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 Abstract—Handling conflicting objectives and finding multiple 
Pareto optimal solutions are two challenging issues in solving 
multiobjective optimization problems (MOPs). Inspired by the 
efficiency of multitask optimization (MTO) in finding multiple 
optimal solutions of multitask optimization problem (MTOP), we 
propose to treat MOP as a MTOP and solve it by using MTO. By 
transforming the MOP into a MTOP, not only that the difficulty 
in handling conflicting objectives can be avoided, but also that 
MTO can help efficiently find well-distributed multiple optimal 
solutions for MOP. With the above idea, this paper proposes a 
new multiobjective optimization method via MTO, with the 
following three contributions. Firstly, a theorem is proposed to 
theoretically show the relationship between MOP and MTOP and 
how MOP can be transformed into a MTOP. Secondly, based on 
the theoretical analysis, a multiple tasks for multiple objectives 
(MTMO) framework is proposed for solving MOP efficiently. 
Thirdly, a MTMO-based evolutionary algorithm is developed to 
solve MOP, together with two novel strategies. One is a target 
point estimation strategy for transforming the MOP into a MTOP 
automatically and accurately. The other is an archive-based 
implicit knowledge transfer strategy for efficiently transferring 
knowledge across multiple tasks to enhance the optimization 
results of multiple tasks together. The superiority of the proposed 
algorithm is validated in extensive experiments on 15 MOPs with 
objective numbers varying from 3 to 20 and with six 
state-of-the-art algorithms as competitors. Therefore, solving 
MOP and even many-objective optimization problem via MTO is 
a new, promising, and efficient method. 
 

Index Terms—Multiobjective optimization problem, multitask 
optimization problem, evolutionary computation, multiple tasks 
for multiple objectives, knowledge transfer, transforming 
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I. INTRODUCTION 
ultiobjective optimization problem (MOP) and multitask 
optimization problem (MTOP) are both foundational and 

significant optimization problems that widely exist in various 
real-world applications, which have attracted great attention in 
the evolutionary computation (EC) community [1]-[4]. 
Generally speaking, the MOP refers to the optimization 
problem with more than one objective to be optimized. 
Moreover, in the MOP, no solution can be better than all other 
solutions on all the objectives at the same time. Therefore, the 
MOP requires the EC algorithm to find a set of Pareto optimal 
solutions, i.e., the solutions that are better than other solutions 
on at least one objective. Differently, the MTOP refers to the 
optimization problem with multiple optimization tasks to be 
optimized together. That is, the MTOP requires the EC 
algorithm to find a set of solutions that consists of the optimal 
solutions that are corresponding to all the tasks. Note that the 
MOP with a large number of objectives (e.g., larger than three) 
and the MTOP with a large number of tasks are often called 
many-objective optimization problem (MaOP) and many-task 
optimization problem (MaTOP), respectively, which 
emphasizes that the complexity and difficulties of the problems 
are mainly due to the large number of objectives or tasks. As 
MaOP and MaTOP are kinds of more complex MOP and 
MTOP, respectively, the MaOP and MaTOP are also referred 
as MOP and MTOP in the following contents for clarity, 
respectively. 

As both MOP and MTOP are very significant in real-world 
applications, EC algorithms for these two types of problems 
have attracted increasing attention and have led to two 
fast-growing research branches. So far, the researches on MOP 
and MTOP are still relatively independent and have different 
focuses. In general, the research on MOP focuses on how to 
generate, select, and evolve a set of solutions to approach the 
Pareto front, i.e., finding the optimal non-dominated solutions. 
Existing work for MOP can be roughly classified into six 
categories, which are dominance-based methods [5]-[7], 
decomposition-based methods [8][9], indicator-based methods 
[10][11], multiple populations coevolution-based methods 
[12][13], preference information-based methods [14][15], and 
other methods [16][17]. While for MTOP, the researchers focus 
on how to obtain and transfer knowledge among multiple tasks 
during the evolutionary search for enhancing the optimization 
of all tasks. Existing approaches for MTOP can be mainly 
categorized into two categories, i.e., the implicit knowledge 

Multiple Tasks for Multiple Objectives: A New 
Multiobjective Optimization Method via Multitask 

Optimization 
Jian-Yu Li, Member, IEEE, Zhi-Hui Zhan, Senior Member, IEEE, Yun Li, Fellow, IEEE, 

Jun Zhang, Fellow, IEEE 

M

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3294307

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

2 

transfer-based approaches [18] and the explicit knowledge 
transfer-based approaches [19][20]. Note that in recent years, 
the multiobjective MTOP has also attracted the research 
interest of both the MOP and MTOP research communities 
[21]-[24], because this kind of problem generally contains both 
the multiobjective and multitask characteristics. 

Interestingly, both MOP and MTOP are in fact multiple 
solutions optimization problems. That is, both MOP and MTOP 
have multiple solutions that are equally important, and all of 
these solutions can be regarded as the optimal solutions to the 
problem. To better illustrate this, Fig. 1 gives an example to 
show the relationship of the multiple global optimal solutions in 
MOP and MTOP. Fig. 1(a) shows some solutions for a 
minimization MOP, where the solutions A, B, and C are the 
Pareto optimal solutions, because they are not dominated by 
any other solutions. Fig. 1(c) shows the K optimal solutions of 
K different minimization tasks in a MTOP, respectively, where 
the fitness function of the kth task is denoted as gk. Moreover, 
between Fig. 1(a) and Fig. 1(c), Fig. 1(b) illustrates that a MOP 
can be transformed into a MTOP with multiple single-objective 
optimization tasks, so that each Pareto optimal solution in the 
MOP can be regarded as the global optimal solution of a 
corresponding task in the transformed MTOP. To be specific, in 
Fig. 1(b), given the two objective functions of the MOP as f1 
and f2, each solution in the MOP has two objective values. Then, 
the objective value of these solutions can: first, be mapped by 
the G1=φ1(f1, f2), so that the Pareto solution A is the optimal 
solution of G1, where G1 can be regarded as the fitness function 
of the first task in the MTOP (i.e., g1); second, be mapped by 
the G2=φ2( f1, f2), so that the Pareto solution B is the optimal 
solution of G2, where G2 can be regarded as the fitness function 
of the second task in the MTOP (i.e., g2); and so on. By doing so, 
finding a set of Pareto optimal solutions for the MOP is 
equivalent to finding a set of optimal solutions that correspond 
to different tasks in the MTOP. 

In this sense, it is interesting that the MOP and MTOP share 
something in common and have meaningful relationships. That 

is, as both the MOP and MTOP aim to find multiple optimal 
solutions, the EC algorithms and knowledge transfer methods 
for MTOP may be also useful for finding the Pareto optimal 
solutions for MOP. This interesting feature has attracted some 
attention in the EC community and has been discussed in some 
recent work [21], [22]. However, we could only find a few 
studies that attempt to connect the MOP with the MTOP. For 
example, when solving a complex MOP, Gupta et al. [23] 
proposed to add a relatively simpler MOP transformed from the 
original MOP, so as to form two tasks (both are MOPs) and use 
the MTOP algorithms to solve the MTOP with two MOP tasks. 
When solving a high-dimensional MOP, Feng et al. [25] 
proposed to transform the original MOP into several simplified 
smaller-scale MOPs, so that the additional simplified MOPs 
can assist the optimization of the original large-scale MOP. 
Qiao et al. [26] created an additional MOP with relaxed 
constraints, so as to help solve the original constrained MOP. 
However, these approaches mainly extend the MOP to a 
multiobjective MTOP by simplifying the original complex 
MOP into multiple simpler MOP tasks, which is different from 
the focus of this paper, i.e., solving the MOP more effectively 
by treating the whole MOP as a MTOP. 

Although some works mentioned above have attempted to 
connect the MOP with MTOP, to the best of our knowledge, 
there is still no work on the research topic to solve the MOP by 
treating the MOP itself as a MTOP. Treating the MOP (with 
multiple conflicting objectives) as a MTOP (with multiple 
relevant tasks) has two advantages. First, the difficulty in 
handling conflicting objectives can be avoided because the 
MTOP does not have conflicting objectives. Second, as 
efficient tools for finding multiple optimal solutions 
simultaneously, multitask optimization (MTO) methods, such 
as knowledge transfer methods across tasks, can be used to find 
multiple optimal solutions for MOP more efficiently. Therefore, 
this is a new emerging research topic in the EC community. To 
fill this gap, this paper makes the first attempt to transform the 
MOP as a MTOP, so as to solve the MOP more efficiently. In 
this paper, we prove a theorem showing the relationship 
between MOP and MTOP and how a MOP can be transformed 
into a MTOP theoretically. Based on the theoretical analysis, a 
multiple tasks for multiple objectives (MTMO) framework is 
proposed to solve MOP via MTO. Moreover, this paper 
develops a MTMO-based evolutionary algorithm (MTMOEA) 
with two novel strategies to solve the MOP more efficiently. 
One is a target point estimation (TPE) strategy to help 
transform the MOP into a MTOP more accurately and 
automatically. The other is an archive-based implicit 
knowledge transfer (AIKT) strategy to transfer knowledge 
across different tasks. Therefore, this paper is the first to 
propose a new research topic with a novel idea of solving MOP 
by a new method via MTO. The main contributions of this 
paper are summarized as the following three aspects: 

Firstly, in solid theory, this paper is the first to propose a 
theorem about optimization equivalence between MOP and 
MTOP and how a MOP can be transformed into a MTOP 
mathematically, based on which MOP can be solved via MTO. 

Secondly, in generic framework, this paper proposes the 
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Fig. 1. Illustration of relationship of multiple global optimal solutions in 
minimization MOP and MTOP, where A, B, and C are the Pareto optimal 
solutions of the MOP. 
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MTMO framework that is suitable for solving MOP via MTO, 
which is also generic that can be cooperated with different 
kinds of EC algorithms. 

