
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—Learning and optimization are the two essential
abilities of human beings for problem solving. Similarly,
computer scientists have made great efforts to design artificial
neural network (ANN) and evolutionary computation (EC) to
simulate the learning ability and the optimization ability for
solving real-world problems, respectively. These have been two
essential branches in artificial intelligence (AI) and computer
science. However, in humans, learning and optimization are
usually integrated together for problem solving. Therefore, how to
efficiently integrate these two abilities together to develop
powerful AI remains a significant but challenging issue.
Motivated by this, this paper proposes a novel learning-aided
evolutionary optimization (LEO) framework that plus learning
and evolution for solving optimization problems. The LEO is
integrated with the evolution knowledge learned by ANN from the
evolution process of EC to promote optimization efficiency. The
LEO framework is applied to both classical EC algorithms and
some state-of-the-art EC algorithms including a champion
algorithm, with benchmarking against the IEEE Congress on
Evolutionary Computation competition data. The experimental
results show that the LEO can significantly enhance the existing
EC algorithms to better solve both single-objective and
multi-/many-objective global optimization problems, suggesting
that learning plus evolution is more intelligent for problem solving.
Moreover, the experimental results have also validated the time
efficiency of the LEO, where the additional time cost for using
LEO is greatly deserved. Therefore, the promising LEO can lead
to a new and more efficient paradigm for EC algorithms to solve
global optimization problems by plus learning and evolution.

Index Terms—Evolutionary computation, learning-aided
evolution, artificial neural network, particle swarm optimization,
differential evolution, single-objective optimization,
multi-objective optimization, many-objective optimization

I. INTRODUCTION

earning and optimization are two basic abilities of human
beings for problem solving [1]. Similarly, artificial neural

networks (ANNs) for learning and evolutionary computation

Manuscript received XXXX; revised XXXX; accepted XXXX. This work
was supported in part by the National Natural Science Foundations of China
under Grant 62176094 and Grant 61873097, in part by the Guangdong Natural
Science Foundation Research Team under Grant 2018B030312003, in part by
the National Research Foundation of Korea (NRF-2022H1D3A2A01093478),
in part by the Hong Kong GRF-RGC General Research Fund under Grant
11209819 (CityU 9042816) and Grant 11203820 (CityU 9042598), and in part
by the Hong Kong Innovation and Technology Commission (InnoHK Project
CIMDA). (Corresponding authors: Zhi-Hui Zhan; Jun Zhang.)

Zhi-Hui Zhan and Jian-Yu Li are with the School of Computer Science and
Engineering, South China University of Technology, Guangzhou 510006,
China (e-mail: zhanapollo@163.com).

Sam Kwong is with the Department of Computer Science, City University of
Hong Kong, Hong Kong.

Jun Zhang is with the Zhejiang Normal University, Jinhua 321004, China,
and also with Hanyang University, Ansan, 15588, South Korea.

(EC) algorithms for optimization are the two typical branches
of artificial intelligence (AI), and both have obtained
significant developments along with the development of
computer science [2]. In general, the ANN is a kind of
connectionism AI that simulates the brain structure to assist
machine in learning knowledge, while the EC is a kind of
evolutionism AI that simulates the evolution phenomena and
intelligent behaviors of humans or swarm animals for problem
solving [2]-[4], both of which are essential tasks of AI.

Currently, the ANN-based learning branch has aroused great
attention due to the success of deep learning (DL) in various
real-world applications [5]-[7]. More significantly, EC
algorithms have also made the great pace in research and
applications [8]-[13]. EC algorithms were born in the 1960s,
when computer scientists designed EC algorithms such as the
genetic algorithm (GA) [14][15], evolution strategy [16], and
evolutionary programming [17]-[19] for solving optimization
problems. Since then, EC algorithms have attracted great
attention and interest in the global optimization community. EC
algorithms are promising because they do not require the strict
mathematical characteristics of the problem and can find the
global optimum or near-global optimum within an acceptable
time. Generally, EC is a common framework that simulates the
evolutionary mechanism of biology (e.g., GA [14] and
differential evolution (DE) [20]-[23]) and the swarm
intelligence behaviors of animals/insects (e.g., particle swarm
optimization (PSO) [24]-[26] and ant colony optimization
(ACO) [27]-[30])). The core idea of EC algorithms is “survival
of the fittest”. That is, new solutions are generated by
simulating evolutionary phenomena such as crossover and
mutation. Then, the new solutions (i.e., offspring) and the old
solutions (i.e., parents) compete to survive in the next
generation. This is similar to the principle of natural selection in
nature. By doing so, the solutions in the new generation are
expected to be better than those in the old generations.
Consequently, EC algorithms can gradually approach the
global optimum generation by generation. The generic
evolutionary framework of an EC algorithm is illustrated in the
top of Fig. 1, where g is the generation index and will be
increased by g=g+1 after the selection until the algorithm
termination criteria are met.

However, solving the problem only by evolution may be
inefficient. For example, in nature, evolution may need
thousands of years to improve a species, while learning can
help accelerate evolution dramatically. Concerning this, an
insightful question is: Can we combine learning with evolution
to solve complex problems more efficiently, just like the
combination of the learning and optimization abilities of human
beings? Moreover, as mentioned before, optimization using EC

Learning-aided Evolution for Optimization
Zhi-Hui Zhan, Senior Member, IEEE, Jian-Yu Li, Member, IEEE, Sam Kwong, Fellow,

IEEE, Jun Zhang, Fellow, IEEE

L

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2022.3232776

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

and learning using ANN are two main streams of AI, thus their
combination is promising for designing powerful AI for
achieving greater problem-solving ability.

In the history of AI, the two branches of EC and ANN mainly
develop independently and sometimes interact with each other,
resulting in the evolutionary neural network [31]-[33],
evolutionary DL [34], evolutionary machine learning [35],
neuroevolution [36], and machine learning-enhanced EC [37].
However, few enhanced EC algorithms have employed ANNs
to evolve solutions. As ANNs have already performed quite
well in learning tasks, it is worth researching their ability to
learn “how to evolve well” from EC process to assist
optimization tasks. In this way, the performance of EC
algorithms can be surely improved by using ANNs. This can be
a new way to design more intelligent systems for knowledge
discovery and problem solving. Therefore, we propose a
learning-aided evolutionary optimization (LEO) framework
that can upgrade the performance of EC algorithms by plus
using an ANN learning system. The LEO is a new EC paradigm
that drives EC optimization using both the evolutionary fitness
from problems and the learned evolution knowledge obtained
by an ANN. The general idea of the LEO framework is given in
Fig. 1.

EC

ANN

Aided

Learning System

g=g+1

Nature-inspired
Evolutionary Optimization

Evolutionary
operator

Selection

Fig. 1. The main idea of LEO.

As shown in Fig. 1, the learning system in LEO aims to learn

knowledge from the EC algorithm process. Herein, the learned
knowledge is the “evolution knowledge” that can guide the EC
algorithm “how to evolve well” (e.g., to efficiently help the EC
algorithm better approach the global optimum). To this aim, we
collect evolutionary data during the EC process as evolutionary
pattern (EP) and use the ANN to learn from the successful EP
(SEP) to obtain the evolution knowledge. Specifically, the EP
of a solution can be represented by a pair of solutions that
contains the original version of this solution in the current
generation and the changed version of this solution in the next
generation. In this sense, the SEP is defined as a successful pair
of solutions whose changed version has better fitness than its
original version. As shown in Fig. 1, in the learning system, if a
pair of solutions (i.e., the old solution and the new solution) is
successful, i.e., the new solution has a better fitness value than
the old solution, then the relationship of this pair can be

regarded as a kind of SEP that can help a solution evolve better.
During the evolutionary process of the EC algorithm, many
such successful pairs of solutions (i.e., SEPs) can be collected.
Therefore, the learning system can be trained by using these
collected SEPs, where the learned evolution knowledge from
SEPs can be used to promote the evolutionary process.

In order to learn from these SEPs, in this paper, the learning
system in LEO is configured by using a very simple yet
efficient ANN as an example. The training input of the ANN is
the old solution of the successful pair while the output of the
ANN is the corresponding new solution of the pair. After the
training process with all the pairs, the ANN becomes a model
that can help an input solution evolve better. That is, by
learning a large number of SEPs, the ANN can be trained into a
model that can receive a solution as input and then output a
solution with better fitness. This is helpful to push the EC
algorithms to better regions of the search space. Therefore,
LEO can also be interpreted as “Learning + Evolution 
Optimization”, which is an emerging and promising AI
paradigm in the future EC era, as shown in Fig. 2. Fig. 2 also
shows that the EC algorithms are different from and more
efficient than the random search algorithms before the EC era
due to the fitness-driven mechanism of evolution. Generally
speaking, fitness information can be regarded as
problem-related knowledge because it is designed by domain
experts and is used for driving the evolution of the EC
population. Nevertheless, the EC population also yields data
and information during the evolution process, which can be
learned and regarded as evolution-related knowledge to further
enhance the EC algorithm. Therefore, in the future EC era, the
next generational EC algorithms not only will be fitness-driven
(data and knowledge derived from the problem), but also will
be learning-aided (data and knowledge derived from the
evolution), i.e., learning plus evolution, such as the LEO new
paradigm proposed in this paper.

In the experiments, the proposed LEO is evaluated on not
only the single-objective optimization problems but also the
multi- and many-objective optimization problems. To be
specific, the single-objective optimization problems are
actually the newest IEEE Congress on Evolutionary
Computation (CEC) 2021 competition benchmark problems for
single-objective real parameter numerical optimization [38].
These benchmark problems consist of the most challenging
complex optimization problems from the previous IEEE CEC
competitions, e.g., IEEE CEC 2014, 2017, and 2018
competitions. Moreover, they are the most challenging and
well-known benchmarks in the EC community. As for
multi-/many-objective problems, the widely-used benchmark
suite, i.e., DTLZ [39], is adopted in this paper with the number
of objectives set as 5, 10, 15, and 20, respectively. Moreover,
we apply the LEO framework not only to the classical
algorithms for single-objective optimization (i.e., PSO and DE)
and multi-objective optimization (NSGA-II [40] and MOEA/D
[41]), but also to the state-of-the-art algorithms, e.g., the
champion algorithm named NL-SHADE-RSP [42] on IEEE
CEC 2021 competition.

The rest contents are organized as follows: Section II gives a

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2022.3232776

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

brief introduction of the EC, ANN, and related work. Section
III details the LEO, while Section IV illustrates the experiments
with results, comparisons, and analyses. Finally, the conclusion
is provided in Section V.

II. BACKGROUND AND RELATED WORK

A. Evolutionary Computation

EC algorithms can be divided into two categories, including
evolutionary algorithm (EA) and swarm intelligence (SI) [2].
Herein, the following contents introduce two typical and
widely-used EC algorithms for optimization problems, i.e., the
PSO [24] as a typical SI and the DE [23] as a typical EA.
1) Particle Swarm Optimization

PSO is a classical and efficient SI algorithm in the EC family
[24]. Modeling the behavior of bird flocks, PSO adopts a set of
particles as a swarm to search for the global optimum. Each
particle has a position vector to represent the candidate solution
in the whole search space (i.e., the problem space) and uses a
velocity vector to indicate the search direction.

First, the PSO initializes the positions and velocities of
particles randomly within their corresponding upper bound and
lower bound to represent their initial status. Then, the fitness
values of all particles will be evaluated with the objective
function of the problem. After the fitness evaluation, the
personally best position (pBest) of each particle in their
experience and the globally best position (gBest) of the whole
swarm will be determined. Then, the PSO goes into the loop to
conduct the evolutionary operators, such as velocity and
position updates, new solution evaluations, and pBest and gBest
updates, generation by generation. These processes are
iteratively performed to evolve particles to find better solutions.
Finally, when the algorithm meets the termination conditions,
the algorithm will output the newest gBest as the final optimal
solution. In particular, the velocity and position updates are
performed according to Eq.(1) and Eq.(2), respectively.

