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Abstract—Learning and optimization are the two essential 
abilities of human beings for problem solving. Similarly, 
computer scientists have made great efforts to design artificial 
neural network (ANN) and evolutionary computation (EC) to 
simulate the learning ability and the optimization ability for 
solving real-world problems, respectively. These have been two 
essential branches in artificial intelligence (AI) and computer 
science. However, in humans, learning and optimization are 
usually integrated together for problem solving. Therefore, how to 
efficiently integrate these two abilities together to develop 
powerful AI remains a significant but challenging issue. 
Motivated by this, this paper proposes a novel learning-aided 
evolutionary optimization (LEO) framework that plus learning 
and evolution for solving optimization problems. The LEO is 
integrated with the evolution knowledge learned by ANN from the 
evolution process of EC to promote optimization efficiency. The 
LEO framework is applied to both classical EC algorithms and 
some state-of-the-art EC algorithms including a champion 
algorithm, with benchmarking against the IEEE Congress on 
Evolutionary Computation competition data. The experimental 
results show that the LEO can significantly enhance the existing 
EC algorithms to better solve both single-objective and 
multi-/many-objective global optimization problems, suggesting 
that learning plus evolution is more intelligent for problem solving. 
Moreover, the experimental results have also validated the time 
efficiency of the LEO, where the additional time cost for using 
LEO is greatly deserved. Therefore, the promising LEO can lead 
to a new and more efficient paradigm for EC algorithms to solve 
global optimization problems by plus learning and evolution. 
 

Index Terms—Evolutionary computation, learning-aided 
evolution, artificial neural network, particle swarm optimization, 
differential evolution, single-objective optimization, 
multi-objective optimization, many-objective optimization 

I. INTRODUCTION 

earning and optimization are two basic abilities of human 
beings for problem solving [1]. Similarly, artificial neural 

networks (ANNs) for learning and evolutionary computation 
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(EC) algorithms for optimization are the two typical branches 
of artificial intelligence (AI), and both have obtained 
significant developments along with the development of 
computer science [2]. In general, the ANN is a kind of 
connectionism AI that simulates the brain structure to assist 
machine in learning knowledge, while the EC is a kind of 
evolutionism AI that simulates the evolution phenomena and 
intelligent behaviors of humans or swarm animals for problem 
solving [2]-[4], both of which are essential tasks of AI. 

Currently, the ANN-based learning branch has aroused great 
attention due to the success of deep learning (DL) in various 
real-world applications [5]-[7]. More significantly, EC 
algorithms have also made the great pace in research and 
applications [8]-[13]. EC algorithms were born in the 1960s, 
when computer scientists designed EC algorithms such as the 
genetic algorithm (GA) [14][15], evolution strategy [16], and 
evolutionary programming [17]-[19] for solving optimization 
problems. Since then, EC algorithms have attracted great 
attention and interest in the global optimization community. EC 
algorithms are promising because they do not require the strict 
mathematical characteristics of the problem and can find the 
global optimum or near-global optimum within an acceptable 
time. Generally, EC is a common framework that simulates the 
evolutionary mechanism of biology (e.g., GA [14] and 
differential evolution (DE) [20]-[23]) and the swarm 
intelligence behaviors of animals/insects (e.g., particle swarm 
optimization (PSO) [24]-[26] and ant colony optimization 
(ACO) [27]-[30])). The core idea of EC algorithms is “survival 
of the fittest”. That is, new solutions are generated by 
simulating evolutionary phenomena such as crossover and 
mutation. Then, the new solutions (i.e., offspring) and the old 
solutions (i.e., parents) compete to survive in the next 
generation. This is similar to the principle of natural selection in 
nature. By doing so, the solutions in the new generation are 
expected to be better than those in the old generations. 
Consequently, EC algorithms can gradually approach the 
global optimum generation by generation. The generic 
evolutionary framework of an EC algorithm is illustrated in the 
top of Fig. 1, where g is the generation index and will be 
increased by g=g+1 after the selection until the algorithm 
termination criteria are met. 

However, solving the problem only by evolution may be 
inefficient. For example, in nature, evolution may need 
thousands of years to improve a species, while learning can 
help accelerate evolution dramatically. Concerning this, an 
insightful question is: Can we combine learning with evolution 
to solve complex problems more efficiently, just like the 
combination of the learning and optimization abilities of human 
beings? Moreover, as mentioned before, optimization using EC 
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and learning using ANN are two main streams of AI, thus their 
combination is promising for designing powerful AI for 
achieving greater problem-solving ability. 

In the history of AI, the two branches of EC and ANN mainly 
develop independently and sometimes interact with each other, 
resulting in the evolutionary neural network [31]-[33], 
evolutionary DL [34], evolutionary machine learning [35], 
neuroevolution [36], and machine learning-enhanced EC [37]. 
However, few enhanced EC algorithms have employed ANNs 
to evolve solutions. As ANNs have already performed quite 
well in learning tasks, it is worth researching their ability to 
learn “how to evolve well” from EC process to assist 
optimization tasks. In this way, the performance of EC 
algorithms can be surely improved by using ANNs. This can be 
a new way to design more intelligent systems for knowledge 
discovery and problem solving. Therefore, we propose a 
learning-aided evolutionary optimization (LEO) framework 
that can upgrade the performance of EC algorithms by plus 
using an ANN learning system. The LEO is a new EC paradigm 
that drives EC optimization using both the evolutionary fitness 
from problems and the learned evolution knowledge obtained 
by an ANN. The general idea of the LEO framework is given in 
Fig. 1. 
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Fig. 1. The main idea of LEO.  

 
As shown in Fig. 1, the learning system in LEO aims to learn 

knowledge from the EC algorithm process. Herein, the learned 
knowledge is the “evolution knowledge” that can guide the EC 
algorithm “how to evolve well” (e.g., to efficiently help the EC 
algorithm better approach the global optimum). To this aim, we 
collect evolutionary data during the EC process as evolutionary 
pattern (EP) and use the ANN to learn from the successful EP 
(SEP) to obtain the evolution knowledge. Specifically, the EP 
of a solution can be represented by a pair of solutions that 
contains the original version of this solution in the current 
generation and the changed version of this solution in the next 
generation. In this sense, the SEP is defined as a successful pair 
of solutions whose changed version has better fitness than its 
original version. As shown in Fig. 1, in the learning system, if a 
pair of solutions (i.e., the old solution and the new solution) is 
successful, i.e., the new solution has a better fitness value than 
the old solution, then the relationship of this pair can be 

regarded as a kind of SEP that can help a solution evolve better. 
During the evolutionary process of the EC algorithm, many 
such successful pairs of solutions (i.e., SEPs) can be collected. 
Therefore, the learning system can be trained by using these 
collected SEPs, where the learned evolution knowledge from 
SEPs can be used to promote the evolutionary process. 

In order to learn from these SEPs, in this paper, the learning 
system in LEO is configured by using a very simple yet 
efficient ANN as an example. The training input of the ANN is 
the old solution of the successful pair while the output of the 
ANN is the corresponding new solution of the pair. After the 
training process with all the pairs, the ANN becomes a model 
that can help an input solution evolve better. That is, by 
learning a large number of SEPs, the ANN can be trained into a 
model that can receive a solution as input and then output a 
solution with better fitness. This is helpful to push the EC 
algorithms to better regions of the search space. Therefore, 
LEO can also be interpreted as “Learning + Evolution  
Optimization”, which is an emerging and promising AI 
paradigm in the future EC era, as shown in Fig. 2. Fig. 2 also 
shows that the EC algorithms are different from and more 
efficient than the random search algorithms before the EC era 
due to the fitness-driven mechanism of evolution. Generally 
speaking, fitness information can be regarded as 
problem-related knowledge because it is designed by domain 
experts and is used for driving the evolution of the EC 
population. Nevertheless, the EC population also yields data 
and information during the evolution process, which can be 
learned and regarded as evolution-related knowledge to further 
enhance the EC algorithm. Therefore, in the future EC era, the 
next generational EC algorithms not only will be fitness-driven 
(data and knowledge derived from the problem), but also will 
be learning-aided (data and knowledge derived from the 
evolution), i.e., learning plus evolution, such as the LEO new 
paradigm proposed in this paper. 

In the experiments, the proposed LEO is evaluated on not 
only the single-objective optimization problems but also the 
multi- and many-objective optimization problems. To be 
specific, the single-objective optimization problems are 
actually the newest IEEE Congress on Evolutionary 
Computation (CEC) 2021 competition benchmark problems for 
single-objective real parameter numerical optimization [38]. 
These benchmark problems consist of the most challenging 
complex optimization problems from the previous IEEE CEC 
competitions, e.g., IEEE CEC 2014, 2017, and 2018 
competitions. Moreover, they are the most challenging and 
well-known benchmarks in the EC community. As for 
multi-/many-objective problems, the widely-used benchmark 
suite, i.e., DTLZ [39], is adopted in this paper with the number 
of objectives set as 5, 10, 15, and 20, respectively. Moreover, 
we apply the LEO framework not only to the classical 
algorithms for single-objective optimization (i.e., PSO and DE) 
and multi-objective optimization (NSGA-II [40] and MOEA/D 
[41]), but also to the state-of-the-art algorithms, e.g., the 
champion algorithm named NL-SHADE-RSP [42] on IEEE 
CEC 2021 competition.  

The rest contents are organized as follows: Section II gives a 
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brief introduction of the EC, ANN, and related work. Section 
III details the LEO, while Section IV illustrates the experiments 
with results, comparisons, and analyses. Finally, the conclusion 
is provided in Section V. 