Thirdly, in efficient algorithm design, this paper proposes the 
efficient MTMOEA based on the MTMO framework to solve 
the MOP efficiently. 

To investigate the proposed MTMOEA, extensive 
experiments are conducted on all the 15 problems in the MaF 
benchmark suite [27], i.e., MaF1 to MaF15, which have been 
used as the benchmark problems for IEEE CEC competition in 
recent years. For more comprehensive studies, all the 15 MaF 
problems are with the objective number as 3, 5, 10, and 20, i.e., 
15×4=60 problems in total, so as to fully investigate the 
proposed MTMOEA. 

The rest contents are organized as follows: Section II briefly 
introduces the background of MOP and MTOP and their related 
work, while Section III describes the relationship between 
MOP and MTOP, and details the proposed MTMOEA. Section 
VI provides the experimental settings, metrics, comparisons, 
and analyses. In the end, Section V is the conclusion. 

II. BACKGROUND AND RELATED WORK 

A. Multiobjective Optimization Problem 
Given a search space Ω, a minimization MOP can be 

formulated as follows: 
 1 2Minimize  ( ) [ ( ), ( ),..., ( )]MF x f x f x f x=   (1) 

where F consists of M objective functions f1, f2, …, and fM, and 
maps decision variables x∈Ω to the objective space ΨM, i.e., F: 
Ω→ΨM. Based on Eq.(1), four essential concepts about MOP 
can be defined as follows. 

Definition 1: Pareto domination. Given any two vectors 
u=[u1, u2, …, uM] and w=[ w1, w2, …, wM] in the objective space, 
we say that u dominates w if um≤wm for all m=1, 2, …, M and 
u≠w, denoted as u≺w. 

Definition 2: Pareto optimal. A solution vector x∈Ω is 
Pareto optimal if there is no x*∈Ω such that F(x*) dominates 
F(x). 

Definition 3: Pareto set. The Pareto set (PS) is a set of the 
Pareto optimal solutions, which can be represented as 

 {  and  is Pareto optimal}PS x x= ∈ Ω   (2) 
Definition 4: Pareto front. The Pareto front (PF) is regarded 
as the image of the Pareto solutions in the objective space 
[28]-[30], which can be represented as 

 { ( ) }PF F x x PS= ∈   (3) 

B. Multitask Optimization Problem 
As this paper proposes to transform the MOP into a MTOP, 

the definition of MTOP is given herein. Generally speaking, a 
MTOP can be formulated as follows. Given K optimization 
tasks (without loss of generality assuming they are all 
minimization problems), denoted as T1, T2, …, TK, where the 
corresponding objective function of the task Tk is gk, the MTOP 
requires the algorithm to find the optimal solution xk for each 
task Tk such that 

 arg min ( ),  1,2,...,k kx g x k K= =   (4) 
where x1, x2, …, and xK can belong to the same or different 

search spaces. 

C. Related Work on MOP 
To date, there have been many studies about multiobjective 

optimization evolutionary algorithms (MOEAs), which can be 
roughly classified into six categories, as briefly reviewed in the 
following contents. 

The first category is based on dominance. In this category, 
the Pareto dominance-based methods are representative, which 
select individuals based on the Pareto dominance relationship. 
For example, nondominated sorting genetic algorithm II 
(NSGA-II) [5] and the improved strength Pareto EA [6] are two 
representative Pareto dominance-based evolutionary 
algorithms. As a representative dominance-based swarm 
intelligence algorithm, multiobjective particle swarm 
optimization (PSO) determines the learning direction of 
particles based on Pareto dominance [7]. Moreover, Yang et al. 
[32] proposed the grid-based evolutionary algorithm (GrEA), 
which introduced the grid dominance to enhance the selection 
toward the optimal direction. Tian et al. [33] proposed a 
modified NSGA-II with a strengthened dominance relation 
(NSGA-II-SDR) to balance the convergence and diversity. 

The second category is the decomposition-based approach. 
The main idea of this category is to decompose the MOP into 
several subproblems according to a set of weight vectors, and 
then the population continuously evolves toward the PF by 
solving each subproblem. Since the decomposition-based 
MOEA (MOEA/D) proposed by Zhang and Li [8] in 2007, 
many decomposition-based algorithms have been studied. For 
example, Zhu et al. [34] proposed a MOEA/D algorithm with a 
detect and escape method that can escape from optimization 
stagnation. Chen et al. [35] proposed a novel metric to measure 
the subspace contribution to the population convergence and 
allocate resources accordingly. Moreover, MOEA/D variants 
have also been proposed to solve MaOPs. For example, Yuan et 
al. [36] calculated the vertical distance between the individual 
and weight vector to maintain the diversity of solutions in the 
high objective space, so as to balance the convergence and 
diversity. Also to balance population convergence and diversity, 
Cheng et al. [37] proposed a reference vector-guided 
evolutionary algorithm (RVEA) that used angle-penalized 
distance based on reference vectors. Although experimental 
results have shown the efficiency of decomposition-based 
algorithms, it has also been shown that the setting of weight 
vectors can be significant to the algorithm performance, and 
MOPs with different objectives may need different weight 
vectors [38]. 

The third category is based on indicators. The methods of 
this category evaluate and select individuals based on some 
performance preference indicators. For instance, the inverted 
generalized distance (IGD) [10] and hypervolume (HV) [11] 
indicators, which are widely-used indicators for the 
investigation of MOEAs, were adopted in [40] and [41] to 
guide the evolution, respectively. Note that the G in IGD should 
represent “generalized”, which means a more generalized 
distance between two sets. Moreover, different strategies have 
also been studied with performance preference indicators for 
better individual selection and population evolution, such as the 
stochastic ranking strategy [42]. 

The fourth category is based on multiple populations and 
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coevolutionary methods. Zhan et al. [12] the first time proposed 
multiple populations for multiple objectives (MPMO) 
framework, where each population aims at one objective and all 
the populations coevolve to find the Pareto solutions. Due to the 
efficiency of MPMO, the MPMO framework has been 
extended to various real-world applications and obtained 
positive results, e.g., cloud workflow scheduling [43], supply 
chain configuration [44], job-shop scheduling [45], airline crew 
rostering optimization [46], and transportation optimization 
[47]. Moreover, based on the MPMO, Liu et al. [48] and Yang 
et al. [49] proposed enhanced algorithms for efficiently solving 
MaOP. Following the MPMO variants, other multiple 
population and coevolution methods have also been studied 
[13], such as the many-objective PSO based on coevolution [50] 
and the multiswarm-based algorithm [51].  

The fifth category is based on preference information. For 
example, Yi et al. [14] studied preference angle and reference 
information-based dominance for selecting individuals, which 
can help guide the evolution. Moreover, the knee point is 
typical and widely-used preference information in this category, 
which can accelerate convergence and maintain diversity [15]. 
Therefore, many researchers studied how to use the knee point 
to solve MOP. For example, Zhang et al. [52] proposed a knee 
point-driven EA (KnEA) that utilized the knee point to guide 
the selection process to cover the shortage of Pareto dominance. 
Yu et al. [53] combined the α-dominance and knee-oriented 
dominance relationship to further identify the knee regions. 

The sixth category refers to other methods that do not belong 
to the above categories. In this category, many pieces of 
research are about hybrid algorithms that mix more than one 
method in the above five categories. For example, NSGA-III 
[16] is proposed by integrating the NSGA-II with a reference 
points-based method. Besides, some novel methods have also 
been studied to solve MOP. Feng et al. [25] extended the 
original MOP to multiobjective MTOP by constructing several 
simplified MOP variants, so as to reduce dimension difficulties 
and utilize the knowledge transfer to solve the original MOP 
more easily. Liu et al. [54] put forward a novel multiobjective 
framework for many-objective optimization (Mo4Ma) 
framework, so as to maintain good diversity and convergence 
in high-dimensional objective space.  

Although the methods and algorithms in the above categories 
have attempted to solve MOP in different ways, they do not 
solve the MOP as a MTOP. Differently, this paper fully 
recognizes the relationship between MOP and MTOP and 
proposes to solve the MOP as a MTOP, where the knowledge 
transfer methods for solving MTOP can be utilized to enhance 
the overall optimization results. The proposed MTMOEA, as a 
kind of new method for solving MOP by using MTO, is 
different from existing MOEA methods such as the 
decomposition-based methods. First, in problem 
transformation, although both MTMOEA and MOEA/D will 
transform the MOP into multiple tasks or subproblems to obtain 
multiple Pareto optimal solutions, their transformation 
mechanisms are different. Specifically, the proposed 
MTMOEA uses dynamic target points on an approximated PF 
rather than fixed weights in the decomposition method for 
problem transformation. That is, our method can transform a 
MOP into a MTOP automatically and accurately. Therefore, 
our method is more general and the decomposition can be 

essentially regarded as a special case. As a result, MTMOEA 
can yield the adaptive ability to obtain more promising 
performance when compared with MOEA/D. Second, in the 
optimization mechanism, the proposed MTMOEA focuses 
more on the task relationship and knowledge transfer among 
relevant tasks to obtain better optimization results. This is due 
to that knowledge transfer is an essential component in MTO 
for enhancing the optimization results of multiple tasks, which 
is also a important feature and research issue in MTO. For 
example, in the MTMOEA, the AIKT is proposed to implicitly 
transfer knowledge among individuals in relevant tasks. 
Therefore, the AIKT can help to generate better offspring for 
multiple tasks, which can enhance the overall optimization 
efficiency. Based on the above, the MTMOEA (and the 
paradigm of solving MOP via MTO) can help to extend the 
research scope of MOEA on both the problem transformation 
and optimization mechanism, which is also a new method and 
new paradigm for solving MOP. 