,1 1, 2 2,, , , ,() ()i j i j i j jj i j ij jV w V c r pBest X c r gBest X          (1)

 , , ,i j i j i jX X V  (2)

where Xi,j and Vi,j are the jth dimension’s position and velocity of
the ith particle, respectively; ω represents the inertia weight; c1
and c2 are predefined coefficients; and r1,j and r2,j are two values
randomly sampled in the range [0,1].
2) Differential Evolution

DE is an easy-to-implement and efficient EA in the EC
family. It treats candidate solutions as individuals, i.e., Xi, and
evolves individuals based on the individual difference.

After the random initialization of individuals in the search
space, DE iteratively evolves individuals by three evolutionary
operators until the stop criteria are met. These three operators
include mutation, crossover, and selection, as introduced as

follows.
Mutation: a mutation vector Ti is computed for each

individual Xi with the position of other individuals in every
generation. “DE/rand/1” is a frequently-used strategy for
computing the mutation vector, which is listed as below:

  1 2 3i r r rT X F X X    (3)

where r1, r2, and r3 represent the three randomly-selected
individual indexes different from each other and different from
i, F is the mutation parameter.

Crossover: A trial vector Ui will be generated for each Xi via
crossover based on Xi and Ti. The widely-used crossover
operation is described as:

,

,
,

 if or

 otherwise

i j j rand

i j
i j

T rand CR j j
U

X

  


 (4)

where randj is a value sampled from [0,1] randomly, jrand is the
random dimension index, which guarantees that Ui adopts at
least one dimension from Ti, CR is the crossover rate.

Selection: In the selection, individuals with better fitness will
be selected to enter into the next generation. Herein, the
one-to-one selection in DE is considered, i.e., the better one
between Xi and Ui will be selected.

B. Artificial Neural Network

As a learning system that simulates the human brain, ANN
can map the input data to the targeted data after training the
weights parameters of neurons based on the training data (i.e.,
input-output pairs). Therefore, given the successful evolution
pairs of solution positions, the ANN can learn how to map poor
solution positions to better solution positions through training.
As this paper adopt the multi-layer feed-forward NN (a
widely-used ANN) [43] as the learning system in LEO, this part
briefly introduces the multi-layer feed-forward NN.

In general, a multi-layer feed-forward NN contains several
layers with corresponding neurons and connections. For
example, Fig. 3 presents a multilayer feed-forward NN with N
inputs and M outputs, where each connection (i.e., arrow)
between the neurons in different layers means that the output of
the neuron in the previous layer is the input of the neuron of the
next layer. In addition, to provide the NN with nonlinear
mapping ability, the activation function is used in the neuron of
the hidden layer. In this paper, we consider the widely-used
function, i.e., the sigmoid function, as the activation function in
the neurons of hidden layers. Given the input as z, the sigmoid
function can be written as

1

()
1 z

z
e

 


 (5)

C. Related Work

To date, the research into using learning into EC has caused
certain attention [37]. According to the learning purposes, the
existing works can be mainly categorized into learning the
problem knowledge and learning the solution knowledge.

In the first category, learning the fitness as problem
knowledge is a popular research topic. This is also known as
data-driven EC because it uses evaluated individuals as data to
learn the fitness for building a fitness surrogate, which is
promising for solving expensive optimization problems [4]. For
example, Wang et al. [44] proposed a selective ensemble

Fig. 2. The development of EC.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2022.3232776

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

surrogate to learn the fitness knowledge efficiently. Li et al. [45]
proposed a data-driven EC with localized data generation
method to learn the fitness knowledge from few-shot evaluated
solution data. Also, to learn the fitness knowledge from
few-shot evaluated data, Li et al. [46] proposed a multiple
surrogate method based on data perturbation, which has
obtained promising results. Moreover, Ji et al. [47] proposed a
dual-layer cooperative surrogate model to learn the fitness
knowledge of multimodal problems. Li and Zhang [48]
proposed to use multiple local surrogates to learn the fitness
and constraint knowledge from the constrained problems.
However, data-driven EC mainly focuses on approximating the
fitness and/or constraint evaluations via learning from the
evaluated data. Differently, the proposed LEO mainly focuses
on learning the SEP so as to help for better population
reproduction and variation. Therefore, to better show their
differences, the differences between the LEO and data-driven
EC algorithms are briefly summarized in Table S.I of the
supplemental material.

In the second category, the solution knowledge is learned
mainly for the purposes of reusing past knowledge, transferring
assisted knowledge, and predicting promising solutions. For
example, Feng et al. [49] proposed to learn past knowledge
from the solutions of the already solved vehicle routing
problems and then reuse them to produce routing solutions for
the current problem in a more efficient way. Zhou et al. [50]
proposed to generate promising solutions via knowledge
transfer from the promising solutions of other problems.
Moreover, Feng et al. [51] proposed to predict the moving of
optimal solutions by learning the dynamic change of the old
optimal solutions in the old dynamic environments, so as to
benefit the population reproduction in the current environment.
Liu et al. [52] proposed a neural network-based information
transfer method to transfer the solutions in the past environment
to the promising solutions in the new environment. Also
reusing knowledge of old solutions, Zhan et al. [53] proposed
the adaptive distributed DE, where the promising individual
positions in previous generations are maintained in the archive and
then are reused for the individual evolution in the current
generation. In addition, Ghosh et al. [54] proposed a difference
vector reuse mechanism to reuse the successful differential
vector learned from the solutions in the past generation to
promote the evolution of the current population. Xia et al. [55]
proposed a PSO with triple archives to store the promising
particle positions as knowledge in different archives and reuse
them to help better evolution.

The above methods have obtained potential results for
improving the performance of EC, which suggests the
significance of learning in evolution. Different from the above
methods that focus on learning the problem knowledge and
solution knowledge, the LEO proposed in this paper aims to
learn the evolution knowledge, i.e., “how to evolve well”, so as
to promote population reproduction and optimization
efficiency.

III. LEARNING-AIDED EVOLUTIONARY OPTIMIZATION

A. The LEO Framework

The overall LEO framework is illustrated in Fig. 4, which
contains two parts, i.e., the evolution part and the learning part.
When compared with the traditional EC framework, the major
novelty of LEO lies in that it uses not only the traditional
evolutionary operator but also the learning-aided evolutionary
operator to generate new promising individuals. In the learning
part, the LEO trains the learning system with the successful
solution pairs collected from the evolution part, so as to learn
the SEPs. By learning from a large number of successful
solution pairs, the ANN can learn enough SEPs to help achieve
better individual evolution, which may be more straightforward
and efficient than traditional evolutionary operators.

 In the LEO framework, the learning system can be simple by
using simple ANN (as studied in this paper), and also can be
complex if complex learning systems like deep networks are
adopted (which can be studied in the future). Moreover, the
learning-aided evolutionary operator is a generic operator and
should be particularly designed based on the particular EC
algorithm. The particular realization is described as follows.

B. Successful Solution Pairing

As data is significant for training the learning system, the
quality of successful evolution pairs will greatly influence the
performance of the learning system in learning-aided evolution.
In fact, the definition of successful solution pair can vary,
because that many individuals in the new generation can be
regarded as the successful evolution of the individuals with
worse fitness in the old generation. Without loss of generality,
this paper defines the successful solution pair as the SEP, which
is described as follows. Given the ith individual in the
generation g and g+1, denoted as Xg,i and Xg+1,i, respectively,
(Xg,i, Xg+1,i) is defined as a successful solution pair (i.e., a SEP)
if the fitness of Xg+1,i is better than Xg,i.

Note that if in PSO, the X means the personal best position of
the particle. That is, the successful solution pair (pBestg,i,
pBestg+1,i) is regarded as the SEP if pBestg+1,i is better than
pBestg,i. Moreover, for multi-objective problems, the (Xg,i, Xg+1,i)
is defined as a successful solution pair if Xg+1,i dominates Xg,i.

C. Learning SEPs

The learning system in LEO aims to learn the SEP by using
successful pairs of solutions. Therefore, in every generation,
LEO collects all the successful pairs of solutions as training
data and uses the collected data to update the ANN, i.e., trains
the weights of the ANN. However, two issues should be
considered in the data collection. The first is that the number of
collected successful solution pairs will increase rapidly as the
evolution goes on, and the second is that the SEPs learned in

x1

xn

…

…

…
……

xN

y1

ym

yM

Input Output

Input
layer

Hidden
layer

Output
layer

Fig. 3. An example of multi-layer feed-forward neural network with N
inputs and M outputs.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2022.3232776

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

earlier generations may not be suitable for the solutions in later
generations. With these two concerns, we use an external
archive to store the successful solution pairs and update the
archive periodically. By doing so, the number of available
successful solution pairs can be adaptively controlled, and the
out-of-date pairs can be naturally dropped. Specifically, after
the data collection in every generation, LEO will check whether
the number of collected successful solution pairs exceeds the
maximum size of the archive, say arch_size. If exceeds, LEO
only reserves the newest arch_size pairs and drops the old ones.
Otherwise, the archive will not be changed.

With the data (i.e., the successful solution pairs) in the
archive, the ANN can adaptively update its weights to learn
SEPs better. Specifically, the ANN conducts one
backpropagation (i.e., one epoch) in every generation with all
the data in the archive to update its weights. The loss function
of the ANN is the mean squared error between the network
output and the target output, as can be written as:

'

' 2

(,)

1
= | () |

_
i i

i i
X X arch

MSE L X X
arch size 

 (5)

where (Xi, X
’
i) is a successful solution pair stored in the arch,

L(Xi) is the output of the learning system with the solution Xi as
the input. Note that other loss functions can be used if needed.

 As the generation goes on, the ANN will conduct many
epochs of training, and each training will use the newest
successful solution pairs as the training data.

D. Learning-aided Evolutionary Operator

The learning-aided evolutionary operator aims to use the
learning system to drive the evolution of candidate solutions.
By learning the SEPs, the learning system in LEO is able to
know how to better optimize the position of an individual to
enhance its fitness. That is, given an individual as an input, the
learning system can output a new individual with better fitness.
To fully utilize the learned evolution knowledge, we propose a
learning-aided mutation (LM) operator and a learning-aided
crossover (LC) operator. The LM operator can be written as:

(, ,)

() ()
A B C

A B C

newX LM X X X

L X X X

   

 (6)

where XA, XB, and XC are three solutions as the inputs of LM, the
L(XA) is the output of the learning system with the solution XA
as the input, and  is a parameter for the learning-aided

mutation. Moreover, the LC operator can be written as:

 ,

,

(,)

, if
where

, otherwise

A B

A j j

j
B j

newX LC X X

X rand
newX

X




 


 (7)

where XA and XB are the two solutions as the inputs of LC, j
represents the dimension index, randj is a random value within
[0,1], and  is a parameter in the learning-aided crossover.

Based on the above, the LM and LC in PSO are implemented
as:

 1 2(, ,)i i r rnewX LM pBest pBest pBest (8)

 (,)i i inewX LC pBest newX (9)

where pBesti is the personally best position of the ith particle,
pBestr1 and pBestr2 are the personally best positions of two
different random particles.

As for DE, there are no personally best positions of
individuals. Therefore, the individuals themselves in the
current generation are used for implementing the LM and LC.
That is, the LM and LC operators in DE can be rewritten as

 1 2(, ,)i i r rnewX LM X X X (10)

 (,)i i inewX LC X newX (11)

where Xi is the ith individual of the current generation, and Xr1
and Xr2 are the positions of two different random individuals in
the current generation. Note that the Eq.(6) to Eq.(11) are
examples to show how to design the learning-aided
evolutionary operator, and without loss of generality, these
operators can be substituted by other evolutionary operators
with the output of the learning system (e.g., L(pBesti) and L(Xi))
to develop more efficient learning-aided evolutionary operator
to enhance the LEO-based algorithms.

