
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

 Abstract—Handling conflicting objectives and finding multiple
Pareto optimal solutions are two challenging issues in solving
multiobjective optimization problems (MOPs). Inspired by the
efficiency of multitask optimization (MTO) in finding multiple
optimal solutions of multitask optimization problem (MTOP), we
propose to treat MOP as a MTOP and solve it by using MTO. By
transforming the MOP into a MTOP, not only that the difficulty
in handling conflicting objectives can be avoided, but also that
MTO can help efficiently find well-distributed multiple optimal
solutions for MOP. With the above idea, this paper proposes a
new multiobjective optimization method via MTO, with the
following three contributions. Firstly, a theorem is proposed to
theoretically show the relationship between MOP and MTOP and
how MOP can be transformed into a MTOP. Secondly, based on
the theoretical analysis, a multiple tasks for multiple objectives
(MTMO) framework is proposed for solving MOP efficiently.
Thirdly, a MTMO-based evolutionary algorithm is developed to
solve MOP, together with two novel strategies. One is a target
point estimation strategy for transforming the MOP into a MTOP
automatically and accurately. The other is an archive-based
implicit knowledge transfer strategy for efficiently transferring
knowledge across multiple tasks to enhance the optimization
results of multiple tasks together. The superiority of the proposed
algorithm is validated in extensive experiments on 15 MOPs with
objective numbers varying from 3 to 20 and with six
state-of-the-art algorithms as competitors. Therefore, solving
MOP and even many-objective optimization problem via MTO is
a new, promising, and efficient method.

Index Terms—Multiobjective optimization problem, multitask
optimization problem, evolutionary computation, multiple tasks
for multiple objectives, knowledge transfer, transforming

Manuscript received XXXX; revised XXXX; accepted XXXX. This work

was supported in part by the National Natural Science Foundations of China
(NSFC) under Grants 62176094 and 92270105, in part by the Key Program of
the Natural Science Foundation of Guangdong Province under Grant
2021B1515120078, in part by the Ministry of Science and Technology of
China under Grant G2022032012L, and in part by National Research
Foundation of Korea under Grant NRF2022H1D3A2A01093478 and Grant
NRF-2020R1C1C1013806. (Corresponding authors: Zhi-Hui Zhan, Jun
Zhang.)

J.-Y. Li is with the College of Artificial Intelligence, Nankai University,
Tianjin 300350, China, and also with the Hanyang University, ERICA, South
Korea.

Z.-H. Zhan are with the School of Computer Science and Engineering,
South China University of Technology, 51006 Guangzhou, China. (e-mail:
zhanapollo@163.com).

Y. Li is with the Industrial Artificial Intelligence Centre, Shenzhen Institute
for Advanced Study, University of Electronic Science and Technology of
China, Shenzhen 518110, China, and also with the i4AI Ltd, London
WCIN3AX, United Kingdom.

J. Zhang is with the Hanyang University, ERICA, South Korea.

I. INTRODUCTION
ultiobjective optimization problem (MOP) and multitask
optimization problem (MTOP) are both foundational and

significant optimization problems that widely exist in various
real-world applications, which have attracted great attention in
the evolutionary computation (EC) community [1]-[4].
Generally speaking, the MOP refers to the optimization
problem with more than one objective to be optimized.
Moreover, in the MOP, no solution can be better than all other
solutions on all the objectives at the same time. Therefore, the
MOP requires the EC algorithm to find a set of Pareto optimal
solutions, i.e., the solutions that are better than other solutions
on at least one objective. Differently, the MTOP refers to the
optimization problem with multiple optimization tasks to be
optimized together. That is, the MTOP requires the EC
algorithm to find a set of solutions that consists of the optimal
solutions that are corresponding to all the tasks. Note that the
MOP with a large number of objectives (e.g., larger than three)
and the MTOP with a large number of tasks are often called
many-objective optimization problem (MaOP) and many-task
optimization problem (MaTOP), respectively, which
emphasizes that the complexity and difficulties of the problems
are mainly due to the large number of objectives or tasks. As
MaOP and MaTOP are kinds of more complex MOP and
MTOP, respectively, the MaOP and MaTOP are also referred
as MOP and MTOP in the following contents for clarity,
respectively.

As both MOP and MTOP are very significant in real-world
applications, EC algorithms for these two types of problems
have attracted increasing attention and have led to two
fast-growing research branches. So far, the researches on MOP
and MTOP are still relatively independent and have different
focuses. In general, the research on MOP focuses on how to
generate, select, and evolve a set of solutions to approach the
Pareto front, i.e., finding the optimal non-dominated solutions.
Existing work for MOP can be roughly classified into six
categories, which are dominance-based methods [5]-[7],
decomposition-based methods [8][9], indicator-based methods
[10][11], multiple populations coevolution-based methods
[12][13], preference information-based methods [14][15], and
other methods [16][17]. While for MTOP, the researchers focus
on how to obtain and transfer knowledge among multiple tasks
during the evolutionary search for enhancing the optimization
of all tasks. Existing approaches for MTOP can be mainly
categorized into two categories, i.e., the implicit knowledge

Multiple Tasks for Multiple Objectives: A New
Multiobjective Optimization Method via Multitask

Optimization
Jian-Yu Li, Member, IEEE, Zhi-Hui Zhan, Senior Member, IEEE, Yun Li, Fellow, IEEE,

Jun Zhang, Fellow, IEEE

M

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3294307

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

transfer-based approaches [18] and the explicit knowledge
transfer-based approaches [19][20]. Note that in recent years,
the multiobjective MTOP has also attracted the research
interest of both the MOP and MTOP research communities
[21]-[24], because this kind of problem generally contains both
the multiobjective and multitask characteristics.

Interestingly, both MOP and MTOP are in fact multiple
solutions optimization problems. That is, both MOP and MTOP
have multiple solutions that are equally important, and all of
these solutions can be regarded as the optimal solutions to the
problem. To better illustrate this, Fig. 1 gives an example to
show the relationship of the multiple global optimal solutions in
MOP and MTOP. Fig. 1(a) shows some solutions for a
minimization MOP, where the solutions A, B, and C are the
Pareto optimal solutions, because they are not dominated by
any other solutions. Fig. 1(c) shows the K optimal solutions of
K different minimization tasks in a MTOP, respectively, where
the fitness function of the kth task is denoted as gk. Moreover,
between Fig. 1(a) and Fig. 1(c), Fig. 1(b) illustrates that a MOP
can be transformed into a MTOP with multiple single-objective
optimization tasks, so that each Pareto optimal solution in the
MOP can be regarded as the global optimal solution of a
corresponding task in the transformed MTOP. To be specific, in
Fig. 1(b), given the two objective functions of the MOP as f1
and f2, each solution in the MOP has two objective values. Then,
the objective value of these solutions can: first, be mapped by
the G1=φ1(f1, f2), so that the Pareto solution A is the optimal
solution of G1, where G1 can be regarded as the fitness function
of the first task in the MTOP (i.e., g1); second, be mapped by
the G2=φ2(f1, f2), so that the Pareto solution B is the optimal
solution of G2, where G2 can be regarded as the fitness function
of the second task in the MTOP (i.e., g2); and so on. By doing so,
finding a set of Pareto optimal solutions for the MOP is
equivalent to finding a set of optimal solutions that correspond
to different tasks in the MTOP.

In this sense, it is interesting that the MOP and MTOP share
something in common and have meaningful relationships. That

is, as both the MOP and MTOP aim to find multiple optimal
solutions, the EC algorithms and knowledge transfer methods
for MTOP may be also useful for finding the Pareto optimal
solutions for MOP. This interesting feature has attracted some
attention in the EC community and has been discussed in some
recent work [21], [22]. However, we could only find a few
studies that attempt to connect the MOP with the MTOP. For
example, when solving a complex MOP, Gupta et al. [23]
proposed to add a relatively simpler MOP transformed from the
original MOP, so as to form two tasks (both are MOPs) and use
the MTOP algorithms to solve the MTOP with two MOP tasks.
When solving a high-dimensional MOP, Feng et al. [25]
proposed to transform the original MOP into several simplified
smaller-scale MOPs, so that the additional simplified MOPs
can assist the optimization of the original large-scale MOP.
Qiao et al. [26] created an additional MOP with relaxed
constraints, so as to help solve the original constrained MOP.
However, these approaches mainly extend the MOP to a
multiobjective MTOP by simplifying the original complex
MOP into multiple simpler MOP tasks, which is different from
the focus of this paper, i.e., solving the MOP more effectively
by treating the whole MOP as a MTOP.

Although some works mentioned above have attempted to
connect the MOP with MTOP, to the best of our knowledge,
there is still no work on the research topic to solve the MOP by
treating the MOP itself as a MTOP. Treating the MOP (with
multiple conflicting objectives) as a MTOP (with multiple
relevant tasks) has two advantages. First, the difficulty in
handling conflicting objectives can be avoided because the
MTOP does not have conflicting objectives. Second, as
efficient tools for finding multiple optimal solutions
simultaneously, multitask optimization (MTO) methods, such
as knowledge transfer methods across tasks, can be used to find
multiple optimal solutions for MOP more efficiently. Therefore,
this is a new emerging research topic in the EC community. To
fill this gap, this paper makes the first attempt to transform the
MOP as a MTOP, so as to solve the MOP more efficiently. In
this paper, we prove a theorem showing the relationship
between MOP and MTOP and how a MOP can be transformed
into a MTOP theoretically. Based on the theoretical analysis, a
multiple tasks for multiple objectives (MTMO) framework is
proposed to solve MOP via MTO. Moreover, this paper
develops a MTMO-based evolutionary algorithm (MTMOEA)
with two novel strategies to solve the MOP more efficiently.
One is a target point estimation (TPE) strategy to help
transform the MOP into a MTOP more accurately and
automatically. The other is an archive-based implicit
knowledge transfer (AIKT) strategy to transfer knowledge
across different tasks. Therefore, this paper is the first to
propose a new research topic with a novel idea of solving MOP
by a new method via MTO. The main contributions of this
paper are summarized as the following three aspects:

Firstly, in solid theory, this paper is the first to propose a
theorem about optimization equivalence between MOP and
MTOP and how a MOP can be transformed into a MTOP
mathematically, based on which MOP can be solved via MTO.

Secondly, in generic framework, this paper proposes the

f2

f1 A

B
C

G2=φ2(f1,f2)

f2

f1
A

B C

x
B2

C2 A2

x

G1=φ1(f1,f2)

f2

f1
A

B C
A1

B1

C1

GK=φK(f1,f2)

f2

f1
A

B C

x
CK

BK

AK

…… ……

(c) Solutions of K tasks
in the MTOP

(b) Transforming the MOP into K optimization
tasks with different fitness functions respectively(a) Solutions in a MOP

x

g1

Task 1

x

g2
Task 2

x

gK

Task K

Fig. 1. Illustration of relationship of multiple global optimal solutions in
minimization MOP and MTOP, where A, B, and C are the Pareto optimal
solutions of the MOP.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3294307

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

MTMO framework that is suitable for solving MOP via MTO,
which is also generic that can be cooperated with different
kinds of EC algorithms.

Thirdly, in efficient algorithm design, this paper proposes the
efficient MTMOEA based on the MTMO framework to solve
the MOP efficiently.

To investigate the proposed MTMOEA, extensive
experiments are conducted on all the 15 problems in the MaF
benchmark suite [27], i.e., MaF1 to MaF15, which have been
used as the benchmark problems for IEEE CEC competition in
recent years. For more comprehensive studies, all the 15 MaF
problems are with the objective number as 3, 5, 10, and 20, i.e.,
15×4=60 problems in total, so as to fully investigate the
proposed MTMOEA.

The rest contents are organized as follows: Section II briefly
introduces the background of MOP and MTOP and their related
work, while Section III describes the relationship between
MOP and MTOP, and details the proposed MTMOEA. Section
VI provides the experimental settings, metrics, comparisons,
and analyses. In the end, Section V is the conclusion.

II. BACKGROUND AND RELATED WORK

A. Multiobjective Optimization Problem
Given a search space Ω, a minimization MOP can be

formulated as follows:
 1 2Minimize () [(), (),..., ()]MF x f x f x f x= (1)

where F consists of M objective functions f1, f2, …, and fM, and
maps decision variables x∈Ω to the objective space ΨM, i.e., F:
Ω→ΨM. Based on Eq.(1), four essential concepts about MOP
can be defined as follows.