D. Related Work on MTOP 
Although MTOP is an emerging research topic, it has 

obtained fast development in recent years [55]-[58]. Existing 
works for MTOP can be roughly classified into two categories: 
implicit knowledge transfer-based approach and explicit 
knowledge transfer-based approach. 

In the implicit knowledge transfer-based approach, 
knowledge transfer is achieved implicitly via evolutionary 
operators with the individuals for different tasks. In this 
category, the MFEA [4] and its variants are representative 
algorithms. The MFEA employs a single population in a 
unified search space, where each individual in the population 
targets one of the multiple tasks based on its skill factor (e.g., its 
fitness for each task). Then, knowledge transfer can be 
achieved implicitly via crossover operations with individuals 
for different tasks. Due to the efficiency of the basic MFEA 
framework, many variants have been studied and proposed 
based on this framework. For example, Bali et al. [18] studied 
the online transfer parameter estimation and proposed 
MFEA-II. Gong et al. [57] studied the dynamic resource 
allocation strategy for enhancing the MFEA. Ding et al. [58] 
proposed a generalized MFEA with a decision variable 
translation and shuffling strategies. Zhou et al. [59] studied the 
adaptive knowledge transfer for MFEA and obtained promising 
results. Besides, more implicit knowledge transfer methods 
have also been researched based on the evolutionary operators 
in different EC algorithms, such as genetic programming [60]. 

Differently, the second category focuses on explicit 
knowledge transfer between multiple populations or swarms 
for different tasks. Feng et al. [19] proposed an 
autoencoding-based explicit genetic transfer, so as to transfer 
knowledge between populations aiming at different tasks. Lin 
et al. [24] explored a more positive transfer by transferring 
valuable solutions and proposed an algorithm for 
multiobjective MTOPs. Different from the task-specific 
knowledge transfer mentioned above, Li et al. [20] further 
proposed a novel meta-knowledge transfer method to transfer 
the meta-knowledge among populations for different tasks. Wu 
et al. [61] considered the shift invariance between tasks and 
proposed a successful solution transfer method to transfer the 
suitable parameters between similar tasks. Jiang et al. [62] 
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proposed to transfer both the shape knowledge and domain 
knowledge between similar tasks to solve MaTOP. In addition, 
Wu et al. [63] proposed an orthogonal transfer method to 
handle the heterogeneous search spaces and dimension 
similarities to achieve high-quality transfer. In addition, Jiang 
et al. [64] also proposed a block-level knowledge transfer to 
enhance the knowledge transfer between dimensions of the 
same or different tasks. 

III. THE PROPOSED MTMOEA 

A. Treating Multiobjective Optimization Problem as Multitask 
Optimization 

To begin with, the theorem about “Optimization Equivalence 
between MOP and MTOP” (i.e., Theorem 1) is put forward to 
show the relationship between MOP and MTOP. 

Theorem 1: If a MOP needs to find K target points on the PF, 
then the MOP can be regarded as a MTOP with K 
single-objective optimization tasks. 

Proof: Without loss of generality, we denote the K target 
points on the PF (i.e., in the objective space) that need for a 
MOP as Z1, Z2, …, and ZK. Then, the optimization goal of the 
MOP is to find K solutions x1, x2, …, and xK, such that:  
 ( )argmin ( ( ), ) ,  1,2,...,k kx d F x k K= =Z  (5) 
where F(x) is the objective vector of x as defined in Eq.(1), and 
d(a, b) measures the distance between vector points a and b. By 
defining gk(x|Zk)= d(F(x), Zk), the Eq.(5) can be rewritten as: 

 argmin ( ),  1,2,...,k k kx g x k K= =Z  (6) 
Compared with Eq.(4), i.e., the problem formulation of MTOP, 
we can see that Eq.(6) is actually a form of MTOP with K 
single-objective optimization tasks, where gk(x|Zk) is the fitness 
function of the kth task. Therefore, the proof is finished. 

According to Theorem 1, we can treat the MOP as a MTOP 
when assuming that the MOP just needs to find K target points 
on the PF (K is a positive and finite number). In fact, this 
assumption can be supported in practical applications due to 
two reasons. First, when solving real-world MOPs, as the 
number of Pareto optimal solutions can be very large and 
increase rapidly as the number of objectives increases, finding a 
sufficient number (rather than all) of Pareto optimal solutions is 
a more realistic and possible way for solving the MOP, where 
each Pareto optimal solution corresponds to a point on the PF 
(as defined in Definition 4). Second, the final output of 
algorithms, such as many existing MOP algorithms [9]-[12], is 
always only a subset of Pareto optimal solutions, i.e., only some 
points on (or close to) the PF, because the available 
computational budgets, memory, and storage are not infinite 
but are often expensive and limited. Therefore, it is rational and 
acceptable to treat the MOP as MTOP, so as to get enough 
Pareto optimal solutions as the final results for the 
corresponding MOP. In addition, as solving MOP as a MTOP 
with K tasks just need to find K (rather than all) Pareto optimal 
solutions, the problem complexity reduces as K decreases, 
which is a great advantage. Based on the above, treating MOP 
as MTOP is a potential direction for solving MOP. 

When transforming the MOP into a MTOP via Eq.(6), 
various distance measurements can be used to calculate the 
function d(F(x), Zk)), so as to build up the fitness function of 

each task (i.e., the gk(x|Zk)). Without loss of generality, this 
paper uses the Euclidian distance, a widely-used distance 
metric, to compute d(F(x), Zk)) in the implementation. That is, 
the fitness function in Eq.(6) can be rewritten as: 

 
( ) ( )( )

( )
| ,k k k

k

g x d F x

F x=

=

−

Z Z

Z
 (7) 

where ||a|| will return the Euclidian norm of a. Note that besides 
the Euclidian distance, other distance measurements can be also 
used and may have different advantages for different MOPs 
[30]. However, as the focus of this paper is not on the influence 
of different distance measurements, the simple Euclidian 
distance is used herein while the investigations of others can be 
potential as future work. 

In addition, as the real PF is unknown prior, if we want to 
solve the MOP as a MTOP formulated as Eq.(6), the target 
points Z1, Z2, …, and ZK need to be estimated. That is, the 
target point of each task in the transformed MTOP should be 
estimated. Therefore, this paper proposes the TPE strategy to 
estimate the target points to help transform the MOP into the 
MTOP more accurately, which is described in Section III-C. 

B. Multiple Tasks for Multiple Objectives Framework 
To solve the MOP as a MTOP efficiently, this paper 

proposes the MTMO framework. The general flowchart of the 
MTMO is shown in Fig. 2. In the MTMO, the multiple tasks 
(e.g., K tasks) of a MTOP are generated based on Eq.(7) and 
can be updated in every generation. For solving the MTOP with 
K tasks, the MTMO evolves a population with N individuals. 
Note that N should not be less than K (i.e., N ≥ K), so that there 
can be at least one individual corresponding for each task. 
During the evolution, three procedures in the MTMO are 
conducted iteratively until the stop criterion is met, where the 
three procedures are: offspring generation, task update, and 
selection. The offspring generation procedure generates 
offspring (i.e., new individuals) via evolutionary operators, and 
then evaluates the objective value of the new individuals. Based 
on the objective value and the target points, the fitness of 
individuals for different tasks (called task fitness) can be 
calculated according to Eq. (7), which does not need additional 
fitness evaluations. To solve MOP as a MTOP more efficiently, 
this paper proposes the AIKT strategy to generate new 

Start

Initialization

Transform the MOP into a MTOP

Offspring generation

Task update

Selection

Stop?

End

No

Yes

 
Fig. 2. The flowchart of the MTMO framework.  
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individuals via knowledge transfer, which will be detailed in 
Section III-D. Based on the information of the individuals in the 
current population, the task update procedure updates the 
fitness function of all tasks, i.e., updates the estimated target 
points Zk (1≤k≤K) in Eq. (7). Herein, as mentioned before, this 
paper proposes the TPE strategy for the task update procedure 
to help more accurately update the tasks, which will be detailed 
in Section III-C. Then, according to the updated fitness 
functions of all tasks, the selection procedure selects N better 
individuals to form the new population. The new population 
will enter the loop to continue the evolution if the stop criterion 
is not met. Otherwise, the algorithm outputs the best-found 
solutions and finishes. 

C. Target Point Estimation 
The TPE is proposed to estimate the target points for 

transforming a MOP into a MTOP automatically and efficiently. 
To estimate the target points that are distributed on the PF 
evenly, the TPE has two main steps: 1) to approximate the PF, 
and 2) to obtain some points (e.g., K points) on the 
approximated PF evenly as the estimated target points. 

The pseudo code of TPE is shown in Algorithm 1, where 
line 2 to line 7 and line 8 to line 9 are for approximating the PF 
and for computing estimated target points, respectively. Note 
that when approximating the PF, as the PF may consist of an 
infinite number of points, L potential points are used to 
represent the approximated PF. 