E. Combination of Traditional Evolutionary Operator and
Learning-aided Evolutionary Operator

As mentioned above, some individuals can be successfully
evolved by the well-trained learning system via the
learning-aided evolutionary operator, which can be more
efficient and straightforward than the traditional evolutionary
operator. However, as the individuals and their successful
evolution differ from generation to generation, the learning
system needs to update itself adaptively with new SEPs in the
latest generations. Otherwise, the learning system trained with
out-of-date SEPs will become unsuitable for driving the
evolution of individuals in current and future generations and
stages. In order to collect more latest SEPs to update the
learning system, the traditional evolutionary operator is still
essential to explore new successful solution pairs. Therefore,
LEO uses both the traditional evolutionary operator and the
learning system to evolve the individuals instead of only using
the learning system (i.e., only using the learning-aided
evolutionary operator). With this concern, a parameter of
learning probability lp is proposed for controlling the use of
traditional evolutionary operator and learning-aided
evolutionary operator in each generation. To be specific, for
each generation, if a value randomly sampled within [0, 1] is
smaller than lp, then the individuals will be evolved by the
traditional evolutionary operator, so as to help explore the
unknown landscapes to discover better successful solution pairs.
Otherwise, the individuals will be evolved by the

Population

Traditional evolutionary operator

Selection

Successful
solution pair

Learning-aided evolutionary
operator

ANN-based
learning system

Better individuals

Training

Data
collection

Evolution

Learning

…

… …
……

Archive

Fig. 4. The framework of LEO.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2022.3232776

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

learning-aided evolutionary operator, so that the learned
evolution knowledge can be well utilized. By doing so, the
traditional and learning-aided evolutionary operator can work
cooperatively to evolve individuals more efficiently.

F. The Whole LEO-based Algorithm

Herein, the whole LEO-based EC algorithm is presented in
Algorithm 1. In the algorithm, there are five main procedures:
initialization, individual evolution, selection, SEP collection,
and learning system update. In the individual evolution, the
learning system (i.e., ANN) will be used to evolve individuals
via learning-aided evolutionary operators only when the index
of the generation number is larger than one (i.e., g>1) and a
randomly generated value is smaller than lp (i.e., r<lp), as
shown in line 11 of Algorithm 1. The reason is that if g>1, then
the ANN has been surely updated with the solution pairs in the
archive, as shown in line 30 of Algorithm 1. In other words, the
ANN will not be used to help the individual evolution until its
first update, which can guarantee that the ANN has at least
learned evolution knowledge from the successful evolution
pairs once. After the individual evolution, the algorithm will
carry out selection and SEP collection. In this procedure, the
successful pairs of solutions are added in the archive arch as
training data. The above four procedures (except the
initialization) will be carried out iteratively until the algorithm
meets the stop criteria. Lastly, the algorithm outputs the
best-found solution as the result.

IV. EXPERIMENTAL STUDIES

A. Experimental Settings

To evaluate LEO, experiments are conducted on not only

single-objective optimization problems but also
multi-/many-objective optimization problems. Moreover,
corresponding state-of-the-art single-objective and
multi-/many-objective algorithms are used in the experiments.
To be more specific, the experimental settings are given as
follows:
1) Experimental Settings for Single-objective Optimization

For experiments on single-objective optimization problems,
the LEO-based algorithms will be tested on benchmark
problems of the IEEE CEC 2021 Single-Objective Real
Parameter Numerical Optimization Competition [38]. This
benchmark set, which is the latest and most well-known
benchmark in the EC community, includes 10 complex
minimization problems that have been selected on purpose
from the IEEE 2014, 2017, and 2018 CEC competitions [38],
[42]. As these problems span a wide variety of function
characteristics, such as multimodal and non-separable, they are
suitable for investigating and evaluating the effectiveness and
general performance of the proposed LEO framework from
different aspects. More significantly, the well-known and
typical properties of these problems will provide in-depth
observations on how LEO-based algorithms may behave in
various situations. In addition, each problem can be set as a 10-
or 20-dimensional minimization problem, and the lower and
upper bound of each dimension are –100 and 100, respectively,
as recommended by the official of the CEC 2021 Competition
[38]. Therefore, in this paper, each of the 10 problems is set
with 10 and 20 dimensions (i.e., 10D and 20D), and these 20
test problems are all adopted for the evaluation of LEO. In
addition, on these benchmark problems, we apply LEO not only
to PSO and DE, but also to the state-of-the-art algorithm
NL-SHADE-RSP [42], which is a champion algorithm in IEEE
CEC 2021 competition, to further investigate the effectiveness
of LEO. Note that the population size of both PSO and DE is set
as 100, while the NL-SHADE-RSP uses a dynamic population
size due to its integrated population size reduction mechanism.
To obtain fair comparisons, 2105 and 1106 are set as the
maximum number of fitness evaluations for 10D and 20D
problems, respectively, as suggested by the official of the CEC
2021 Competition [38].
2) Experimental Settings for Multi-/Many-objective
Optimization

For experiments on multi-/many-objective optimization
problems, the LEO will be combined with the classical
multi-objective algorithm NSGA-II [40], MOEA/D [41], and a
state-of-the-art algorithm named RVEA [56]. The LEO-based
algorithms are tested on a widely-used multi-objective
benchmark suit, i.e., the DLTZ benchmark set [39]. Note that as
problem 8 and problem 9 in the DLTZ benchmark contain
constraints, algorithms that are not designed for constrained
problems, such as the MOEA/D, may generate infeasible
solutions. Therefore, this paper only uses the DTLZ1 to DTLZ7
to conduct the experiments. To further challenge the
LEO-based algorithms, the number of objectives in each of the
seven problems are set as 5, 10, 15, and 20. That is, 74=28
multi-/many-objective optimization problems will be used in
the experiments. All the experiments are conducted with the
maximum number of evaluations set as 1104 for each problem.
Furthermore, the settings of NSGA-II, MOEA/D, and RVEA

Algorithm 1: LEO-based EC algorithm
1:Begin
2: // Initialization
3: g ←1; // the generation index
4: Initialize population Xg and evaluate the fitness;
5: Initialize the weights of ANN randomly;
6: Initialize arch as an empty set; // to store solution pairs
7: While stop criteria not satisfied Do
8: g ←g + 1;
9: // Individual Evolution

10: Sample r uniformly on [0,1];
11: If g >1 and r< lp Then
12: newX ← Evolve Xg by learning-aided evolutionary operator;
13: Else
14: // use operators in traditional EC, e.g., PSO or DE
15: newX ← Evolve Xg by traditional evolutionary operator;
16: End If
17: Evaluate the fitness of individuals in newX;
18: // Selection
19: Xg+1 ← selection among Xg and newX;
20: // SEP Collection
21: For each individual i in Xg+1 Do
22: If Xg+1,i is better than Xg,i Then
23: Add (Xg,i, Xg+1,i) in arch;
24: End
25: End For
26: If number of SEPs in arch > arch_size Then
27: Arch ← the newest arch_size solution pairs;
28: End If
29: // Learning System Update
30: Train the ANN with all data in arch for one epoch;
31: End While
32: End

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2022.3232776

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

are set according to the default settings in their original
references, and the MOEA/D uses the PBI reference vectors.
3) Other Experimental Settings

As for the setting of LEO-based algorithms, the arch_size is
set as 100, while  and  in the learning-aided evolutionary
operator are set as 0.5 and 0.9 respectively. The learning system
ANN is set with three layers, which include one input layer, one
hidden layer, and one output layer. As both the input and output
of the ANN are candidate solutions, the dimension of the input
and output layer will be D, where D is the problem dimension.
Besides, the number of neurons in the hidden layer is set as 3D.
Note that the input and output values of the ANN should be in
the range of [0,1]. Therefore, each dimension value of solutions
will be transformed from the original search space to [0,1] to be
the input of ANN and the output values of the ANN will be
transformed from [0,1] back to the corresponding search space
to be the generated individual. For the training and
implementation of ANN, as mentioned earlier in Section III-C,
the LEO-based algorithms will randomly initialize the ANN at
the beginning and then perform one epoch of backpropagation
in every generation with all the data in the archive. To reduce
the statistical errors, each algorithm will be conducted 30 times
on each single or multi-/many-objective optimization problem
independently, so as to get the statistical results for the
comparison. Besides, this paper uses the Wilcoxon’s rank sum
test with a significance level of α=0.05 to determine whether
the algorithms with LEO are significantly better than,
statistically similar to, and significantly worse than the
algorithms of original versions on each problem in terms of the
optimization accuracy. In addition, the Friedman test with
Holm post-hoc analysis with a significant level of 0.05 is also
used to compare the algorithm performance on multiple

problems. Based on this, the compared algorithm performs
significantly differently from the proposed algorithm if the
corresponding adjusted p-value is larger than 0.05, otherwise,
the two algorithms have similar performance on multiple
problems. Note that, all the LEO-based EC algorithms are
named as L-EC where EC is the original name of the algorithm.
To quantify the performance improvements, the effect size is
computed based on Cohen’s 𝑑 statistic [57] and reported in this
paper. Similar to existing work [58], the effect size is regarded
as: small if 0.2⩽𝑑<0.5; medium if 0.5⩽𝑑<0.8, or large if 0.8< 𝑑,
which are denoted with symbols “s”, “m”, or “l”, respectively.

B. Comparisons on Single-objective Optimization Problems

Table I provides the comparison results among LEO-based
algorithms and their original versions on single-objective
optimization problems. In Table I, the LEO is very effective in
improving the optimization efficiency of EC algorithms. As can
be seen in Table I, L-PSO, L-DE, and L-NL-SHADE-RSP can
significantly outperform PSO, DE, and NL-SHADE-RSP on 19,
10, and 7 problems, and only have worse results on 1, 2, and 0
problems, respectively. Moreover, although NL-SHADE-RSP
is the champion algorithm in the CEC competitions with these
test problems, the L-NL-SHADE-RSP can still obtain better
optimization results and update the optimization result records
obtained by NL-SHADE-RSP on 7 problems, i.e., F04(10D),
F07(10D), F10(10D), F04(20D), F06(20D), F07(20D), and
F20(10D). This suggests the great effectiveness and practical
potential of LEO. Overall, the LEO is promising for improving
EC algorithms on single-objective optimization problems.

