 20.65 26.36 86.96 

T1070-D1 76 36.84 28.62 26.32 63.82 
T1074-D1 132 32.95 50.95 47.73 89.77 

T1090 191 34.03 48.02 46.83 89.02 
 

 
Fig. 10. Average Z-score results with penalty threshold -2.0 for IMPMO-DE (colored with red) and all the approaches (colored with white) that participated in 

CASP14 TFM competition. Each scale on the horizontal axis represents an approach, whose ID is recorded in CASP14 or is IMPMO-DE. 
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AlphaFold2. AlphaFold2 is an end-to-end approach that 
cannot well explain why an input amino acid sequence is 
corresponding to the predicted structure. However, IMPMO-
DE is an evolutionary optimization-based approach that 
evolves to find the optimal structure, in which whether a 
structure is good or poor can be well explained by the three 
explainable objectives. Moreover, the IMPMO-DE may be 
more promising especially for newly discovered proteins 
without similar known protein structures in the protein data 
bank. 

V. CONCLUSION 
This paper establishes a novel multi-objective PSP model 

and proposes the IMPMO-DE algorithm to solve it. To the 
best of our knowledge, it is the first time that MPMO 
framework is applied in PSP. In order to enhance the search 
performance, three major improvements are made to extend 
the MPMO framework. First, the AAM strategy is designed to 
better balance the exploration and exploitation of IMPMO-DE 
in different evolutionary stages. Second, the MIT strategy is 
proposed to reallocate individuals among different populations 
to accelerate the convergence speed. Third, the EAU strategy 
can generate more promising solutions through evolving the 
archived individuals. 

IMPMO-DE is tested on 28 representative proteins and 
compared with five advanced EC-based approaches. IMPMO-
DE is also tested on all available TFM proteins up to 404 
residues presented in the CASP14 and compared with the 
competitors. Experimental results show that IMPMO-DE 
outperforms the compared advanced EC-based approaches and 
can perform above average on the CASP14 TFM test set. 
Parameter sensitivity and component effect are analyzed to 
find the best setting. The conflicting relationship among three 
objectives is also discussed. 

We will carry out further researches on EC-based PSP in 
future work, mainly on two aspects. On one aspect, we will try 
to improve the prediction speed through incorporating parallel 
and distributed techniques [79]-[81] with EC-based PSP 
approaches. On the other aspect, we will try to further improve 
the prediction accuracy by utilizing more biological 
knowledge related to proteins and combining EC with novel 
techniques like attention mechanism and/or learning 
mechanism [82]-[84]. We will also test IMPMO-DE on more 
proteins, and compare it with more advanced approaches. 
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