Definition 1: Pareto domination. Given any two vectors
u=[u1, u2, …, uM] and w=[w1, w2, …, wM] in the objective space,
we say that u dominates w if um≤wm for all m=1, 2, …, M and
u≠w, denoted as u≺w.

Definition 2: Pareto optimal. A solution vector x∈Ω is
Pareto optimal if there is no x*∈Ω such that F(x*) dominates
F(x).

Definition 3: Pareto set. The Pareto set (PS) is a set of the
Pareto optimal solutions, which can be represented as

 { and is Pareto optimal}PS x x= ∈ Ω (2)
Definition 4: Pareto front. The Pareto front (PF) is regarded
as the image of the Pareto solutions in the objective space
[28]-[30], which can be represented as

 { () }PF F x x PS= ∈ (3)

B. Multitask Optimization Problem
As this paper proposes to transform the MOP into a MTOP,

the definition of MTOP is given herein. Generally speaking, a
MTOP can be formulated as follows. Given K optimization
tasks (without loss of generality assuming they are all
minimization problems), denoted as T1, T2, …, TK, where the
corresponding objective function of the task Tk is gk, the MTOP
requires the algorithm to find the optimal solution xk for each
task Tk such that

 arg min (), 1,2,...,k kx g x k K= = (4)
where x1, x2, …, and xK can belong to the same or different

search spaces.

C. Related Work on MOP
To date, there have been many studies about multiobjective

optimization evolutionary algorithms (MOEAs), which can be
roughly classified into six categories, as briefly reviewed in the
following contents.

The first category is based on dominance. In this category,
the Pareto dominance-based methods are representative, which
select individuals based on the Pareto dominance relationship.
For example, nondominated sorting genetic algorithm II
(NSGA-II) [5] and the improved strength Pareto EA [6] are two
representative Pareto dominance-based evolutionary
algorithms. As a representative dominance-based swarm
intelligence algorithm, multiobjective particle swarm
optimization (PSO) determines the learning direction of
particles based on Pareto dominance [7]. Moreover, Yang et al.
[32] proposed the grid-based evolutionary algorithm (GrEA),
which introduced the grid dominance to enhance the selection
toward the optimal direction. Tian et al. [33] proposed a
modified NSGA-II with a strengthened dominance relation
(NSGA-II-SDR) to balance the convergence and diversity.

The second category is the decomposition-based approach.
The main idea of this category is to decompose the MOP into
several subproblems according to a set of weight vectors, and
then the population continuously evolves toward the PF by
solving each subproblem. Since the decomposition-based
MOEA (MOEA/D) proposed by Zhang and Li [8] in 2007,
many decomposition-based algorithms have been studied. For
example, Zhu et al. [34] proposed a MOEA/D algorithm with a
detect and escape method that can escape from optimization
stagnation. Chen et al. [35] proposed a novel metric to measure
the subspace contribution to the population convergence and
allocate resources accordingly. Moreover, MOEA/D variants
have also been proposed to solve MaOPs. For example, Yuan et
al. [36] calculated the vertical distance between the individual
and weight vector to maintain the diversity of solutions in the
high objective space, so as to balance the convergence and
diversity. Also to balance population convergence and diversity,
Cheng et al. [37] proposed a reference vector-guided
evolutionary algorithm (RVEA) that used angle-penalized
distance based on reference vectors. Although experimental
results have shown the efficiency of decomposition-based
algorithms, it has also been shown that the setting of weight
vectors can be significant to the algorithm performance, and
MOPs with different objectives may need different weight
vectors [38].

The third category is based on indicators. The methods of
this category evaluate and select individuals based on some
performance preference indicators. For instance, the inverted
generalized distance (IGD) [10] and hypervolume (HV) [11]
indicators, which are widely-used indicators for the
investigation of MOEAs, were adopted in [40] and [41] to
guide the evolution, respectively. Note that the G in IGD should
represent “generalized”, which means a more generalized
distance between two sets. Moreover, different strategies have
also been studied with performance preference indicators for
better individual selection and population evolution, such as the
stochastic ranking strategy [42].

The fourth category is based on multiple populations and

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3294307

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

coevolutionary methods. Zhan et al. [12] the first time proposed
multiple populations for multiple objectives (MPMO)
framework, where each population aims at one objective and all
the populations coevolve to find the Pareto solutions. Due to the
efficiency of MPMO, the MPMO framework has been
extended to various real-world applications and obtained
positive results, e.g., cloud workflow scheduling [43], supply
chain configuration [44], job-shop scheduling [45], airline crew
rostering optimization [46], and transportation optimization
[47]. Moreover, based on the MPMO, Liu et al. [48] and Yang
et al. [49] proposed enhanced algorithms for efficiently solving
MaOP. Following the MPMO variants, other multiple
population and coevolution methods have also been studied
[13], such as the many-objective PSO based on coevolution [50]
and the multiswarm-based algorithm [51].

The fifth category is based on preference information. For
example, Yi et al. [14] studied preference angle and reference
information-based dominance for selecting individuals, which
can help guide the evolution. Moreover, the knee point is
typical and widely-used preference information in this category,
which can accelerate convergence and maintain diversity [15].
Therefore, many researchers studied how to use the knee point
to solve MOP. For example, Zhang et al. [52] proposed a knee
point-driven EA (KnEA) that utilized the knee point to guide
the selection process to cover the shortage of Pareto dominance.
Yu et al. [53] combined the α-dominance and knee-oriented
dominance relationship to further identify the knee regions.

The sixth category refers to other methods that do not belong
to the above categories. In this category, many pieces of
research are about hybrid algorithms that mix more than one
method in the above five categories. For example, NSGA-III
[16] is proposed by integrating the NSGA-II with a reference
points-based method. Besides, some novel methods have also
been studied to solve MOP. Feng et al. [25] extended the
original MOP to multiobjective MTOP by constructing several
simplified MOP variants, so as to reduce dimension difficulties
and utilize the knowledge transfer to solve the original MOP
more easily. Liu et al. [54] put forward a novel multiobjective
framework for many-objective optimization (Mo4Ma)
framework, so as to maintain good diversity and convergence
in high-dimensional objective space.

Although the methods and algorithms in the above categories
have attempted to solve MOP in different ways, they do not
solve the MOP as a MTOP. Differently, this paper fully
recognizes the relationship between MOP and MTOP and
proposes to solve the MOP as a MTOP, where the knowledge
transfer methods for solving MTOP can be utilized to enhance
the overall optimization results. The proposed MTMOEA, as a
kind of new method for solving MOP by using MTO, is
different from existing MOEA methods such as the
decomposition-based methods. First, in problem
transformation, although both MTMOEA and MOEA/D will
transform the MOP into multiple tasks or subproblems to obtain
multiple Pareto optimal solutions, their transformation
mechanisms are different. Specifically, the proposed
MTMOEA uses dynamic target points on an approximated PF
rather than fixed weights in the decomposition method for
problem transformation. That is, our method can transform a
MOP into a MTOP automatically and accurately. Therefore,
our method is more general and the decomposition can be

essentially regarded as a special case. As a result, MTMOEA
can yield the adaptive ability to obtain more promising
performance when compared with MOEA/D. Second, in the
optimization mechanism, the proposed MTMOEA focuses
more on the task relationship and knowledge transfer among
relevant tasks to obtain better optimization results. This is due
to that knowledge transfer is an essential component in MTO
for enhancing the optimization results of multiple tasks, which
is also a important feature and research issue in MTO. For
example, in the MTMOEA, the AIKT is proposed to implicitly
transfer knowledge among individuals in relevant tasks.
Therefore, the AIKT can help to generate better offspring for
multiple tasks, which can enhance the overall optimization
efficiency. Based on the above, the MTMOEA (and the
paradigm of solving MOP via MTO) can help to extend the
research scope of MOEA on both the problem transformation
and optimization mechanism, which is also a new method and
new paradigm for solving MOP.

D. Related Work on MTOP
Although MTOP is an emerging research topic, it has

obtained fast development in recent years [55]-[58]. Existing
works for MTOP can be roughly classified into two categories:
implicit knowledge transfer-based approach and explicit
knowledge transfer-based approach.

In the implicit knowledge transfer-based approach,
knowledge transfer is achieved implicitly via evolutionary
operators with the individuals for different tasks. In this
category, the MFEA [4] and its variants are representative
algorithms. The MFEA employs a single population in a
unified search space, where each individual in the population
targets one of the multiple tasks based on its skill factor (e.g., its
fitness for each task). Then, knowledge transfer can be
achieved implicitly via crossover operations with individuals
for different tasks. Due to the efficiency of the basic MFEA
framework, many variants have been studied and proposed
based on this framework. For example, Bali et al. [18] studied
the online transfer parameter estimation and proposed
MFEA-II. Gong et al. [57] studied the dynamic resource
allocation strategy for enhancing the MFEA. Ding et al. [58]
proposed a generalized MFEA with a decision variable
translation and shuffling strategies. Zhou et al. [59] studied the
adaptive knowledge transfer for MFEA and obtained promising
results. Besides, more implicit knowledge transfer methods
have also been researched based on the evolutionary operators
in different EC algorithms, such as genetic programming [60].

Differently, the second category focuses on explicit
knowledge transfer between multiple populations or swarms
for different tasks. Feng et al. [19] proposed an
autoencoding-based explicit genetic transfer, so as to transfer
knowledge between populations aiming at different tasks. Lin
et al. [24] explored a more positive transfer by transferring
valuable solutions and proposed an algorithm for
multiobjective MTOPs. Different from the task-specific
knowledge transfer mentioned above, Li et al. [20] further
proposed a novel meta-knowledge transfer method to transfer
the meta-knowledge among populations for different tasks. Wu
et al. [61] considered the shift invariance between tasks and
proposed a successful solution transfer method to transfer the
suitable parameters between similar tasks. Jiang et al. [62]

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3294307

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

proposed to transfer both the shape knowledge and domain
knowledge between similar tasks to solve MaTOP. In addition,
Wu et al. [63] proposed an orthogonal transfer method to
handle the heterogeneous search spaces and dimension
similarities to achieve high-quality transfer. In addition, Jiang
et al. [64] also proposed a block-level knowledge transfer to
enhance the knowledge transfer between dimensions of the
same or different tasks.

III. THE PROPOSED MTMOEA

A. Treating Multiobjective Optimization Problem as Multitask
Optimization

To begin with, the theorem about “Optimization Equivalence
between MOP and MTOP” (i.e., Theorem 1) is put forward to
show the relationship between MOP and MTOP.

Theorem 1: If a MOP needs to find K target points on the PF,
then the MOP can be regarded as a MTOP with K
single-objective optimization tasks.

Proof: Without loss of generality, we denote the K target
points on the PF (i.e., in the objective space) that need for a
MOP as Z1, Z2, …, and ZK. Then, the optimization goal of the
MOP is to find K solutions x1, x2, …, and xK, such that:
 ()argmin ((),) , 1,2,...,k kx d F x k K= =Z (5)
where F(x) is the objective vector of x as defined in Eq.(1), and
d(a, b) measures the distance between vector points a and b. By
defining gk(x|Zk)= d(F(x), Zk), the Eq.(5) can be rewritten as:

 argmin (), 1,2,...,k k kx g x k K= =Z (6)
Compared with Eq.(4), i.e., the problem formulation of MTOP,
we can see that Eq.(6) is actually a form of MTOP with K
single-objective optimization tasks, where gk(x|Zk) is the fitness
function of the kth task. Therefore, the proof is finished.

According to Theorem 1, we can treat the MOP as a MTOP
when assuming that the MOP just needs to find K target points
on the PF (K is a positive and finite number). In fact, this
assumption can be supported in practical applications due to
two reasons. First, when solving real-world MOPs, as the
number of Pareto optimal solutions can be very large and
increase rapidly as the number of objectives increases, finding a
sufficient number (rather than all) of Pareto optimal solutions is
a more realistic and possible way for solving the MOP, where
each Pareto optimal solution corresponds to a point on the PF
(as defined in Definition 4). Second, the final output of
algorithms, such as many existing MOP algorithms [9]-[12], is
always only a subset of Pareto optimal solutions, i.e., only some
points on (or close to) the PF, because the available
computational budgets, memory, and storage are not infinite
but are often expensive and limited. Therefore, it is rational and
acceptable to treat the MOP as MTOP, so as to get enough
Pareto optimal solutions as the final results for the
corresponding MOP. In addition, as solving MOP as a MTOP
with K tasks just need to find K (rather than all) Pareto optimal
solutions, the problem complexity reduces as K decreases,
which is a great advantage. Based on the above, treating MOP
as MTOP is a potential direction for solving MOP.