II. BACKGROUND AND RELATED WORK 

A. Evolutionary Computation 

EC algorithms can be divided into two categories, including 
evolutionary algorithm (EA) and swarm intelligence (SI) [2]. 
Herein, the following contents introduce two typical and 
widely-used EC algorithms for optimization problems, i.e., the 
PSO [24] as a typical SI and the DE [23] as a typical EA. 
1) Particle Swarm Optimization 

PSO is a classical and efficient SI algorithm in the EC family 
[24]. Modeling the behavior of bird flocks, PSO adopts a set of 
particles as a swarm to search for the global optimum. Each 
particle has a position vector to represent the candidate solution 
in the whole search space (i.e., the problem space) and uses a 
velocity vector to indicate the search direction. 

First, the PSO initializes the positions and velocities of 
particles randomly within their corresponding upper bound and 
lower bound to represent their initial status. Then, the fitness 
values of all particles will be evaluated with the objective 
function of the problem. After the fitness evaluation, the 
personally best position (pBest) of each particle in their 
experience and the globally best position (gBest) of the whole 
swarm will be determined. Then, the PSO goes into the loop to 
conduct the evolutionary operators, such as velocity and 
position updates, new solution evaluations, and pBest and gBest 
updates, generation by generation. These processes are 
iteratively performed to evolve particles to find better solutions. 
Finally, when the algorithm meets the termination conditions, 
the algorithm will output the newest gBest as the final optimal 
solution. In particular, the velocity and position updates are 
performed according to Eq.(1) and Eq.(2), respectively. 

,1 1, 2 2,, , , ,( ) ( )i j i j i j jj i j ij jV w V c r pBest X c r gBest X           (1) 

 , , ,i j i j i jX X V   (2) 

where Xi,j and Vi,j are the jth dimension’s position and velocity of 
the ith particle, respectively; ω represents the inertia weight; c1 
and c2 are predefined coefficients; and r1,j and r2,j are two values 
randomly sampled in the range [0,1]. 
2) Differential Evolution 

DE is an easy-to-implement and efficient EA in the EC 
family. It treats candidate solutions as individuals, i.e., Xi, and 
evolves individuals based on the individual difference. 

After the random initialization of individuals in the search 
space, DE iteratively evolves individuals by three evolutionary 
operators until the stop criteria are met. These three operators 
include mutation, crossover, and selection, as introduced as 

follows. 
Mutation: a mutation vector Ti is computed for each 

individual Xi with the position of other individuals in every 
generation. “DE/rand/1” is a frequently-used strategy for 
computing the mutation vector, which is listed as below: 

  1 2 3i r r rT X F X X      (3) 

where r1, r2, and r3 represent the three randomly-selected 
individual indexes different from each other and different from 
i, F is the mutation parameter. 

Crossover: A trial vector Ui will be generated for each Xi via 
crossover based on Xi and Ti. The widely-used crossover 
operation is described as: 

 
,

,
,

  if  or 

  otherwise

i j j rand

i j
i j

T rand CR j j
U

X

  


  (4) 

where randj is a value sampled from [0,1] randomly, jrand is the 
random dimension index, which guarantees that Ui adopts at 
least one dimension from Ti, CR is the crossover rate. 

Selection: In the selection, individuals with better fitness will 
be selected to enter into the next generation. Herein, the 
one-to-one selection in DE is considered, i.e., the better one 
between Xi and Ui will be selected. 

B. Artificial Neural Network 

As a learning system that simulates the human brain, ANN 
can map the input data to the targeted data after training the 
weights parameters of neurons based on the training data (i.e., 
input-output pairs). Therefore, given the successful evolution 
pairs of solution positions, the ANN can learn how to map poor 
solution positions to better solution positions through training. 
As this paper adopt the multi-layer feed-forward NN (a 
widely-used ANN) [43] as the learning system in LEO, this part 
briefly introduces the multi-layer feed-forward NN. 

In general, a multi-layer feed-forward NN contains several 
layers with corresponding neurons and connections. For 
example, Fig. 3 presents a multilayer feed-forward NN with N 
inputs and M outputs, where each connection (i.e., arrow) 
between the neurons in different layers means that the output of 
the neuron in the previous layer is the input of the neuron of the 
next layer. In addition, to provide the NN with nonlinear 
mapping ability, the activation function is used in the neuron of 
the hidden layer. In this paper, we consider the widely-used 
function, i.e., the sigmoid function, as the activation function in 
the neurons of hidden layers. Given the input as z, the sigmoid 
function can be written as 

 
1

( )
1 z

z
e

 


 (5) 

C. Related Work 

To date, the research into using learning into EC has caused 
certain attention [37]. According to the learning purposes, the 
existing works can be mainly categorized into learning the 
problem knowledge and learning the solution knowledge.  

In the first category, learning the fitness as problem 
knowledge is a popular research topic. This is also known as 
data-driven EC because it uses evaluated individuals as data to 
learn the fitness for building a fitness surrogate, which is 
promising for solving expensive optimization problems [4]. For 
example, Wang et al. [44] proposed a selective ensemble 

  

Fig. 2. The development of EC. 
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surrogate to learn the fitness knowledge efficiently. Li et al. [45] 
proposed a data-driven EC with localized data generation 
method to learn the fitness knowledge from few-shot evaluated 
solution data. Also, to learn the fitness knowledge from 
few-shot evaluated data, Li et al. [46] proposed a multiple 
surrogate method based on data perturbation, which has 
obtained promising results. Moreover, Ji et al. [47] proposed a 
dual-layer cooperative surrogate model to learn the fitness 
knowledge of multimodal problems. Li and Zhang [48] 
proposed to use multiple local surrogates to learn the fitness 
and constraint knowledge from the constrained problems. 
However, data-driven EC mainly focuses on approximating the 
fitness and/or constraint evaluations via learning from the 
evaluated data. Differently, the proposed LEO mainly focuses 
on learning the SEP so as to help for better population 
reproduction and variation. Therefore, to better show their 
differences, the differences between the LEO and data-driven 
EC algorithms are briefly summarized in Table S.I of the 
supplemental material. 

In the second category, the solution knowledge is learned 
mainly for the purposes of reusing past knowledge, transferring 
assisted knowledge, and predicting promising solutions. For 
example, Feng et al. [49] proposed to learn past knowledge 
from the solutions of the already solved vehicle routing 
problems and then reuse them to produce routing solutions for 
the current problem in a more efficient way. Zhou et al. [50] 
proposed to generate promising solutions via knowledge 
transfer from the promising solutions of other problems. 
Moreover, Feng et al. [51] proposed to predict the moving of 
optimal solutions by learning the dynamic change of the old 
optimal solutions in the old dynamic environments, so as to 
benefit the population reproduction in the current environment. 
Liu et al. [52] proposed a neural network-based information 
transfer method to transfer the solutions in the past environment 
to the promising solutions in the new environment. Also 
reusing knowledge of old solutions, Zhan et al. [53] proposed 
the adaptive distributed DE, where the promising individual 
positions in previous generations are maintained in the archive and 
then are reused for the individual evolution in the current 
generation. In addition, Ghosh et al. [54] proposed a difference 
vector reuse mechanism to reuse the successful differential 
vector learned from the solutions in the past generation to 
promote the evolution of the current population. Xia et al. [55] 
proposed a PSO with triple archives to store the promising 
particle positions as knowledge in different archives and reuse 
them to help better evolution. 

The above methods have obtained potential results for 
improving the performance of EC, which suggests the 
significance of learning in evolution. Different from the above 
methods that focus on learning the problem knowledge and 
solution knowledge, the LEO proposed in this paper aims to 
learn the evolution knowledge, i.e., “how to evolve well”, so as 
to promote population reproduction and optimization 
efficiency. 

III. LEARNING-AIDED EVOLUTIONARY OPTIMIZATION 

A. The LEO Framework 

The overall LEO framework is illustrated in Fig. 4, which 
contains two parts, i.e., the evolution part and the learning part. 
When compared with the traditional EC framework, the major 
novelty of LEO lies in that it uses not only the traditional 
evolutionary operator but also the learning-aided evolutionary 
operator to generate new promising individuals. In the learning 
part, the LEO trains the learning system with the successful 
solution pairs collected from the evolution part, so as to learn 
the SEPs. By learning from a large number of successful 
solution pairs, the ANN can learn enough SEPs to help achieve 
better individual evolution, which may be more straightforward 
and efficient than traditional evolutionary operators. 

 In the LEO framework, the learning system can be simple by 
using simple ANN (as studied in this paper), and also can be 
complex if complex learning systems like deep networks are 
adopted (which can be studied in the future). Moreover, the 
learning-aided evolutionary operator is a generic operator and 
should be particularly designed based on the particular EC 
algorithm. The particular realization is described as follows. 

B. Successful Solution Pairing 

As data is significant for training the learning system, the 
quality of successful evolution pairs will greatly influence the 
performance of the learning system in learning-aided evolution. 
In fact, the definition of successful solution pair can vary, 
because that many individuals in the new generation can be 
regarded as the successful evolution of the individuals with 
worse fitness in the old generation. Without loss of generality, 
this paper defines the successful solution pair as the SEP, which 
is described as follows. Given the ith individual in the 
generation g and g+1, denoted as Xg,i and Xg+1,i, respectively, 
(Xg,i, Xg+1,i) is defined as a successful solution pair (i.e., a SEP) 
if the fitness of Xg+1,i is better than Xg,i. 

