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Abstract—This article deals with the novel metaheuristic 

algorithm based on the Ant Colony Optimization (ACO) principle. 

It implements several novel mechanisms that improve its overall 

performance, lower the optimization time, and reduce the negative 

behavior which is typically connected with ACO-based algorithms 

(such as prematurely falling into local optima, or the impact of 

setting of control parameters on the convergence for different 

problem configurations). The most significant novel techniques, 

implemented for the first time to solve the Multi-Depot Vehicle 

Routing Problem (MDVRP), are as follows: (a) node clustering 

where transition vertices are organized into a set of candidate lists 

called clusters; (b) adaptive pheromone evaporation which is 

adapted during optimization according to the diversity of the 

population of ant solutions (measured by information entropy). 

Moreover, a new termination condition, based also on the 

population diversity, is formulated. The effectiveness of the 

proposed algorithm for the MDVRP is evaluated via a set of 

experiments on 23 well-known benchmark instances. Performance 

is compared with several state-of-the-art metaheuristic methods; 

the results show that the proposed algorithm outperforms these 

methods in most cases. Furthermore, the novel mechanisms are 

analyzed and discussed from points of view of performance, 

optimization time, and convergence. The findings achieved in this 

article bring new contributions to the very popular ACO-based 

algorithms; they can be applied to solve not only the MDVRP, but 

also, if adapted, to related complex NP-hard problems. 

 

Index Terms—Ant Colony Optimization, Multi-Depot Vehicle 

Routing Problem, node clustering, adaptive pheromone 

evaporation, entropy. 

I. INTRODUCTION 

HE Multi-Depot Vehicle Routing Problem (MDVRP) is 

a well-known NP-hard combinatorial optimization 

problem related to the famous Traveling Salesman 

Problem (TSP) formulated at Princeton University in the 1930s 

[1]. The problem has been applied in many domains of human 

activities such as logistics, transportation, distribution, 

navigation, military, etc. [2]. 

A. Problem Formulation 

The problem is formulated as follows. Let 𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑚} 

be a set of vehicles (depots) of size 𝑚, and 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑛} 

be a set of customers of size 𝑛. Let 𝐺 be a graph whose vertices 
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(nodes) comprise all the customers and vehicles: 𝑉 = 𝐷 ∪ 𝐶 =
{𝑑1, … , 𝑑𝑚 , 𝑐1, … , 𝑐𝑛} = {𝑣1, 𝑣2, … , 𝑣𝑛+𝑚}. The aim of the 

problem is to serve all the customers by vehicles (each customer 

must be served just once by any vehicle) so that the total 

distance travelled is as small as possible. 

Route 𝑅𝑘 for vehicle 𝑑𝑘 ∈ 𝐷 represents a sequence of 

customers to be served in the exact order: 𝑅𝑘 = (𝑟1
𝑘 , 𝑟2

𝑘 , … , 𝑟𝑛𝑘
𝑘 ) 

where 𝑟𝑗
𝑘 ∈ 𝑉, and 𝑛𝑘 is the number of vertices to be visited by 

vehicle 𝑑𝑘 including its depot (𝑟1
𝑘 = 𝑟𝑛𝑘

𝑘 = 𝑑𝑘). The solution to 

the problem is a sequence of routes: 𝑅 = (𝑅1, 𝑅2, … , 𝑅𝑚). The 

objective function is in (1). 

 

 |𝑅| = ∑ |𝑅𝑘|𝑚
𝑘=1 = ∑ ∑ |𝑟𝑗

𝑘 − 𝑟𝑗−1
𝑘 |

𝑛𝑘
𝑗=2

𝑚
𝑘=1  (1) 

 

Several constraints must be satisfied. Constraint (2) ensures 

that all customers must be served, constraint (3) forces each 

vehicle to start and end its route at the depot, and constraint (4) 

ensures that each customer is served just once. 