When transforming the MOP into a MTOP via Eq.(6),
various distance measurements can be used to calculate the
function d(F(x), Zk)), so as to build up the fitness function of

each task (i.e., the gk(x|Zk)). Without loss of generality, this
paper uses the Euclidian distance, a widely-used distance
metric, to compute d(F(x), Zk)) in the implementation. That is,
the fitness function in Eq.(6) can be rewritten as:

() ()()

()
| ,k k k

k

g x d F x

F x=

=

−

Z Z

Z
 (7)

where ||a|| will return the Euclidian norm of a. Note that besides
the Euclidian distance, other distance measurements can be also
used and may have different advantages for different MOPs
[30]. However, as the focus of this paper is not on the influence
of different distance measurements, the simple Euclidian
distance is used herein while the investigations of others can be
potential as future work.

In addition, as the real PF is unknown prior, if we want to
solve the MOP as a MTOP formulated as Eq.(6), the target
points Z1, Z2, …, and ZK need to be estimated. That is, the
target point of each task in the transformed MTOP should be
estimated. Therefore, this paper proposes the TPE strategy to
estimate the target points to help transform the MOP into the
MTOP more accurately, which is described in Section III-C.

B. Multiple Tasks for Multiple Objectives Framework
To solve the MOP as a MTOP efficiently, this paper

proposes the MTMO framework. The general flowchart of the
MTMO is shown in Fig. 2. In the MTMO, the multiple tasks
(e.g., K tasks) of a MTOP are generated based on Eq.(7) and
can be updated in every generation. For solving the MTOP with
K tasks, the MTMO evolves a population with N individuals.
Note that N should not be less than K (i.e., N ≥ K), so that there
can be at least one individual corresponding for each task.
During the evolution, three procedures in the MTMO are
conducted iteratively until the stop criterion is met, where the
three procedures are: offspring generation, task update, and
selection. The offspring generation procedure generates
offspring (i.e., new individuals) via evolutionary operators, and
then evaluates the objective value of the new individuals. Based
on the objective value and the target points, the fitness of
individuals for different tasks (called task fitness) can be
calculated according to Eq. (7), which does not need additional
fitness evaluations. To solve MOP as a MTOP more efficiently,
this paper proposes the AIKT strategy to generate new

Start

Initialization

Transform the MOP into a MTOP

Offspring generation

Task update

Selection

Stop?

End

No

Yes

Fig. 2. The flowchart of the MTMO framework.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3294307

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

individuals via knowledge transfer, which will be detailed in
Section III-D. Based on the information of the individuals in the
current population, the task update procedure updates the
fitness function of all tasks, i.e., updates the estimated target
points Zk (1≤k≤K) in Eq. (7). Herein, as mentioned before, this
paper proposes the TPE strategy for the task update procedure
to help more accurately update the tasks, which will be detailed
in Section III-C. Then, according to the updated fitness
functions of all tasks, the selection procedure selects N better
individuals to form the new population. The new population
will enter the loop to continue the evolution if the stop criterion
is not met. Otherwise, the algorithm outputs the best-found
solutions and finishes.

C. Target Point Estimation
The TPE is proposed to estimate the target points for

transforming a MOP into a MTOP automatically and efficiently.
To estimate the target points that are distributed on the PF
evenly, the TPE has two main steps: 1) to approximate the PF,
and 2) to obtain some points (e.g., K points) on the
approximated PF evenly as the estimated target points.

The pseudo code of TPE is shown in Algorithm 1, where
line 2 to line 7 and line 8 to line 9 are for approximating the PF
and for computing estimated target points, respectively. Note
that when approximating the PF, as the PF may consist of an
infinite number of points, L potential points are used to
represent the approximated PF.

To begin with, the inputs of the Algorithm 1 are L original
potential points that are uniformly pre-sampled in [0, 1]M,
where M is the number of objectives, i.e., the dimension of the
objective space. Then, to approximate the shape of PF, the
non-dominated solutions are obtained from the current
population and stored in a set, denoted as Λ. With the
non-dominated solutions in Λ, each of the L original potential
points (e.g., Qi) will be scaled in the objective space as:

 i
i i

i

rλ= ⋅ ⋅
QQ
Q

 (8)

where λ is the scale factor that controls the distance between the
approximated PF and the front shaped by non-dominated
solutions in the current population, and the ri is the scale value
of ith potential point, which is computed as

*() T
i i

i
i

F qr ⋅
=

Q
Q

 (9)

where q*
i is the point that has the smallest vertical distance to

the Qi in the objective space. The q*
i with the smallest vertical

distance to the Qi can be written as:

 ()1/22* 2
,argmin () (() cos)

j
i j j i j

q
q F q F q θ

∈Λ
= − ⋅ (10)

where θi,j is the angle between vector Qi and F(qj) in the
objective space. As sin2θi,j + cos2θi,j =1, the Eq.(10) can also be
rewritten as

 ()*
,arg min () sin

j
i j i j

q
q F q θ

∈Λ
= ⋅ (11)

To provide a clearer demonstration, Fig. 3 shows the
relationship between the variables in TPE, where q*

i is the
non-dominated solution with the smallest vertical distance to Qi
in objective space, and ri is the scale value for Qi as calculated
by Eq.(9). Note that the approximating strategy in the Eq.(9)
and Eq.(11) is different from some existing PF approximating
strategies in two aspects. First, the key points for approximating
PF are calculated via different formulas. For example, the Eq.(8)
is with a scaled factor λ while existing work is not [16], [65].
Second, the aim of the PF approximating strategy is different.
In particular, the approximation strategy of this paper is used as
the first step in the proposed TPE to help better estimate the
target points for constructing the transformed MTOP, while
those in existing work are not designed for constructing a
MTOP.

Based on the PF represented by L scaled potential points (i.e.,

Algorithm 1: Target Point Estimation
Input: Q1, Q2, …, QL - the L potential points;

Λ - the set of found non-dominated solutions;
F - consists of M objective functions;
λ - the scale factor for estimating PF;

Output: Z1, Z2, …, ZK - the K estimated target points.
1: Begin
2: // to approximate the PF with potential points
3: For i=1 to L Do // for each Qi
4: qi ← the point with smallest vertical distance in Λ;//see Eq. (11)
5: ri ← the scale value of Qi based on F(qi);// see Eq.(9)
6: Qi ← adjust Qi with λ, ri, and ||Qi||; // see Eq.(8)
7: End For
8: // to obtain estimated target points based on potential points
9: Z1, Z2, …, ZK ← the K cluster centroids of Q1, Q2, …, QL;
10: End

f2

f1

F(q*
i)

Smallest
vertical
distance

θi

Potential point Qi

Non-dominated solution

Not
smallest

Not
smallest

Fig. 3. The relationship among the variables in TPE.

Algorithm 2: Archive-based Implicit Knowledge Transfer
Input: Pg - the population at generation g;
 arch - the archive;

N - the population size;
T - the neighborhood size for knowledge transfer;

Output: Offspring - the generated offspring;
1:Begin
2: Offspring ← empty set;
3: For i=1 to N Do
4: Index ← the index set of T individuals nearest to Pg,i in arch;
5: j ← a random index in Index;
6: // generate a new offspring via evolutionary operator
7: x ← perform evolutionary operator with Pg,i and archj;
8: Offspring ←Offspring∪{ x };
9: End For

10: End

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3294307

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

Q1, Q2, …, QL), TPE obtains K points as the estimated target
points. To obtain target points more evenly, the clustering
technique is adopted herein. To be specific, this paper uses the
K-means algorithm to cluster the L potential points into K
groups, where the K centroids of the K groups are regarded as
the K estimated targeted points, respectively. That is, the
estimated targeted points can be obtained as:

 { } { }1 2 1 2, ,..., Kmeans(, ,..., ,)K L K=Z Z Z Q Q Q (12)
where Kmeans({Q1, Q2, …, QL},K) outputs the K centroids of
the L potential points Q1, Q2, …, QL. That is, the Z1, Z2, …, and
ZK in Eq.(12) are the K estimated target points of the TPE. Note
that the TPE is an automatic method for transforming a MOP
into a MTOP, it has two parameters (L and λ) that need manual
configurations. The influence study of L and λ are conducted in
Section IV-D and F, respectively. In addition, the TPE is
different from the decomposition method in that the TPE firstly
approximates the PF, and then obtains some points on the
approximated PF to automatically construct multiple
optimization tasks, while the decomposition method uses a set
of weight vectors to aggregate multiple objective functions into
some subproblems as multiple tasks.

D. Archive-based Implicit Knowledge Transfer for Offspring
Generation

The AIKT is proposed to generate offspring via knowledge

transfer across multiple tasks, so as to enhance the
optimization results for all tasks. Algorithm 2 is the pseudo
code of the AIKT. In general, the AIKT generates offspring
based on an archive, where the archive contains individuals
with good fitness for different tasks. For each individual i in
the population at generation g (e.g., Pg,i), AIKT selects T
individuals nearest to Pg,i in the archive, where T is the
neighborhood size for knowledge transfer. Herein, the “nearest”
means the smallest Euclidean distance in the decision space
between Pg,i and other individuals in the archive. This is
different from those approaches that select parents based on the
distance in the objective space, e.g., MOEA/D selects parents
based on the distance between corresponding aggregation
weight vectors in the objective space. Then, a new offspring is
generated via evolutionary operators with the Pg,i and the
random one of the T nearest individuals from the archive as the
parents. That is, for generating the offspring, each parent pair
contains two individuals, one from the current population (e.g.,
Pg,i) and one randomly selected from the T individuals in the
archive that are nearest to Pg,i. Note that each individual in the
population (e.g., Pg,i) can be good at a specific task, while the T
individuals nearest to Pg,i from the archive can be good at some
other similar or relevant tasks. Therefore, the individual for
one task can learn knowledge from other tasks via the
evolutionary operators implicitly, so as to generate better
offspring. Herein, without loss of generality, the widely-used
evolutionary operators in the MOP research community, i.e.,
the simulated binary crossover and polynomial mutation [67],
are used as the evolutionary operators in the AIKT.

E. The Complete Algorithm
Based on the above contents, this part derives the complete

algorithm for solving MOP via MTO, which is named
MTMOEA. The pseudo code of MTMOEA is given in
Algorithm 3. After the initialization and transforming the
MOP into a MTOP via the TPE, Algorithm 3 iteratively carries
out four procedures until the stop criterion is met (i.e., until the
available FEs are consumed out). The four procedures are the
offspring generation (lines 15-18), the task update (lines 19-23),
the multitask selection (lines 24 and 25), and the archive update
(lines 26 and 27). Finally, the MTMOEA outputs the final
population as the solution set for the MOP. The details of the
multitask selection and the archive update are as follows.

The multitask selection is proposed to select individuals
based on the fitness functions of all different tasks. The pseudo
code of the multitask selection is given in Algorithm 4. To be
specific, multitask selection iteratively selects the promising
individual for each task in a round-robin fashion until enough
individuals are selected, as shown in lines 4 to line 9 of
Algorithm 4.

The archive update is similar to the multitask selection
(Algorithm 4), which also selects the promising individuals for
each task in a round-robin fashion until enough individuals are
selected. However, the archive update is to update the archive
every generation to refresh the knowledge for different tasks, so
as to enhance the AIKT for offspring generation. Therefore,
different from the multitask selection, the archive update will
not select a duplicated individual, so as to improve the
individual diversity in the archive. Moreover, the maximum
size of the archive is set the same as the population size. The

Algorithm 3: MTMOEA
Input: M- the number of objectives;

F - consists of M objective functions;
N- the population size;

 K- the number of tasks (the number of targeted points);
L - the number of potential points;
λ - the ratio for approximating PF;
T - the neighborhood sizes for knowledge transfer;
MFES - the maximum number of available FEs;

Output: S - the final solution set with N solutions.
1:Begin
2: /* Initialization */
3: Q1, Q2, …, QL← sample L potential points in [0,1]M;
4: g ← 1; // the generation index
5: Pg ← initialized population with N individuals;
6: Evaluate individuals in Pg with F;
7: FEs ← N; // the FEs cost for initialization
8: arch ← Pg; // Initial archive
9: /* Transforming the MOP into a MTOP */

10: Pcan ← Pg;
11: Λ ← non-dominated solutions in Pcan;
12: Z1, Z2, …, ZK ←Perform TPE; //Algorithm 1
13: Develop the fitness functions of K tasks; // refer to Eq.(7)
14: While FEs < MFES Do
15: /* Offspring Generation */
16: Offspring ← generate new offspring via AIKT; //Algorithm 2
17: Evaluate the individuals in Offspring with F;
18: FEs ← FEs + N;
19: /* Task Update */
20: Pcan ← Pg∪Offspring; // population with candidate individuals
21: Λ ← non-dominated solutions in Pcan;
22: Z1, Z2, …, ZK ←Perform TPE; //Algorithm 1
23: Update the fitness functions of K tasks; // refer to Eq.(7)
24: /* Multitask Selection */
25: Pg+1 ← perform selection among Pcan; // Algorithm 4
26: /* Archive Update */
27: arch ←update archive with Pcan; // Algorithm 5
28: g ←g + 1;
29: End While
30: S ← Pg; //the final solution set as the output
31: End

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3294307

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

pseudo code of archive update is given in Algorithm 5, where
line 3, 4, and 9 are to avoid selecting duplicated solutions. By
doing so, we can ensure that the individuals in the archive are
different, which can enhance individual diversity and enrich the
knowledge for different tasks in the archive.