Note that if in PSO, the X means the personal best position of 
the particle. That is, the successful solution pair (pBestg,i, 
pBestg+1,i) is regarded as the SEP if pBestg+1,i is better than 
pBestg,i. Moreover, for multi-objective problems, the (Xg,i, Xg+1,i) 
is defined as a successful solution pair if Xg+1,i dominates Xg,i. 

C. Learning SEPs 

The learning system in LEO aims to learn the SEP by using 
successful pairs of solutions. Therefore, in every generation, 
LEO collects all the successful pairs of solutions as training 
data and uses the collected data to update the ANN, i.e., trains 
the weights of the ANN. However, two issues should be 
considered in the data collection. The first is that the number of 
collected successful solution pairs will increase rapidly as the 
evolution goes on, and the second is that the SEPs learned in 
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Fig. 3. An example of multi-layer feed-forward neural network with N 
inputs and M outputs. 
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earlier generations may not be suitable for the solutions in later 
generations. With these two concerns, we use an external 
archive to store the successful solution pairs and update the 
archive periodically. By doing so, the number of available 
successful solution pairs can be adaptively controlled, and the 
out-of-date pairs can be naturally dropped. Specifically, after 
the data collection in every generation, LEO will check whether 
the number of collected successful solution pairs exceeds the 
maximum size of the archive, say arch_size. If exceeds, LEO 
only reserves the newest arch_size pairs and drops the old ones. 
Otherwise, the archive will not be changed. 

With the data (i.e., the successful solution pairs) in the 
archive, the ANN can adaptively update its weights to learn 
SEPs better. Specifically, the ANN conducts one 
backpropagation (i.e., one epoch) in every generation with all 
the data in the archive to update its weights. The loss function 
of the ANN is the mean squared error between the network 
output and the target output, as can be written as: 

 
'

' 2

( , )

1
= | ( ) |

_
i i

i i
X X arch

MSE L X X
arch size 

  (5) 

where (Xi, X
’ 
i ) is a successful solution pair stored in the arch, 

L(Xi) is the output of the learning system with the solution Xi as 
the input. Note that other loss functions can be used if needed. 

 As the generation goes on, the ANN will conduct many 
epochs of training, and each training will use the newest 
successful solution pairs as the training data. 

D. Learning-aided Evolutionary Operator 

The learning-aided evolutionary operator aims to use the 
learning system to drive the evolution of candidate solutions. 
By learning the SEPs, the learning system in LEO is able to 
know how to better optimize the position of an individual to 
enhance its fitness. That is, given an individual as an input, the 
learning system can output a new individual with better fitness. 
To fully utilize the learned evolution knowledge, we propose a 
learning-aided mutation (LM) operator and a learning-aided 
crossover (LC) operator. The LM operator can be written as: 

 
( , , )

( ) ( )
A B C

A B C

newX LM X X X

L X X X

   

 (6) 

where XA, XB, and XC are three solutions as the inputs of LM, the 
L(XA) is the output of the learning system with the solution XA 
as the input, and  is a parameter for the learning-aided 

mutation. Moreover, the LC operator can be written as: 

 ,

,

( , )

,    if 
where  

,    otherwise

A B

A j j

j
B j

newX LC X X

X rand
newX

X




 


 (7) 

where XA and XB are the two solutions as the inputs of LC, j 
represents the dimension index, randj is a random value within 
[0,1], and  is a parameter in the learning-aided crossover. 

Based on the above, the LM and LC in PSO are implemented 
as: 

 1 2( , , )i i r rnewX LM pBest pBest pBest  (8) 

 ( , )i i inewX LC pBest newX  (9) 

where pBesti is the personally best position of the ith particle, 
pBestr1 and pBestr2 are the personally best positions of two 
different random particles. 

As for DE, there are no personally best positions of 
individuals. Therefore, the individuals themselves in the 
current generation are used for implementing the LM and LC. 
That is, the LM and LC operators in DE can be rewritten as 

 1 2( , , )i i r rnewX LM X X X  (10) 

 ( , )i i inewX LC X newX  (11) 

where Xi is the ith individual of the current generation, and Xr1 
and Xr2 are the positions of two different random individuals in 
the current generation. Note that the Eq.(6) to Eq.(11) are 
examples to show how to design the learning-aided 
evolutionary operator, and without loss of generality, these 
operators can be substituted by other evolutionary operators 
with the output of the learning system (e.g., L(pBesti) and L(Xi)) 
to develop more efficient learning-aided evolutionary operator 
to enhance the LEO-based algorithms. 

E. Combination of Traditional Evolutionary Operator and 
Learning-aided Evolutionary Operator 

As mentioned above, some individuals can be successfully 
evolved by the well-trained learning system via the 
learning-aided evolutionary operator, which can be more 
efficient and straightforward than the traditional evolutionary 
operator. However, as the individuals and their successful 
evolution differ from generation to generation, the learning 
system needs to update itself adaptively with new SEPs in the 
latest generations. Otherwise, the learning system trained with 
out-of-date SEPs will become unsuitable for driving the 
evolution of individuals in current and future generations and 
stages. In order to collect more latest SEPs to update the 
learning system, the traditional evolutionary operator is still 
essential to explore new successful solution pairs. Therefore, 
LEO uses both the traditional evolutionary operator and the 
learning system to evolve the individuals instead of only using 
the learning system (i.e., only using the learning-aided 
evolutionary operator). With this concern, a parameter of 
learning probability lp is proposed for controlling the use of 
traditional evolutionary operator and learning-aided 
evolutionary operator in each generation. To be specific, for 
each generation, if a value randomly sampled within [0, 1] is 
smaller than lp, then the individuals will be evolved by the 
traditional evolutionary operator, so as to help explore the 
unknown landscapes to discover better successful solution pairs. 
Otherwise, the individuals will be evolved by the 

Population

Traditional evolutionary operator

Selection

Successful 
solution pair

Learning-aided evolutionary 
operator

ANN-based
learning system

Better individuals

Training

Data 
collection

Evolution

Learning

…
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Fig. 4. The framework of LEO. 
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learning-aided evolutionary operator, so that the learned 
evolution knowledge can be well utilized. By doing so, the 
traditional and learning-aided evolutionary operator can work 
cooperatively to evolve individuals more efficiently. 

F. The Whole LEO-based Algorithm 

Herein, the whole LEO-based EC algorithm is presented in 
Algorithm 1. In the algorithm, there are five main procedures: 
initialization, individual evolution, selection, SEP collection, 
and learning system update. In the individual evolution, the 
learning system (i.e., ANN) will be used to evolve individuals 
via learning-aided evolutionary operators only when the index 
of the generation number is larger than one (i.e., g>1) and a 
randomly generated value is smaller than lp (i.e., r<lp), as 
shown in line 11 of Algorithm 1. The reason is that if g>1, then 
the ANN has been surely updated with the solution pairs in the 
archive, as shown in line 30 of Algorithm 1. In other words, the 
ANN will not be used to help the individual evolution until its 
first update, which can guarantee that the ANN has at least 
learned evolution knowledge from the successful evolution 
pairs once. After the individual evolution, the algorithm will 
carry out selection and SEP collection. In this procedure, the 
successful pairs of solutions are added in the archive arch as 
training data. The above four procedures (except the 
initialization) will be carried out iteratively until the algorithm 
meets the stop criteria. Lastly, the algorithm outputs the 
best-found solution as the result. 

IV. EXPERIMENTAL STUDIES 

A. Experimental Settings 

To evaluate LEO, experiments are conducted on not only 

single-objective optimization problems but also 
multi-/many-objective optimization problems. Moreover, 
corresponding state-of-the-art single-objective and 
multi-/many-objective algorithms are used in the experiments. 
To be more specific, the experimental settings are given as 
follows: 
1) Experimental Settings for Single-objective Optimization 

For experiments on single-objective optimization problems, 
the LEO-based algorithms will be tested on benchmark 
problems of the IEEE CEC 2021 Single-Objective Real 
Parameter Numerical Optimization Competition [38]. This 
benchmark set, which is the latest and most well-known 
benchmark in the EC community, includes 10 complex 
minimization problems that have been selected on purpose 
from the IEEE 2014, 2017, and 2018 CEC competitions [38], 
[42]. As these problems span a wide variety of function 
characteristics, such as multimodal and non-separable, they are 
suitable for investigating and evaluating the effectiveness and 
general performance of the proposed LEO framework from 
different aspects. More significantly, the well-known and 
typical properties of these problems will provide in-depth 
observations on how LEO-based algorithms may behave in 
various situations. In addition, each problem can be set as a 10- 
or 20-dimensional minimization problem, and the lower and 
upper bound of each dimension are –100 and 100, respectively, 
as recommended by the official of the CEC 2021 Competition 
[38]. Therefore, in this paper, each of the 10 problems is set 
with 10 and 20 dimensions (i.e., 10D and 20D), and these 20 
test problems are all adopted for the evaluation of LEO. In 
addition, on these benchmark problems, we apply LEO not only 
to PSO and DE, but also to the state-of-the-art algorithm 
NL-SHADE-RSP [42], which is a champion algorithm in IEEE 
CEC 2021 competition, to further investigate the effectiveness 
of LEO. Note that the population size of both PSO and DE is set 
as 100, while the NL-SHADE-RSP uses a dynamic population 
size due to its integrated population size reduction mechanism. 
To obtain fair comparisons, 2105 and 1106 are set as the 
maximum number of fitness evaluations for 10D and 20D 
problems, respectively, as suggested by the official of the CEC 
2021 Competition [38]. 
2) Experimental Settings for Multi-/Many-objective 
Optimization 