TABLE I
COMPARISONS BETWEEN LEO-BASED ALGORITHMS AND THE ORIGINAL ALGORITHMS ON SINGLE-OBJECTIVE OPTIMIZATION PROBLEMS

Problem L-PSO PSO L-DE DE L-NL-SHADE-RSP NL-SHADE-RSP

F01(10D) 00 2.38E-056.01E-05 (+)(l) 00 00 ()(s) 00 00 ()(s)

F02(10D) 4.10E+002.16E+01 8.71E+022.70E+02 (+)(l) 3.14E-018.09E-02 3.45E+021.85E+02 (+)(l) 00 00 ()(s)

F03(10D) 8.41E+004.72E+00 7.40E+019.91E+00 (+)(l) 1.10E+012.63E-01 2.32E+014.04E+00 (+)(l) 00 00 ()(s)

F04(10D) 4.06E-015.93E-02 6.52E+001.04E+00 (+)(l) 4.20E-016.02E-02 1.50E+005.02E-01 (+)(l) 3.62E-037.10E-03 1.43E-02 2.14E-02 (+)(l)

F05(10D) 5.19E+015.91E+01 8.67E+018.02E+01 (+)(m) 1.53E-011.54E-01 1.32E-011.77E-01 (-)(s) 00 00 ()(s)

F06(10D) 3.68E-012.17E-01 2.24E+013.39E+01 (+)(l) 3.66E-012.43E-01 1.61E-01 1.89E-01 (-)(l) 7.17E-021.80E-01 7.17E-021.80E-01()(s)

F07(10D) 3.62E+015.49E+01 1.64E+013.60E+01 (-)(l) 1.47E-011.92E-01 1.30E-011.76E-01 (-)(s) 6.33E-041.04E-03 1.38E-031.66E-03 (+)(l)

F08(10D) 00 3.37E+027.96E+01 (+)(l) 00 00 ()(s) 00 00 ()(s)

F09(10D) 00 5.43E-041.18E-03 (+)(l) 00 00 ()(s) 00 00 ()(s)

F10(10D) 4.81E+011.20E-01 5.25E+015.84E-01 (+)(l) 4.81E+011.20E-01 4.85E+011.59E-01 ()(s) 1.88E-031.00E-03 1.93E-03 9.41E-04(+)(s)

F01(20D) 00 1.97E+085.10E+07 (+)(l) 00 00 ()(s) 00 00 ()(s)

F02(20D) 4.22E+002.16E+01 2.74E+032.92E+02 (+)(l) 3.71E-016.50E-02 6.43E+002.77E+00 (+)(l) 00 00 ()(s)

F03(20D) 1.60E+018.78E+00 1.87E+021.79E+01 (+)(l) 2.02E+010.00E+00 2.34E+014.32E+00 (+)(l) 00 00 ()(s)

F04(20D) 8.14E-011.13E-01 1.73E+011.80E+00 (+)(l) 7.65E-018.46E-02 2.75E+002.32E+00 (+)(l) 1.62E-021.70E-02 3.16E-021.52E-02 (+)(l)

F05(20D) 1.18E+021.04E+02 1.19E+033.36E+02 (+)(l) 8.46E-019.04E-01 1.97E+002.58E+00 (+)(l) 00 00 ()(s)

F06(20D) 2.10E+001.84E+00 3.13E+021.20E+02 (+)(l) 8.47E-015.75E-01 2.11E+002.38E+00 (+)(l) 2.13E-022.48E-02 3.90E-021.82E-02 (+)(l)

F07(20D) 5.51E+018.32E+01 2.95E+021.58E+02 (+)(l) 8.01E-011.45E-01 1.38E+002.13E+00 (+)(l) 9.71E-031.18E-02 1.52E-021.05E-02 (+)(s)

F08(20D) 1.72E+003.91E+00 1.08E+031.49E+02 (+)(l) 00 3.29E+005.78E+00 (+)(l) 00 00 ()(s)

F09(20D) 00 5.55E+011.28E+01 (+)(l) 00 00 ()(s) 00 00 ()(s)

F10(20D) 5.01E+014.73E+00 5.86E+011.64E+00 (+)(l) 4.88E+016.53E-02 4.88E+012.70E-02 ()(s) 4.12E-031.72E-03 4.29E-031.54E-03 (+)(s)

+//- NA 19/0/1 NA 10/7/3 NA 7/13/0
Adjusted
p-value NA 0.0008 NA 0.0201 NA 0.0707

#“s”, “m”, and “l” mean the effect size 𝑑 is regarded as: small if 0.2⩽𝑑<0.5; medium if 0.5⩽𝑑<0.8, and large if 0.8< 𝑑, respectively.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2022.3232776

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

C. Comparisons on Multi-/Many-objective Optimization
Problems

Table II gives the comparison results among LEO-based
algorithms and their original versions on multi-objective
optimization problems. The results indicate that the LEO is also
very effective in improving the optimization efficiency of EC
algorithms on multi-/many-objective problems. As shown in
Table II, L-NSGA-II, L-MOEA/D, and L-RVEA can obtain
significantly better IGD results than NSGA-II, MOEA/D, and
RVEA on 14, 9, and 6 problems, and have worse results only on
8, 8, and 5 problems, respectively. Moreover, Table II shows
that the NSGA-II has more improvement than the MOEA/D
and RVEA when integrated with LEO. This may be due to that
when the number of objectives increases, the number of the
non-dominated solution increases dramatically and the
NSGA-II (i.e., the non-dominated selection-based algorithm) is
difficult to conduct environmental selection to select
high-quality solutions into the next generation for better
evolution. However, the LEO can directly evolve solutions
toward the promising region, and therefore can improve the
NSGA-II significantly. Overall, the results have shown the

effectiveness of LEO on multi-/many-objective optimization
problems.

D. Comparisons on High-dimensional Optimization Problems

To examine the proposed LEO on more higher-dimensional
problems, this part compares L-PSO, L-DE, and
L-NL-SHADE-RSP with PSO, DE, and NL-SHADE-RSP,
respectively, on optimization problems with 100 dimensions.
The number of fitness evaluations for different algorithms is set
the same as 1106. Table III gives the comparison results
between LEO-based algorithms and their original versions. As
can be seen in Table III, L-PSO, L-DE, and
L-NL-SHADE-RSP can significantly outperform PSO, DE,
and NL-SHADE-RSP on 10, 8, and 6 problems with 100
dimensions, respectively, but have worse results on none of the
problems. Moreover, according to the p-values, L-PSO, L-DE,
and L-NL-SHADE-RSP have significantly better overall
performance than PSO, DE, and NL-SHADE-RSP on the 10
problems. Therefore, the experimental results further verify the
superiority of the LEO on higher-dimensional problems.

E. Time Efficiency Analysis of the LEO

The above results have experimentally verified the

TABLE II
COMPARISONS OF IGD RESULTS BETWEEN LEO-BASED ALGORITHMS AND THE ORIGINAL ALGORITHMS ON MULTI-OBJECTIVE OPTIMIZATION PROBLEMS

Prob.

obj.
L-NSGA-II NSGA-II L-MOEA/D MOEA/D L-RVEA RVEA

D
T

L
Z

1

5 2.33E+001.46E+00 1.28E+007.33E-01(-)(l) 2.34E-013.63E-01 2.88E-013.67E-01(+)(s) 4.63E-012.75E-01 4.69E-013.06E-01()(s)

10 2.12E+016.97E+00 2.30E+019.76E+00(+)(m) 3.39E-013.18E-01 1.03E-012.23E-03(-)(l) 4.96E-014.33E-01 1.95E-019.76E-02(-)(l)

15 2.30E+011.06E+01 3.27E+011.47E+01(+)(l) 3.19E-011.82E-01 3.92E-013.14E-01(+)(m) 6.10E-014.77E-01 7.15E-018.64E-01()(s)

20 2.66E+011.31E+01 3.39E+011.43E+01(+)(l) 3.72E-011.90E-01 4.79E-013.66E-01(+)(m) 8.20E-016.15E-01 9.75E-018.96E-01(+)(m)

D
T

L
Z

2

5 2.54E-011.30E-02 2.83E-011.37E-02(+)(l) 2.13E-015.04E-04 2.13E-015.35E-04()(s) 2.12E-018.15E-04 2.14E-015.52E-04()(l)

10 1.44E+001.85E-01 1.37E+001.36E-01(-)(m) 5.36E-015.05E-02 4.13E-012.89E-03(-)(l) 5.33E-015.97E-02 4.25E-011.59E-03(-)(l)

15 1.51E+001.57E-01 1.40E+009.42E-02(-)(l) 1.10E+008.98E-02 1.11E+009.05E-02()(s) 9.22E-011.31E-01 9.56E-011.08E-01(+)(m)

20 1.54E+001.24E-01 1.51E+009.12E-02()(s) 8.93E-012.02E-02 9.00E-017.49E-02()(s) 1.00E+001.00E-01 1.01E+001.04E-01()(s)

D
T

L
Z

3

5 6.13E+011.10E+01 3.67E+011.57E+01(-)(l) 1.17E+018.53E+00 1.93E+011.14E+0(+)(l) 1.24E+015.93E+00 1.44E+016.82E+00(+)(m)

10 7.84E+021.40E+02 7.85E+021.76E+02()(s) 9.42E+005.75E+00 1.40E+001.35E+00(-)(l) 1.29E+015.38E+00 9.39E+004.08E+00(-)(l)

15 6.77E+021.75E+02 7.66E+021.78E+02(+)(l) 1.10E+018.23E+00 1.00E+016.62E+00()(s) 2.21E+011.27E+01 2.10E+011.30E+01(-)(s)

20 6.65E+022.10E+02 7.35E+021.36E+02(+)(l) 1.43E+017.74E+00 1.28E+016.90E+00(-)(s) 2.44E+011.37E+01 2.63E+019.97E+00(+)(s)

D
T

L
Z

4

5 2.61E-012.52E-02 2.80E-01.26E-02(+)(l) 6.42E-012.29E-01 6.55E-012.04E-01(+)(s) 2.22E-013.89E-02 2.72E-011.12E-01(+)(l)

10 9.56E-018.38E-02 1.40E+001.10E-01(+)(l) 9.20E-011.33E-01 7.33E-011.09E-01(-)(l) 5.92E-015.81E-02 4.43E-012.67E-03(-)(l)

15 1.13E+007.83E-02 1.44E+001.11E-01(+)(l) 1.10E+001.38E-01 1.11E+001.32E-01()(s) 8.82E-018.40E-02 8.95E-017.39E-02()(s)

20 1.22E+007.30E-02 1.46E+008.17E-02(+)(l) 1.16E+001.27E-01 1.19E+001.21E-01()(m) 8.87E-015.84E-02 9.01E-015.89E-02()(m)

D
T

L
Z

5

5 1.62E-014.20E-02 1.39E-013.34E-02(-)(l) 2.16E-021.60E-03 2.22E-021.73E-03()(m) 2.12E-016.63E-02 2.16E-017.93E-02()(s)

10 3.36E-019.32E-02 2.58E-017.55E-02(-)(l) 7.71E-028.47E-03 1.87E-023.19E-04(-)(l) 4.05E-011.63E-01 3.85E-017.49E-02()(s)

15 4.74E-011.85E-01 6.26E-011.61E-01(+)(l) 3.73E-011.96E-01 3.74E-011.89E-01()(s) 6.59E-011.25E-01 6.65E-011.31E-01()(s)

20 5.36E-012.23E-01 6.46E-012.26E-01(+)(m) 2.65E-011.10E-01 2.37E-015.54E-03(-)(m) 6.40E-011.44E-01 6.35E-011.44E-01()(s)

D
T

L
Z

6

5 4.53E+001.16E+00 4.88E+007.50E-01(+)(m) 2.12E-013.77E-01 2.42E-014.53E-01(+)(s) 3.59E-012.25E-01 2.95E-012.07E-01()(m)

10 7.50E+008.91E-01 6.03E+007.91E-01(-)(l) 1.95E-013.81E-01 2.45E-017.14E-01(+)(s) 5.20E-014.00E-01 3.50E-012.21E-01()(l)

15 7.85E+006.35E-01 7.78E+007.45E-01()(s) 4.91E-012.28E-01 4.59E-012.26E-01(-)(s) 6.77E-013.74E-01 6.64E-012.74E-01()(s)

20 8.00E+007.11E-01 7.88E+005.91E-01()(s) 2.38E-016.53E-04 2.38E-011.56E-03()(s) 9.37E-017.37E-01 1.07E+007.31E-01(+)(s)

D
T

L
Z

7

5 6.91E-018.87E-02 6.74E-015.62E-02()(m) 1.07E+001.91E-01 1.04E+001.36E-01()(s) 6.04E-016.74E-02 6.08E-016.75E-02 ()(s)

10 9.08E+002.81E+00 6.75E+002.12E+00(-)(l) 2.12E+003.71E-01 2.36E+005.08E-01(+)(l) 1.68E+001.49E-01 1.67E+002.58E-01()(s)

15 2.17E+013.82E+00 2.45E+014.27E+00(+)(l) 6.56E+008.88E-01 6.54E+001.12E+00()(s) 2.53E+003.33E-01 2.61E+003.76E-01()(m)

20 3.43E+015.26E+00 3.45E+017.29E+00()(m) 3.38E+006.65E-01 3.59E+005.59E-01(+)(m) 3.25E+008.65E-01 3.27E+008.40E-01()(s)

+//- NA 14/6/8 NA 9/11/8 NA 6/17/5
Adjusted
p-value NA 0.0325 NA 0.4227 NA 0.1967

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2022.3232776

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

effectiveness of LEO in improving the optimization results.
Therefore, this part further investigates the time efficiency of
the LEO for solving optimization problems. To study the time
efficiency of LEO, this paper proposes a novel indicator metric
named error reduction versus time increase rate (i.e., ETR),
which can measure the benefit of additional time cost when
using LEO (i.e., can be treated as a measurement of cost
performance). Mathematically, given two algorithms A and B,
where A requires more computational time cost than B but has
better performance than B, the ETR of A over B is defined as

ERR(,)

ETR(,)
TIR(,)

A B
A B

A B
 (12)

where ERR(A, B) is the optimization error reduction rate of A
over B, and the TIR(A, B) is the time cost increase rate of A over
B. For a minimization optimization problem, the ERR(A, B) can
be computed as

  

E

RR

,
100%, if

0, otherwise

B A
B A

B

E

EA B

E
E E

   



 (13)

where EA and EB are the optimization error of A and B,
respectively. If ERR(A, B) is 0, then A has no error reduction
over B, i.e., no accuracy improvement when compared with B.
Moreover, the TIR(A, B) can be calculated as:

   %T 1IR 0, 0A B

B

T T

T
A B


  (14)

where TB and TA represent the computational time cost of A and
B, respectively. Therefore, ETR(A, B) can measure how many
percentages of optimization error reduction A can obtain over B
for each increased percentage of time cost.