IV. EXPERIMENTAL STUDIES

A. Experiment Setup
So far, there have been many MOP benchmark test suites for

evaluating algorithms, such as DTLZ [68] and WFG [69]. The
problems in these different benchmark suits can help observe
how the algorithm will behave on different MOPs. Recently, a
test suite named MaF [27] has been proposed by combining the
advantages of different benchmark suites including the DTLZ
[68] and WFG [69] to better evaluate MOP algorithms. To be
specific, the MaF benchmark suite contains 15 representative
problems with different properties (i.e., MaF1 to MaF15) that
are modified based on existing representative MOPs, as shown
in Table I. As a result, the MaF1 to MaF15 have various
characteristics and their objective number can be set according
to the need of users. Moreover, the MaF has been adopted as the
benchmark set for the IEEE CEC competition on MOP with
more than three objectives since 2017. Therefore, this paper
also adopts the MaF1 to MaF15 to investigate the proposed
algorithm in the experimental part.

Furthermore, popular and state-of-the-art algorithms are

used as the competitors and the number of objectives of the 15
problems is set as 3, 5, 10, and 20, so as to better study the
efficiency of the proposed algorithm. The compared algorithms
are: NSGA-III [16], NSGA-II-SDR [33], MOEA/D-DES [34],
RVEA [37], KnEA [52], and Mo4Ma [54], which have been
mentioned in Section II. The source codes of the first five
algorithms are obtained from the PlatEMO platform [66]. Note
that the parameters of crossover and mutation operators of
different algorithms including the MTMOEA are the same. In
addition, as for the parameters in MTMOEA, both the number
of target points (i.e., the number of tasks) and the population
size is N, the number of potential points is set as L=5×N, the
scale factor λ is 0.95, and the neighborhood size T is 0.05×N.

Moreover, for some algorithms that require reference
points/vectors, the population size is recommended to be set as
the same as the number of reference points/vectors. To generate
the reference points/vectors for a problem with M objectives,
the Normal-boundary intersection (NBI) strategy [70] is widely
used to determine the number of reference points/vectors. That
is, the population size can be determined based on the NBI. In
NBI, N reference points/vectors will be sampled, where N= C
H1+M'
M' with M’=M–1 and H1 as the parameter that controls the
division on each objective axis. For problems with many
objectives, it is suggested to use a two-layer generation strategy
with N= CH1+M'

M' + CH2+M'
M' , where H1 represents the divisions on the

outer layer while H2 indicates the divisions on the insider layer

TABLE I
DESCRIPTION AND PROPERTY OF THE TEST PROBLEMS

Problem Description Property of Pareto front
MaF1 Modified inverted DTLZ1 Linear
MaF2 DTLZ2BZ Concave
MaF3 Convex DTLZ3 Convex, Multimodal

MaF4 Inverted badly-scaled
DTLZ3 Convex, Multimodal

MaF5 Convex badly-scaled
DTLZ4 Convex, Biased

MaF6 DTLZ5(I,M) Concave, Degenerate

MaF7 DTLZ7 Mixed, Disconnected, Multi-
modal

MaF8 Multi-Point Distance
Minimization Problem Linear, Degenerate

MaF9 Multi-Line Distance
Minimization Problem Linear, Degenerate

MaF10 WFG1 Mixed, Biased

MaF11 WFG2 Convex, Disconnected, Non-
separable

MaF12 WFG9 Concave, Nonseparable,
Biased Deceptive

MaF13 PF7 Concave, Unimodal,
Nonseparable, Degenerate

MaF14 LSMOP3 Linear, Partially separable,
Large scale

MaF15 Inverted LSMOP8 Convex, Partially separable,
Large scale

TABLE II

SETTINGS OF POPULATION SIZES FOR PROBLEMS WITH DIFFERENT
NUMBER OF OBJECTIVES

Number of objectives (H1, H2) Population size
3 (13, -) 105
5 (5, -) 126
10 (3, 2) 275
20 (2, 1) 230

Note that H1 and H2 are the simplex-lattice design factors for generating uniformly
distributed reference/vectors on the outer boundaries and the inside layers, respectively.

Algorithm 4: Multitask Selection
Input: F - consists of M objective functions;
 N - the population size;

Pcnd - the candidate individual set for selecting N individuals;
Z1, Z2, …, ZK - the K estimated target points;

Output: Pg+1 - the population at generation g+1;
1: Begin
2: Pg+1 ← empty set;
3: ni← the smallest integer larger than N/K; // number of iterations
4: For i=1 to ni Do
5: For k=1 to K Do
6: x ← the ith best individual in Pcan for task k based on Zk;
7: Pg+1 ←Pg+1∪{ x };
8: End For
9: End For
10: Pg+1 ← the first N individuals in Pg+1;
11: End

Algorithm 5: Archive Update
Input: Pcan - the candidate individual set;
 Pg+1 - the population at generation g+1;

N_a - the maximum size of arch;
Z1, Z2, …, ZK - the K estimated target points;

Output: arch - the updated archive;
1:Begin
2: arch ← Pg+1;
3: Remove the duplicated solutions in arch;
4: Remove existing individuals in arch∩Pcan from Pcan;
5: While the size of arch is smaller than N_a Do
6: For k=1 to K Do
7: x ← the best individual in rest Pcan for task k;
8: arch ← arch∪{ x };
9: Remove x from Pcan; // avoid duplicated selection

10: End For
11: End While
12: arch ← the first N_a individuals in arch;
13: End

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3294307

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

of the PF. Based on this, this paper also adopts the NBI strategy
to determine the same population size N for all the algorithms,
so as to provide a fair comparison. Particularly, Table II
provides the value of corresponding H1, H2, and the population
size for problems with a different number of objectives. In
addition, without loss of generality, the initial potential target
points (i.e., Q1, Q2, …, QL) in the MTMOEA are also generated
by the NBI. As the number of points generated by NBI can not
be arbitrary, the number of generated points will be slightly
smaller than L if L does not equal to CH1+M’

M’ + CH2+M’
M for any H1 and

H2. That is, if L≠CH1+M’
M’ + CH2+M’

M , the NBI will sample L’=CH1+M’
M’ +

CH2+M’
M points such that L’ is closest to but smaller than L.
In addition, the maximum number of FEs is configured as

N×100 for each algorithm on each problem, so as to evaluate
the algorithm efficiency. To reduce statistical errors, each
algorithm is tested 30 times independently on each problem and
the average results are used for the comparisons.

B. Evaluation Metrics
To evaluate the algorithm performance, two widely-used

metrics, i.e., IGD and HV, are adopted in the experimental
studies and comparisons. The mean and standard values of the
IGD and HV results over 30 runs are reported. As
recommended in [27], the reference set of IGD contains 10000
reference points uniformly sampled on the true PF, and the
reference point of HV is a vector of all ones, i.e., (1,1, …,1).
Note that when calculating the HV, the objective value of each
solution will be normalized based on a nadir point of the true PF,
and more detailed calculation procedures can refer to [27].
Moreover, the Wilcoxon’s rank sum test with a significant level
α=0.05 is also used for algorithm comparisons. That is,
according to the Wilcoxon’s rank sum test, this paper uses the
symbols “+”, “≈”, and “-” to show that the proposed algorithm
performs significantly better than, similar to, and significantly
worse than the compared algorithms, respectively. In addition,
the best results in the comparison will be marked in boldface.

C. Comparisons with State-of-the-art Algorithms
Table III provides the statistical comparison results between

MTMOEA and six state-of-the-art algorithms on 60 problems
with a different number of objectives, where the detailed
experimental results are given in Table S.I and Table S.II in the
supplementary material.

As shown in Table III, the MTMOEA can outperform all
compared algorithms on more than 30 problems (i.e., more than
half of all the test problems) in term of IGD, and more than 27

problems in term of HV. This suggests the great
problem-solving ability of MTMOEA. Moreover, Table S.I
shows that the MTMOEA can obtain the best IGD results (as
marked in boldface) on 17 problems, while the NSGA-III,
NSGA-II-SDR, MOEA/D-DES, RVEA, KnEA, and Mo4Ma
get the best IGD results only on 3, 14, 6, 7, 9, and 4 problems,
respectively. In particular, in terms of both the IGD and HV, the
MTMOEA significantly works better on MaF3, Ma4, MaF14,
and MaF15 with different numbers of objectives. The distinct
characteristics of these problems are that the MaF3 and MaF4
are multimodal MOPs while the MaF14 and MaF15 have
large-scale MOPs, which both contain many local optima in the
complicated and large-scale search space. The MTMOEA has
special superior performance on these very complex problems.
This may be due to that by transforming these MOPs into
MTOPs, the MTMOEA can use MTO and knowledge transfer
methods to efficiently find a set of optimal solutions with good
diversity in the complicated and large-scale search space. In
addition, as can be seen in Table III, no matter whether on
tested MOPs (the number of objectives is 3) or MaOPs (e.g., the
number of objectives is 5, 10, or 20), the proposed MTMOEA
significantly outperforms almost all the compared algorithms
on more than half problems, which show that the MTMOEA
can work well on both the MOP and MaOP.

Moreover, for a better visualization of the algorithm
efficiency, Fig. S.1 of the supplementary material plots the HV
convergence curve of the seven algorithms during the progress
of fitness evaluations on MaF9, MaF14, and MaF15 with 3, 5,
10, and 20 objectives, respectively. The three problems are
selected because that the MaF9 is a classical problem with a
linear Pareto front while both MaF14 and MaF15 are
large-scale MOPs, which can help to observe the algorithm
efficiency in different scenarios. As shown in Fig. S.1, the HV
convergence of MTMOEA is competitive with other
algorithms on the MaF9 with different objectives. While on
MaF14 and MaF15, the MTMOEA can obtain significantly
better HV results more quickly than other algorithms. This
validates the optimization efficiency of MTMOEA, especially
on large-scale MOPs.

Based on the above, the comparison results have shown the
significant efficiency of MTMOEA. Therefore, solving MOP
as a MTOP is promising.

D. Influence of the Number of Potential Points
In TPE, the target point of each task in the transformed

MTOP is obtained based on the L potential points. Therefore,

TABLE III
STATISTICAL COMPARISONS RESULTS BETWEEN MTMOEA AND OTHER ALGORITHMS BASED ON IGD AND HV METRIC

Metric Number of
objectives

NSGA-III
(+/≈/-)

NSGA-II-SDR
(+/≈/-)

MOEA/D-DES
(+/≈/-)

RVEA
(+/≈/-)

KnEA
(+/≈/-)

Mo4Ma
(+/≈/-)

IGD

3 9/1/5 8/1/6 10/1/4 11/1/3 7/4/4 14/0/1
5 8/1/6 11/1/3 9/3/3 10/1/4 9/0/6 13/1/1
10 8/0/7 8/1/6 8/2/5 9/0/6 8/1/6 10/0/5
20 10/1/4 5/2/8 7/4/4 9/0/6 9/2/4 7/3/5

Total 35/3/22 32/5/23 34/10/16 39/2/19 33/7/20 44/4/12

HV

3 6/2/7 9/4/2 11/4/0 8/5/2 10/2/3 7/2/6
5 9/1/5 7/3/5 10/3/2 11/1/3 9/1/5 7/1/7
10 6/4/5 4/3/8 9/2/4 9/1/5 7/4/4 8/3/4
20 7/3/5 7/2/6 8/3/4 8/2/5 7/3/5 10/2/3

Total 28/10/22 27/12/21 38/12/10 36/9/15 33/10/17 32/8/20
The “+”, “≈”, and “-” represent that the proposed MTMOEA performs significantly better than, similar to, and significantly worse than the corresponding compared algorithm.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3294307

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

the influence of L is studied in this part. Specifically, as the
original MTMOEA uses L=5×N potential points, the original
MTMOEA, denoted as MTMOEA(L=5×N) in this part, is
compared with four variants with different L, which are
denoted as MTMOEA(L=2×N), MTMOEA(L=3×N),
MTMOEA(L=10×N), and MTMOEA(L=20×N), respectively.
The MTMOEA(L=2×N) and MTMOEA(L=3×N) can represent
the influence of a smaller L, while MTMOEA L=10×N) and
MTMOEA(L=20×N) can reflect the influence of a larger L.
Note that as mentioned earlier, the potential points are initially
sampled by NBI, and therefore the actual number of potential
points may be slightly smaller than L during the evolution.