For experiments on multi-/many-objective optimization 
problems, the LEO will be combined with the classical 
multi-objective algorithm NSGA-II [40], MOEA/D [41], and a 
state-of-the-art algorithm named RVEA [56]. The LEO-based 
algorithms are tested on a widely-used multi-objective 
benchmark suit, i.e., the DLTZ benchmark set [39]. Note that as 
problem 8 and problem 9 in the DLTZ benchmark contain 
constraints, algorithms that are not designed for constrained 
problems, such as the MOEA/D, may generate infeasible 
solutions. Therefore, this paper only uses the DTLZ1 to DTLZ7 
to conduct the experiments. To further challenge the 
LEO-based algorithms, the number of objectives in each of the 
seven problems are set as 5, 10, 15, and 20. That is, 74=28 
multi-/many-objective optimization problems will be used in 
the experiments. All the experiments are conducted with the 
maximum number of evaluations set as 1104 for each problem. 
Furthermore, the settings of NSGA-II, MOEA/D, and RVEA 

Algorithm 1: LEO-based EC algorithm 
1:Begin 
2:     // Initialization 
3:     g ←1; // the generation index  
4:      Initialize population Xg and evaluate the fitness; 
5:     Initialize the weights of ANN randomly; 
6:     Initialize arch as an empty set; // to store solution pairs 
7:     While stop criteria not satisfied Do  
8:         g ←g + 1; 
9:         // Individual Evolution 

10:          Sample r uniformly on [0,1]; 
11:          If g >1 and r< lp Then 
12:               newX ← Evolve Xg by learning-aided evolutionary operator;
13:          Else 
14:               // use operators in traditional EC, e.g., PSO or DE 
15:               newX ← Evolve Xg by traditional evolutionary operator; 
16:          End If 
17:          Evaluate the fitness of individuals in newX; 
18:          // Selection 
19:          Xg+1 ← selection among Xg and newX; 
20:          // SEP Collection 
21:          For each individual i in Xg+1 Do 
22:               If Xg+1,i is better than Xg,i Then 
23:                   Add (Xg,i, Xg+1,i) in arch; 
24:               End 
25:          End For 
26:          If number of SEPs in arch > arch_size Then 
27:               Arch ← the newest arch_size solution pairs; 
28:          End If 
29:          // Learning System Update 
30:          Train the ANN with all data in arch for one epoch; 
31:     End While 
32: End 

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2022.3232776

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

7 

are set according to the default settings in their original 
references, and the MOEA/D uses the PBI reference vectors. 
3) Other Experimental Settings 

As for the setting of LEO-based algorithms, the arch_size is 
set as 100, while  and  in the learning-aided evolutionary 
operator are set as 0.5 and 0.9 respectively. The learning system 
ANN is set with three layers, which include one input layer, one 
hidden layer, and one output layer. As both the input and output 
of the ANN are candidate solutions, the dimension of the input 
and output layer will be D, where D is the problem dimension. 
Besides, the number of neurons in the hidden layer is set as 3D. 
Note that the input and output values of the ANN should be in 
the range of [0,1]. Therefore, each dimension value of solutions 
will be transformed from the original search space to [0,1] to be 
the input of ANN and the output values of the ANN will be 
transformed from [0,1] back to the corresponding search space 
to be the generated individual. For the training and 
implementation of ANN, as mentioned earlier in Section III-C, 
the LEO-based algorithms will randomly initialize the ANN at 
the beginning and then perform one epoch of backpropagation 
in every generation with all the data in the archive. To reduce 
the statistical errors, each algorithm will be conducted 30 times 
on each single or multi-/many-objective optimization problem 
independently, so as to get the statistical results for the 
comparison. Besides, this paper uses the Wilcoxon’s rank sum 
test with a significance level of α=0.05 to determine whether 
the algorithms with LEO are significantly better than, 
statistically similar to, and significantly worse than the 
algorithms of original versions on each problem in terms of the 
optimization accuracy. In addition, the Friedman test with 
Holm post-hoc analysis with a significant level of 0.05 is also 
used to compare the algorithm performance on multiple 

problems. Based on this, the compared algorithm performs 
significantly differently from the proposed algorithm if the 
corresponding adjusted p-value is larger than 0.05, otherwise, 
the two algorithms have similar performance on multiple 
problems. Note that, all the LEO-based EC algorithms are 
named as L-EC where EC is the original name of the algorithm. 
To quantify the performance improvements, the effect size is 
computed based on Cohen’s 𝑑 statistic [57] and reported in this 
paper. Similar to existing work [58], the effect size is regarded 
as: small if 0.2⩽𝑑<0.5; medium if 0.5⩽𝑑<0.8, or large if 0.8< 𝑑, 
which are denoted with symbols “s”, “m”, or “l”, respectively. 

B. Comparisons on Single-objective Optimization Problems 

Table I provides the comparison results among LEO-based 
algorithms and their original versions on single-objective 
optimization problems. In Table I, the LEO is very effective in 
improving the optimization efficiency of EC algorithms. As can 
be seen in Table I, L-PSO, L-DE, and L-NL-SHADE-RSP can 
significantly outperform PSO, DE, and NL-SHADE-RSP on 19, 
10, and 7 problems, and only have worse results on 1, 2, and 0 
problems, respectively. Moreover, although NL-SHADE-RSP 
is the champion algorithm in the CEC competitions with these 
test problems, the L-NL-SHADE-RSP can still obtain better 
optimization results and update the optimization result records 
obtained by NL-SHADE-RSP on 7 problems, i.e., F04(10D), 
F07(10D), F10(10D), F04(20D), F06(20D), F07(20D), and 
F20(10D). This suggests the great effectiveness and practical 
potential of LEO. Overall, the LEO is promising for improving 
EC algorithms on single-objective optimization problems. 

TABLE I  
COMPARISONS BETWEEN LEO-BASED ALGORITHMS AND THE ORIGINAL ALGORITHMS ON SINGLE-OBJECTIVE OPTIMIZATION PROBLEMS 

Problem L-PSO PSO L-DE DE L-NL-SHADE-RSP NL-SHADE-RSP 

F01(10D) 00 2.38E-056.01E-05 (+)(l) 00 00 ()(s) 00 00 ()(s) 

F02(10D) 4.10E+002.16E+01 8.71E+022.70E+02 (+)(l) 3.14E-018.09E-02 3.45E+021.85E+02 (+)(l) 00 00 ()(s) 

F03(10D) 8.41E+004.72E+00 7.40E+019.91E+00 (+)(l) 1.10E+012.63E-01 2.32E+014.04E+00 (+)(l) 00 00 ()(s) 

F04(10D) 4.06E-015.93E-02 6.52E+001.04E+00 (+)(l) 4.20E-016.02E-02 1.50E+005.02E-01 (+)(l) 3.62E-037.10E-03 1.43E-02 2.14E-02 (+)(l) 

F05(10D) 5.19E+015.91E+01 8.67E+018.02E+01 (+)(m) 1.53E-011.54E-01 1.32E-011.77E-01 (-)(s) 00 00 ()(s) 

F06(10D) 3.68E-012.17E-01 2.24E+013.39E+01 (+)(l) 3.66E-012.43E-01 1.61E-01 1.89E-01 (-)(l) 7.17E-021.80E-01 7.17E-021.80E-01()(s) 

F07(10D) 3.62E+015.49E+01 1.64E+013.60E+01 (-)(l) 1.47E-011.92E-01 1.30E-011.76E-01 (-)(s) 6.33E-041.04E-03 1.38E-031.66E-03 (+)(l) 

F08(10D) 00 3.37E+027.96E+01 (+)(l) 00 00 ()(s) 00 00 ()(s) 

F09(10D) 00 5.43E-041.18E-03 (+)(l) 00 00 ()(s) 00 00 ()(s) 

F10(10D) 4.81E+011.20E-01 5.25E+015.84E-01 (+)(l) 4.81E+011.20E-01 4.85E+011.59E-01 ()(s) 1.88E-031.00E-03 1.93E-03 9.41E-04(+)(s) 

F01(20D) 00 1.97E+085.10E+07 (+)(l) 00 00 ()(s) 00 00 ()(s) 

F02(20D) 4.22E+002.16E+01 2.74E+032.92E+02 (+)(l) 3.71E-016.50E-02 6.43E+002.77E+00 (+)(l) 00 00 ()(s) 

F03(20D) 1.60E+018.78E+00 1.87E+021.79E+01 (+)(l) 2.02E+010.00E+00 2.34E+014.32E+00 (+)(l) 00 00 ()(s) 

F04(20D) 8.14E-011.13E-01 1.73E+011.80E+00 (+)(l) 7.65E-018.46E-02 2.75E+002.32E+00 (+)(l) 1.62E-021.70E-02 3.16E-021.52E-02 (+)(l) 

F05(20D) 1.18E+021.04E+02 1.19E+033.36E+02 (+)(l) 8.46E-019.04E-01 1.97E+002.58E+00 (+)(l) 00 00 ()(s) 

F06(20D) 2.10E+001.84E+00 3.13E+021.20E+02 (+)(l) 8.47E-015.75E-01 2.11E+002.38E+00 (+)(l) 2.13E-022.48E-02 3.90E-021.82E-02 (+)(l) 

F07(20D) 5.51E+018.32E+01 2.95E+021.58E+02 (+)(l) 8.01E-011.45E-01 1.38E+002.13E+00 (+)(l) 9.71E-031.18E-02 1.52E-021.05E-02 (+)(s) 

F08(20D) 1.72E+003.91E+00 1.08E+031.49E+02 (+)(l) 00 3.29E+005.78E+00 (+)(l) 00 00 ()(s) 