 

 {𝑟1
1; … ; 𝑟𝑛1

1 ; 𝑟1
2; … ; 𝑟𝑛2

2 ; 𝑟1
𝑚; … ; 𝑟𝑛𝑚

𝑚 } = 𝐶     if 𝑟𝑗
𝑘 ∈ 𝐶 (2) 

 {𝑟1
1; 𝑟𝑛1

1 ; 𝑟1
2; 𝑟𝑛2

2 ; 𝑟1
𝑚; 𝑟𝑛𝑚

𝑚 } = 𝐷 (3) 

 𝑟𝑖
𝑘 ≠ 𝑟𝑗

𝑘      when 𝑟𝑖
𝑘 , 𝑟𝑖

𝑘 ∈ 𝐶 and 𝑖 ≠ 𝑗 (4) 

 

Moreover, each customer demands a certain amount of goods 

(marked 𝑟𝑗
𝑘 (𝑑𝑒𝑚𝑎𝑛𝑑)

), and vehicles in depots have a maximum 

capacity (marked 𝑑𝑘
(𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦)

) which cannot be exceeded. This 

means that the vehicle must return back to its depot if its 

capacity would be exceeded by visiting the next customer on its 

route (thus emptying its load); after that, the vehicle can 

continue to serve the remaining customers on the route. Route 

𝑅𝑘 may be thus composed of more than 1 consecutive sub-

sequences 𝑅𝑘
𝑖 ⊆ 𝐶 comprised of customers only (i.e. any part of 

the route without returning to the depot): 𝑅𝑘 =
(𝑑𝑘; 𝑅𝑘

1; 𝑑𝑘; 𝑅𝑘
2; 𝑑𝑘; … ; 𝑑𝑘). Then, capacity constraint (5) must 

be satisfied. 

 

 ∑ 𝑟𝑗
𝑘(𝑑𝑒𝑚𝑎𝑛𝑑)

𝑅𝑘
𝑖 ≤ 𝑑𝑘

(𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦)
     for all 𝑅𝑘

𝑖 ⊆ 𝑅𝑘 (5) 
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B. Contributions 

In this article, the novel metaheuristic algorithm based on the 

Ant Colony Optimization (ACO) theory is proposed for the 

MDVRP. This algorithm implements several unique techniques 

which improve its performance and reduce the negative 

behavior typically connected with ACO-based methods 

(particularly the impact of the setting of control parameters on 

performance in connection with the graph configuration, and 

the tendency to fall prematurely into a local optimum). 

The algorithm presented in this article extends the original 

ACO algorithm proposed by the authors in [3]. Some of the key 

techniques implemented in the original are as follows: 

 

● Stochastic selection of depots before the node 

transitions based on the pheromone potential. 

● Hybridization with the simulated annealing principle; 

this is used when determining a solution from the 

population to update the pheromone matrix. 

● Modified k-Opt local search optimization applied not 

only to individual routes in the solution, but also to a 

pair of routes (based on a mutual exchange of nodes). 

 

This algorithm has been extended by three novel techniques 

which further improve its performance. These techniques, 

originally developed by the authors for the TSP in [4], have 

been modified and adapted for the MDVRP, and integrated into 

the algorithm. They are as follows:  

 

● Node clustering principle. For every vertex, 

candidate lists of transition vertices (called clusters) 

are created. The vertices in clusters are organized 

based on the probability that they will be a part of the 

optimal solution; the higher the probability, the higher 

the significance of the cluster. The probability is not 

influenced only by the distance between vertices; the 

graph configuration also is considered using the 

sectorization principle. Node clustering does not 

restrict the pheromone attraction principle to be used 

only to a small set of vertices in a single candidate list, 

but enables to access a complete set of transition 

vertices. 

● Adaptive pheromone evaporation. The adaptive 

pheromone evaporation has been proposed because 

the right speed of evaporation is one of the most 

critical factors influencing the performance of the 

algorithm. Thus, the speed of the evaporation reflects 

the current optimization progress measured by the 

information entropy expressing the diversity of 

solutions in the population. 

● Entropy-based termination condition. A new 

termination condition has been formulated based on 

the information entropy. The main idea behind this is 

that when the entropy is low (i.e. solutions in the 

population are the same or similar to one another), the 

probability of improving the best solution is also low 

and thus the optimization can be terminated. 

 

Based on these new techniques, the proposed algorithm is 

called the Adaptive Ant Colony Optimization with Node 

Clustering (AACO-NC). 