The comparison results are given in Table IV. As can be seen
in Table IV, MTMOEA(L=5×N) generally has better
performance than MTMOEA(L=2×N) and MTMOEA(L=3×N)
while slightly worse performance than MTMOEA(L=10×N)
and MTMOEA(L=20×N). In detail, MTMOEA(L=5×N)
performs significantly better/worse than MTMOEA(L=2×N)
and MTMOEA(L=3×N) on 4/1 and 3/1 problems, respectively,
while significantly better/worse than MTMOEA(L=10×N) and
MTMOEA(L=20×N) on 0/2 and 1/4 problems, respectively.
This indicates that the larger the L is, the better the algorithm
performance can be. The reason may be that more potential
points can help to estimate the PF more accurately and thus can
provide more information to obtain better-estimated target

points. However, it should also be noted that more potential
points will also result in more computational costs. Therefore,
L=5×N can be a good setting that balances the algorithm
performance and computational cost, and is used in this paper.

E. Influence of the Scale Factor
This part analyzes the scale factor in TPE for estimating the

PF, i.e., the value of λ in Eq.(8). As the λ in original MTMOEA
is 0.95, this part compares the original MTMOEA with its
variants using λ=0.80, λ=0.85, λ=0.90, and λ=1.00, so as to
analyze the influence of λ. For simplicity, the original
MTMOEA and the four variants are denoted as
MTMOEA(λ=0.95), MTMOEA(λ=0.80), MTMOEA(λ=0.85),
MTMOEA(λ=0.90), and MTMOEA(λ=1.00), respectively.
The comparison results of the five algorithms on the 15
3-objective problems are given in Table V. As can be seen in
Table V, MTMOEA(λ=0.95) generally performs similarly to
MTMOEA(λ=0.85) and MTMOEA(λ=0.90), but perform
significantly better than MTMOEA(λ=0.80) and
MTMOEA(λ=1.00). To be specific, according to the
Wilcoxon’s rank sum test, MTMOEA(λ=0.95) performs
similarly to MTMOEA(λ=0.85) and MTMOEA(λ=0.90) on 8
and 9 of the 15 problems (i.e., more than a half), and perform
significantly better/worse than these two variants on 4/3 and 4/2
problems, respectively. As for the rest two variants, the

TABLE IV
COMPARISONS OF IGD RESULTS AMONG MTMOEA VARIANTS WITH DIFFERENT NUMBER OF POTENTIAL POINTS

Problem MTMOEA(L=5×N) MTMOEA(L=2×N) MTMOEA(L=3×N) MTMOEA(L=10×N) MTMOEA(L=20×N)
MaF1 6.4836E-2 (2.14E-3) 6.7770E-2 (2.12E-3) + 6.6645E-2 (2.39E-3) + 6.5190E-2 (2.38E-3) ≈ 6.3171E-2 (2.45E-3) -
MaF2 5.4559E-2 (3.03E-3) 5.5497E-2 (2.21E-3) ≈ 5.5190E-2 (2.58E-3) ≈ 5.5801E-2 (3.31E-3) ≈ 5.4417E-2 (2.39E-3) ≈
MaF3 6.9995E+1 (7.99E+1) 9.1141E+1 (1.05E+2) ≈ 9.3968E+1 (1.64E+2) ≈ 8.0919E+1 (1.01E+2) ≈ 1.2081E+2 (1.75E+2) ≈
MaF4 2.0512E+1 (1.15E+1) 2.2346E+1 (1.71E+1) ≈ 1.8425E+1 (1.28E+1) ≈ 2.1444E+1 (1.16E+1) ≈ 2.0535E+1 (1.46E+1) ≈
MaF5 3.8697E-1 (3.82E-1) 5.6889E-1 (5.74E-1) ≈ 5.2406E-1 (6.01E-1) ≈ 3.3732E-1 (3.21E-1) - 4.9234E-1 (5.70E-1) +
MaF6 1.2276E-2 (1.44E-3) 1.3919E-2 (1.34E-3) + 1.2851E-2 (1.44E-3) ≈ 1.2268E-2 (1.36E-3) ≈ 1.2477E-2 (1.36E-3) ≈
MaF7 3.3199E-1 (3.64E-2) 3.3199E-1 (2.82E-2) ≈ 3.2603E-1 (2.69E-2) ≈ 3.4289E-1 (3.85E-2) ≈ 3.2559E-1 (4.24E-2) ≈
MaF8 3.0672E-1 (3.86E-1) 2.4491E-1 (1.28E-1) ≈ 3.3110E-1 (3.59E-1) ≈ 2.6308E-1 (2.12E-1) ≈ 1.9132E-1 (7.68E-2) ≈
MaF9 1.7344E-1 (1.06E-1) 1.7148E-1 (1.07E-1) ≈ 1.6951E-1 (1.01E-1) ≈ 1.5387E-1 (9.08E-2) ≈ 2.0352E-1 (2.27E-1) ≈
MaF10 6.9509E-1 (1.23E-1) 6.5042E-1 (1.27E-1) ≈ 6.2681E-1 (6.73E-2) - 6.5732E-1 (7.45E-2) ≈ 6.6352E-1 (9.37E-2) ≈
MaF11 1.8118E-1 (6.44E-3) 1.8403E-1 (6.41E-3) ≈ 1.8218E-1 (8.05E-3) ≈ 1.7948E-1 (6.52E-3) ≈ 1.7450E-1 (6.86E-3) -
MaF12 2.4733E-1 (1.25E-2) 2.5488E-1 (2.17E-2) + 2.5655E-1 (2.17E-2) + 2.4124E-1 (9.98E-3) - 2.3963E-1 (7.93E-3) -
MaF13 8.7601E-2 (5.29E-3) 9.3550E-2 (6.80E-3) + 9.2010E-2 (5.09E-3) + 8.7274E-2 (4.29E-3) ≈ 8.4601E-2 (4.16E-3) -
MaF14 1.9886E+0 (9.70E-1) 1.8959E+0 (7.40E-1) ≈ 1.7978E+0 (6.47E-1) ≈ 2.2309E+0 (1.05E+0) ≈ 2.0574E+0 (8.21E-1) ≈
MaF15 3.4496E-1 (3.69E-2) 3.2610E-1 (2.55E-2) - 3.3418E-1 (3.55E-2) ≈ 3.4808E-1 (3.60E-2) ≈ 3.4965E-1 (2.61E-2) ≈
+/≈/- NA 4/10/1 3/11/1 0/13/2 1/10/4

TABLE V

COMPARISONS OF IGD RESULTS AMONG MTMOEA VARIANTS WITH DIFFERENT SCALE FACTORS
Problem MTMOEA (λ=0.95) MTMOEA (λ=0.80) MTMOEA (λ=0.85) MTMOEA (λ=0.90) MTMOEA (λ=1.00)
MaF1 6.4836E-2 (2.14E-3) 6.3737E-2 (2.22E-3) ≈ 6.3985E-2 (2.02E-3) ≈ 6.3655E-2 (2.12E-3) ≈ 6.6394E-2 (2.67E-3) +
MaF2 5.4559E-2 (3.03E-3) 5.1218E-2 (2.88E-3) - 5.1444E-2 (2.35E-3) - 5.2234E-2 (2.62E-3) - 7.4465E-2 (3.62E-3) +
MaF3 6.9995E+1 (7.99E+1) 4.8684E+1 (4.70E+1) ≈ 8.7964E+1 (8.79E+1) ≈ 9.5461E+1 (8.84E+1) ≈ 9.0673E+1 (1.06E+2) ≈
MaF4 2.0512E+1 (1.15E+1) 1.3972E+1 (9.48E+0) - 1.4284E+1 (1.16E+1) - 1.6408E+1 (1.00E+1) ≈ 2.7048E+1 (2.04E+1) ≈
MaF5 3.8697E-1 (3.82E-1) 9.1376E-1 (8.70E-1) + 6.0406E-1 (4.44E-1) + 5.3236E-1 (5.03E-1) + 4.8821E-1 (5.18E-1) ≈
MaF6 1.2276E-2 (1.44E-3) 1.1717E-2 (9.15E-4) ≈ 1.1813E-2 (8.85E-4) ≈ 1.2128E-2 (1.40E-3) ≈ 1.2315E-2 (1.47E-3) ≈
MaF7 3.3199E-1 (3.64E-2) 2.0080E+0 (1.10E-1) + 1.7447E+0 (3.59E-1) + 1.2641E+0 (3.01E-1) + 1.9202E-1 (1.85E-2) -
MaF8 3.0672E-1 (3.86E-1) 2.7600E-1 (1.76E-1) ≈ 2.2660E-1 (1.33E-1) ≈ 2.0209E-1 (1.34E-1) ≈ 2.4593E-1 (1.81E-1) ≈
MaF9 1.7344E-1 (1.06E-1) 2.0513E-1 (1.25E-1) ≈ 1.9184E-1 (1.64E-1) ≈ 1.3766E-1 (5.10E-2) ≈ 1.3185E-1 (7.01E-2) ≈
MaF10 6.9509E-1 (1.23E-1) 7.5386E-1 (1.19E-1) ≈ 6.5522E-1 (9.78E-2) ≈ 6.4189E-1 (1.05E-1) - 7.5649E-1 (8.94E-2) +
MaF11 1.8118E-1 (6.44E-3) 4.5533E-1 (4.74E-2) + 3.5509E-1 (3.95E-2) + 2.3896E-1 (2.80E-2) + 1.8542E-1 (5.94E-3) +
MaF12 2.4733E-1 (1.25E-2) 5.2345E-1 (1.16E-1) + 3.4542E-1 (3.54E-2) + 2.6047E-1 (1.19E-2) + 2.5575E-1 (1.03E-2) +
MaF13 8.7601E-2 (5.29E-3) 9.2429E-2 (5.24E-3) + 8.7320E-2 (4.55E-3) ≈ 8.6267E-2 (6.39E-3) ≈ 1.0011E-1 (4.66E-3) +
MaF14 1.9886E+0 (9.70E-1) 1.0442E+0 (3.56E-1) - 1.2035E+0 (3.96E-1) - 1.6800E+0 (7.36E-1) ≈ 2.2241E+0 (8.90E-1) ≈
MaF15 3.4496E-1 (3.69E-2) 3.8694E-1 (7.61E-2) + 3.3544E-1 (3.83E-2) ≈ 3.3619E-1 (4.16E-2) ≈ 3.7018E-1 (4.81E-2) +
+/≈/- NA 6/6/3 4/8/3 4/9/2 7/7/1

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3294307

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

MTMOEA(λ=0.95) outperforms MTMOEA(λ=0.80) and
MTMOEA(λ=1.00) on 6 and 7 problems, but only worse on 3
and 1 problems, respectively. The above results may be due to
that during the evolutionary search, the PF approximated based
on the information of current-best solutions is still higher than
the real PF in the objective space, and therefore a scale factor
slightly smaller than 1 can help pull the approximated PF to be
closer to the real PF. However, if the scale factor is too small
(e.g., λ=0.80), the estimated PF can be wrong after being scaled.
In addition, as the λ=0.95 is the best among the five different
settings, the λ=0.95 is adopted in MTMOEA in this paper.