F09(20D) 00 5.55E+011.28E+01 (+)(l) 00 00 ()(s) 00 00 ()(s) 

F10(20D) 5.01E+014.73E+00 5.86E+011.64E+00 (+)(l) 4.88E+016.53E-02 4.88E+012.70E-02 ()(s) 4.12E-031.72E-03 4.29E-031.54E-03 (+)(s) 

+//- NA 19/0/1 NA 10/7/3 NA 7/13/0 
Adjusted 
p-value NA 0.0008 NA 0.0201 NA 0.0707 

#“s”, “m”, and “l” mean the effect size 𝑑 is regarded as: small if 0.2⩽𝑑<0.5; medium if 0.5⩽𝑑<0.8, and large if 0.8< 𝑑, respectively. 
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C. Comparisons on Multi-/Many-objective Optimization 
Problems 

Table II gives the comparison results among LEO-based 
algorithms and their original versions on multi-objective 
optimization problems. The results indicate that the LEO is also 
very effective in improving the optimization efficiency of EC 
algorithms on multi-/many-objective problems. As shown in 
Table II, L-NSGA-II, L-MOEA/D, and L-RVEA can obtain 
significantly better IGD results than NSGA-II, MOEA/D, and 
RVEA on 14, 9, and 6 problems, and have worse results only on 
8, 8, and 5 problems, respectively. Moreover, Table II shows 
that the NSGA-II has more improvement than the MOEA/D 
and RVEA when integrated with LEO. This may be due to that 
when the number of objectives increases, the number of the 
non-dominated solution increases dramatically and the 
NSGA-II (i.e., the non-dominated selection-based algorithm) is 
difficult to conduct environmental selection to select 
high-quality solutions into the next generation for better 
evolution. However, the LEO can directly evolve solutions 
toward the promising region, and therefore can improve the 
NSGA-II significantly. Overall, the results have shown the 

effectiveness of LEO on multi-/many-objective optimization 
problems. 

D. Comparisons on High-dimensional Optimization Problems 

To examine the proposed LEO on more higher-dimensional 
problems, this part compares L-PSO, L-DE, and 
L-NL-SHADE-RSP with PSO, DE, and NL-SHADE-RSP, 
respectively, on optimization problems with 100 dimensions. 
The number of fitness evaluations for different algorithms is set 
the same as 1106. Table III gives the comparison results 
between LEO-based algorithms and their original versions. As 
can be seen in Table III, L-PSO, L-DE, and 
L-NL-SHADE-RSP can significantly outperform PSO, DE, 
and NL-SHADE-RSP on 10, 8, and 6 problems with 100 
dimensions, respectively, but have worse results on none of the 
problems. Moreover, according to the p-values, L-PSO, L-DE, 
and L-NL-SHADE-RSP have significantly better overall 
performance than PSO, DE, and NL-SHADE-RSP on the 10 
problems. Therefore, the experimental results further verify the 
superiority of the LEO on higher-dimensional problems. 

E. Time Efficiency Analysis of the LEO 

The above results have experimentally verified the 

TABLE II 
COMPARISONS OF IGD RESULTS BETWEEN LEO-BASED ALGORITHMS AND THE ORIGINAL ALGORITHMS ON MULTI-OBJECTIVE OPTIMIZATION PROBLEMS 

Prob. 
# 

obj. 
L-NSGA-II NSGA-II L-MOEA/D MOEA/D L-RVEA RVEA 

D
T

L
Z

1 

5 2.33E+001.46E+00 1.28E+007.33E-01(-)(l) 2.34E-013.63E-01  2.88E-013.67E-01(+)(s) 4.63E-012.75E-01  4.69E-013.06E-01()(s) 

10 2.12E+016.97E+00 2.30E+019.76E+00(+)(m) 3.39E-013.18E-01  1.03E-012.23E-03(-)(l) 4.96E-014.33E-01  1.95E-019.76E-02(-)(l) 

15 2.30E+011.06E+01 3.27E+011.47E+01(+)(l) 3.19E-011.82E-01  3.92E-013.14E-01(+)(m) 6.10E-014.77E-01  7.15E-018.64E-01()(s) 

20 2.66E+011.31E+01 3.39E+011.43E+01(+)(l) 3.72E-011.90E-01  4.79E-013.66E-01(+)(m) 8.20E-016.15E-01  9.75E-018.96E-01(+)(m) 

D
T

L
Z

2 

5 2.54E-011.30E-02  2.83E-011.37E-02(+)(l) 2.13E-015.04E-04  2.13E-015.35E-04()(s) 2.12E-018.15E-04  2.14E-015.52E-04()(l) 

10 1.44E+001.85E-01  1.37E+001.36E-01(-)(m) 5.36E-015.05E-02  4.13E-012.89E-03(-)(l) 5.33E-015.97E-02  4.25E-011.59E-03(-)(l) 

15 1.51E+001.57E-01  1.40E+009.42E-02(-)(l) 1.10E+008.98E-02  1.11E+009.05E-02()(s) 9.22E-011.31E-01  9.56E-011.08E-01(+)(m) 

20 1.54E+001.24E-01  1.51E+009.12E-02()(s) 8.93E-012.02E-02  9.00E-017.49E-02()(s) 1.00E+001.00E-01  1.01E+001.04E-01()(s) 

D
T

L
Z

3 

5 6.13E+011.10E+01 3.67E+011.57E+01(-)(l) 1.17E+018.53E+00 1.93E+011.14E+0(+)(l) 1.24E+015.93E+00 1.44E+016.82E+00(+)(m) 

10 7.84E+021.40E+02 7.85E+021.76E+02()(s) 9.42E+005.75E+00 1.40E+001.35E+00(-)(l) 1.29E+015.38E+00 9.39E+004.08E+00(-)(l) 

15 6.77E+021.75E+02 7.66E+021.78E+02(+)(l) 1.10E+018.23E+00 1.00E+016.62E+00()(s) 2.21E+011.27E+01 2.10E+011.30E+01(-)(s) 

20 6.65E+022.10E+02 7.35E+021.36E+02(+)(l) 1.43E+017.74E+00 1.28E+016.90E+00(-)(s) 2.44E+011.37E+01 2.63E+019.97E+00(+)(s) 

D
T

L
Z

4 

5 2.61E-012.52E-02  2.80E-01.26E-02(+)(l) 6.42E-012.29E-01  6.55E-012.04E-01(+)(s) 2.22E-013.89E-02  2.72E-011.12E-01(+)(l) 

10 9.56E-018.38E-02  1.40E+001.10E-01(+)(l) 9.20E-011.33E-01  7.33E-011.09E-01(-)(l) 5.92E-015.81E-02  4.43E-012.67E-03(-)(l) 

15 1.13E+007.83E-02  1.44E+001.11E-01(+)(l) 1.10E+001.38E-01  1.11E+001.32E-01()(s) 8.82E-018.40E-02  8.95E-017.39E-02()(s) 

20 1.22E+007.30E-02  1.46E+008.17E-02(+)(l) 1.16E+001.27E-01  1.19E+001.21E-01()(m) 8.87E-015.84E-02  9.01E-015.89E-02()(m) 

D
T

L
Z

5 

5 1.62E-014.20E-02  1.39E-013.34E-02(-)(l) 2.16E-021.60E-03  2.22E-021.73E-03()(m) 2.12E-016.63E-02  2.16E-017.93E-02()(s) 

10 3.36E-019.32E-02  2.58E-017.55E-02(-)(l) 7.71E-028.47E-03  1.87E-023.19E-04(-)(l) 4.05E-011.63E-01  3.85E-017.49E-02()(s) 

15 4.74E-011.85E-01  6.26E-011.61E-01(+)(l) 3.73E-011.96E-01  3.74E-011.89E-01()(s) 6.59E-011.25E-01  6.65E-011.31E-01()(s) 

20 5.36E-012.23E-01  6.46E-012.26E-01(+)(m) 2.65E-011.10E-01  2.37E-015.54E-03(-)(m) 6.40E-011.44E-01  6.35E-011.44E-01()(s) 

D
T

L
Z

6 

5 4.53E+001.16E+00 4.88E+007.50E-01(+)(m) 2.12E-013.77E-01 2.42E-014.53E-01(+)(s) 3.59E-012.25E-01  2.95E-012.07E-01()(m) 

10 7.50E+008.91E-01  6.03E+007.91E-01(-)(l) 1.95E-013.81E-01 2.45E-017.14E-01(+)(s) 5.20E-014.00E-01  3.50E-012.21E-01()(l) 

15 7.85E+006.35E-01  7.78E+007.45E-01()(s) 4.91E-012.28E-01  4.59E-012.26E-01(-)(s) 6.77E-013.74E-01  6.64E-012.74E-01()(s) 

20 8.00E+007.11E-01  7.88E+005.91E-01()(s) 2.38E-016.53E-04  2.38E-011.56E-03()(s) 9.37E-017.37E-01  1.07E+007.31E-01(+)(s) 

D
T

L
Z

7 

5 6.91E-018.87E-02  6.74E-015.62E-02()(m) 1.07E+001.91E-01  1.04E+001.36E-01()(s) 6.04E-016.74E-02  6.08E-016.75E-02 ()(s) 

10 9.08E+002.81E+00 6.75E+002.12E+00(-)(l) 2.12E+003.71E-01  2.36E+005.08E-01(+)(l) 1.68E+001.49E-01  1.67E+002.58E-01()(s) 

15 2.17E+013.82E+00 2.45E+014.27E+00(+)(l) 6.56E+008.88E-01 6.54E+001.12E+00()(s) 2.53E+003.33E-01  2.61E+003.76E-01()(m) 