Based on the ETR, this part studies the time efficiency of
LEO by analyzing the ETR of L-PSO over PSO in different
situations. To be specific, this part analyzes the ETR(L-PSO,
PSO) on F01 to F10 at 10D with five computational time cost
settings in fitness evaluation (i.e., the time cost of each fitness
evaluation in the five scenarios requires 0.1, 0.5, 1, 1.5, and 2
ms, respectively). The five settings of time cost are
implemented by using a time-delay operation in the fitness
evaluation. For brevity and simplicity, the following contents
simply refer ETR as ETR(L-PSO, PSO). The ETR results are
plotted in Fig. 5, and the running time of L-PSO and PSO are

also given in Table S.III.
From Fig. 5, we can have two important observations. First,

the ETR increases nearly linearly as the time cost of fitness
evaluation increases on most problems. This suggests that the
more expensive the fitness evaluation cost is, the more efficient
the LEO method will be (one percentage increase in time cost
can bring in more percentages of error reduction). In fact, the
computational time cost of one fitness evaluation in various
real-world applications can be very expensive, e.g., several
hours to several days [4], which are much more expensive than
the highest settings in this experiment (i.e., 2 ms). Second,
when the time cost of each evaluation is larger than 0.5 ms, the
ETR is very remarkable, and when the time cost of each
evaluation is 2 ms, the ETR is about 14 on most problems, i.e.,
every increased percentage of time cost when using LEO can
result in about 14 percentage of optimization error reduction.
These results have shown the great potential and advantage of
LEO. In addition, the running time given in Table S.III shows
that the L-PSO just requires a small percentage of additional
running time when compared with PSO when the time cost of
fitness evaluation is larger than 1 ms. Based on the above, it can
be concluded that the additional time cost for using LEO is
considerably economical and deserved, and the LEO is very
efficient in turning the computational cost into the performance
improvement of the algorithm.

0.1 0.5 1 1.5 2
0

2

4

6

8

10

12

14

E
T

R
(L

-P
S

O
,P

S
O

)

Time cost of each fitness evaluation (ms)

 F01
 F02
 F03
 F04
 F05
 F06
 F07
 F08
 F09
 F10

Fig. 5. The ETR of L-PSO over PSO on different functions at 10D under
different time costs in each fitness evaluation, where the larger ETR value
means the better efficiency.

TABLE III
COMPARISONS BETWEEN LEO-BASED ALGORITHMS AND THE ORIGINAL ALGORITHMS ON PROBLEMS WITH 100 DIMENSIONS

Problem L-PSO PSO L-DE DE L-NL-SHADE-RSP NL-SHADE-RSP

F01 00 7.33E+097.75E+08(+)(l) 00 2.54E-071.65E-07(+)(l) 00 00()(s)

F02 1.17E+033.65E+02 2.74E+041.03E+03(+)(l) 3.51E+004.70E-01 2.55E+041.75E+03(+)(l) 2.85E-061.69E-07 3.15E-073.82E-08()(l)

F03 2.00E+024.52E+01 1.32E+034.45E+01(+)(l) 1.66E+022.20E+01 8.49E+024.64E+01(+)(l) 1.78E-074.49E-08 2.37E-079.57E-08()(l)

F04 6.08E+011.32E+01 1.98E+022.71E+01(+)(l) 2.51E+019.67E-01 7.50E+013.05E+00(+)(l) 4.34E-015.57E-01 2.14E+004.77E+00(+)(l)

F05 2.16E+035.63E+02 1.28E+083.60E+07(+)(l) 2.64E+021.32E+02 2.67E+031.24E+03()(l) 4.17E+019.53E+00 1.48E+024.49E+02(+)(m)

F06 2.56E+021.77E+02 6.99E+035.03E+02(+)(l) 1.79E+014.80E+00 4.00E+031.05E+03(+)(l) 4.98E+001.47E+00 2.24E+012.67E+00(+)(l)

F07 1.34E+032.98E+02 1.09E+083.40E+07(+)(l) 1.36E+021.80E+02 6.71E+026.71E+02(+)(l) 5.12E-028.99E-03 9.14E+011.57E+01(+)(l)

F08 1.39E+038.20E+01 1.09E+045.53E+02(+)(l) 1.25E+022.57E+01 2.66E+027.12E+01(+)(l) 1.39E+002.20E+00 3.23E+016.95E+02(+)(s)

F09 1.52E+023.46E+01 1.05E+034.15E+01(+)(l) 1.88E+004.60E+00 7.27E+001.40E+01(+)(l) 1.52E-023.46E-01 1.93E-023.51E-04()(s)

F10 6.66E+024.67E+01 1.05E+038.74E+01(+)(l) 5.24E+022.66E+01 5.44E+023.51E+01()(l) 2.67E-023.67E-01 3.86E-021.41E-01(+)(s)

+//- NA 10/0/0 NA 8/2/0 NA 6/4/0
Adjusted
p-value NA 0.0016 NA 0.0016 NA 0.0269

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2022.3232776

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

In addition, to provide a fair comparison from the aspect of
the same running time, this part further compares the LEO-PSO,
LEO-DE, and LEO-NL-SHADE-RSP with their original
version under the same running time. To do this, the running
time of all algorithms are set the same as 240 seconds, i.e., 4
minutes. Similar to the setting for Fig. 5, the time cost of each
fitness evaluation is set as 1 ms controlled by a time-delay
operation. The comparison results are given in Table S.II of the
supplementary material. As shown in Table S.II, when using
the same running time, L-PSO, L-DE, and L-NL-SHADE-RSP
can significantly outperform PSO, DE, and NL-SHADE-RSP
on 9, 5, and 3 problems, and only have worse results on 1, 1,
and 0 problems, respectively. Moreover, according to the
adjusted p-value, the L-PSO and L-DE are significantly better
than PSO and DE over the multiple problems, respectively.
Although the L-NL-SHADE-RSP and NL-SHADE-RSP have
similar results over multiple problems based on the adjusted
p-value, the L-NL-SHADE-RSP can still outperform
NL-SHADE-RSP on F04, F07, and F10. Based on the above,
the LEO-based algorithms are still efficient when compared
with the baseline algorithms with the same running time.

F. Effectiveness of Learning-aided Evolutionary Operator

This paper proposes to use the learning-aided evolutionary
operator with ANN to generate promising individuals, rather
than directly using the output solutions of ANN to make up the
new population. Therefore, this part studies whether using the
output solutions of ANN directly can work. To do this, a new
L-PSO variant named ANN-PSO is developed, where during
the learning-aided process (refer to line 12 of Algorithm 1), the
learning-aided evolutionary operator is not used while the
output solution of ANN is used directly as the new individual.
That is, the Eq. (6) and Eq. (7) are not used.

The comparison results between L-PSO and ANN-PSO are
given in Table IV. As can be seen, according to the adjusted
p-value, the L-PSO is significantly different from the
ANN-PSO on the multiple test problems. Moreover, the L-PSO
greatly outperforms ANN-PSO on 8 of the 10 problems. In
addition, the L-PSO obtains the best results on all the 10
problems. These results show the great superiority of L-PSO
over ANN-PSO. This may be due to that although an ANN is
used to learn how to generate promising individuals in the
ANN-PSO, the ANN is misled by the local optima found in the
early evolutionary stage and then produce new individuals
around local optima, which results in the poor performance of
the ANN-PSO. Differently, the learning-aided evolutionary
operator used in L-PSO can generate new individuals based on
the individuals produced by ANN and the individuals in current
populations, which has more diversity and can enhance the
optimization results. Overall, the learning-aided evolutionary
operator is effective for enhancing the algorithm results.

G. Influence of Learning Probability

To study the influence of lp in LEO-based algorithms, this
part compares the L-PSO with its variants using different lp
values. That is, the L-PSO(lp=0.5) is compared with
L-PSO(lp=0.1), L-PSO(lp=0.3), L-PSO(lp=0.7),
L-PSO(lp=0.9). The comparison results are shown in Table V.
In general, according to the adjusted p-value, the L-PSO(lp=0.5)
has no significant difference from the rest four variants over the

10 problems. This shows that the proposed LEO is not sensitive
to the learning probability. Moreover, L-PSO(lp=0.5) can
generate significantly better results than L-PSO(lp=0.1),
L-PSO(lp=0.3), and L-PSO(lp=0.9) on 4, 5, and 3 problems,
and produce worse results only on 2, 0, and 3 problems,
respectively. Moreover, when compared with L-PSO(lp=0.7),
L-PSO(lp=0.5) has a similar performance in general, e.g., has
similar results on 8 problems. The above results may be due to
that both too small lp (e.g., lp=0.1) and too large lp (e.g., lp=0.9)
will deteriorate the algorithm performance and an appropriate
lp (e.g., lp=0.5 or 0.7) can make a good balance between the
traditional evolutionary process and learning-aided
evolutionary process to obtain better results. Moreover, the
experimental results also suggest that lp=0.5 can be a good
setting, and therefore lp=0.5 is recommended in this paper.

H. Influence of Archive Size

To investigate the influence of arch_size in LEO-based
algorithms, this part compares the L-PSO with its variants
using different arch_size. To be specifically, the
L-PSO(arch_size=100) is compared with
L-PSO(arch_size=50), L-PSO(arch_size=200),
L-PSO(arch_size=300), and L-PSO(arch_size=400). The
comparison results can be seen in Table VI. In general,
according to the adjusted p-value, the different L-PSO variants
generate similar optimization results over the ten test problems.
To be more specifically, L-PSO(arch_size=100) produce
significantly better results than L-PSO(arch_size=50),
L-PSO(arch_size=200), L-PSO(arch_size=300), and
L-PSO(arch_size=400) on 3, 1, 1, and 2 problems, and worse
results on 1, 1, 2, and 2 problems, respectively. Moreover, the
L-PSO(arch_size=100) performs similar to
L-PSO(arch_size=50), L-PSO(arch_size=200),
L-PSO(arch_size=300), and L-PSO(arch_size=400) on 6, 8, 7,
and 6 problems, respectively. The above results indicate that
the L-PSO is not that sensitive to the settings of arch_size, and
arch_size=100 can be enough for learning the evolution
knowledge in PSO. In addition, as a larger arch_size (i.e., more
successful solution pairs for training) requires more
computation cost, the arch_size=100 can be adopted to obtain a
better balance between the optimization results and
computational burden, and therefore is recommended herein.