F. Influence of the Target Points Selection
The estimated target points in the MTMOEA are obtained

based on the potential point via the Kmeans clustering
technique. Therefore, this part further analyzes the effect of
clustering in obtaining estimated target points. That is, the
MTMOEA is compared with its variant that does not use the
Kmeans clustering, which is denoted as MTMOEA-w/o-C. As
the number of estimated target points should be the same as N
and the MTMOEA-w/o-C does not have a clustering technique
to obtain N target points based on L potential points, the L is
also set as N in MTMOEA-w/o-C, so that potential points can
be directly selected as target points without clustering. The
comparison results between MTMOEA and MTMOEA-w/o-C

on 3- and 20-objective problems are provided in Table VI. As
can be seen, MTMOEA has a worse performance than
MTMOEA-w/o-C on 3-objective problems generally but have
a much better performance on 20-objective problems. In
particular, MTMOEA has worse results than MTMOEA-w/o-C
on 7 of the 15 3-objective problems, while only having better
results on 3 problems. But on the 15 20-objective problems, the
MTMOEA performs significantly better than
MTMOEA-w/o-C on 8 problems, similarly on 7 problems, and
worse on none problems. This may be due to that when the
number of objectives is small, the objective space is not large
and the clustering technique cannot distinguish similar points
into different clusters well, while for problems with a large
number of objectives, the clustering technique can classify the
potential points into corresponding groups and obtain the
representative target point efficiently. Therefore, the clustering
technique is useful.

G. Influence of the Neighborhood Size for Knowledge
Transfer

In AIKT, the neighborhood size T can influence the
knowledge transfer among individuals for different tasks.
Therefore, this part analyzes the influence of T based on the
comparisons between the original MTMOEA and its variants
with different T. That is, the MTMOEA(T=0.05×N) is
compared with the variants MTMOEA(T=1),

TABLE VI
COMPARISONS OF IGD RESULTS BETWEEN THE ORIGINAL MTMOEA AND THE MTMOEA VARIANT WITHOUT CLUSTERING

Problem Obj. MTMOEA MTMOEA-w/o-C Problem Obj. MTMOEA MTMOEA-w/o-C
MaF1 3 6.4836E-2 (2.14E-3) 5.9049E-2 (3.53E-4) - MaF1 20 4.9678E-1 (8.27E-3) 5.0130E-1 (7.39E-3) +
MaF2 3 5.4559E-2 (3.03E-3) 5.3243E-2 (1.00E-3) - MaF2 20 1.7910E-1 (1.36E-3) 1.8227E-1 (1.63E-3) +
MaF3 3 6.9995E+1 (7.99E+1) 6.6321E+1 (1.20E+2) ≈ MaF3 20 1.1336E+1 (2.08E+1) 1.6183E+1 (2.97E+1) ≈
MaF4 3 2.0512E+1 (1.15E+1) 2.1773E+1 (1.14E+1) ≈ MaF4 20 7.3413E+5 (5.05E+5) 6.1730E+5 (4.39E+5) ≈
MaF5 3 3.8697E-1 (3.82E-1) 5.0943E-1 (5.64E-1) + MaF5 20 1.6534E+5 (8.69E+3) 1.6285E+5 (1.43E+4) ≈
MaF6 3 1.2276E-2 (1.44E-3) 3.0348E-2 (6.13E-4) + MaF6 20 3.9075E-2 (3.36E-3) 4.7283E-2 (3.62E-3) +
MaF7 3 3.3199E-1 (3.64E-2) 3.4570E-1 (3.38E-2) ≈ MaF7 20 7.8575E+0 (1.54E+0) 7.7143E+0 (1.88E+0) ≈
MaF8 3 3.0672E-1 (3.86E-1) 3.1694E-1 (2.56E-1) ≈ MaF8 20 1.6790E+0 (1.58E-1) 1.8738E+0 (3.53E-1) +
MaF9 3 1.7344E-1 (1.06E-1) 4.0007E-1 (4.65E-1) + MaF9 20 9.7734E+0 (7.35E+0) 1.5434E+1 (4.88E+0) +
MaF10 3 6.9509E-1 (1.23E-1) 6.3483E-1 (9.46E-2) ≈ MaF10 20 4.8222E+0 (2.85E-1) 4.8872E+0 (1.25E-1) ≈
MaF11 3 1.8118E-1 (6.44E-3) 1.7690E-1 (6.92E-3) - MaF11 20 3.5614E+0 (2.07E-1) 3.7082E+0 (2.22E-1) +
MaF12 3 2.4733E-1 (1.25E-2) 2.3030E-1 (6.76E-3) - MaF12 20 1.1138E+1 (4.94E-1) 1.1716E+1 (4.38E-1) +
MaF13 3 8.7601E-2 (5.29E-3) 7.8221E-2 (6.22E-3) - MaF13 20 1.9357E+0 (1.64E-1) 1.8356E+0 (3.28E-1) ≈
MaF14 3 1.9886E+0 (9.70E-1) 1.3828E+0 (4.59E-1) - MaF14 20 2.1976E+0 (1.54E+0) 2.0573E+0 (1.16E+0) ≈
MaF15 3 3.4496E-1 (3.69E-2) 3.0413E-1 (2.63E-2) - MaF15 20 1.3726E+1 (1.80E+0) 1.7380E+1 (2.53E+0) +

+/≈/- NA 3/5/7 +/≈/- NA 8/7/0

TABLE VII
COMPARISONS OF IGD RESULTS AMONG MTMOEA VARIANTS WITH DIFFERENT NEIGHBORHOOD SIZE FOR KNOWLEDGE TRANSFER

Problem MTMOEA(T=0.05×N) MTMOEA(T=1) MTMOEA(T=0.1×N) MTMOEA(T=0.15×N) MTMOEA(T=0.2×N)
MaF1 6.4836E-2 (2.14E-3) 6.6159E-2 (2.46E-3) + 6.5278E-2 (2.41E-3) ≈ 6.6223E-2 (2.46E-3) + 6.5729E-2 (2.60E-3) ≈
MaF2 5.4559E-2 (3.03E-3) 5.4730E-2 (3.12E-3) ≈ 5.5441E-2 (2.24E-3) ≈ 5.5523E-2 (2.51E-3) ≈ 5.5517E-2 (2.43E-3) ≈
MaF3 6.9995E+1 (7.99E+1) 1.3076E+2 (1.64E+2) + 9.9064E+1 (1.62E+2) ≈ 8.4812E+1 (1.15E+2) ≈ 1.0563E+2 (1.46E+2) ≈
MaF4 2.0512E+1 (1.15E+1) 2.1636E+1 (1.55E+1) ≈ 1.8887E+1 (1.45E+1) ≈ 2.0700E+1 (1.54E+1) ≈ 2.0190E+1 (1.23E+1) ≈
MaF5 3.8697E-1 (3.82E-1) 4.9840E-1 (8.89E-1) + 4.6732E-1 (4.75E-1) ≈ 3.2807E-1 (2.22E-1) ≈ 3.4765E-1 (3.17E-1) ≈
MaF6 1.2276E-2 (1.44E-3) 1.1976E-2 (9.28E-4) ≈ 1.2453E-2 (1.26E-3) ≈ 1.2302E-2 (1.23E-3) ≈ 1.1702E-2 (1.41E-3) ≈
MaF7 3.3199E-1 (3.64E-2) 3.2709E-1 (2.73E-2) ≈ 3.2810E-1 (3.19E-2) ≈ 3.3400E-1 (3.51E-2) ≈ 3.3040E-1 (3.30E-2) ≈
MaF8 3.0672E-1 (3.86E-1) 2.4938E-1 (2.44E-1) ≈ 2.8319E-1 (3.09E-1) ≈ 2.1884E-1 (1.12E-1) ≈ 2.4096E-1 (1.65E-1) ≈
MaF9 1.7344E-1 (1.06E-1) 1.3668E-1 (6.04E-2) ≈ 1.8660E-1 (1.69E-1) ≈ 2.1624E-1 (2.52E-1) ≈ 1.6765E-1 (1.19E-1) ≈
MaF10 6.9509E-1 (1.23E-1) 6.8033E-1 (9.45E-2) ≈ 6.8489E-1 (1.21E-1) ≈ 6.5581E-1 (9.65E-2) ≈ 6.6749E-1 (9.49E-2) ≈
MaF11 1.8118E-1 (6.44E-3) 1.8138E-1 (6.30E-3) ≈ 1.8244E-1 (5.45E-3) ≈ 1.7877E-1 (6.56E-3) ≈ 1.8058E-1 (8.00E-3) ≈
MaF12 2.4733E-1 (1.25E-2) 2.4392E-1 (6.06E-3) ≈ 2.4373E-1 (8.85E-3) ≈ 2.4543E-1 (8.52E-3) ≈ 2.4752E-1 (7.92E-3) ≈
MaF13 8.7601E-2 (5.29E-3) 9.0581E-2 (6.05E-3) ≈ 8.9884E-2 (6.68E-3) ≈ 8.9429E-2 (5.34E-3) ≈ 8.8804E-2 (6.71E-3) ≈
MaF14 1.9886E+0 (9.70E-1) 1.9618E+0 (6.49E-1) ≈ 2.2782E+0 (9.41E-1) ≈ 1.8043E+0 (7.63E-1) ≈ 2.3048E+0 (9.03E-1) +
MaF15 3.4496E-1 (3.69E-2) 3.4655E-1 (4.64E-2) ≈ 3.4273E-1 (3.68E-2) ≈ 3.4090E-1 (2.49E-2) ≈ 3.4506E-1 (2.72E-2) ≈
+/≈/- NA 3/12/0 0/15/0 1/14/0 1/14/0

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3294307

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

MTMOEA(T=0.1×N), MTMOEA(T=0.15×N), and
MTMOEA(T=0.2×N), where MTMOEA(T=1) means that
only the nearest individual will be selected for knowledge
transfer. The comparison results are provided in Table VII. As
shown in Table VII, the MTMOEA(T=0.05×N) have similar
performance to MTMOEA(T=0.1×N) and slightly better
performance than MTMOEA(T=0.15×N) and
MTMOEA(T=0.2×N). To be more specific,
MTMOEA(T=0.05×N) has similar performance on 15, 14,
and 14 problems when compared with MTMOEA(T=0.1×N),
MTMOEA(T=0.15×N), and MTMOEA(T=0.2×N),
respectively. This indicates that the MTMOEA(T=0.05×N) is
not that sensitive to the setting of T. Moreover, Table VII also
shows that the MTMOEA(T=0.05×N) outperforms
MTMOEA(T=1) on 3 problems, but does not have worse
performance on any problems. This may be due to that a proper
large T can help improve the knowledge transfer among
individuals that are good at different tasks, and thus can
enhance the optimization results. Note that the
MTMOEA(T=0.05×N) obtains slightly better results than the
rest variants, the T=0.05×N is adopted in this paper.

H. Running Time Analysis
This part investigates the computational complexity of the

proposed algorithm by the comparison and analysis of running
time. The average wall-clock times of all seven algorithms over
30 independent runs are reported in Table S.III of the
supplementary material. As shown in Table S.III, the
MTMOEA has a smaller average ranking than the
MOEA/D-DES, i.e., less computationally complex than
MOEA/D-DES. Moreover, the MTMOEA can also run faster
than KnEA and Mo4Ma on some problems, e.g., the MaF8 with
5 or 10 objectives. In addition, although the MTMOEA has a
longer time cost than some fast algorithms such as the
NSGA-III and NSGA-II-SDR, their gaps in time cost are only
in seconds. Therefore, the MTMOEA is not much
computationally complex. Note that previous experiments have
shown the promising optimization ability of MTMOEA, slight
additional time cost of MTMOEA could be acceptable.

V. CONCLUSION
This paper proposes a new multiobjective optimization

method via MTO. For this aim, this paper shows the
relationship between MOP and MTOP and how a MOP can be
transformed into a MTOP mathematically and theoretically.
Then, the TPE strategy has been proposed to help automatically
transform the MOP into a MTOP more accurately. Moreover,
this paper further proposes the MTMO framework with the
AIKT strategy to solve the transformed MTOP more efficiently.
In addition, based on the above, the complete algorithm
MTMOEA is finally developed as an example to solve the
MOP as a MTOP. To investigate the proposed MTMOEA,
extensive experiments have been conducted on widely-used
MOPs with 3 to 20 objectives, where some state-of-the-art
MOP algorithms have also been used as competitors. The
experimental results have shown the superior performance of
the proposed MTMOEA. This shows that solving MOP as a
MTOP is a promising direction for tackling MOP efficiently.