20 3.43E+015.26E+00 3.45E+017.29E+00()(m) 3.38E+006.65E-01  3.59E+005.59E-01(+)(m) 3.25E+008.65E-01  3.27E+008.40E-01()(s) 

+//- NA 14/6/8 NA 9/11/8 NA 6/17/5 
Adjusted 
p-value NA 0.0325 NA 0.4227 NA 0.1967 
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effectiveness of LEO in improving the optimization results. 
Therefore, this part further investigates the time efficiency of 
the LEO for solving optimization problems. To study the time 
efficiency of LEO, this paper proposes a novel indicator metric 
named error reduction versus time increase rate (i.e., ETR), 
which can measure the benefit of additional time cost when 
using LEO (i.e., can be treated as a measurement of cost 
performance). Mathematically, given two algorithms A and B, 
where A requires more computational time cost than B but has 
better performance than B, the ETR of A over B is defined as 

 
ERR( , )

ETR( , )
TIR( , )

A B
A B

A B
  (12) 

where ERR(A, B) is the optimization error reduction rate of A 
over B, and the TIR(A, B) is the time cost increase rate of A over 
B. For a minimization optimization problem, the ERR(A, B) can 
be computed as 

  
 

E

 

RR

 

,  
100%,     if 

0,                         otherwise

B A
B A

B

E

EA B

E
E E

   



 (13) 

where EA and EB are the optimization error of A and B, 
respectively. If ERR(A, B) is 0, then A has no error reduction 
over B, i.e., no accuracy improvement when compared with B. 
Moreover, the TIR(A, B) can be calculated as: 

   %T 1IR  0, 0A B

B

T T

T
A B


   (14) 

where TB and TA represent the computational time cost of A and 
B, respectively. Therefore, ETR(A, B) can measure how many 
percentages of optimization error reduction A can obtain over B 
for each increased percentage of time cost. 

Based on the ETR, this part studies the time efficiency of 
LEO by analyzing the ETR of L-PSO over PSO in different 
situations. To be specific, this part analyzes the ETR(L-PSO, 
PSO) on F01 to F10 at 10D with five computational time cost 
settings in fitness evaluation (i.e., the time cost of each fitness 
evaluation in the five scenarios requires 0.1, 0.5, 1, 1.5, and 2 
ms, respectively). The five settings of time cost are 
implemented by using a time-delay operation in the fitness 
evaluation. For brevity and simplicity, the following contents 
simply refer ETR as ETR(L-PSO, PSO). The ETR results are 
plotted in Fig. 5, and the running time of L-PSO and PSO are 

also given in Table S.III. 
From Fig. 5, we can have two important observations. First, 

the ETR increases nearly linearly as the time cost of fitness 
evaluation increases on most problems. This suggests that the 
more expensive the fitness evaluation cost is, the more efficient 
the LEO method will be (one percentage increase in time cost 
can bring in more percentages of error reduction). In fact, the 
computational time cost of one fitness evaluation in various 
real-world applications can be very expensive, e.g., several 
hours to several days [4], which are much more expensive than 
the highest settings in this experiment (i.e., 2 ms). Second, 
when the time cost of each evaluation is larger than 0.5 ms, the 
ETR is very remarkable, and when the time cost of each 
evaluation is 2 ms, the ETR is about 14 on most problems, i.e., 
every increased percentage of time cost when using LEO can 
result in about 14 percentage of optimization error reduction. 
These results have shown the great potential and advantage of 
LEO. In addition, the running time given in Table S.III shows 
that the L-PSO just requires a small percentage of additional 
running time when compared with PSO when the time cost of 
fitness evaluation is larger than 1 ms. Based on the above, it can 
be concluded that the additional time cost for using LEO is 
considerably economical and deserved, and the LEO is very 
efficient in turning the computational cost into the performance 
improvement of the algorithm. 
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Fig. 5. The ETR of L-PSO over PSO on different functions at 10D under 
different time costs in each fitness evaluation, where the larger ETR value 
means the better efficiency. 

TABLE III  
COMPARISONS BETWEEN LEO-BASED ALGORITHMS AND THE ORIGINAL ALGORITHMS ON PROBLEMS WITH 100 DIMENSIONS 

Problem L-PSO PSO L-DE DE L-NL-SHADE-RSP NL-SHADE-RSP 

F01 00 7.33E+097.75E+08(+)(l) 00 2.54E-071.65E-07(+)(l) 00 00()(s) 

F02 1.17E+033.65E+02 2.74E+041.03E+03(+)(l) 3.51E+004.70E-01 2.55E+041.75E+03(+)(l) 2.85E-061.69E-07 3.15E-073.82E-08()(l) 

F03 2.00E+024.52E+01 1.32E+034.45E+01(+)(l) 1.66E+022.20E+01 8.49E+024.64E+01(+)(l) 1.78E-074.49E-08 2.37E-079.57E-08()(l) 

F04 6.08E+011.32E+01 1.98E+022.71E+01(+)(l) 2.51E+019.67E-01 7.50E+013.05E+00(+)(l) 4.34E-015.57E-01 2.14E+004.77E+00(+)(l) 

F05 2.16E+035.63E+02 1.28E+083.60E+07(+)(l) 2.64E+021.32E+02 2.67E+031.24E+03()(l) 4.17E+019.53E+00 1.48E+024.49E+02(+)(m) 

F06 2.56E+021.77E+02 6.99E+035.03E+02(+)(l) 1.79E+014.80E+00 4.00E+031.05E+03(+)(l) 4.98E+001.47E+00 2.24E+012.67E+00(+)(l) 

F07 1.34E+032.98E+02 1.09E+083.40E+07(+)(l) 1.36E+021.80E+02 6.71E+026.71E+02(+)(l) 5.12E-028.99E-03 9.14E+011.57E+01(+)(l) 

F08 1.39E+038.20E+01 1.09E+045.53E+02(+)(l) 1.25E+022.57E+01 2.66E+027.12E+01(+)(l) 1.39E+002.20E+00 3.23E+016.95E+02(+)(s) 

F09 1.52E+023.46E+01 1.05E+034.15E+01(+)(l) 1.88E+004.60E+00 7.27E+001.40E+01(+)(l) 1.52E-023.46E-01 1.93E-023.51E-04()(s) 

F10 6.66E+024.67E+01 1.05E+038.74E+01(+)(l) 5.24E+022.66E+01 5.44E+023.51E+01()(l) 2.67E-023.67E-01 3.86E-021.41E-01(+)(s) 

+//- NA 10/0/0 NA 8/2/0 NA 6/4/0 
Adjusted 
p-value NA 0.0016 NA 0.0016 NA 0.0269 
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In addition, to provide a fair comparison from the aspect of 
the same running time, this part further compares the LEO-PSO, 
LEO-DE, and LEO-NL-SHADE-RSP with their original 
version under the same running time. To do this, the running 
time of all algorithms are set the same as 240 seconds, i.e., 4 
minutes. Similar to the setting for Fig. 5, the time cost of each 
fitness evaluation is set as 1 ms controlled by a time-delay 
operation. The comparison results are given in Table S.II of the 
supplementary material. As shown in Table S.II, when using 
the same running time, L-PSO, L-DE, and L-NL-SHADE-RSP 
can significantly outperform PSO, DE, and NL-SHADE-RSP 
on 9, 5, and 3 problems, and only have worse results on 1, 1, 
and 0 problems, respectively. Moreover, according to the 
adjusted p-value, the L-PSO and L-DE are significantly better 
than PSO and DE over the multiple problems, respectively. 
Although the L-NL-SHADE-RSP and NL-SHADE-RSP have 
similar results over multiple problems based on the adjusted 
p-value, the L-NL-SHADE-RSP can still outperform 
NL-SHADE-RSP on F04, F07, and F10. Based on the above, 
the LEO-based algorithms are still efficient when compared 
with the baseline algorithms with the same running time. 

F. Effectiveness of Learning-aided Evolutionary Operator 

This paper proposes to use the learning-aided evolutionary 
operator with ANN to generate promising individuals, rather 
than directly using the output solutions of ANN to make up the 
new population. Therefore, this part studies whether using the 
output solutions of ANN directly can work. To do this, a new 
L-PSO variant named ANN-PSO is developed, where during 
the learning-aided process (refer to line 12 of Algorithm 1), the 
learning-aided evolutionary operator is not used while the 
output solution of ANN is used directly as the new individual. 
That is, the Eq. (6) and Eq. (7) are not used. 

The comparison results between L-PSO and ANN-PSO are 
given in Table IV. As can be seen, according to the adjusted 
p-value, the L-PSO is significantly different from the 
ANN-PSO on the multiple test problems. Moreover, the L-PSO 
greatly outperforms ANN-PSO on 8 of the 10 problems. In 
addition, the L-PSO obtains the best results on all the 10 
problems. These results show the great superiority of L-PSO 
over ANN-PSO. This may be due to that although an ANN is 
used to learn how to generate promising individuals in the 
ANN-PSO, the ANN is misled by the local optima found in the 
early evolutionary stage and then produce new individuals 
around local optima, which results in the poor performance of 
the ANN-PSO. Differently, the learning-aided evolutionary 
operator used in L-PSO can generate new individuals based on 
the individuals produced by ANN and the individuals in current 
populations, which has more diversity and can enhance the 
optimization results. Overall, the learning-aided evolutionary 
operator is effective for enhancing the algorithm results. 