To begin with, the inputs of the Algorithm 1 are L original 
potential points that are uniformly pre-sampled in [0, 1]M, 
where M is the number of objectives, i.e., the dimension of the 
objective space. Then, to approximate the shape of PF, the 
non-dominated solutions are obtained from the current 
population and stored in a set, denoted as Λ. With the 
non-dominated solutions in Λ, each of the L original potential 
points (e.g., Qi) will be scaled in the objective space as: 

 i
i i

i

rλ= ⋅ ⋅
QQ
Q

 (8) 

where λ is the scale factor that controls the distance between the 
approximated PF and the front shaped by non-dominated 
solutions in the current population, and the ri is the scale value 
of ith potential point, which is computed as 

 
*( ) T
i i

i
i

F qr ⋅
=

Q
Q

 (9) 

where q* 
i  is the point that has the smallest vertical distance to 

the Qi in the objective space. The q* 
i  with the smallest vertical 

distance to the Qi can be written as: 

 ( )1/22* 2
,argmin ( ) ( ( ) cos )

j
i j j i j

q
q F q F q θ

∈Λ
= − ⋅  (10) 

where θi,j is the angle between vector Qi and F(qj) in the 
objective space. As sin2θi,j + cos2θi,j =1, the Eq.(10) can also be 
rewritten as 

 ( )*
,arg min ( ) sin

j
i j i j

q
q F q θ

∈Λ
= ⋅  (11) 

To provide a clearer demonstration, Fig. 3 shows the 
relationship between the variables in TPE, where q* 

i  is the 
non-dominated solution with the smallest vertical distance to Qi 
in objective space, and ri is the scale value for Qi as calculated 
by Eq.(9). Note that the approximating strategy in the Eq.(9) 
and Eq.(11) is different from some existing PF approximating 
strategies in two aspects. First, the key points for approximating 
PF are calculated via different formulas. For example, the Eq.(8) 
is with a scaled factor λ while existing work is not [16], [65]. 
Second, the aim of the PF approximating strategy is different. 
In particular, the approximation strategy of this paper is used as 
the first step in the proposed TPE to help better estimate the 
target points for constructing the transformed MTOP, while 
those in existing work are not designed for constructing a 
MTOP. 

Based on the PF represented by L scaled potential points (i.e., 

Algorithm 1: Target Point Estimation 
Input:      Q1, Q2, …, QL - the L potential points; 

Λ - the set of found non-dominated solutions; 
F - consists of M objective functions; 
λ - the scale factor for estimating PF; 

Output:  Z1, Z2, …, ZK - the K estimated target points. 
1: Begin 
2:     // to approximate the PF with potential points 
3:     For i=1 to L Do // for each Qi 
4:         qi ← the point with smallest vertical distance in Λ;//see Eq. (11)
5:         ri ← the scale value of Qi based on F(qi);// see Eq.(9) 
6:         Qi ← adjust Qi with λ, ri, and ||Qi||; // see Eq.(8) 
7:      End For 
8:      // to obtain estimated target points based on potential points 
9:      Z1, Z2, …, ZK ← the K cluster centroids of Q1, Q2, …, QL; 
10: End 

 

f2

f1

F(q*
i)

Smallest 
vertical 
distance

θi

Potential point Qi

Non-dominated solution

Not 
smallest 

Not 
smallest 

 
Fig. 3. The relationship among the variables in TPE.  

Algorithm 2: Archive-based Implicit Knowledge Transfer 
Input:      Pg - the population at generation g; 
                arch - the archive; 

N - the population size; 
T - the neighborhood size for knowledge transfer; 

Output:  Offspring - the generated offspring; 
1:Begin 
2:      Offspring ← empty set; 
3:      For i=1 to N Do 
4:           Index ← the index set of T individuals nearest to Pg,i in arch; 
5:           j ← a random index in Index; 
6:          // generate a new offspring via evolutionary operator 
7:          x ← perform evolutionary operator with Pg,i and archj;  
8:          Offspring ←Offspring∪{ x }; 
9:      End For 

10: End 
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Q1, Q2, …, QL), TPE obtains K points as the estimated target 
points. To obtain target points more evenly, the clustering 
technique is adopted herein. To be specific, this paper uses the 
K-means algorithm to cluster the L potential points into K 
groups, where the K centroids of the K groups are regarded as 
the K estimated targeted points, respectively. That is, the 
estimated targeted points can be obtained as: 

 { } { }1 2 1 2, ,..., Kmeans( , ,..., , )K L K=Z Z Z Q Q Q  (12) 
where Kmeans({Q1, Q2, …, QL},K) outputs the K centroids of 
the L potential points Q1, Q2, …, QL. That is, the Z1, Z2, …, and 
ZK in Eq.(12) are the K estimated target points of the TPE. Note 
that the TPE is an automatic method for transforming a MOP 
into a MTOP, it has two parameters (L and λ) that need manual 
configurations. The influence study of L and λ are conducted in 
Section IV-D and F, respectively. In addition, the TPE is 
different from the decomposition method in that the TPE firstly 
approximates the PF, and then obtains some points on the 
approximated PF to automatically construct multiple 
optimization tasks, while the decomposition method uses a set 
of weight vectors to aggregate multiple objective functions into 
some subproblems as multiple tasks. 

D. Archive-based Implicit Knowledge Transfer for Offspring 
Generation 

The AIKT is proposed to generate offspring via knowledge 

transfer across multiple tasks, so as to enhance the 
optimization results for all tasks. Algorithm 2 is the pseudo 
code of the AIKT. In general, the AIKT generates offspring 
based on an archive, where the archive contains individuals 
with good fitness for different tasks. For each individual i in 
the population at generation g (e.g., Pg,i), AIKT selects T 
individuals nearest to Pg,i in the archive, where T is the 
neighborhood size for knowledge transfer. Herein, the “nearest” 
means the smallest Euclidean distance in the decision space 
between Pg,i and other individuals in the archive. This is 
different from those approaches that select parents based on the 
distance in the objective space, e.g., MOEA/D selects parents 
based on the distance between corresponding aggregation 
weight vectors in the objective space. Then, a new offspring is 
generated via evolutionary operators with the Pg,i and the 
random one of the T nearest individuals from the archive as the 
parents. That is, for generating the offspring, each parent pair 
contains two individuals, one from the current population (e.g., 
Pg,i) and one randomly selected from the T individuals in the 
archive that are nearest to Pg,i. Note that each individual in the 
population (e.g., Pg,i) can be good at a specific task, while the T 
individuals nearest to Pg,i from the archive can be good at some 
other similar or relevant tasks. Therefore, the individual for 
one task can learn knowledge from other tasks via the 
evolutionary operators implicitly, so as to generate better 
offspring. Herein, without loss of generality, the widely-used 
evolutionary operators in the MOP research community, i.e., 
the simulated binary crossover and polynomial mutation [67], 
are used as the evolutionary operators in the AIKT. 

E. The Complete Algorithm 
Based on the above contents, this part derives the complete 

algorithm for solving MOP via MTO, which is named 
MTMOEA. The pseudo code of MTMOEA is given in 
Algorithm 3. After the initialization and transforming the 
MOP into a MTOP via the TPE, Algorithm 3 iteratively carries 
out four procedures until the stop criterion is met (i.e., until the 
available FEs are consumed out). The four procedures are the 
offspring generation (lines 15-18), the task update (lines 19-23), 
the multitask selection (lines 24 and 25), and the archive update 
(lines 26 and 27). Finally, the MTMOEA outputs the final 
population as the solution set for the MOP. The details of the 
multitask selection and the archive update are as follows. 

The multitask selection is proposed to select individuals 
based on the fitness functions of all different tasks. The pseudo 
code of the multitask selection is given in Algorithm 4. To be 
specific, multitask selection iteratively selects the promising 
individual for each task in a round-robin fashion until enough 
individuals are selected, as shown in lines 4 to line 9 of 
Algorithm 4. 

The archive update is similar to the multitask selection 
(Algorithm 4), which also selects the promising individuals for 
each task in a round-robin fashion until enough individuals are 
selected. However, the archive update is to update the archive 
every generation to refresh the knowledge for different tasks, so 
as to enhance the AIKT for offspring generation. Therefore, 
different from the multitask selection, the archive update will 
not select a duplicated individual, so as to improve the 
individual diversity in the archive. Moreover, the maximum 
size of the archive is set the same as the population size. The 

Algorithm 3: MTMOEA 
Input:       M- the number of objectives; 

F - consists of M objective functions; 
N- the population size; 

                  K- the number of tasks (the number of targeted points); 
L - the number of potential points;  
λ - the ratio for approximating PF; 
T - the neighborhood sizes for knowledge transfer; 
MFES - the maximum number of available FEs; 

Output:    S - the final solution set with N solutions. 
1:Begin 
2:     /* Initialization */ 
3:     Q1, Q2, …, QL← sample L potential points in [0,1]M; 
4:     g ← 1; // the generation index 
5:     Pg ← initialized population with N individuals; 
6:     Evaluate individuals in Pg with F; 
7:     FEs ← N; // the FEs cost for initialization 
8:     arch ← Pg; // Initial archive 
9:     /* Transforming the MOP into a MTOP */ 

10:      Pcan ← Pg; 
11:      Λ  ← non-dominated solutions in Pcan; 
12:      Z1, Z2, …, ZK ←Perform TPE; //Algorithm 1 
13:      Develop the fitness functions of K tasks; // refer to Eq.(7) 
14:      While FEs < MFES Do 
15:            /* Offspring Generation */ 
16:            Offspring ← generate new offspring via AIKT; //Algorithm 2  
17:            Evaluate the individuals in Offspring with F; 
18:            FEs ← FEs + N; 
19:            /* Task Update */ 
20:            Pcan ← Pg∪Offspring; // population with candidate individuals 
21:            Λ ← non-dominated solutions in Pcan; 
22:            Z1, Z2, …, ZK ←Perform TPE; //Algorithm 1 
23:            Update the fitness functions of K tasks; // refer to Eq.(7) 
24:            /* Multitask Selection */ 
25:            Pg+1 ← perform selection among Pcan; // Algorithm 4 
26:            /* Archive Update */ 
27:            arch ←update archive with Pcan; // Algorithm 5 
28:            g ←g + 1; 
29:      End While 
30:      S ← Pg; //the final solution set as the output 
31: End 
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pseudo code of archive update is given in Algorithm 5, where 
line 3, 4, and 9 are to avoid selecting duplicated solutions. By 
doing so, we can ensure that the individuals in the archive are 
different, which can enhance individual diversity and enrich the 
knowledge for different tasks in the archive. 