For future work, the proposed algorithm will be further
extended to solve more difficult and complex MOPs with
different properties. As the proposed algorithm has some
tunable parameters (e.g., the number of potential points for
approximating PF and the neighborhood size for knowledge
transfer) that although have been investigated in the
experimental part, we could use learning methods (e.g.,
learning-aided methods [71][72] and adaptive methods
[73]-[76]) in the future to configure the parameters more
automatically and adaptively according to the target problem.
Furthermore, as solving the MOP as a MTOP is a generic idea,
further exploration of MTOP algorithms and knowledge
transfer methods is worth studying to solve complex MOPs
more efficiently. Besides, the proposed MTMOEA will be
further studied in distributed evnviroment [77]-[79] and applied
to real-world MOPs. Another very interesting observation is
that we also found that treating MOP as a multimodal
optimization problem is also a promising way to solve MOP via
multimodal optimization algorithm [80]. Therefore, we think
that multiobjective optimization, multitask optimization, and
multimodal optimization are connected with each other, leading
to an interesting research direction of uniform optimization.

REFERENCES
[1] K. C. Tan, L. Feng, and M. Jiang, “Evolutionary transfer optimization-A

new frontier in evolutionary computation research”, IEEE Comput. Intell.
Mag., vol. 16, no. 1, pp. 22-33, Feb. 2021.

[2] Z. H. Zhan, L. Shi, K. C. Tan, and J. Zhang, “A survey on evolutionary
computation for complex continuous optimization,” Artif. Intell. Rev., vol.
55, no. 1, pp. 59–110, Jan. 2022.

[3] J. Y. Li, Z. H. Zhan, and J. Zhang, “Evolutionary computation for
expensive optimization: A survey,” Mach. Intell. Res., vol. 19, no. 1, pp. 3–
23, 2022.

[4] A. Gupta, Y.-S. Ong, and L. Feng, “Multifactorial evolution: Toward
evolutionary multitasking,” IEEE Trans. Evol. Comput., vol. 20, no. 3, pp.
343–357, Jun. 2016.

[5] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[6] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength
Pareto evolutionary algorithm,” Eidgenössische Technische Hochschule
Zürich, Institut für Technische Informatik und Kommunikationsnetze
(TIK), TIK-Rep. 103, 2001.

[7] C. A. Coello Coello and M. S. Lechuga, “MOPSO: A proposal for multiple
objective particle swarm optimization,” in Proc. Congr. Evol. Comput.,
2002, pp. 1051–1056.

[8] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6, pp.
712–731, Dec. 2007.

[9] X. Ma, Y. Yu, X. Li, Y. Qi, and Z. Zhu, “A survey of weight vector
adjustment methods for decomposition-based multiobjective evolutionary
algorithms,” IEEE Trans. Evol. Comput., vol. 24, no. 4, pp. 634–649, 2020.

[10] J. G. Falcón-Cardona and C. A. C. Coello, “Indicator-based
multi-objective evolutionary algorithms: A comprehensive survey,” ACM
Comput. Surv., vol. 53, no. 2, pp. 1–35, 2020.

[11] K. Shang, H. Ishibuchi, L. He, and L. M. Pang, “A survey on the
hypervolume indicator in evolutionary multiobjective optimization,” IEEE
Trans. Evol. Comput., vol. 25, no. 1, pp. 1–20, 2021.

[12] Z. H. Zhan, J. J. Li, J. N. Cao, J. Zhang, H. S.-H. Chung, and Y.-H. Shi,
“Multiple populations for multiple objectives: A coevolutionary technique
for solving multiobjective optimization problems,” IEEE Trans. Cybern.,
vol. 43, no. 2, pp. 445–463, Apr. 2013.

[13] L. Miguel Antonio and C. A. C. Coello, “Coevolutionary multiobjective
evolutionary algorithms: Survey of the state-of-the-art,” IEEE Trans. Evol.
Comput., vol. 22, no. 6, pp. 851–865, 2018.

[14] J. Yi, J. Bai, H. He, J. Peng, and D. Tang, “Ar-MOEA: A novel
preference-based dominance relation for evolutionary multiobjective
optimization,” IEEE Trans. Evol. Comput., vol. 23, no. 5, pp. 788–802,

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3294307

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

2019.
[15] K. Deb and S. Gupta, “Understanding knee points in bicriteria problems

and their implications as preferred solution principles,” Eng. Optim., vol.
43, no. 11, pp. 1175–1204, 2011.

[16] K. Deb and H. Jain, “An evolutionary many-objective optimization
algorithm using reference-point-based nondominated sorting approach,
part I: Solving problems with box constraints,” IEEE Trans. Evol. Comput.,
vol. 18, no. 4, pp. 577–601, Aug. 2014.

[17] K. Li, K. Deb, Q. Zhang, and S. Kwong, “An evolutionary many objective
optimization algorithm based on dominance and decomposition,” IEEE
Trans. Evol. Comput., vol. 19, no. 5, pp. 694–716, Oct. 2015.

[18] K. K. Bali, Y. S. Ong, A. Gupta, and P. S. Tan, “Multifactorial
evolutionary algorithm with online transfer parameter estimation:
MFEA-II,” IEEE Trans. Evol. Comput., vol. 24, no. 1, pp. 69-83, 2020.

[19] L. Feng, L. Zhou, J. Zhong, A. Gupta, Y. S. Ong, K. Tan, and A. K. Qin,
“Evolutionary multitasking via explicit autoencoding,” IEEE Trans.
Cybern., vol. 49, no. 9, pp. 3457–3470, Sept. 2019.

[20] J. Y. Li, Z. H. Zhan, K. C. Tan, and J. Zhang, “A meta-knowledge
transfer-based differential evolution for multitask optimization,” IEEE
Trans. Evol. Comput., vol. 26, no. 4, pp. 719–734, Aug. 2022.

[21] A. Gupta and Y. S. Ong, “Back to the Roots: Multi-X evolutionary
computation,” Cognit. Comput., vol. 11, no. 1, pp. 1–17, 2019.

[22] A. Gupta, L. Zhou, Y. S. Ong, Z. Chen, and Y. Hou, “Half a dozen
real-world applications of evolutionary multitasking, and more,” IEEE
Comput. Intell. Mag., vol. 17, no. 2, pp. 49–66, 2022.

[23] A. Gupta, Y.-S. Ong, L. Feng, and K. C. Tan, “Multiobjective
multifactorial optimization in evolutionary multitasking,” IEEE Trans.
Cybern., vol. 47, no. 7, pp. 1652–1665, Jul. 2017.

[24] K. J. Du, J. Y. Li, H. Wang, and J. Zhang, “Multi-objective multi-criteria
evolutionary algorithm for multi-objective multi-task optimization,”
Complex Intell. Syst., vol. 9, no. 2, pp. 1211–1228, Apr. 2023.

[25] Y. Feng, L. Feng, S. Kwong, and K. C. Tan, “A multivariation
multifactorial evolutionary algorithm for large-scale multiobjective
optimization,” IEEE Trans. Evol. Comput., vol. 26, no. 2, pp. 248–262,
Apr. 2022.

[26] K. Qiao et al., “Dynamic auxiliary task-based evolutionary multitasking
for constrained multi-objective optimization,” IEEE Trans. Evol. Comput.,
2022, DOI: 10.1109/TEVC.2022.3175065.

[27] R. Cheng et al., “A benchmark test suite for evolutionary many-objective
optimization,” Complex Intell. Syst., vol. 3, no. 1, pp. 67–81, 2017.

[28] R. Allmendinger, A. Jaszkiewicz, A. Liefooghe, and C. Tammer, “What if
we increase the number of objectives? Theoretical and empirical
implications for many-objective combinatorial optimization,” Comput.
Oper. Res., vol. 145, no. 105857, pp. 1–17, 2022.

[29] A. Jaszkiewicz, “Many-objective Pareto local search,” Eur. J. Oper. Res.,
vol. 271, no. 3, pp. 1001–1013, Dec. 2018.

[30] M. Aghabeig and A. Jaszkiewicz, “Experimental analysis of design
elements of scalarizing function-based multiobjective evolutionary
algorithms,” Soft Comput., vol. 23, no. 21, pp. 10769–10780, 2019.

[31] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler, “Combining convergence
and diversity in evolutionary multiobjective optimization,” Evol. Comput.,
vol. 10, no. 3, pp. 263–282, Sep. 2002.

[32] S. Yang, M. Li, X. Liu, and J. Zheng, “A grid-based evolutionary
algorithm for many-objective optimization,” IEEE Trans. Evol. Comput.,
vol. 17, no. 5, pp. 721–736, Oct. 2013.

[33] Y. Tian, R. Cheng, X. Zhang, Y. Su, and Y. Jin, “A strengthened
dominance relation considering convergence and diversity for
evolutionary many-objective optimization,” IEEE Trans. Evol. Comput.,
vol. 23, no. 2, pp. 331-345, Apr. 2019.

[34] Q. Zhu, Q. Zhang, and Q. Lin, “A constrained multiobjective evolutionary
algorithm with detect-and-escape strategy,” IEEE Trans. Evol. Comput.,
vol. 24, no. 5, pp. 938–947, Oct. 2020.

[35] H. Chen, G. Wu, W. Pedrycz, P. N. Suganthan, L. Xing, and X. Zhu, “An
adaptive resource allocation strategy for objective space partition based
multiobjective optimization,” IEEE Trans. Syst., Man, Cybern., Syst., 2019,
DOI: 10.1109/TSMC.2019.2898456.

[36] Y. Yuan, H. Xu, B. Wang, B. Zhang, and X. Yao, “Balancing convergence
and diversity in decomposition-based many-objective optimizers,” IEEE
Trans. Evol. Comput., vol. 20, no. 2, pp. 180–198, Apr. 2016.

[37] R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff, “A reference vector guided
evolutionary algorithm for many-objective optimization,” IEEE Trans.
Evol. Comput., vol. 20, no. 5, pp. 773–791, 2016.

[38] H. Ishibuchi, Y. Setoguchi, H. Masuda, and Y. Nojima, “Performance of
decomposition-based many-objective algorithms strongly depends on
Pareto front shapes,” IEEE Trans. Evol. Comput., vol. 21, no. 2, pp. 169–

190, Apr. 2017.
[39] Y. Zhou, Y. Xiang, Z. Chen, J. He, and J. Wang, “A scalar projection and

angle-based evolutionary algorithm for many-objective optimization
problems,” IEEE Trans. Cybern., vol. 49, no. 6, pp. 2073–2084, Jun. 2019.

[40] Y. Sun, G. G. Yen, and Z. Yi, “IGD indicator-based evolutionary
algorithm for many-objective optimization problems,” IEEE Trans. Evol.
Comput., vol. 23, no. 2, pp. 173–187, Apr. 2019.

[41] J. Bader and E. Zitzler, “HypE: An algorithm for fast hypervolume-based
many-objective optimization,” Evol. Comput., vol. 19, no. 1, pp. 45–76,
Mar. 2011.

[42] B. Li, K. Tang, J. Li, and X. Yao, “Stochastic ranking algorithm for
many-objective optimization based on multiple indicators,” IEEE Trans.
Evol. Comput., vol. 20, no. 6, pp. 924–938, Dec. 2016.

[43] Z. G. Chen et al., “Multiobjective cloud workflow scheduling: A multiple
populations ant colony system approach,” IEEE Trans. Cybern., vol. 49, no.
8, pp. 2912–2926, 2019.

[44] X. Zhang, Z.-H. Zhan, W. Fang, P. Qian, and J. Zhang, “Multipopulation
ant colony system with knowledge-based local searches for multiobjective
supply chain configuration,” IEEE Trans. Evol. Comput., vol. 26, no. 3, pp.
512–526, Jun. 2022.

[45] S. C. Liu, Z. G. Chen, Z. H. Zhan, S. W. Jeon, S. Kwong, and J. Zhang,
“Many-objective job-shop scheduling: A multiple populations for multiple
objectives-based genetic algorithm approach,” IEEE Trans. Cybern., vol.
53, no. 3, pp. 1460–1474, Mar. 2023.

[46] S. Z. Zhou, Z. H. Zhan, Z. G. Chen, S. Kwong, and J. Zhang, “A
multi-objective ant colony system algorithm for airline crew rostering
problem with fairness and satisfaction,” IEEE Trans. Intell. Transp. Syst.,
vol. 22, no. 11, pp. 6784–6798, 2020.

[47] J. Y. Li et al., “A multipopulation multiobjective ant colony system
considering travel and prevention costs for vehicle routing in covid-19-like
epidemics,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 12, pp. 25062–
25076, Dec. 2022.

[48] X. F. Liu, Z. H. Zhan, Y. Gao, J. Zhang, S. Kwong, and J. Zhang,
“Coevolutionary particle swarm optimization with bottleneck objective
learning strategy for many-objective optimization,” IEEE Trans. Evol.
Comput., vol. 23, no. 4, pp. 587–602, Aug. 2019.