C. Motivation 

The authors of this article chose the ACO-based methods 

because these proved to be very successful in solving discrete 

optimization problems [5], [6]. Several novel techniques have 

been proposed and verified. The practical use of the AACO-NC 

in the real software application (see details below) is based on 

the MDVRP transformation into various real-world problems. 

The AACO-NC has been integrated into the Tactical 

Decision Support System (TDSS) as a key optimization 

method. This system is being developed at the University of 

Defence, Czech Republic, in long-term research. The aim is to 

support military commanders of the Czech Armed Forces on 

the battlefield in their decision-making [7]. The TDSS is 

composed of a set of models of military tactics. Commanders 

can use this system to plan their operations when one of the 

models is compatible with the task at hand. The system plans 

the variants to solve the task along with the second order effects, 

and presents them to the commanders who can decide the next 

course of action (they can choose one of the variants which is 

immediately transmitted to subordinate soldiers or robotic 

systems for execution). More information about this topic can 

be found in [8], [9], [10], [11], [12], [13], [14], [15]. 

Some of the models of military tactics, in which the proposed 

algorithm is implemented, are as follows: 

 

● Cooperative reconnaissance of the area of intelligence 

responsibility via a swarm of Unmanned Aerial 

Systems (UAS). The algorithm is used to plan 

trajectories of individual cooperating UASs so that the 

reconnaissance is as fast and complete as possible. 

● Cooperative reconnaissance of the area of intelligence 

responsibility using a group of ground elements 

(soldiers or unmanned ground systems). 

● Persistent surveillance of the area or object of interest 

via a swarm of UASs. 

● Logistics to units on the battlefield via a group of 

supply vehicles. 

 

D. Article Organization 

The article is further organized as follows. Section II reviews 

the literature particularly with respect to the novel 

improvements. In Section III, the proposed algorithm is 

presented with a focus on the novel techniques. Section IV 

shows the experimental results on a set of benchmark instances, 

and compares the performance of the AACO-NC with other 

state-of-the-art methods. The analysis and discussion about the 

impact of the novel techniques on the performance and behavior 

of the algorithm is in Section V. Finally, Section VI concludes 

the article and suggests future work for the authors. 
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II. LITERATURE REVIEW 

The MDVRP is a well-known NP-hard problem that attracts 

the full attention of researches. Since it was formulated in 1959 

[16], many different methods have been proposed, both exact 

and stochastic. The most recent survey of the MDVRP [2] 

discusses mathematical models, state-of-the-art solution 

methods, and real-life applications. 

This section is organized as follows. First, some examples of 

metaheuristic algorithms used for the MDVRP (or related 

problems) are introduced in Section II-A. The bio-inspired 

algorithms follow in Section II-B as a strong class of stochastic 

methods. Then, ACO-based methods are presented in Section 

II-C with a focus on modern techniques and mechanisms 

integrated to enhance the overall performance. Finally, sections 

II-D and II-E aim at the current state of research in the areas 

that are related to the key contributions of this article – node 

transition and adaptive parameters control. No part of this 

section can bring the complete overview of scientific works; 

therefore, only the state-of-the-art studies and/or key studies 

related in some aspect to this work are included. 

A. Metaheuristic Algorithms 

Metaheuristic algorithms have proved to be very successful 

for the constrained combinatorial problems. Genetic algorithms 

have been often used for the MDVRP; the authors of [17] 

proposed an improved genetic algorithm with various crossover 

operators and pre-assigning customers to their nearest depots. 

The genetic algorithm combined with the enhanced Ordered 

Distance Vector (ODV) for population initialization is 

introduced in [18]. Another popular approach is the Variable 

Neighborhood Search (VNS); the approach in [19] integrates 

biased-randomization strategies within a variable neighborhood 

search framework in order to better guide the searching process. 

The Variable Tabu Neighborhood Search (VTNS) algorithm is 

proposed in [20]; it combines the VNS with a tabu shaking 

mechanism in the diversification phase of the search. The 

Imperialist Competitive Algorithm (ICA) has been also often 

used for the combinatorial problems. The authors of [21] 

proposed the ICA with Independence and Constrained 

Assimilation (ICA-ICA) which combines the classical ICA 

assimilation and revolution operators, while maintaining 

population diversity. 