IV. EXPERIMENTAL STUDIES 

A. Experiment Setup 
So far, there have been many MOP benchmark test suites for 

evaluating algorithms, such as DTLZ [68] and WFG [69]. The 
problems in these different benchmark suits can help observe 
how the algorithm will behave on different MOPs. Recently, a 
test suite named MaF [27] has been proposed by combining the 
advantages of different benchmark suites including the DTLZ 
[68] and WFG [69] to better evaluate MOP algorithms. To be 
specific, the MaF benchmark suite contains 15 representative 
problems with different properties (i.e., MaF1 to MaF15) that 
are modified based on existing representative MOPs, as shown 
in Table I. As a result, the MaF1 to MaF15 have various 
characteristics and their objective number can be set according 
to the need of users. Moreover, the MaF has been adopted as the 
benchmark set for the IEEE CEC competition on MOP with 
more than three objectives since 2017. Therefore, this paper 
also adopts the MaF1 to MaF15 to investigate the proposed 
algorithm in the experimental part. 

Furthermore, popular and state-of-the-art algorithms are 

used as the competitors and the number of objectives of the 15 
problems is set as 3, 5, 10, and 20, so as to better study the 
efficiency of the proposed algorithm. The compared algorithms 
are: NSGA-III [16], NSGA-II-SDR [33], MOEA/D-DES [34], 
RVEA [37], KnEA [52], and Mo4Ma [54], which have been 
mentioned in Section II. The source codes of the first five 
algorithms are obtained from the PlatEMO platform [66]. Note 
that the parameters of crossover and mutation operators of 
different algorithms including the MTMOEA are the same. In 
addition, as for the parameters in MTMOEA, both the number 
of target points (i.e., the number of tasks) and the population 
size is N, the number of potential points is set as L=5×N, the 
scale factor λ is 0.95, and the neighborhood size T is 0.05×N. 

Moreover, for some algorithms that require reference 
points/vectors, the population size is recommended to be set as 
the same as the number of reference points/vectors. To generate 
the reference points/vectors for a problem with M objectives, 
the Normal-boundary intersection (NBI) strategy [70] is widely 
used to determine the number of reference points/vectors. That 
is, the population size can be determined based on the NBI. In 
NBI, N reference points/vectors will be sampled, where N= C
H1+M' 
M' with M’=M–1 and H1 as the parameter that controls the 
division on each objective axis. For problems with many 
objectives, it is suggested to use a two-layer generation strategy 
with N= CH1+M' 

M' + CH2+M' 
M' , where H1 represents the divisions on the 

outer layer while H2 indicates the divisions on the insider layer 

TABLE I 
DESCRIPTION AND PROPERTY OF THE TEST PROBLEMS 

Problem Description Property of Pareto front 
MaF1 Modified inverted DTLZ1 Linear 
MaF2 DTLZ2BZ Concave 
MaF3 Convex DTLZ3 Convex, Multimodal 

MaF4 Inverted badly-scaled 
DTLZ3 Convex, Multimodal 

MaF5 Convex badly-scaled 
DTLZ4 Convex, Biased 

MaF6 DTLZ5(I,M) Concave, Degenerate 

MaF7 DTLZ7 Mixed, Disconnected, Multi- 
modal 

MaF8 Multi-Point Distance 
Minimization Problem Linear, Degenerate 

MaF9 Multi-Line Distance 
Minimization Problem Linear, Degenerate 

MaF10 WFG1 Mixed, Biased 

MaF11 WFG2 Convex, Disconnected, Non- 
separable 

MaF12 WFG9 Concave, Nonseparable, 
Biased Deceptive 

MaF13 PF7 Concave, Unimodal, 
Nonseparable, Degenerate 

MaF14 LSMOP3 Linear, Partially separable, 
Large scale 

MaF15 Inverted LSMOP8 Convex, Partially separable, 
Large scale 

 
TABLE II 

SETTINGS OF POPULATION SIZES FOR PROBLEMS WITH DIFFERENT 
NUMBER OF OBJECTIVES 

Number of objectives (H1, H2) Population size 
3 (13, -) 105 
5 (5, -) 126 
10 (3, 2) 275 
20 (2, 1) 230 

Note that H1 and H2 are the simplex-lattice design factors for generating uniformly 
distributed reference/vectors on the outer boundaries and the inside layers, respectively. 

Algorithm 4: Multitask Selection 
Input:     F - consists of M objective functions; 
                N - the population size; 

Pcnd - the candidate individual set for selecting N individuals; 
Z1, Z2, …, ZK - the K estimated target points; 

Output:  Pg+1 - the population at generation g+1; 
1: Begin 
2:      Pg+1 ← empty set; 
3:      ni← the smallest integer larger than N/K; // number of iterations 
4:      For i=1 to ni Do 
5:           For k=1 to K Do 
6:                x ← the ith best individual in Pcan for task k based on Zk; 
7:                Pg+1 ←Pg+1∪{ x }; 
8:           End For 
9:      End For 
10:    Pg+1 ← the first N individuals in Pg+1; 
11: End 

 
Algorithm 5: Archive Update 
Input:      Pcan - the candidate individual set; 
                Pg+1 - the population at generation g+1; 

N_a - the maximum size of arch; 
Z1, Z2, …, ZK - the K estimated target points; 

Output:  arch - the updated archive; 
1:Begin 
2:     arch ← Pg+1; 
3:     Remove the duplicated solutions in arch; 
4:     Remove existing individuals in arch∩Pcan from Pcan;  
5:     While the size of arch is smaller than N_a Do 
6:          For k=1 to K Do 
7:               x ← the best individual in rest Pcan for task k; 
8:               arch ← arch∪{ x }; 
9:               Remove x from Pcan; // avoid duplicated selection 

10:            End For 
11:       End While 
12:       arch ← the first N_a individuals in arch; 
13:  End 
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of the PF. Based on this, this paper also adopts the NBI strategy 
to determine the same population size N for all the algorithms, 
so as to provide a fair comparison. Particularly, Table II 
provides the value of corresponding H1, H2, and the population 
size for problems with a different number of objectives. In 
addition, without loss of generality, the initial potential target 
points (i.e., Q1, Q2, …, QL) in the MTMOEA are also generated 
by the NBI. As the number of points generated by NBI can not 
be arbitrary, the number of generated points will be slightly 
smaller than L if L does not equal to CH1+M’ 

M’ + CH2+M’ 
M for any H1 and 

H2. That is, if L≠CH1+M’ 
M’ + CH2+M’ 

M , the NBI will sample L’=CH1+M’ 
M’ + 

CH2+M’ 
M points such that L’ is closest to but smaller than L. 
In addition, the maximum number of FEs is configured as 

N×100 for each algorithm on each problem, so as to evaluate 
the algorithm efficiency. To reduce statistical errors, each 
algorithm is tested 30 times independently on each problem and 
the average results are used for the comparisons. 

B. Evaluation Metrics 
To evaluate the algorithm performance, two widely-used 

metrics, i.e., IGD and HV, are adopted in the experimental 
studies and comparisons. The mean and standard values of the 
IGD and HV results over 30 runs are reported. As 
recommended in [27], the reference set of IGD contains 10000 
reference points uniformly sampled on the true PF, and the 
reference point of HV is a vector of all ones, i.e., (1,1, …,1). 
Note that when calculating the HV, the objective value of each 
solution will be normalized based on a nadir point of the true PF, 
and more detailed calculation procedures can refer to [27]. 
Moreover, the Wilcoxon’s rank sum test with a significant level 
α=0.05 is also used for algorithm comparisons. That is, 
according to the Wilcoxon’s rank sum test, this paper uses the 
symbols “+”, “≈”, and “-” to show that the proposed algorithm 
performs significantly better than, similar to, and significantly 
worse than the compared algorithms, respectively. In addition, 
the best results in the comparison will be marked in boldface. 

C. Comparisons with State-of-the-art Algorithms 
Table III provides the statistical comparison results between 

MTMOEA and six state-of-the-art algorithms on 60 problems 
with a different number of objectives, where the detailed 
experimental results are given in Table S.I and Table S.II in the 
supplementary material.  

As shown in Table III, the MTMOEA can outperform all 
compared algorithms on more than 30 problems (i.e., more than 
half of all the test problems) in term of IGD, and more than 27 

problems in term of HV. This suggests the great 
problem-solving ability of MTMOEA. Moreover, Table S.I 
shows that the MTMOEA can obtain the best IGD results (as 
marked in boldface) on 17 problems, while the NSGA-III, 
NSGA-II-SDR, MOEA/D-DES, RVEA, KnEA, and Mo4Ma 
get the best IGD results only on 3, 14, 6, 7, 9, and 4 problems, 
respectively. In particular, in terms of both the IGD and HV, the 
MTMOEA significantly works better on MaF3, Ma4, MaF14, 
and MaF15 with different numbers of objectives. The distinct 
characteristics of these problems are that the MaF3 and MaF4 
are multimodal MOPs while the MaF14 and MaF15 have 
large-scale MOPs, which both contain many local optima in the 
complicated and large-scale search space. The MTMOEA has 
special superior performance on these very complex problems. 
This may be due to that by transforming these MOPs into 
MTOPs, the MTMOEA can use MTO and knowledge transfer 
methods to efficiently find a set of optimal solutions with good 
diversity in the complicated and large-scale search space. In 
addition, as can be seen in Table III, no matter whether on 
tested MOPs (the number of objectives is 3) or MaOPs (e.g., the 
number of objectives is 5, 10, or 20), the proposed MTMOEA 
significantly outperforms almost all the compared algorithms 
on more than half problems, which show that the MTMOEA 
can work well on both the MOP and MaOP. 