[49] Q. T. Yang, Z. H. Zhan, S. Kwong, and J. Zhang, “Multiple populations for
multiple objectives framework with bias sorting for many-objective
optimization,” IEEE Trans. Evol. Comput., 2022, DOI:
10.1109/TEVC.2022.3212058.

[50] Q. Lin et al., “Particle swarm optimization with a balanceable fitness
estimation for many-objective optimization problems,” IEEE Trans. Evol.
Comput., vol. 22, no. 1, pp. 32–46, Feb. 2018.

[51] J. L. Matos and A. Britto, “Multi-swarm algorithm based on archiving and
topologies for many-objective optimization,” in Proc. IEEE Congr. Evol.
Comput., 2017, pp. 1877–1884.

[52] X. Zhang, Y. Tian, and Y. Jin, “A knee point-driven evolutionary
algorithm for many-objective optimization,” IEEE Trans. Evol. Comput.,
vol. 19, no. 6, pp. 761–776, Dec. 2015.

[53] G. Yu, Y. Jin, and M. Olhofer, “A multiobjective evolutionary algorithm
for finding knee regions using two localized dominance relationships,”
IEEE Trans. Evol. Comput., vol. 25, no. 1, pp. 145–158, Feb. 2021.

[54] S. C. Liu, Z. H. Zhan, K. C. Tan, and J. Zhang, “A multiobjective
framework for many-objective optimization,” IEEE Trans. Cybern., vol.
52, no. 12, pp. 13654–13668, Dec. 2022.

[55] M. Gao, J. Y. Li, C. H. Chen, Y. Li, J. Zhang, and Z. H. Zhan, “Enhanced
multi-task learning and knowledge graph-based recommender system,”
IEEE Trans. Knowl. Data Eng., 2023,DOI: 10.1109/TKDE.2023.3251897.

[56] J. Y. Li, K. J. Du, Z. H. Zhan, H. Wang, and J. Zhang, “Multi-criteria
differential evolution: Treating multitask optimization as multi-criteria
optimization,” in Proc. Genet. Evol. Comput. Conf., 2021, pp. 183–184.

[57] M. Gong, Z. Tang, H. Li, and J. Zhang, “Evolutionary multitasking with
dynamic resource allocating strategy,” IEEE Trans. Evol. Comput., vol. 23,
no. 5, pp. 858-869, Oct. 2019.

[58] J. Ding, C. Yang, Y. Jin, and T. Chai, “Generalized multi-tasking for
evolutionary optimization of expensive problems,” IEEE Trans. Evol.
Comput., vol. 23, no. 1, pp. 44-58, Feb. 2019.

[59] L. Zhou et al., “Toward adaptive knowledge transfer in multifactorial
evolutionary computation,” IEEE Trans. Cybern., vol. 51, no. 5, pp.
2563-2576, May 2021.

[60] J. Zhong, L. Feng, W. Cai, and Y. S. Ong, “Multifactorial genetic
programming for symbolic regression problems,” IEEE Trans. Syst. Man,
Cybern. Syst., vol. 50, no. 11, pp. 4492-4505, Nov. 2020.

[61] S. H. Wu, Z. H. Zhan, K. C. Tan, and J. Zhang, “Transferable adaptive
differential evolution for many-task optimization,” IEEE Trans. Cybern.,

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3294307

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

14

2023, DOI: 10.1109/TCYB.2023.3234969.
[62] Y. Jiang, Z. H. Zhan, K. C. Tan, and J. Zhang, “A bi-objective knowledge

transfer framework for evolutionary many-task optimization,” IEEE Trans.
Evol. Comput., 2022, DOI: 10.1109/TEVC.2022.3210783.

[63] S. H. Wu, Z. H. Zhan, K. C. Tan, and J. Zhang, “Orthogonal transfer for
multitask optimization,” IEEE Trans. Evol. Comput., vol. 27, no. 1, pp.
185–200, Feb. 2023.

[64] Y. Jiang, Z. H. Zhan, K. C. Tan, and J. Zhang, “Block-level knowledge
transfer for evolutionary multitask optimization,” IEEE Trans. Cybern.,
DOI: 10.1109/TCYB.2023.3273625, 2023.

[65] Y. Tian, R. Cheng, X. Zhang, F. Cheng, and Y. Jin, “An indicator-based
multiobjective evolutionary algorithm with reference point adaptation for
better versatility,” IEEE Trans. Evol. Comput., vol. 22, no. 4, pp. 609–622,
2018.

[66] Y. Tian, R. Cheng, X. Zhang, and Y. Jin, “PlatEMO: A Matlab platform for
evolutionary multi-objective optimization,” IEEE Comput. Intell. Mag.,
vol. 12, no. 4, pp. 73–87, 2017.

[67] K. Deb and M. Goyal, “A combined genetic adaptive search (GeneAS) for
engineering design,” Comput. Sci. Informat., vol. 26, no. 4, pp. 30–45,
1996.

[68] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable test problems
for evolutionary multiobjective optimization,” Evol. Multiobjective Optim.,
pp. 105–145, 2005.

[69] S. Huband, P. Hingston, L. Barone, and L. While, “A review of
multiobjective test problems and a scalable test problem toolkit,” IEEE
Trans. Evol. Comput., vol. 10, no. 5, pp. 477–506, 2006.

[70] I. Das and J. E. Dennis, “Normal-boundary intersection: A new method for
generating the Pareto surface in nonlinear multicriteria optimization
problems,” SIAM J. Optim., vol. 8, no. 3, pp. 631–657, 1998.

[71] Z. H. Zhan, J. Y. Li, S. Kwong, and J. Zhang, “Learning-aided evolution
for optimization,” IEEE Trans. Evol. Comput., 2022, DOI:
10.1109/TEVC.2022.3232776.

[72] A. Gupta, Y. S. Ong, and L. Feng, “Insights on transfer optimization:
Because experience is the best teacher,” IEEE Trans. Emerg. Top. Comput.
Intell., vol. 2, no. 1, pp. 51–64, 2017.

[73] Z. H. Zhan, Z. J. Wang, H. Jin, and J. Zhang, “Adaptive distributed
differential evolution,” IEEE Trans. Cybern., vol. 50, no. 11, pp. 4633–
4647, Nov. 2020.

[74] J. Y. Li, K. J. Du, Z. H. Zhan, H. Wang, and J. Zhang, “Distributed
differential evolution with adaptive resource allocation,” IEEE Trans.
Cybern., vol. 53, no. 5, pp. 2791–2804, May 2023.

[75] S. H. Wu, Z. H. Zhan, and J. Zhang, “SAFE: Scale-adaptive fitness
evaluation method for expensive optimization problems,” IEEE Trans.
Evol. Comput., vol. 25, no. 3, pp. 478–491, 2021.

[76] Y. Q. Wang, J. Y. Li, C. H. Chen, J. Zhang, and Z. H. Zhan, “Scale
adaptive fitness evaluation-based particle swarm optimisation for
hyperparameter and architecture optimisation in neural networks and deep
learning,” CAAI Trans. Intell. Technol., 2022, DOI: 10.1049/cit2.12106.

[77] Z. H. Zhan, et al., “Cloudde: A heterogeneous differential evolution
algorithm and its distributed cloud version,” IEEE Trans. Parallel and
Distributed Systems, vol. 28, no. 3, pp. 704-716, March. 2017.

[78] Y. Guo, J. Y. Li, and Z. H. Zhan, “Efficient hyperparameter optimization
for convolution neural networks in deep learning: A distributed particle
swarm optimization approach,” Cybern. Syst., vol. 52, no. 1, pp. 36–57,
2020.

[79] J. Y. Li, Z. H. Zhan, R. D. Liu, C. Wang, S. Kwong and J. Zhang,
“Generation-level parallelism for evolutionary computation: A
pipeline-based parallel particle swarm optimization,” IEEE Trans. Cybern.,
vol. 51, no. 10, pp. 4848-4859, Oct. 2021.

[80] Z. G. Chen, Z. H. Zhan, and J. Zhang, “Bridge connecting multiobjective
and multimodal: A new approach for multiobjective optimization via
multimodal optimization,” in Proc. IEEE Int. Conf. Information, Cybern.,
and Comput. Social Syst., 2020, pp. 463-468.

Jian-Yu Li (Member, IEEE) received the Bachelor’s
degree and the Ph. D. degree in Computer Science and
Technology from the South China University of
Technology, China, in 2018 and 2022, respectively.

His research interests mainly include computational
intelligence, data-driven optimization, machine learning
including deep learning, and their applications in
real-world problems, and in environments of distributed
computing and big data.

Dr. Li has been invited as a reviewer of the IEEE
Transactions on Evolutionary Computation and the Neurocomputing.

Zhi-Hui Zhan (Senior Member, IEEE) received the
Bachelor’s degree and the Ph. D. degree in Computer
Science from the Sun Yat-Sen University, Guangzhou
China, in 2007 and 2013, respectively.

He is currently the Changjiang Scholar Young
Professor with the School of Computer Science and
Engineering, South China University of Technology,
Guangzhou, China. His current research interests
include evolutionary computation, swarm intelligence,

and their applications in real-world problems and in environments of cloud
computing and big data.

Dr. Zhan was a recipient of the IEEE Computational Intelligence Society
(CIS) Outstanding Early Career Award in 2021, the Outstanding Youth Science
Foundation from National Natural Science Foundations of China (NSFC) in
2018, and the Wu Wen-Jun Artificial Intelligence Excellent Youth from the
Chinese Association for Artificial Intelligence in 2017. He is one of the
World’s Top 2% Scientists for both Career-Long Impact and Year Impact in
Artificial Intelligence and one of the Highly Cited Chinese Researchers in
Computer Science. He is currently the Chair of Membership Development
Committee in IEEE Guangzhou Section and the Vice-Chair of IEEE CIS
Guangzhou Chapter. He is currently an Associate Editor of the IEEE
Transactions on Evolutionary Computation, the IEEE Transactions on Systems,
Man, and Cybernetics: Systems, the Neurocomputing, the Memetic Computing,
and the Machine Intelligence Research.

Yun Li (Fellow, IEEE) received the B.S. degree from
Sichuan University, Chengdu, China, in 1984, the M.E.
degree from University of Electronic Science and
Technology of China (UESTC), Chengdu, China, in
1987, and the Ph.D. degree from University of
Strathclyde, Glasgow, U.K., in 1990.

In 1989, he was an Intelligent Control Engineer
with the U.K. National Engineering Laboratory,
Glasgow. In 1990, he was a Postdoctoral Research
Engineer with Industrial Systems and Control Ltd,

Glasgow. From 1991 to 2018, he was an Intelligent Systems Lecturer, Senior
Lecturer, and Professor with University of Glasgow, Scotland, and served as
Founding Director of University of Glasgow Singapore, Singapore. He later
served as the Founding Director of Dongguan Industry 4.0 Artificial
Intelligence Laboratory, Dongguan, China, and of i4AI Ltd, London, U.K. He
is currently a Changjiang Chair Professor at Shenzhen Institute for Advanced
Study, UESTC.

Prof. Li is interested in the next generation, explainable artificial
intelligence (AI) and has supervised over 30 PhD students focusing on
computational AI and its engineering/industrial applications since 1991. He is a
U.K. Chartered Engineer and is currently an Associate Editor of IEEE
Transactions on Emerging Topics in Computational Intelligence. He has
published 300 papers, and one of them since publication in the IEEE
Transactions on Control System Technology in 2005 has been its most popular
article almost every month.

Jun Zhang (Fellow, IEEE) obtained his PhD degree in
Electrical Engineering from the City University of Hong
Kong in 2002.

He is a professor with the School of Electrical and
Engineering, Hanyang University ERICA, Ansan 15588,
South Korea, and He holds a Distinguished
Professorship in Nankai University. Prof. Zhang’s
research contributions span over 300 peer-reviewed
publications, of which more than 180 appear in IEEE
Transactions. His research interests include
Computational Intelligence, cloud computing, Big data

mining, and Power Electronic Circuits.
Professor Zhang was a recipient of the China National Funds for

Distinguished Young Scientists from the National Natural Science Foundation
of China in 2011 and was appointed as a Cheung Kong Chair Professor in 2013
by the Ministry of Education, China. Presently, Prof. Zhang serves as an
associate editor for both the IEEE Transactions on Artificial Intelligence and
the IEEE Transactions on Cybernetics.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3294307

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