TABLE IV
COMPARISONS BETWEEN L-PSO AND ANN-PSO

Problem L-PSO ANN-PSO

F01(10D) 00 00 ()(s)

F02(10D) 4.10E+002.16E+01 1.17E+021.46E+02(+)(l)

F03(10D) 8.41E+004.72E+00 1.12E+014.27E+00(+)(l)

F04(10D) 4.06E-015.93E-02 9.41E-015.04E-01(+)(l)

F05(10D) 5.19E+015.91E+01 8.67E+019.09E+01(+)(m)

F06(10D) 3.68E-012.17E-01 6.99E+002.16E+01(+)(m)

F07(10D) 3.62E+015.49E+01 5.63E+018.55E+01(+)(m)

F08(10D) 00 1.37E+011.63E+01(+)(l)

F09(10D) 00 5.12E-011.58E+00(+)(m)

F10(10D) 4.81E+011.20E-01 4.81E+012.95E-01()(s)

Number of +//- NA 8/2/0

Adjusted p-value NA 0.0044

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2022.3232776

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

I. Influence of Learning Parameters

This part studies the influence of two learning parameters,
i.e.,  and . To begin with, to study the influence of  in
LEO-based algorithms, this part compares the L-PSO with its
variants with different  values. That is, the L-PSO(=0.5) is
compared with L-PSO(=0.1), L-PSO(=0.3), L-PSO(=0.7),
and L-PSO(=0.9). The comparison results are shown in Table
VII. In general, according to the adjusted p-value, the
L-PSO(=0.5) has no significant difference from the other four
variants over the 10 problems. Moreover, the L-PSO(=0.5)
performs similarly to L-PSO(=0.1), L-PSO(=0.3),
L-PSO(=0.7), and L-PSO(=0.9) on 8, 9, 9, and 10 problems,
respectively. This shows that the LEO is not sensitive to the
setting of . Moreover, as L-PSO(=0.5) can generate the best
results on 6 problems (as marked in boldface) among the five
algorithms, which is the most, the =0.5 is used in this paper.

Moreover, this part also studies the influence of  by
comparing the L-PSO with its variants with different  values.
That is, the L-PSO(=0.9) is compared with L-PSO(=0.1),
L-PSO(=0.3), L-PSO(=0.5), and L-PSO(=0.7). The
comparison results are shown in Table VIII. As can be seen, the
L-PSO(=0.9) significantly outperforms L-PSO(=0.1) and
L-PSO(=0.3) on 3 and 5 problems, and performs similarly to
L-PSO(=0.5) and L-PSO(=0.7) on 9 and 8 problems. This
suggests that larger  can yield better results. This may be due

to that a larger  encourages the individuals to learn more
dimensions from the individual produced by ANN, which
enhance the optimization efficiency. In addition, according to
the adjusted p-value, the L-PSO(=0.9) has no significant
difference with L-PSO(=0.1), L-PSO(=0.5), and
L-PSO(=0.7) over the multiple problems, and only have
significant difference with L-PSO(=0.3). Therefore, the
L-PSO is not that sensitive to the  value.

J. Influence of ANN Hyperparameter

This part studies the influence of the ANN hyperparameter.
The L-PSO is compared with its variants using different
numbers of hidden neurons. That is, the L-PSO(Nh=3D) is
compared with L-PSO(Nh=1D), L-PSO(Nh=2D),
L-PSO(Nh=4D), and L-PSO(Nh=5D), where Nh denotes the
number of hidden neurons and D is the problem dimension. The
comparison results are shown in Table S.IV of the
supplementary material. As can be seen in Table S.IV, the
L-PSO(Nh=3D) performs similarly to L-PSO(Nh=1D),
L-PSO(Nh=2D), L-PSO(Nh=4D), and L-PSO(Nh=5D) on
10, 9, 10, and 10 problems, respectively. Moreover, according
to the adjusted p-value, the L-PSO(Nh=3D) performs similarly
to the rest four variants. That is, the results produced by L-PSO
variants with different numbers of hidden neurons are very
similar. This may be due to the fact that the ANN is a powerful
learning system and can still learn the evolution knowledge
efficiently when using a slightly different hyperparameter.

TABLE V
COMPARISONS AMONG L-PSO VARIANTS WITH DIFFERENT LEARNING PROBABILITIES

Problem L-PSO(lp=0.5) L-PSO(lp=0.1) L-PSO(lp=0.3) L-PSO(lp=0.7) L-PSO(lp=0.9)

F01(10D) 00 00 ()(s) 00 ()(s) 00 ()(s) 00 ()(s)

F02(10D) 4.10E+002.16E+01 3.46E+016.82E+01 (+)(l) 8.66E+002.99E+01 (+)(s) 1.30E-018.35E-02 (-)(m) 1.25E-011.30E-01 (-)(m)

F03(10D) 8.41E+004.72E+00 8.10E+004.97E+00 (-)(s) 8.43E+004.73E+00 ()(s) 9.30E+004.23E+00 (+)(s) 1.05E+012.88E+00 (+)(l)

F04(10D) 4.06E-015.93E-02 6.91E-011.39E-01 (+)(l) 4.86E-018.03E-02 (+)(l) 3.57E-015.84E-02 ()(l) 3.38E-015.46E-02 (-)(l)

F05(10D) 5.19E+015.91E+01 6.21E+017.53E+01 (+)(s) 6.16E+016.72E+01 (+)(s) 5.33E+015.72E+01 ()(s) 3.40E+015.35E+01 (-)(m)

F06(10D) 3.68E-012.17E-01 9.76E-012.10E+00 (+)(m) 3.94E-012.36E-01 (+)(s) 3.61E-011.75E-01 ()(s) 4.28E-012.50E-01 (+)(m)

F07(10D) 3.62E+015.49E+01 2.28E+014.41E+01(-)(m) 4.01E+016.33E+01 (+)(s) 3.78E+015.97E+01 ()(s) 4.05E+002.16E+01 (+)(l)

F08(10D) 00 00 ()(s) 00 ()(s) 00 ()(s) 00 ()(s)

F09(10D) 00 00 ()(s) 00 ()(s) 00 ()(s) 00 ()(s)

F10(10D) 4.81E+011.20E-01 4.81E+011.41E-01 ()(s) 4.81E+011.97E-01 ()(s) 4.81E+011.51E-01 ()(s) 4.82E+013.28E-01 ()(m)

Number of +//- NA 4/4/2 5/5/0 1/8/1 3/4/3

Adjusted p-value NA 0.3222 0.3222 0.8875 0.9436

TABLE VI
COMPARISONS AMONG L-PSO VARIANTS WITH DIFFERENT ARCHIVE SIZES FOR COLLECTING TRAINING DATA

Problem
L-PSO

(arch_size=100)
L-PSO

(arch_size=50)
L-PSO

(arch_size=200)
L-PSO

(arch_size=300)
L-PSO

(arch_size=400)

F01(10D) 00 00 ()(s) 00 ()(s) 00 ()(s) 00 ()(s)

F02(10D) 4.10E+002.16E+01 8.60E+004.56E+01 (+)(s) 1.06E+015.70E+01 (+)(s) 1.05E+015.70E+01 (+)(s) 8.49E+004.56E+01 (+)(s)

F03(10D) 8.41E+004.72E+00 8.78E+004.47E+00 (+)(s) 8.48E+004.76E+00 ()(s) 8.50E+004.77E+00 ()(s) 8.45E+004.74E+00 ()(s)

F04(10D) 4.06E-015.93E-02 4.06E-015.22E-02 ()(s) 3.97E-017.60E-02 ()(s) 4.08E-018.04E-02 ()(s) 4.04E-016.29E-02 ()(s)

F05(10D) 5.19E+015.91E+01 5.18E+016.03E+01 ()(s) 5.21E+016.69E+01 ()(s) 5.10E+016.45E+01 ()(s) 4.74E+015.92E+01 (-)(s)

F06(10D) 3.68E-012.17E-01 4.24E-012.56E-01 (+)(m) 3.49E-012.33E-01 ()(s) 3.27E-011.89E-01 (-)(m) 3.82E-012.52E-01 (+)(s)

F07(10D) 3.62E+015.49E+01 2.44E+014.80E+01(-)(m) 3.16E+015.92E+01 (-)(s) 2.44E+014.79E+01(-)(m) 2.84E+015.07E+01 (-)(s)

F08(10D) 00 00 ()(s) 00 ()(s) 00 ()(s) 00 ()(s)

F09(10D) 00 00 ()(s) 00 ()(s) 00 ()(s) 00 ()(s)

F10(10D) 4.81E+011.20E-01 4.81E+011.08E-01 ()(s) 4.81E+019.43E-02 ()(s) 4.81E+011.06E-01 ()(s) 4.81E+011.06E-01 ()(s)

Number of +//- NA 3/6/1 1/8/1 1/7/2 2/6/2

Adjusted p-value NA 0.6206 0.7237 1.0000 0.6206

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2022.3232776

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

Overall, the LEO is robust and is not sensitive to the network
hyperparameter, and the original setting (i.e., Nh=3D) is
recommended.

V. CONCLUSION

 In this paper, an innovative LEO framework for EC
algorithms has been proposed. In the LEO, the ANN is adopted
as the learning system to learn the SEPs collected from the
evolutionary process, and then the learned evolution
knowledge is applied to promote the solution evolution. As a
result, the candidate solution can evolve directly toward a more
promising region, which is more straightforward and efficient
than traditional evolutionary operators.

To evaluate the LEO framework, the performance of some
state-of-the-art and champion algorithms are compared with
those of their LEO-based variants on both single-objective and
multi-/many-objective optimization problems. In these
experiments, the LEO-based algorithms achieve better
performance than those without LEO. The experimental results
show that solutions can not only avoid the dilemma of being
unable to extract enough information to enhance evolution but
also achieve faster convergence speed via the LEO framework,
especially when encountered with high-dimensional problems.
Moreover, a novel ETR indicator has been proposed to measure
the time efficiency of the LEO, and the simulation experimental
results have shown that the additional time cost for using LEO
is greatly economical and deserved, especially when the fitness
evaluation is very expensive. Therefore, although the concept

and core idea of the proposed LEO framework is simple and
easy to understand, it is very effective and efficient, which
leads to a novel and more efficient paradigm for EC algorithms
in solving global optimization problems. Moreover, the ETR
indicator is a general metric that can be promoted in the EC
community for measuring the cost performance of different EC
algorithms.

Nevertheless, there may still have some room for enhancing
the proposed LEO framework and LEO-based algorithms. First,
the difficulties of complex problems may pose new challenges
to the LEO-based algorithms, e.g., multi-objective problems
with irregular feasible regions [58], complex Pareto fronts [59],
and a large number of objectives [60], which should be
well-studied. Second, if the fitness evaluation of the problem is
expensive to access, there will be only few-shot solutions that
can be evaluated with the real fitness evaluation. In such case,
how to efficiently use the limited training data should be
well-studied.