B. Bio-inspired Algorithms 

In recent years, bio-inspired methods have become very 

popular and widely used for combinatorial problems. The 

authors of [22] proposed a variant of the Artificial Bee Colony 

algorithm for the Multiobjective Energy Reduction MDVRP. 

The Enhanced Firefly Algorithm, which improves the solution 

quality by using the Clarke and Wright savings algorithm and a 

local search technique for the Capacitated Vehicle Routing 

Problem, is put forth in [23]. A hybrid nature-inspired heuristic 

algorithm integrating the Clarke and Wright savings algorithm, 

the Sweep Algorithm, and the Multi-Objective Particle Swarm 

Optimization algorithm to solve the Multi-Depot Green VRP is 

proposed in [24]. 

C. ACO Algorithms with Various Improvement Techniques 

Ant Colony Optimization (ACO) is one of the most popular 

metaheuristic optimization techniques inspired by the behavior 

of ants when searching for food. It has been applied to a wide 

range of combinatorial optimization problems. These 

algorithms often combine the basic ACO-based principle with 

particular techniques and mechanisms to enhance performance 

and to reduce the negative effects typically connected with the 

ACO algorithms. Some of the most recent research of the ACO-

based algorithms applied to the MDVRP or related problems 

are [25] (ACO with an improved approach in updating the 

pheromone matrix), [26] (clustering nodes into a desired 

number of groups using k-means clustering algorithm, then 

using ACO to generate routes for each cluster), [27] (ACO with 

the scanning strategy and crossover operation), [28] (ACO with 

two distinct types of ants, the first for assigning customers to 

depots, the second to generate routes), [29] (ACO based on a 

polygonal circumcenter used for assigning customers to 

depots). A lot of ACO algorithms are also complemented by 

some local search optimization technique, mostly k-Opt local 

search, to enhance the overall performance, see e.g. [30], [31], 

[32]. 

D. ACO Algorithms – Node Transition Techniques 

The key phase of ACO-based algorithms is the sequential 

nodes transition into ant solutions. In the original approach, any 

node that is not yet part of the solution can be selected and 

inserted. The probability of selecting a node depends typically 

on the heuristic information (reverse distance between the last 

node inserted and this node) and the strength of the pheromone 

trail. These probabilities are necessary to calculate for all the 

free nodes which leads to the quadratic dependence on the graph 

size. The idea to restrict the set of nodes for selection is 

therefore logical not only to reduce the computational 

complexity, but also to increase the overall performance and 

decrease the memory requirements [33]. The restricted set of 

nodes for selection is typically called a candidate set or a 

candidate list. 

In the MDVRP and related graph theory problems, a single 

candidate list has typically a fixed size and the nodes are 

selected using the nearest neighbor principle (the general 

assumption is that local transitions lead to good solutions), i.e. 

the nodes closest to the last customer in the solution are inserted 

into the candidate list [34]. An example of this approach is in 

[35], where the authors developed a hybrid ACO algorithm to 

solve the open vehicle routing problem. In the transition phase, 

the customers are selected from the candidate lists comprised of 

the closest customers; the size of the candidate list is limited to 

some portion of the total number of customers. Another 

example is in [36]; the authors proposed the Vectorized 

Candidate Set Selection technique (VCSS) for a parallel ACO 

algorithm, where the candidate list is generated from a set of the 

nearest free neighbors using the roulette wheel principle. A 

different approach is used in [37]; instead of creating a list of 

candidate nodes, the pheromone matrix is restricted to the 

constant number of nearest neighbors for each node. All these 
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approaches need some strategy to select a customer when there 

is no free node in the candidate list. The easiest way is to select 

the nearest free customer. However, a more advanced 

procedure is proposed in [37]: a pheromone value is mapped to 

every edge which is part of the best route; a node with the 

highest pheromone value assigned to the edge adjacent to the 

last node in the route is then inserted. 