Moreover, for a better visualization of the algorithm 
efficiency, Fig. S.1 of the supplementary material plots the HV 
convergence curve of the seven algorithms during the progress 
of fitness evaluations on MaF9, MaF14, and MaF15 with 3, 5, 
10, and 20 objectives, respectively. The three problems are 
selected because that the MaF9 is a classical problem with a 
linear Pareto front while both MaF14 and MaF15 are 
large-scale MOPs, which can help to observe the algorithm 
efficiency in different scenarios. As shown in Fig. S.1, the HV 
convergence of MTMOEA is competitive with other 
algorithms on the MaF9 with different objectives. While on 
MaF14 and MaF15, the MTMOEA can obtain significantly 
better HV results more quickly than other algorithms. This 
validates the optimization efficiency of MTMOEA, especially 
on large-scale MOPs. 

Based on the above, the comparison results have shown the 
significant efficiency of MTMOEA. Therefore, solving MOP 
as a MTOP is promising. 

D. Influence of the Number of Potential Points 
In TPE, the target point of each task in the transformed 

MTOP is obtained based on the L potential points. Therefore, 

TABLE III 
STATISTICAL COMPARISONS RESULTS BETWEEN MTMOEA AND OTHER ALGORITHMS BASED ON IGD AND HV METRIC 

Metric Number of 
objectives 

NSGA-III 
(+/≈/-) 

NSGA-II-SDR 
(+/≈/-) 

MOEA/D-DES 
(+/≈/-) 

RVEA 
(+/≈/-) 

KnEA 
(+/≈/-) 

Mo4Ma 
(+/≈/-) 

IGD 

3 9/1/5 8/1/6 10/1/4 11/1/3 7/4/4 14/0/1 
5 8/1/6 11/1/3 9/3/3 10/1/4 9/0/6 13/1/1 
10 8/0/7 8/1/6 8/2/5 9/0/6 8/1/6 10/0/5 
20 10/1/4 5/2/8 7/4/4 9/0/6 9/2/4 7/3/5 

Total 35/3/22 32/5/23 34/10/16 39/2/19 33/7/20 44/4/12 

HV 

3 6/2/7 9/4/2 11/4/0 8/5/2 10/2/3 7/2/6 
5 9/1/5 7/3/5 10/3/2 11/1/3 9/1/5 7/1/7 
10 6/4/5 4/3/8 9/2/4 9/1/5 7/4/4 8/3/4 
20 7/3/5 7/2/6 8/3/4 8/2/5 7/3/5 10/2/3 

Total 28/10/22 27/12/21 38/12/10 36/9/15 33/10/17 32/8/20 
The “+”, “≈”, and “-” represent that the proposed MTMOEA performs significantly better than, similar to, and significantly worse than the corresponding compared algorithm. 
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the influence of L is studied in this part. Specifically, as the 
original MTMOEA uses L=5×N potential points, the original 
MTMOEA, denoted as MTMOEA(L=5×N) in this part, is 
compared with four variants with different L, which are 
denoted as MTMOEA(L=2×N), MTMOEA(L=3×N), 
MTMOEA(L=10×N), and MTMOEA(L=20×N), respectively. 
The MTMOEA(L=2×N) and MTMOEA(L=3×N) can represent 
the influence of a smaller L, while MTMOEA L=10×N) and 
MTMOEA(L=20×N) can reflect the influence of a larger L. 
Note that as mentioned earlier, the potential points are initially 
sampled by NBI, and therefore the actual number of potential 
points may be slightly smaller than L during the evolution. 

The comparison results are given in Table IV. As can be seen 
in Table IV, MTMOEA(L=5×N) generally has better 
performance than MTMOEA(L=2×N) and MTMOEA(L=3×N) 
while slightly worse performance than MTMOEA(L=10×N) 
and MTMOEA(L=20×N). In detail, MTMOEA(L=5×N) 
performs significantly better/worse than MTMOEA(L=2×N) 
and MTMOEA(L=3×N) on 4/1 and 3/1 problems, respectively, 
while significantly better/worse than MTMOEA(L=10×N) and 
MTMOEA(L=20×N) on 0/2 and 1/4 problems, respectively. 
This indicates that the larger the L is, the better the algorithm 
performance can be. The reason may be that more potential 
points can help to estimate the PF more accurately and thus can 
provide more information to obtain better-estimated target 

points. However, it should also be noted that more potential 
points will also result in more computational costs. Therefore, 
L=5×N can be a good setting that balances the algorithm 
performance and computational cost, and is used in this paper. 

E. Influence of the Scale Factor 
This part analyzes the scale factor in TPE for estimating the 

PF, i.e., the value of λ in Eq.(8). As the λ in original MTMOEA 
is 0.95, this part compares the original MTMOEA with its 
variants using λ=0.80, λ=0.85, λ=0.90, and λ=1.00, so as to 
analyze the influence of λ. For simplicity, the original 
MTMOEA and the four variants are denoted as 
MTMOEA(λ=0.95), MTMOEA(λ=0.80), MTMOEA(λ=0.85), 
MTMOEA(λ=0.90), and MTMOEA(λ=1.00), respectively. 
The comparison results of the five algorithms on the 15 
3-objective problems are given in Table V. As can be seen in 
Table V, MTMOEA(λ=0.95) generally performs similarly to  
MTMOEA(λ=0.85) and MTMOEA(λ=0.90), but perform 
significantly better than MTMOEA(λ=0.80) and 
MTMOEA(λ=1.00). To be specific, according to the 
Wilcoxon’s rank sum test, MTMOEA(λ=0.95) performs 
similarly to  MTMOEA(λ=0.85) and MTMOEA(λ=0.90) on 8 
and 9 of the 15 problems (i.e., more than a half), and perform 
significantly better/worse than these two variants on 4/3 and 4/2 
problems, respectively. As for the rest two variants, the 

TABLE IV  
COMPARISONS OF IGD RESULTS AMONG MTMOEA VARIANTS WITH DIFFERENT NUMBER OF POTENTIAL POINTS  

Problem MTMOEA(L=5×N) MTMOEA(L=2×N) MTMOEA(L=3×N) MTMOEA(L=10×N) MTMOEA(L=20×N) 
MaF1 6.4836E-2 (2.14E-3) 6.7770E-2 (2.12E-3) + 6.6645E-2 (2.39E-3) + 6.5190E-2 (2.38E-3) ≈ 6.3171E-2 (2.45E-3) - 
MaF2 5.4559E-2 (3.03E-3) 5.5497E-2 (2.21E-3) ≈ 5.5190E-2 (2.58E-3) ≈ 5.5801E-2 (3.31E-3) ≈ 5.4417E-2 (2.39E-3) ≈ 
MaF3 6.9995E+1 (7.99E+1) 9.1141E+1 (1.05E+2) ≈ 9.3968E+1 (1.64E+2) ≈ 8.0919E+1 (1.01E+2) ≈ 1.2081E+2 (1.75E+2) ≈ 
MaF4 2.0512E+1 (1.15E+1) 2.2346E+1 (1.71E+1) ≈ 1.8425E+1 (1.28E+1) ≈ 2.1444E+1 (1.16E+1) ≈ 2.0535E+1 (1.46E+1) ≈ 
MaF5 3.8697E-1 (3.82E-1) 5.6889E-1 (5.74E-1) ≈ 5.2406E-1 (6.01E-1) ≈ 3.3732E-1 (3.21E-1) - 4.9234E-1 (5.70E-1) + 
MaF6 1.2276E-2 (1.44E-3) 1.3919E-2 (1.34E-3) + 1.2851E-2 (1.44E-3) ≈ 1.2268E-2 (1.36E-3) ≈ 1.2477E-2 (1.36E-3) ≈ 
MaF7 3.3199E-1 (3.64E-2) 3.3199E-1 (2.82E-2) ≈ 3.2603E-1 (2.69E-2) ≈ 3.4289E-1 (3.85E-2) ≈ 3.2559E-1 (4.24E-2) ≈ 
MaF8 3.0672E-1 (3.86E-1) 2.4491E-1 (1.28E-1) ≈ 3.3110E-1 (3.59E-1) ≈ 2.6308E-1 (2.12E-1) ≈ 1.9132E-1 (7.68E-2) ≈ 
MaF9 1.7344E-1 (1.06E-1) 1.7148E-1 (1.07E-1) ≈ 1.6951E-1 (1.01E-1) ≈ 1.5387E-1 (9.08E-2) ≈ 2.0352E-1 (2.27E-1) ≈ 
MaF10 6.9509E-1 (1.23E-1) 6.5042E-1 (1.27E-1) ≈ 6.2681E-1 (6.73E-2) - 6.5732E-1 (7.45E-2) ≈ 6.6352E-1 (9.37E-2) ≈ 
MaF11 1.8118E-1 (6.44E-3) 1.8403E-1 (6.41E-3) ≈ 1.8218E-1 (8.05E-3) ≈ 1.7948E-1 (6.52E-3) ≈ 1.7450E-1 (6.86E-3) - 
MaF12 2.4733E-1 (1.25E-2) 2.5488E-1 (2.17E-2) + 2.5655E-1 (2.17E-2) + 2.4124E-1 (9.98E-3) - 2.3963E-1 (7.93E-3) - 
MaF13 8.7601E-2 (5.29E-3) 9.3550E-2 (6.80E-3) + 9.2010E-2 (5.09E-3) + 8.7274E-2 (4.29E-3) ≈ 8.4601E-2 (4.16E-3) - 
MaF14 1.9886E+0 (9.70E-1) 1.8959E+0 (7.40E-1) ≈ 1.7978E+0 (6.47E-1) ≈ 2.2309E+0 (1.05E+0) ≈ 2.0574E+0 (8.21E-1) ≈ 
MaF15 3.4496E-1 (3.69E-2) 3.2610E-1 (2.55E-2) - 3.3418E-1 (3.55E-2) ≈ 3.4808E-1 (3.60E-2) ≈ 3.4965E-1 (2.61E-2) ≈ 
+/≈/- NA 4/10/1 3/11/1 0/13/2 1/10/4 