Therefore, in the future, we will not only enhance the
LEO-based algorithms to well address the above issues, but
also hope to extend the idea of knowledge learning to more
research aspects of EC and real-world application problems,
such as large-scale problems [25]-[63], multimodal problems
[64][65], and multi-task problems [66][67]. Moreover, the
automatic optimization of the network architecture and
parameter of the LEO learning system for different scenarios
will be worthy of study [68]. Additionally, the implementation
of the LEO with powerful computation techniques, such as

TABLE VII
COMPARISONS AMONG L-PSO VARIANTS WITH DIFFERENT  VALUES

Problem L-PSO(=0.5) L-PSO(=0.1) L-PSO(=0.3) L-PSO(=0.7) L-PSO(=0.9)

F01(10D) 00 00 ()(s) 00 ()(s) 00 ()(s) 00 ()(s)

F02(10D) 4.10E+002.16E+01 4.22E+002.16E+01()(s) 3.46E+009.47E+00()(s) 4.20E+001.33E+01()(s) 4.10E+002.16E+01()(s)

F03(10D) 8.41E+004.72E+00 8.87E+004.52E+00()(s) 8.66E+004.71E+00()(s) 8.35E+005.13E+00()(s) 8.41E+004.72E+00()(s)

F04(10D) 4.06E-015.93E-02 6.00E-011.46E-01(+)(l) 4.49E-017.69E-02()(l) 4.14E-015.74E-02()(s) 4.06E-015.93E-02()(s)

F05(10D) 5.19E+015.91E+01 6.88E+017.77E+01(+)(m) 6.75E+018.55E+01(+)(m) 6.44E+015.24E+01(+)(m) 5.19E+015.91E+01()(s)

F06(10D) 3.68E-012.17E-01 4.10E-012.88E-01()(s) 3.91E-012.02E-01()(s) 3.55E-011.43E-01()(s) 3.68E-012.17E-01()(s)

F07(10D) 3.62E+015.49E+01 3.24E+015.30E+01()(s) 3.45E+015.45E+01()(s) 3.20E+013.61E+01()(s) 3.62E+015.49E+01()(s)

F08(10D) 00 00 ()(s) 00 ()(s) 00 ()(s) 00 ()(s)

F09(10D) 00 00 ()(s) 00 ()(s) 00 ()(s) 00 ()(s)

F10(10D) 4.81E+011.20E-01 4.82E+011.74E-01()(m) 4.82E+012.70E-01()(m) 4.81E+011.26E-01()(s) 4.81E+011.20E-01()(s)

Number of +//- NA 2/8/0 1/9/0 1/9/0 0/10/0

Adjusted p-value NA 0.1612 0.8665 1.0000 1.0000

TABLE VIII
COMPARISONS AMONG L-PSO VARIANTS WITH DIFFERENT  VALUES

Problem L-PSO(=0.9) L-PSO(=0.1) L-PSO(=0.3) L-PSO(=0.5) L-PSO(=0.7)

F01(10D) 00 00 ()(s) 00 ()(s) 00 ()(s) 00 ()(s)

F02(10D) 4.10E+002.16E+01 3.46E+016.82E+01(+)(l) 4.37E+017.31E+01(+)(l) 8.03E+003.00E+01()(s) 1.33E+017.82E-02(+)(l)

F03(10D) 8.41E+004.72E+00 8.10E+004.97E+00()(s) 1.10E+013.77E+00(+)(l) 9.80E+004.29E+00()(m) 9.48E+004.32E+00()(m)

F04(10D) 4.06E-015.93E-02 4.91E-011.39E-01()(m) 4.45E-011.99E-01()(m) 4.70E-019.18E-02()(m) 4.70E-019.18E-02()(m)

F05(10D) 5.19E+015.91E+01 6.21E+017.53E+01(+)(s) 1.19E+021.30E+02(+)(l) 8.45E+018.62E+01(+)(m) 8.45E+018.62E+01(+)(m)

F06(10D) 3.68E-012.17E-01 9.76E-012.10E+00(+)(m) 4.58E-014.28E-01(+)(s) 4.13E-015.30E-01()(s) 4.13E-015.30E-01()(s)

F07(10D) 3.62E+015.49E+01 2.28E+014.41E+01(-)(m) 4.36E+017.28E+01(+)(s) 3.23E+015.30E+01()(s) 3.23E+015.30E+01()(s)

F08(10D) 00 00 ()(s) 00 ()(s) 00 ()(s) 00 ()(s)

F09(10D) 00 00 ()(s) 00 ()(s) 00 ()(s) 00 ()(s)

F10(10D) 4.81E+011.20E-01 4.81E+011.41E-01()(s) 4.82E+014.20E-01()(m) 4.82E+013.35E-01()(m) 4.82E+013.35E-01()(m)

Number of +//- NA 3/6/1 5/5/0 1/9/0 2/8/0

Adjusted p-value NA 0.3222 0.0015 0.6093 0.6093

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2022.3232776

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

distributed computing [69][70], is also a potential research
direction for future work.

REFERENCES
[1] Z. H. Zhan et al., “Matrix-based evolutionary computation,” IEEE Trans.

Emerg. Top. Comput. Intell., vol. 6, no. 2, pp. 315-328, April 2022.
[2] Z. H. Zhan, L. Shi, K. C. Tan, and J. Zhang, “A survey on evolutionary

computation for complex continuous optimization,” Artif. Intell. Rev., vol.
55, pp. 59–110, Jan. 2022.

[3] D. Guirguis et al., “Evolutionary black-box topology optimization:
Challenges and promises,” IEEE Trans. Evol. Comput., vol. 24, no. 4, pp.
613-633, Aug. 2020.

[4] J. Y. Li, Z. H. Zhan, and J. Zhang, “Evolutionary computation for
expensive optimization: A survey,” Mach. Intell. Res., vol. 19, no. 1, pp. 3–
23, 2022.

[5] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[6] L. Feng, Q. Shang, Y. Hou, K. Tan, and Y. S. Ong, “Multi-space
evolutionary search for large-scale optimization with applications to
recommender systems,” IEEE Trans. Artif. Intell., 2021, DOI:
10.1109/TAI.2022.3156952.

[7] X. F. Liu, Z. H. Zhan, and J. Zhang, “Resource-aware distributed
differential evolution for training expensive neural-network-based
controller in power electronic circuit,” IEEE Trans. Neural Networks
Learn. Syst., vol. 33, no. 11, pp. 6286–6296, Nov. 2022.

[8] A. Ahrari, S. Elsayed, R. Sarker, D. Essam, and C. A. C. Coello, “Static
and dynamic multimodal optimization by improved covariance matrix
self-adaptation evolution strategy with repelling subpopulations,” IEEE
Trans. Evol. Comput., 2021, DOI: 10.1109/TEVC.2021.3117116.

[9] Z. G. Chen, Z. H. Zhan, S. Kwong, and J. Zhang, “Evolutionary
computation for intelligent transportation in smart cities: A survey,” IEEE
Comput. Intell. Mag., vol. 17, no. 2, pp. 83–102, 2022.

[10] Q. Lin, X. Wu, L. Ma, J. Li, M. Gong, and C. A. C. Coello, “An ensemble
surrogate-based framework for expensive multiobjective evolutionary
optimization,” IEEE Trans. Evol. Comput., vol. 26, no. 4, pp. 631–645,
Aug. 2022.

[11] S. C. Liu, Z. G. Chen, Z. H. Zhan, S. W. Jeon, S. Kwong, and J. Zhang,
“Many-objective job shop scheduling: A multiple populations for multiple
objectives-based genetic algorithm approach,” IEEE Trans. Cybern., 2021,
DOI: 10.1109/TCYB.2021.3102642.

[12] J. G. Falcón-Cardona, H. Ishibuchi, C. A. Coello Coello, and M. Emmerich,
“On the effect of the cooperation of indicator-based multiobjective
evolutionary algorithms,” IEEE Trans. Evol. Comput., vol. 25, no. 4, pp.
681-695, Aug. 2021.

[13] X. Zhang, Z. H. Zhan, W. Fang, P. Qian, and J. Zhang, “Multi population
ant colony system with knowledge based local searches for multiobjective
supply chain configuration,” IEEE Trans. Evol. Comput., vol. 26, no. 3, pp.
512–526, Jun. 2022.

[14] J. H. Holland, Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control, and Artificial
Intelligence. Cambridge, MA, USA: MIT Press, 1975.

[15] J. G. Falcón-Cardona, H. Ishibuchi, C. A. Coello Coello, and M. Emmerich,
“On the effect of the cooperation of indicator-based multiobjective
evolutionary algorithms,” IEEE Trans. Evol. Comput., vol. 25, no. 4, pp.
681-695, Aug. 2021.

[16] N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the time
complexity of the derandomized evolution strategy with covariance matrix
adaptation (CMA-ES),” Evol. Comput. vol. 11, pp.1-18, 2003.

[17] Y. Bi, B. Xue, and M. Zhang, “Multitask feature learning as multiobjective
optimization: A new genetic programming approach to image
classification,” IEEE Trans. Cybern., 2022, DOI:
10.1109/TCYB.2022.3174519.

[18] Y. Bi, B. Xue, and M. Zhang, “Dual-tree genetic programming for
few-shot image classification,” IEEE Trans. Evol. Comput., vol. 26, no. 3,
pp. 555–569, 2022.

[19] Y. Bi, B. Xue, and M. Zhang, “Multitask feature learning as multiobjective
optimization: A new genetic programming approach to image
classification,” IEEE Trans. Cybern., vol. 26, no. 2, pp. 218–232, 2022.

[20] R. Storn and K. V. Price, “Differential evolution—A simple and efficient
heuristic for global optimization over continuous spaces,” J. Glob. Optim.,
vol. 11, no. 4, pp. 341–359, 1997.

[21] Z. H. Zhan et al., “Cloudde: A heterogeneous differential evolution
algorithm and its distributed cloud version,” IEEE Trans. Parallel Distrib.

Syst., vol. 28, no. 3, pp. 704–716, 2017.
[22] J. Y. Li, Z. H. Zhan, K. C. Tan, and J. Zhang, “A meta-knowledge

transfer-based differential evolution for multitask optimization,” IEEE
Trans. Evol. Comput., vol. 26, no. 4, pp. 719–734, Aug. 2022.

[23] K. J. Du, J. Y. Li, H. Wang, and J. Zhang, “Multi-objective multi-criteria
evolutionary algorithm for multi-objective multi-task optimization,”
Complex Intell. Syst., 2022, DOI: 10.1007/s40747-022-00650-8.

[24] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proc.
IEEE Int. Conf. Neural Networks, 1995, pp.1942-1948.

[25] J. R. Jian, Z. G. Chen, Z. H. Zhan, and J. Zhang, “Region encoding helps
evolutionary computation evolve faster: A new solution encoding scheme
in particle swarm for large-scale optimization,” IEEE Trans. Evol.
Comput., vol. 25, no. 4, pp. 779-793, Aug. 2021.

[26] J. Y. Li, Z. H. Zhan, R. D. Liu, C. Wang, S. Kwong, and J. Zhang,
“Generation level parallelism for evolutionary computation: A
pipeline-based parallel particle swarm optimization,” IEEE Trans. Cybern.,
vol. 51, no. 10, pp. 4848-4859, Oct. 2021.

[27] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE
Comput. Intell. Mag., vol. 1, no. 4, pp. 28-39, Nov. 2006.

[28] J. Y. Li et al., “A multipopulation multiobjective ant colony system
considering travel and prevention costs for vehicle routing in
COVID-19-like epidemics,” IEEE Trans. Intell. Transp. Syst., 2022, DOI:
10.1109/tits.2022.3180760.

[29] L. Shi, Z. H. Zhan, D. Liang, and J. Zhang, “Memory-based ant colony
system approach for multi-source data associated dynamic electric vehicle
dispatch optimization,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 10,
pp. 17491–17505, Oct. 2022.

[30] L. J. Wu et al., “Real environment-aware multisource data-associated cold
chain logistics scheduling: A multiple population-based multiobjective ant
colony system approach,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 12,
pp. 23613–23627, Dec. 2022.

[31] J. Y. Li, Z. H. Zhan, J. Xu, S. Kwong, and J. Zhang, “Surrogate-assisted
hybrid-model estimation of distribution algorithm for mixed-variable
hyperparameters optimization in convolutional neural networks,” IEEE
Trans. Neural Netw. Learn. Syst., 2021, DOI:
10.1109/TNNLS.2021.3106399.

[32] C. Wang, C. Xu, X. Yao, and D. Tao, “Evolutionary generative adversarial
networks,” IEEE Trans. Evol. Comput., vol. 23, no. 6, pp. 921–934, 2019.