G. Influence of Learning Probability 

To study the influence of lp in LEO-based algorithms, this 
part compares the L-PSO with its variants using different lp 
values. That is, the L-PSO(lp=0.5) is compared with 
L-PSO(lp=0.1), L-PSO(lp=0.3), L-PSO(lp=0.7), 
L-PSO(lp=0.9). The comparison results are shown in Table V. 
In general, according to the adjusted p-value, the L-PSO(lp=0.5) 
has no significant difference from the rest four variants over the 

10 problems. This shows that the proposed LEO is not sensitive 
to the learning probability. Moreover, L-PSO(lp=0.5) can 
generate significantly better results than L-PSO(lp=0.1), 
L-PSO(lp=0.3), and  L-PSO(lp=0.9) on 4, 5, and 3 problems, 
and produce worse results only on 2, 0, and 3 problems, 
respectively. Moreover, when compared with L-PSO(lp=0.7), 
L-PSO(lp=0.5) has a similar performance in general, e.g., has 
similar results on 8 problems. The above results may be due to 
that both too small lp (e.g., lp=0.1) and too large lp (e.g., lp=0.9) 
will deteriorate the algorithm performance and an appropriate 
lp (e.g., lp=0.5 or 0.7) can make a good balance between the 
traditional evolutionary process and learning-aided 
evolutionary process to obtain better results. Moreover, the 
experimental results also suggest that lp=0.5 can be a good 
setting, and therefore lp=0.5 is recommended in this paper. 

H. Influence of Archive Size 

To investigate the influence of arch_size in LEO-based 
algorithms, this part compares the L-PSO with its variants 
using different arch_size. To be specifically, the 
L-PSO(arch_size=100) is compared with 
L-PSO(arch_size=50), L-PSO(arch_size=200), 
L-PSO(arch_size=300), and L-PSO(arch_size=400). The 
comparison results can be seen in Table VI. In general, 
according to the adjusted p-value, the different L-PSO variants 
generate similar optimization results over the ten test problems. 
To be more specifically, L-PSO(arch_size=100) produce 
significantly better results than L-PSO(arch_size=50), 
L-PSO(arch_size=200), L-PSO(arch_size=300), and 
L-PSO(arch_size=400) on 3, 1, 1, and 2 problems, and worse 
results on 1, 1, 2, and 2 problems, respectively. Moreover, the 
L-PSO(arch_size=100) performs similar to 
L-PSO(arch_size=50), L-PSO(arch_size=200), 
L-PSO(arch_size=300), and L-PSO(arch_size=400) on 6, 8, 7, 
and 6 problems, respectively. The above results indicate that 
the L-PSO is not that sensitive to the settings of arch_size, and 
arch_size=100 can be enough for learning the evolution 
knowledge in PSO. In addition, as a larger arch_size (i.e., more 
successful solution pairs for training) requires more 
computation cost, the arch_size=100 can be adopted to obtain a 
better balance between the optimization results and 
computational burden, and therefore is recommended herein. 

TABLE IV  
COMPARISONS BETWEEN L-PSO AND ANN-PSO 

Problem L-PSO ANN-PSO 

F01(10D) 00 00 ()(s) 

F02(10D) 4.10E+002.16E+01 1.17E+021.46E+02(+)(l) 

F03(10D) 8.41E+004.72E+00 1.12E+014.27E+00(+)(l) 

F04(10D) 4.06E-015.93E-02 9.41E-015.04E-01(+)(l) 

F05(10D) 5.19E+015.91E+01 8.67E+019.09E+01(+)(m) 

F06(10D) 3.68E-012.17E-01 6.99E+002.16E+01(+)(m) 

F07(10D) 3.62E+015.49E+01 5.63E+018.55E+01(+)(m) 

F08(10D) 00 1.37E+011.63E+01(+)(l) 

F09(10D) 00 5.12E-011.58E+00(+)(m) 

F10(10D) 4.81E+011.20E-01 4.81E+012.95E-01()(s) 

Number of +//- NA 8/2/0 

Adjusted p-value NA 0.0044 
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I. Influence of Learning Parameters 

This part studies the influence of two learning parameters, 
i.e.,  and . To begin with, to study the influence of  in 
LEO-based algorithms, this part compares the L-PSO with its 
variants with different  values. That is, the L-PSO(=0.5) is 
compared with L-PSO(=0.1), L-PSO(=0.3), L-PSO(=0.7), 
and L-PSO(=0.9). The comparison results are shown in Table 
VII. In general, according to the adjusted p-value, the 
L-PSO(=0.5) has no significant difference from the other four 
variants over the 10 problems. Moreover, the L-PSO(=0.5) 
performs similarly to L-PSO(=0.1), L-PSO(=0.3), 
L-PSO(=0.7), and L-PSO(=0.9) on 8, 9, 9, and 10 problems, 
respectively. This shows that the LEO is not sensitive to the 
setting of . Moreover, as L-PSO(=0.5) can generate the best 
results on 6 problems (as marked in boldface) among the five 
algorithms, which is the most, the =0.5 is used in this paper. 

Moreover, this part also studies the influence of  by 
comparing the L-PSO with its variants with different  values. 
That is, the L-PSO(=0.9) is compared with L-PSO(=0.1), 
L-PSO(=0.3), L-PSO(=0.5), and L-PSO(=0.7). The 
comparison results are shown in Table VIII. As can be seen, the 
L-PSO(=0.9) significantly outperforms L-PSO(=0.1) and 
L-PSO(=0.3) on 3 and 5 problems, and performs similarly to 
L-PSO(=0.5) and L-PSO(=0.7) on 9 and 8 problems. This 
suggests that larger  can yield better results. This may be due 

to that a larger   encourages the individuals to learn more 
dimensions from the individual produced by ANN, which 
enhance the optimization efficiency. In addition, according to 
the adjusted p-value, the L-PSO(=0.9) has no significant 
difference with L-PSO(=0.1), L-PSO(=0.5), and 
L-PSO(=0.7) over the multiple problems, and only have 
significant difference with L-PSO(=0.3). Therefore, the 
L-PSO is not that sensitive to the  value. 

J. Influence of ANN Hyperparameter 

This part studies the influence of the ANN hyperparameter. 
The L-PSO is compared with its variants using different 
numbers of hidden neurons. That is, the L-PSO(Nh=3D) is 
compared with L-PSO(Nh=1D), L-PSO(Nh=2D), 
L-PSO(Nh=4D), and L-PSO(Nh=5D), where Nh denotes the 
number of hidden neurons and D is the problem dimension. The 
comparison results are shown in Table S.IV of the 
supplementary material. As can be seen in Table S.IV, the 
L-PSO(Nh=3D) performs similarly to L-PSO(Nh=1D), 
L-PSO(Nh=2D), L-PSO(Nh=4D), and L-PSO(Nh=5D) on 
10, 9, 10, and 10 problems, respectively. Moreover, according 
to the adjusted p-value, the L-PSO(Nh=3D) performs similarly 
to the rest four variants. That is, the results produced by L-PSO 
variants with different numbers of hidden neurons are very 
similar. This may be due to the fact that the ANN is a powerful 
learning system and can still learn the evolution knowledge 
efficiently when using a slightly different hyperparameter. 

TABLE V  
COMPARISONS AMONG L-PSO VARIANTS WITH DIFFERENT LEARNING PROBABILITIES 

Problem L-PSO(lp=0.5) L-PSO(lp=0.1) L-PSO(lp=0.3) L-PSO(lp=0.7) L-PSO(lp=0.9) 

F01(10D) 00 00 ()(s) 00 ()(s) 00 ()(s) 00 ()(s) 

F02(10D) 4.10E+002.16E+01 3.46E+016.82E+01 (+)(l) 8.66E+002.99E+01 (+)(s) 1.30E-018.35E-02 (-)(m) 1.25E-011.30E-01 (-)(m) 

F03(10D) 8.41E+004.72E+00 8.10E+004.97E+00 (-)(s) 8.43E+004.73E+00 ()(s) 9.30E+004.23E+00 (+)(s) 1.05E+012.88E+00 (+)(l) 

F04(10D) 4.06E-015.93E-02 6.91E-011.39E-01 (+)(l) 4.86E-018.03E-02 (+)(l) 3.57E-015.84E-02 ()(l) 3.38E-015.46E-02 (-)(l) 

F05(10D) 5.19E+015.91E+01 6.21E+017.53E+01 (+)(s) 6.16E+016.72E+01 (+)(s) 5.33E+015.72E+01 ()(s) 3.40E+015.35E+01 (-)(m) 

F06(10D) 3.68E-012.17E-01 9.76E-012.10E+00 (+)(m) 3.94E-012.36E-01 (+)(s) 3.61E-011.75E-01 ()(s) 4.28E-012.50E-01 (+)(m) 

F07(10D) 3.62E+015.49E+01 2.28E+014.41E+01(-)(m) 4.01E+016.33E+01 (+)(s) 3.78E+015.97E+01 ()(s) 4.05E+002.16E+01 (+)(l) 

F08(10D) 00 00 ()(s) 00 ()(s) 00 ()(s) 00 ()(s) 

F09(10D) 00 00 ()(s) 00 ()(s) 00 ()(s) 00 ()(s) 

F10(10D) 4.81E+011.20E-01 4.81E+011.41E-01 ()(s) 4.81E+011.97E-01 ()(s) 4.81E+011.51E-01 ()(s) 4.82E+013.28E-01 ()(m) 