 
TABLE V  

COMPARISONS OF IGD RESULTS AMONG MTMOEA VARIANTS WITH DIFFERENT SCALE FACTORS  
Problem MTMOEA (λ=0.95) MTMOEA (λ=0.80) MTMOEA (λ=0.85) MTMOEA (λ=0.90) MTMOEA (λ=1.00) 
MaF1 6.4836E-2 (2.14E-3) 6.3737E-2 (2.22E-3) ≈ 6.3985E-2 (2.02E-3) ≈ 6.3655E-2 (2.12E-3) ≈ 6.6394E-2 (2.67E-3) + 
MaF2 5.4559E-2 (3.03E-3) 5.1218E-2 (2.88E-3) - 5.1444E-2 (2.35E-3) - 5.2234E-2 (2.62E-3) - 7.4465E-2 (3.62E-3) + 
MaF3 6.9995E+1 (7.99E+1) 4.8684E+1 (4.70E+1) ≈ 8.7964E+1 (8.79E+1) ≈ 9.5461E+1 (8.84E+1) ≈ 9.0673E+1 (1.06E+2) ≈ 
MaF4 2.0512E+1 (1.15E+1) 1.3972E+1 (9.48E+0) - 1.4284E+1 (1.16E+1) - 1.6408E+1 (1.00E+1) ≈ 2.7048E+1 (2.04E+1) ≈ 
MaF5 3.8697E-1 (3.82E-1) 9.1376E-1 (8.70E-1) + 6.0406E-1 (4.44E-1) + 5.3236E-1 (5.03E-1) + 4.8821E-1 (5.18E-1) ≈ 
MaF6 1.2276E-2 (1.44E-3) 1.1717E-2 (9.15E-4) ≈ 1.1813E-2 (8.85E-4) ≈ 1.2128E-2 (1.40E-3) ≈ 1.2315E-2 (1.47E-3) ≈ 
MaF7 3.3199E-1 (3.64E-2) 2.0080E+0 (1.10E-1) + 1.7447E+0 (3.59E-1) + 1.2641E+0 (3.01E-1) + 1.9202E-1 (1.85E-2) - 
MaF8 3.0672E-1 (3.86E-1) 2.7600E-1 (1.76E-1) ≈ 2.2660E-1 (1.33E-1) ≈ 2.0209E-1 (1.34E-1) ≈ 2.4593E-1 (1.81E-1) ≈ 
MaF9 1.7344E-1 (1.06E-1) 2.0513E-1 (1.25E-1) ≈ 1.9184E-1 (1.64E-1) ≈ 1.3766E-1 (5.10E-2) ≈ 1.3185E-1 (7.01E-2) ≈ 
MaF10 6.9509E-1 (1.23E-1) 7.5386E-1 (1.19E-1) ≈ 6.5522E-1 (9.78E-2) ≈ 6.4189E-1 (1.05E-1) - 7.5649E-1 (8.94E-2) + 
MaF11 1.8118E-1 (6.44E-3) 4.5533E-1 (4.74E-2) + 3.5509E-1 (3.95E-2) + 2.3896E-1 (2.80E-2) + 1.8542E-1 (5.94E-3) + 
MaF12 2.4733E-1 (1.25E-2) 5.2345E-1 (1.16E-1) + 3.4542E-1 (3.54E-2) + 2.6047E-1 (1.19E-2) + 2.5575E-1 (1.03E-2) + 
MaF13 8.7601E-2 (5.29E-3) 9.2429E-2 (5.24E-3) + 8.7320E-2 (4.55E-3) ≈ 8.6267E-2 (6.39E-3) ≈ 1.0011E-1 (4.66E-3) + 
MaF14 1.9886E+0 (9.70E-1) 1.0442E+0 (3.56E-1) - 1.2035E+0 (3.96E-1) - 1.6800E+0 (7.36E-1) ≈ 2.2241E+0 (8.90E-1) ≈ 
MaF15 3.4496E-1 (3.69E-2) 3.8694E-1 (7.61E-2) + 3.3544E-1 (3.83E-2) ≈ 3.3619E-1 (4.16E-2) ≈ 3.7018E-1 (4.81E-2) + 
+/≈/- NA 6/6/3 4/8/3 4/9/2 7/7/1 
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MTMOEA(λ=0.95) outperforms MTMOEA(λ=0.80) and 
MTMOEA(λ=1.00) on 6 and 7 problems, but only worse on 3 
and 1 problems, respectively. The above results may be due to 
that during the evolutionary search, the PF approximated based 
on the information of current-best solutions is still higher than 
the real PF in the objective space, and therefore a scale factor 
slightly smaller than 1 can help pull the approximated PF to be 
closer to the real PF. However, if the scale factor is too small 
(e.g., λ=0.80), the estimated PF can be wrong after being scaled. 
In addition, as the λ=0.95 is the best among the five different 
settings, the λ=0.95 is adopted in MTMOEA in this paper. 

F. Influence of the Target Points Selection 
The estimated target points in the MTMOEA are obtained 

based on the potential point via the Kmeans clustering 
technique. Therefore, this part further analyzes the effect of 
clustering in obtaining estimated target points. That is, the 
MTMOEA is compared with its variant that does not use the 
Kmeans clustering, which is denoted as MTMOEA-w/o-C. As 
the number of estimated target points should be the same as N 
and the MTMOEA-w/o-C does not have a clustering technique 
to obtain N target points based on L potential points, the L is 
also set as N in MTMOEA-w/o-C, so that potential points can 
be directly selected as target points without clustering. The 
comparison results between MTMOEA and MTMOEA-w/o-C 

on 3- and 20-objective problems are provided in Table VI. As 
can be seen, MTMOEA has a worse performance than 
MTMOEA-w/o-C on 3-objective problems generally but have 
a much better performance on 20-objective problems. In 
particular, MTMOEA has worse results than MTMOEA-w/o-C 
on 7 of the 15 3-objective problems, while only having better 
results on 3 problems. But on the 15 20-objective problems, the 
MTMOEA performs significantly better than 
MTMOEA-w/o-C on 8 problems, similarly on 7 problems, and 
worse on none problems. This may be due to that when the 
number of objectives is small, the objective space is not large 
and the clustering technique cannot distinguish similar points 
into different clusters well, while for problems with a large 
number of objectives, the clustering technique can classify the 
potential points into corresponding groups and obtain the 
representative target point efficiently. Therefore, the clustering 
technique is useful. 

G. Influence of the Neighborhood Size for Knowledge 
Transfer 

In AIKT, the neighborhood size T can influence the 
knowledge transfer among individuals for different tasks. 
Therefore, this part analyzes the influence of T based on the 
comparisons between the original MTMOEA and its variants 
with different T. That is, the MTMOEA(T=0.05×N) is 
compared with the variants MTMOEA(T=1), 

TABLE VI  
COMPARISONS OF IGD RESULTS BETWEEN THE ORIGINAL MTMOEA AND THE MTMOEA VARIANT WITHOUT CLUSTERING 

Problem Obj. MTMOEA MTMOEA-w/o-C Problem Obj. MTMOEA MTMOEA-w/o-C 
MaF1 3 6.4836E-2 (2.14E-3) 5.9049E-2 (3.53E-4) - MaF1 20 4.9678E-1 (8.27E-3) 5.0130E-1 (7.39E-3) + 
MaF2 3 5.4559E-2 (3.03E-3) 5.3243E-2 (1.00E-3) - MaF2 20 1.7910E-1 (1.36E-3) 1.8227E-1 (1.63E-3) + 
MaF3 3 6.9995E+1 (7.99E+1) 6.6321E+1 (1.20E+2) ≈ MaF3 20 1.1336E+1 (2.08E+1) 1.6183E+1 (2.97E+1) ≈ 
MaF4 3 2.0512E+1 (1.15E+1) 2.1773E+1 (1.14E+1) ≈ MaF4 20 7.3413E+5 (5.05E+5) 6.1730E+5 (4.39E+5) ≈ 
MaF5 3 3.8697E-1 (3.82E-1) 5.0943E-1 (5.64E-1) + MaF5 20 1.6534E+5 (8.69E+3) 1.6285E+5 (1.43E+4) ≈ 
MaF6 3 1.2276E-2 (1.44E-3) 3.0348E-2 (6.13E-4) + MaF6 20 3.9075E-2 (3.36E-3) 4.7283E-2 (3.62E-3) + 
MaF7 3 3.3199E-1 (3.64E-2) 3.4570E-1 (3.38E-2) ≈ MaF7 20 7.8575E+0 (1.54E+0) 7.7143E+0 (1.88E+0) ≈ 
MaF8 3 3.0672E-1 (3.86E-1) 3.1694E-1 (2.56E-1) ≈ MaF8 20 1.6790E+0 (1.58E-1) 1.8738E+0 (3.53E-1) + 
MaF9 3 1.7344E-1 (1.06E-1) 4.0007E-1 (4.65E-1) + MaF9 20 9.7734E+0 (7.35E+0) 1.5434E+1 (4.88E+0) + 
MaF10 3 6.9509E-1 (1.23E-1) 6.3483E-1 (9.46E-2) ≈ MaF10 20 4.8222E+0 (2.85E-1) 4.8872E+0 (1.25E-1) ≈ 
MaF11 3 1.8118E-1 (6.44E-3) 1.7690E-1 (6.92E-3) - MaF11 20 3.5614E+0 (2.07E-1) 3.7082E+0 (2.22E-1) + 
MaF12 3 2.4733E-1 (1.25E-2) 2.3030E-1 (6.76E-3) - MaF12 20 1.1138E+1 (4.94E-1) 1.1716E+1 (4.38E-1) + 
MaF13 3 8.7601E-2 (5.29E-3) 7.8221E-2 (6.22E-3) - MaF13 20 1.9357E+0 (1.64E-1) 1.8356E+0 (3.28E-1) ≈ 
MaF14 3 1.9886E+0 (9.70E-1) 1.3828E+0 (4.59E-1) - MaF14 20 2.1976E+0 (1.54E+0) 2.0573E+0 (1.16E+0) ≈ 
MaF15 3 3.4496E-1 (3.69E-2) 3.0413E-1 (2.63E-2) - MaF15 20 1.3726E+1 (1.80E+0) 1.7380E+1 (2.53E+0) + 