The node clustering principle introduced in this article brings 

novelty in two ways. First, there is not a single candidate list 

but a set of candidate lists comprising a complete number of 

vertices. The selection of a vertex for transition is performed in 

two phases: first, a candidate list from the set is determined, 

then a vertex from this list is selected. In both phases, the 

probability of selecting either a list or a vertex depends on the 

heuristic information and the intensity of the pheromone trails. 

Thus, the principal strength of the ACO is preserved for the full 

set of vertices. Moreover, this approach does not need a special 

strategy if there is not a free vertex inside the single candidate 

list. The second enhancement is that the vertices are not 

organized in clusters strictly using the nearest neighbor 

approach, but the graph configuration is also considered using 

the sectorization principle. 

E. ACO Algorithms – Adaptive Parameters Control 

Some research has been recently conducted in the area of 

adaptivity of ACO-based algorithms in order to reduce negative 

effects such as falling into local optima or the influence of the 

setting of control parameters on performance for difference 

graph configurations. A nucleolus game learning strategy in a 

set of ant colonies was proposed in [38] to improve the 

population diversity; the idea is to share pheromone distribution 

among these colonies when the algorithm stalls. The authors of 

[39] proposed an adaptive stagnation avoidance strategy in 

which a cooperative game model based on the population 

diversity determines the selection of the appropriate pheromone 

matrix for different colonies. 

The adaptive approach to evolving control parameters has 

been addressed in several research articles. The alpha and beta 

control parameters are adjusted in [40] using a set of rules based 

on exploring the parameter and fitness landscape during the 

search. The authors of [41] use the greedy strategy for the 

dynamic change of alpha and beta control parameters to 

accelerate the convergence speed linearly with iterations. The 

linear change of alpha and beta control parameters and, in 

addition, the evaporation coefficient is introduced in [42]. 

The diversity of the population of ants is measured in some 

studies by information entropy [39], [43]. However, to the best 

knowledge of the authors of this article, information entropy 

has not yet been used for adaptive evolution of control 

parameters (particularly the evaporation coefficient) as it is 

used in this article. Using this principle, the convergence speed 

is controlled via the speed of the pheromone evaporation 

according to the current state of the population diversity 

(greater diversity enables faster convergence, and vice versa). 

III. ALGORITHM 

This section is aimed at the key principles of the proposed 

AACO-NC algorithm. This algorithm is inspired by the 

behavior of ants in nature when searching for food and it 

implements several techniques which improve its performance 

and behavior for the MDVRP. 

Fig. 1 presents the key phases of the AACO-NC in 

pseudocode. The input of the algorithm is a set of graph vertices 

𝑉 (customers and depots) and control parameters which are as 

follows: 

 

● 𝑛𝑎𝑛𝑡𝑠: number of ants in colonies; 

● 𝑛𝑓𝑟𝑒𝑞: frequency of the local optimization; 

● 𝑛𝑝𝑟𝑖𝑚: number of primary clusters; 

● 𝑛𝑠𝑖𝑧𝑒: number of vertices in clusters; 

● 𝑛𝑠𝑒𝑐𝑡: number of sectors; 

● 𝑇𝑢𝑝𝑑𝑎𝑡𝑒: temperature updating coefficient; 

● 𝛼𝑢𝑝𝑑𝑎𝑡𝑒: temperature cooling coefficient; 

● 𝜌𝑚𝑖𝑛 , 𝜌𝑚𝑎𝑥: minimum and maximum limits of the 

pheromone evaporation coefficient; 

● 𝛿: pheromone updating coefficient; 

● 𝛼: distance probability coefficient; 

● 𝛽: pheromone probability coefficient. 

 

The algorithm works with a number of ant colonies equal to 

the number of depots (one colony is located at each depot); ants 

starting from these colonies represent vehicles; their 

movements represent routes in a solution. There is the same 

number of ants in each colony controlled by parameter 𝑛𝑎𝑛𝑡𝑠. A 

pheromone matrix is created for each colony. At the initial 

phase of the algorithm (point 3), the pheromone matrixes are 

initialized using (6). Also, clusters for every vertex of the graph 

are created (points 4 and 5) – see Section III.A for details. 
 