Number of +//- NA 4/4/2 5/5/0 1/8/1 3/4/3 

Adjusted p-value NA 0.3222 0.3222 0.8875 0.9436 
 

TABLE VI 
COMPARISONS AMONG L-PSO VARIANTS WITH DIFFERENT ARCHIVE SIZES FOR COLLECTING TRAINING DATA 

Problem 
L-PSO 

(arch_size=100) 
L-PSO 

(arch_size=50) 
L-PSO 

(arch_size=200) 
L-PSO 

(arch_size=300) 
L-PSO 

(arch_size=400) 

F01(10D) 00 00 ()(s) 00 ()(s) 00 ()(s) 00 ()(s) 

F02(10D) 4.10E+002.16E+01 8.60E+004.56E+01 (+)(s) 1.06E+015.70E+01 (+)(s) 1.05E+015.70E+01 (+)(s) 8.49E+004.56E+01 (+)(s) 

F03(10D) 8.41E+004.72E+00 8.78E+004.47E+00 (+)(s) 8.48E+004.76E+00 ()(s) 8.50E+004.77E+00 ()(s) 8.45E+004.74E+00 ()(s) 

F04(10D) 4.06E-015.93E-02 4.06E-015.22E-02 ()(s) 3.97E-017.60E-02 ()(s) 4.08E-018.04E-02 ()(s) 4.04E-016.29E-02 ()(s) 

F05(10D) 5.19E+015.91E+01 5.18E+016.03E+01 ()(s) 5.21E+016.69E+01 ()(s) 5.10E+016.45E+01 ()(s) 4.74E+015.92E+01 (-)(s) 

F06(10D) 3.68E-012.17E-01 4.24E-012.56E-01 (+)(m) 3.49E-012.33E-01 ()(s) 3.27E-011.89E-01 (-)(m) 3.82E-012.52E-01 (+)(s) 

F07(10D) 3.62E+015.49E+01 2.44E+014.80E+01(-)(m) 3.16E+015.92E+01 (-)(s) 2.44E+014.79E+01(-)(m) 2.84E+015.07E+01 (-)(s) 

F08(10D) 00 00 ()(s) 00 ()(s) 00 ()(s) 00 ()(s) 

F09(10D) 00 00 ()(s) 00 ()(s) 00 ()(s) 00 ()(s) 

F10(10D) 4.81E+011.20E-01 4.81E+011.08E-01 ()(s) 4.81E+019.43E-02 ()(s) 4.81E+011.06E-01 ()(s) 4.81E+011.06E-01 ()(s) 

Number of +//- NA 3/6/1 1/8/1 1/7/2 2/6/2 

Adjusted p-value NA 0.6206 0.7237 1.0000 0.6206 
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Overall, the LEO is robust and is not sensitive to the network 
hyperparameter, and the original setting (i.e., Nh=3D) is 
recommended. 

V. CONCLUSION 

 In this paper, an innovative LEO framework for EC 
algorithms has been proposed. In the LEO, the ANN is adopted 
as the learning system to learn the SEPs collected from the 
evolutionary process, and then the learned evolution 
knowledge is applied to promote the solution evolution. As a 
result, the candidate solution can evolve directly toward a more 
promising region, which is more straightforward and efficient 
than traditional evolutionary operators. 

To evaluate the LEO framework, the performance of some 
state-of-the-art and champion algorithms are compared with 
those of their LEO-based variants on both single-objective and 
multi-/many-objective optimization problems. In these 
experiments, the LEO-based algorithms achieve better 
performance than those without LEO. The experimental results 
show that solutions can not only avoid the dilemma of being 
unable to extract enough information to enhance evolution but 
also achieve faster convergence speed via the LEO framework, 
especially when encountered with high-dimensional problems. 
Moreover, a novel ETR indicator has been proposed to measure 
the time efficiency of the LEO, and the simulation experimental 
results have shown that the additional time cost for using LEO 
is greatly economical and deserved, especially when the fitness 
evaluation is very expensive. Therefore, although the concept 

and core idea of the proposed LEO framework is simple and 
easy to understand, it is very effective and efficient, which 
leads to a novel and more efficient paradigm for EC algorithms 
in solving global optimization problems. Moreover, the ETR 
indicator is a general metric that can be promoted in the EC 
community for measuring the cost performance of different EC 
algorithms. 

Nevertheless, there may still have some room for enhancing 
the proposed LEO framework and LEO-based algorithms. First, 
the difficulties of complex problems may pose new challenges 
to the LEO-based algorithms, e.g., multi-objective problems 
with irregular feasible regions [58], complex Pareto fronts [59], 
and a large number of objectives [60], which should be 
well-studied. Second, if the fitness evaluation of the problem is 
expensive to access, there will be only few-shot solutions that 
can be evaluated with the real fitness evaluation. In such case, 
how to efficiently use the limited training data should be 
well-studied. 

Therefore, in the future, we will not only enhance the 
LEO-based algorithms to well address the above issues, but 
also hope to extend the idea of knowledge learning to more 
research aspects of EC and real-world application problems, 
such as large-scale problems [25]-[63], multimodal problems 
[64][65], and multi-task problems [66][67]. Moreover, the 
automatic optimization of the network architecture and 
parameter of the LEO learning system for different scenarios 
will be worthy of study [68]. Additionally, the implementation 
of the LEO with powerful computation techniques, such as 

TABLE VII  
COMPARISONS AMONG L-PSO VARIANTS WITH DIFFERENT  VALUES 

Problem L-PSO(=0.5) L-PSO(=0.1) L-PSO(=0.3) L-PSO(=0.7) L-PSO(=0.9) 

F01(10D) 00 00 ()(s) 00 ()(s) 00 ()(s) 00 ()(s) 

F02(10D) 4.10E+002.16E+01 4.22E+002.16E+01()(s) 3.46E+009.47E+00()(s) 4.20E+001.33E+01()(s) 4.10E+002.16E+01()(s) 

F03(10D) 8.41E+004.72E+00 8.87E+004.52E+00()(s) 8.66E+004.71E+00()(s) 8.35E+005.13E+00()(s) 8.41E+004.72E+00()(s) 

F04(10D) 4.06E-015.93E-02 6.00E-011.46E-01(+)(l) 4.49E-017.69E-02()(l) 4.14E-015.74E-02()(s) 4.06E-015.93E-02()(s) 

F05(10D) 5.19E+015.91E+01 6.88E+017.77E+01(+)(m) 6.75E+018.55E+01(+)(m) 6.44E+015.24E+01(+)(m) 5.19E+015.91E+01()(s) 

F06(10D) 3.68E-012.17E-01 4.10E-012.88E-01()(s) 3.91E-012.02E-01()(s) 3.55E-011.43E-01()(s) 3.68E-012.17E-01()(s) 

F07(10D) 3.62E+015.49E+01 3.24E+015.30E+01()(s) 3.45E+015.45E+01()(s) 3.20E+013.61E+01()(s) 3.62E+015.49E+01()(s) 

F08(10D) 00 00 ()(s) 00 ()(s) 00 ()(s) 00 ()(s) 

F09(10D) 00 00 ()(s) 00 ()(s) 00 ()(s) 00 ()(s) 

F10(10D) 4.81E+011.20E-01 4.82E+011.74E-01()(m) 4.82E+012.70E-01()(m) 4.81E+011.26E-01()(s) 4.81E+011.20E-01()(s) 

Number of +//- NA 2/8/0 1/9/0 1/9/0 0/10/0 

Adjusted p-value NA 0.1612 0.8665 1.0000 1.0000 
 

TABLE VIII 
COMPARISONS AMONG L-PSO VARIANTS WITH DIFFERENT   VALUES 

Problem L-PSO(=0.9) L-PSO(=0.1) L-PSO(=0.3) L-PSO(=0.5) L-PSO(=0.7) 

F01(10D) 00 00 ()(s) 00 ()(s) 00 ()(s) 00 ()(s) 

F02(10D) 4.10E+002.16E+01 3.46E+016.82E+01(+)(l) 4.37E+017.31E+01(+)(l) 8.03E+003.00E+01()(s) 1.33E+017.82E-02(+)(l) 

F03(10D) 8.41E+004.72E+00 8.10E+004.97E+00()(s) 1.10E+013.77E+00(+)(l) 9.80E+004.29E+00()(m) 9.48E+004.32E+00()(m) 

F04(10D) 4.06E-015.93E-02 4.91E-011.39E-01()(m) 4.45E-011.99E-01()(m) 4.70E-019.18E-02()(m) 4.70E-019.18E-02()(m) 

F05(10D) 5.19E+015.91E+01 6.21E+017.53E+01(+)(s) 1.19E+021.30E+02(+)(l) 8.45E+018.62E+01(+)(m) 8.45E+018.62E+01(+)(m) 

F06(10D) 3.68E-012.17E-01 9.76E-012.10E+00(+)(m) 4.58E-014.28E-01(+)(s) 4.13E-015.30E-01()(s) 4.13E-015.30E-01()(s) 

F07(10D) 3.62E+015.49E+01 2.28E+014.41E+01(-)(m) 4.36E+017.28E+01(+)(s) 3.23E+015.30E+01()(s) 3.23E+015.30E+01()(s) 

F08(10D) 00 00 ()(s) 00 ()(s) 00 ()(s) 00 ()(s) 

F09(10D) 00 00 ()(s) 00 ()(s) 00 ()(s) 00 ()(s) 

F10(10D) 4.81E+011.20E-01 4.81E+011.41E-01()(s) 4.82E+014.20E-01()(m) 4.82E+013.35E-01()(m) 4.82E+013.35E-01()(m) 

Number of +//- NA 3/6/1 5/5/0 1/9/0 2/8/0 

Adjusted p-value NA 0.3222 0.0015 0.6093 0.6093 
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distributed computing [69][70], is also a potential research 
direction for future work. 
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