+/≈/- NA 3/5/7 +/≈/- NA 8/7/0 
 

TABLE VII  
COMPARISONS OF IGD RESULTS AMONG MTMOEA VARIANTS WITH DIFFERENT NEIGHBORHOOD SIZE FOR KNOWLEDGE TRANSFER 

Problem MTMOEA(T=0.05×N) MTMOEA(T=1) MTMOEA(T=0.1×N) MTMOEA(T=0.15×N) MTMOEA(T=0.2×N) 
MaF1 6.4836E-2 (2.14E-3) 6.6159E-2 (2.46E-3) + 6.5278E-2 (2.41E-3) ≈ 6.6223E-2 (2.46E-3) + 6.5729E-2 (2.60E-3) ≈ 
MaF2 5.4559E-2 (3.03E-3) 5.4730E-2 (3.12E-3) ≈ 5.5441E-2 (2.24E-3) ≈ 5.5523E-2 (2.51E-3) ≈ 5.5517E-2 (2.43E-3) ≈ 
MaF3 6.9995E+1 (7.99E+1) 1.3076E+2 (1.64E+2) + 9.9064E+1 (1.62E+2) ≈ 8.4812E+1 (1.15E+2) ≈ 1.0563E+2 (1.46E+2) ≈ 
MaF4 2.0512E+1 (1.15E+1) 2.1636E+1 (1.55E+1) ≈ 1.8887E+1 (1.45E+1) ≈ 2.0700E+1 (1.54E+1) ≈ 2.0190E+1 (1.23E+1) ≈ 
MaF5 3.8697E-1 (3.82E-1) 4.9840E-1 (8.89E-1) + 4.6732E-1 (4.75E-1) ≈ 3.2807E-1 (2.22E-1) ≈ 3.4765E-1 (3.17E-1) ≈ 
MaF6 1.2276E-2 (1.44E-3) 1.1976E-2 (9.28E-4) ≈ 1.2453E-2 (1.26E-3) ≈ 1.2302E-2 (1.23E-3) ≈ 1.1702E-2 (1.41E-3) ≈ 
MaF7 3.3199E-1 (3.64E-2) 3.2709E-1 (2.73E-2) ≈ 3.2810E-1 (3.19E-2) ≈ 3.3400E-1 (3.51E-2) ≈ 3.3040E-1 (3.30E-2) ≈ 
MaF8 3.0672E-1 (3.86E-1) 2.4938E-1 (2.44E-1) ≈ 2.8319E-1 (3.09E-1) ≈ 2.1884E-1 (1.12E-1) ≈ 2.4096E-1 (1.65E-1) ≈ 
MaF9 1.7344E-1 (1.06E-1) 1.3668E-1 (6.04E-2) ≈ 1.8660E-1 (1.69E-1) ≈ 2.1624E-1 (2.52E-1) ≈ 1.6765E-1 (1.19E-1) ≈ 
MaF10 6.9509E-1 (1.23E-1) 6.8033E-1 (9.45E-2) ≈ 6.8489E-1 (1.21E-1) ≈ 6.5581E-1 (9.65E-2) ≈ 6.6749E-1 (9.49E-2) ≈ 
MaF11 1.8118E-1 (6.44E-3) 1.8138E-1 (6.30E-3) ≈ 1.8244E-1 (5.45E-3) ≈ 1.7877E-1 (6.56E-3) ≈ 1.8058E-1 (8.00E-3) ≈ 
MaF12 2.4733E-1 (1.25E-2) 2.4392E-1 (6.06E-3) ≈ 2.4373E-1 (8.85E-3) ≈ 2.4543E-1 (8.52E-3) ≈ 2.4752E-1 (7.92E-3) ≈ 
MaF13 8.7601E-2 (5.29E-3) 9.0581E-2 (6.05E-3) ≈ 8.9884E-2 (6.68E-3) ≈ 8.9429E-2 (5.34E-3) ≈ 8.8804E-2 (6.71E-3) ≈ 
MaF14 1.9886E+0 (9.70E-1) 1.9618E+0 (6.49E-1) ≈ 2.2782E+0 (9.41E-1) ≈ 1.8043E+0 (7.63E-1) ≈ 2.3048E+0 (9.03E-1) + 
MaF15 3.4496E-1 (3.69E-2) 3.4655E-1 (4.64E-2) ≈ 3.4273E-1 (3.68E-2) ≈ 3.4090E-1 (2.49E-2) ≈ 3.4506E-1 (2.72E-2) ≈ 
+/≈/- NA 3/12/0 0/15/0 1/14/0 1/14/0 
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MTMOEA(T=0.1×N), MTMOEA(T=0.15×N), and 
MTMOEA(T=0.2×N), where MTMOEA(T=1) means that 
only the nearest individual will be selected for knowledge 
transfer. The comparison results are provided in Table VII. As 
shown in Table VII, the MTMOEA(T=0.05×N) have similar 
performance to MTMOEA(T=0.1×N) and slightly better 
performance than MTMOEA(T=0.15×N) and 
MTMOEA(T=0.2×N). To be more specific, 
MTMOEA(T=0.05×N) has similar performance on 15, 14, 
and 14 problems when compared with MTMOEA(T=0.1×N), 
MTMOEA(T=0.15×N), and MTMOEA(T=0.2×N), 
respectively. This indicates that the MTMOEA(T=0.05×N) is 
not that sensitive to the setting of T. Moreover, Table VII also 
shows that the MTMOEA(T=0.05×N) outperforms 
MTMOEA(T=1) on 3 problems, but does not have worse 
performance on any problems. This may be due to that a proper 
large T can help improve the knowledge transfer among 
individuals that are good at different tasks, and thus can 
enhance the optimization results. Note that the 
MTMOEA(T=0.05×N) obtains slightly better results than the 
rest variants, the T=0.05×N is adopted in this paper. 

H. Running Time Analysis 
This part investigates the computational complexity of the 

proposed algorithm by the comparison and analysis of running 
time. The average wall-clock times of all seven algorithms over 
30 independent runs are reported in Table S.III of the 
supplementary material. As shown in Table S.III, the 
MTMOEA has a smaller average ranking than the 
MOEA/D-DES, i.e., less computationally complex than 
MOEA/D-DES. Moreover, the MTMOEA can also run faster 
than KnEA and Mo4Ma on some problems, e.g., the MaF8 with 
5 or 10 objectives. In addition, although the MTMOEA has a 
longer time cost than some fast algorithms such as the 
NSGA-III and NSGA-II-SDR, their gaps in time cost are only 
in seconds. Therefore, the MTMOEA is not much 
computationally complex. Note that previous experiments have 
shown the promising optimization ability of MTMOEA, slight 
additional time cost of MTMOEA could be acceptable. 

V. CONCLUSION 
This paper proposes a new multiobjective optimization 

method via MTO. For this aim, this paper shows the 
relationship between MOP and MTOP and how a MOP can be 
transformed into a MTOP mathematically and theoretically. 
Then, the TPE strategy has been proposed to help automatically 
transform the MOP into a MTOP more accurately. Moreover, 
this paper further proposes the MTMO framework with the 
AIKT strategy to solve the transformed MTOP more efficiently. 
In addition, based on the above, the complete algorithm 
MTMOEA is finally developed as an example to solve the 
MOP as a MTOP. To investigate the proposed MTMOEA, 
extensive experiments have been conducted on widely-used 
MOPs with 3 to 20 objectives, where some state-of-the-art 
MOP algorithms have also been used as competitors. The 
experimental results have shown the superior performance of 
the proposed MTMOEA. This shows that solving MOP as a 
MTOP is a promising direction for tackling MOP efficiently. 

For future work, the proposed algorithm will be further 
extended to solve more difficult and complex MOPs with 
different properties. As the proposed algorithm has some 
tunable parameters (e.g., the number of potential points for 
approximating PF and the neighborhood size for knowledge 
transfer) that although have been investigated in the 
experimental part, we could use learning methods (e.g., 
learning-aided methods [71][72] and adaptive methods 
[73]-[76] ) in the future to configure the parameters more 
automatically and adaptively according to the target problem. 
Furthermore, as solving the MOP as a MTOP is a generic idea, 
further exploration of MTOP algorithms and knowledge 
transfer methods is worth studying to solve complex MOPs 
more efficiently. Besides, the proposed MTMOEA will be 
further studied in distributed evnviroment [77]-[79] and applied 
to real-world MOPs. Another very interesting observation is 
that we also found that treating MOP as a multimodal 
optimization problem is also a promising way to solve MOP via 
multimodal optimization algorithm [80]. Therefore, we think 
that multiobjective optimization, multitask optimization, and 
multimodal optimization are connected with each other, leading 
to an interesting research direction of uniform optimization. 
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