[33] Y. Sun, G. G. Yen, and Z. Yi, “Evolving unsupervised deep neural
networks for learning meaningful representations,” IEEE Trans. Evol.
Comput., vol. 23, no. 1, pp. 89–103, 2019.

[34] Z. H. Zhan, J. Y. Li, and J. Zhang, “Evolutionary deep learning: A survey,”
Neurocomput., vol. 483, pp. 42–58, 2022.

[35] H. Al-Sahaf et al., “A survey on evolutionary machine learning,” J. R. Soc.
New Zeal., vol. 49, no. 2, pp. 205–228, 2019

[36] E. Galván and P. Mooney, “Neuroevolution in deep neural networks:
Current trends and future challenges,” IEEE Trans. Artif. Intell., vol. 2, no.
6, pp. 476-493, Dec. 2021.

[37] J. Zhang et al., “Evolutionary computation meets machine learning: A
survey,” IEEE Comput. Intell. Mag., vol. 6, no. 4, pp. 68–75, 2011.

[38] A. Wagdy et al., “Problem definitions and evaluation criteria for the CEC
2021 special session and competition on single objective bound
constrained numerical optimization”, Tech. Rep., Nanyang Technological
University, Singapore.

[39] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable multiobjective
optimization test problems,” in Proc. IEEE Congr. Evol. Comput., 2002,
pp. 825–830.

[40] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[41] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6, pp.
712–731, Dec. 2007.

[42] V. Stanovov, S. Akhmedova, and E. Semenkin, “NL-SHADE-RSP
algorithm with adaptive archive and selective pressure for cec 2021
numerical optimization,” in Proc. Proc. IEEE Congr. Evol. Comput., 2021,
pp. 809-816.

[43] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Netw., vol. 2, no. 5, pp.
359–366, 1989.

[44] H. Wang, Y. Jin, C. Sun, and J. Doherty, “Offline data-driven evolutionary
optimization using selective surrogate ensembles,” IEEE Trans. Evol.
Comput., vol. 23, no. 2, pp. 203–216, 2018.

[45] J. Y. Li, Z. H. Zhan, C. Wang, H. Jin, and J. Zhang, “Boosting data-driven
evolutionary algorithm with localized data generation,” IEEE Trans. Evol.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2022.3232776

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

14

Comput., vol. 24, no. 5, pp. 923-937, Oct. 2020.
[46] J. Y. Li, Z. H. Zhan, H. Wang, and J. Zhang, “Data-driven evolutionary

algorithm with perturbation-based ensemble surrogates,” IEEE Trans.
Cybern., vol. 51, no. 8, pp. 3925-3937, Aug. 2021.

[47] X. Ji, Y. Zhang, D. Gong, and X. Sun, “Dual-surrogate assisted
cooperative particle swarm optimization for expensive multimodal
problems,” IEEE Trans. Evol. Comput., 2021, DOI:
10.1109/TEVC.2021.3064835.

[48] G. Li and Q. Zhang, “Multiple penalties and multiple local surrogates for
expensive constrained optimization,” IEEE Trans. Evol. Comput., 2021,
DOI: 10.1109/TEVC.2021.3066606.

[49] L. Feng et al., “Towards faster vehicle routing by transferring knowledge
from customer representation,” IEEE Trans. Intell. Transp. Syst., vol. 23,
no. 2, pp. 952–965, 2022.

[50] L. Zhou, L. Feng, A. Gupta, and Y. S. Ong, “Learnable evolutionary search
across heterogeneous problems via kernelized autoencoding,” IEEE Trans.
Evol. Comput., vol. 25, no. 3, pp. 567–581, 2021.

[51] L. Feng, W. Zhou, W. Liu, Y. S. Ong, and K. C. Tan, “Solving dynamic
multiobjective problem via autoencoding evolutionary search,” IEEE
Trans. Cybern., vol. 52, no. 5, pp. 2649–2662, 2022.

[52] X. F. Liu et al., “Neural network-based information transfer for dynamic
optimization,” IEEE Trans. Neural Networks Learn. Syst., vol. 31, no. 5,
pp. 1557–1570, 2020.

[53] Z. H. Zhan, Z. J. Wang, H. Jin, and J. Zhang, “Adaptive distributed
differential evolution,” IEEE Trans. Cybern., vol. 50, no. 11, pp. 4633–
4647, Nov. 2020.

[54] A. Ghosh, S. Das, A. K. Das, and L. Gao, “Reusing the past difference
vectors in differential evolution—A simple but significant improvement,”
IEEE Trans. Cybern., vol. 50, no. 11, pp. 4821–4834, Nov. 2020.

[55] X. Xia et al., “Triple archives particle swarm optimization,” IEEE Trans.
Cybern., vol. 50, no. 12, pp. 4862–4875, Dec. 2020.

[56] R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff, “A reference vector guided
evolutionary algorithm for many-objective optimization,” IEEE Trans.
Evol. Comput., vol. 20, no. 5, pp. 773–791, 2016.

[57] J. Cohen, Statistical Power Analysis for the Behavioral Sciences. New
York, NY, USA: Psychology Press, 1988.

[58] S. Bechikh, A. Chaabani, and L. Ben Said, “An efficient chemical reaction
optimization algorithm for multiobjective optimization,” IEEE Trans.
Cybern., vol. 45, no. 10, pp. 2051–2064, Oct. 2015.

[59] M. Elarbi, S. Bechikh, C. A. Coello Coello, M. Makhlouf, and L. Ben Said,
“Approximating complex Pareto fronts with predefined normal-boundary
intersection directions,” IEEE Trans. Evol. Comput., vol. 24, no. 5, pp.
809–823, 2020.

[60] M. Elarbi, S. Bechikh, A. Gupta, L. Ben Said, and Y. Ong, “A new
decomposition-based NSGA-II for many-objective optimization,” IEEE
Trans. Syst. Man, Cybern. Syst., vol. 48, no. 7, pp. 1191–1210, 2018.

[61] X. Zhang et al., “Graph-Based Deep Decomposition for Overlapping
Large-Scale Optimization Problems,” IEEE Trans. Syst. Man, Cybern.
Syst., 2022, DOI: 10.1109/TSMC.2022.3212045.

[62] J. Y. Li, Z. H. Zhan, K. C. Tan, and J. Zhang, “Dual differential grouping:
A more general decomposition method for large-scale optimization,” IEEE
Trans. Cybern., 2022, DOI: 10.1109/TCYB.2022.3158391.

[63] Z. J. Wang, J. R. Jian, Z. H. Zhan, Y. Li, S. Kwong, and J. Zhang, “Gene
targeting differential evolution: A simple and efficient method for large
scale optimization,” IEEE Trans. Evol. Comput., 2022, DOI:
10.1109/TEVC.2022.3185665.

[64] Z. G. Chen, Z. H. Zhan, H. Wang, and J. Zhang, “Distributed individuals
for multiple peaks: A novel differential evolution for multimodal
optimization problems,” IEEE Trans. Evol. Comput., vol. 24, no. 4, pp.
708-719, Aug. 2020.

[65] Y. Jiang, Z. H. Zhan, K. C. Tan, and J. Zhang, “Optimizing niching centers
for multimodal optimization,” IEEE Trans. Cybern., 2022, DOI:
10.1109/TCYB.2021.3125362.

[66] S. H. Wu, Z. H. Zhan, K. C. Tan, and J. Zhang, “Orthogonal transfer for
multitask optimization,” IEEE Trans. Evol. Comput., 2022, DOI:
10.1109/TEVC.2022.3160196.

[67] Y. Jiang, Z. H. Zhan, K. C. Tan, and J. Zhang, “A bi-objective knowledge
transfer framework for evolutionary many-task optimization,” IEEE Trans.
Evol. Comput., 2022, DOI: 10.1109/TEVC.2022.3210783.

[68] Y. Q. Wang, J. Y. Li, C. H. Chen, J. Zhang, and Z. H. Zhan, “Scale
adaptive fitness evaluation-based particle swarm optimization for
hyperparameter and architecture optimization in neural networks and deep
learning,” CAAI Trans. Intell. Technol., 2022, DOI: 10.1049/cit2.12106.

[69] J. Y. Li, K. J. Du, Z. H. Zhan, H. Wang, and J. Zhang, “Distributed
differential evolution with adaptive resource allocation,” IEEE Trans.

Cybern., 2022, DOI: 10.1109/TCYB.2022.3153964.
[70] Y. Guo, J. Y. Li, and Z. H. Zhan, “Efficient hyperparameter optimization

for convolution neural networks in deep learning: A distributed particle
swarm optimization approach,” Cybern. Syst., vol. 52, no. 1, pp. 36–57,
2020.

Zhi-Hui Zhan (Senior Member, IEEE) received the
Bachelor’s degree and the Ph. D. degree in Computer
Science from the Sun Yat-Sen University, Guangzhou
China, in 2007 and 2013, respectively.

He is currently the Changjiang Scholar Young
Professor with the School of Computer Science and
Engineering, South China University of Technology,
Guangzhou, China. His current research interests include
evolutionary computation, swarm intelligence, and their

applications in real-world problems and in environments of cloud computing
and big data.

Dr. Zhan was a recipient of the IEEE Computational Intelligence Society
(CIS) Outstanding Early Career Award in 2021, the Outstanding Youth Science
Foundation from National Natural Science Foundations of China (NSFC) in
2018, and the Wu Wen-Jun Artificial Intelligence Excellent Youth from the
Chinese Association for Artificial Intelligence in 2017. His doctoral
dissertation was awarded the IEEE CIS Outstanding Ph. D. Dissertation and the
China Computer Federation Outstanding Ph. D. Dissertation. He is one of the
World’s Top 2% Scientists for both Career-Long Impact and Year Impact in
Artificial Intelligence and one of the Highly Cited Chinese Researchers in
Computer Science. He is currently the Chair of Membership Development
Committee in IEEE Guangzhou Section and the Vice-Chair of IEEE CIS
Guangzhou Chapter. He is currently an Associate Editor of the IEEE
Transactions on Evolutionary Computation, the Neurocomputing, the Memetic
Computing, and the Machine Intelligence Research.

Jian-Yu Li (Member, IEEE) received the Bachelor’s
degree and the Ph. D. degree in Computer Science and
Technology from the South China University of
Technology, China, in 2018 and 2022, respectively.

His research interests mainly include computational
intelligence, data-driven optimization, machine learning
including deep learning, and their applications in
real-world problems, and in environments of distributed
computing and big data. He currently serves as a
reviewer of the IEEE Transactions on Evolutionary

Computation and the Neurocomputing.

Sam Kwong (Fellow, IEEE) received the Ph.D. degree
from the University of Hagen, Germany, in 1996.

He is currently a Chair Professor with the Department
of Computer Science, City University of Hong Kong.
His research interests include pattern recognition,
evolutionary computations, and video analytics.

Prof. Kwong was elevated to an IEEE Fellow for his
contributions to optimization techniques for cybernetics
and video coding in 2014. He is the President of the

IEEE Systems, Man, and Cybernetics (SMC). He was also appointed as an
IEEE Distinguished Lecturer of the IEEE SMC Society in March 2017. He is
currently an Associate Editor of the IEEE Transactions on Evolutionary
Computation.

Jun Zhang (Fellow, IEEE) received the Ph.D. degree
from the City University of Hong Kong in 2002.

He is currently a Korea Brain Pool Fellow Professor
with Hanyang University, South Korea. His current
research interests include computational intelligence,
cloud computing, operations research, and power
electronic circuits. He has published over more than 150
IEEE Transactions papers in his research areas.

Dr. Zhang was a recipient of the Changjiang Chair
Professor from the Ministry of Education, China, in
2013, The National Science Fund for Distinguished

Young Scholars of China in 2011 and the First-Grade Award in Natural Science
Research from the Ministry of Education, China, in 2009. He is currently an
Associate Editor of the IEEE Transactions on Evolutionary Computation and
the IEEE Transactions on Cybernetics.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2022.3232776

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