 𝜏𝑖𝑗
𝑘 = 1   for all 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉 and 𝑑𝑘 ∈ 𝐷 (6) 

 

The algorithm runs in iterations (points 6 to 19). In each 

iteration, solution 𝑅𝑎 is found (point 10) for every set of ants 

(one ant from each colony belongs to this set) using the novel 

node clustering principle (see Section III.A and III.B for 

details). The best solution found in an iteration is labeled as 

𝑅𝑏𝑒𝑠𝑡  (points 11 and 12). Then, the local optimization process 

may be applied to solution 𝑅𝑏𝑒𝑠𝑡; it is applied with frequency 

given by control parameter 𝑛𝑓𝑟𝑒𝑞  (points 13 and 14). The local 

optimization uses the modified k-Opt local search algorithm for 

individual routes in the solution, but also for the mutual 

exchange of vertices between any pair of routes. More details 

about the local optimization can be found in [3]. 

At the end of each iteration, pheromone matrixes are updated 

(point 17), and then evaporated (point 19) – see Section III.C 

for details. The speed of the evaporation is controlled via the 

pheromone evaporation coefficient 𝜌 which is set adaptively in 

range (𝜌𝑚𝑖𝑛 , 𝜌𝑚𝑎𝑥) in each iteration (point 18) – see Section 

III.D. The best solution found so far 𝑅 is stored (points 14 and 

15) in each iteration and returned (point 20) when the algorithm 

is terminated (see Section III.E for termination conditions). 
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Fig. 1. The key phases of the AACO-NC. 

 

A. Node Clustering Principle 

Node clustering is the key principle improving the 

performance of the algorithm. This principle is used in the 

phase of creating a solution 𝑅𝑎 when searching for the next 

node to be inserted into one of the routes of vehicles (ants). 

A cluster is a set of vertices of a defined size 𝑛𝑠𝑖𝑧𝑒 

(1 ≤ 𝑛𝑠𝑖𝑧𝑒 ≤ 𝑛). For every vertex 𝑣𝑖 ∈ 𝑉, a set of clusters 

𝐾(𝑣𝑖) = {𝐾1
(𝑣𝑖)

, 𝐾2
(𝑣𝑖)

, … } is created independently so that they 

together contain all the customers in the graph except vertex 𝑣𝑖 

itself. Vertex 𝑣𝑖, for which clusters 𝐾(𝑣𝑖) are created, is then 

referred to as the cluster vertex for these clusters.  

Customers are inserted into clusters based on the probability 

of being the neighboring vertices for cluster vertex 𝑣𝑖 on the 

optimal route. Customers closer to the cluster vertex are more 

probable, so they are placed into clusters with lower indexes 

(the closest vertices are placed into the first cluster 𝐾1
(𝑣𝑖)

). 

However, based on the topology of the problem at hand, even 

customers relatively distant to the cluster vertex may be the 

neighboring vertices on the optimal route. This may occur when 

the problem is composed of several separate groups of 

customers. For this reason, a simple algorithm for creating 

clusters was proposed which takes this possibility into account. 

This algorithm can be used when the positions of vertices in 

their space representation are known (Euclidean or 

geographical). 

The algorithm for creating clusters is in Fig. 2. The principle 

lies in dividing the space into a number of sectors 𝑛𝑠𝑒𝑐𝑡  

(1 ≤ 𝑛𝑠𝑒𝑐𝑡 ≤ 𝑛𝑠𝑖𝑧𝑒). In the first phase (points 4 to 7), the closest 

vertex in each sector is inserted into the first cluster. In the next 

phase (points 8 to 14), the first cluster is completed by other 

vertices closest to 𝑣𝑖 (up to 𝑛𝑠𝑖𝑧𝑒 if 𝑛𝑠𝑖𝑧𝑒 > 𝑛𝑠𝑒𝑐), and other 

clusters are gradually filled by remaining vertices; the ones 

closer to 𝑣𝑖 lie in clusters with lower indexes. 

 

 
Fig. 2. Algorithm for creating clusters. 

 

The first 𝑛𝑝𝑟𝑖𝑚 clusters of 𝐾(𝑣𝑖) for each cluster vertex 𝑣𝑖 are 

called primary clusters. The vertices sequentially inserted into 

routes of vehicles are preferentially selected from the primary 

clusters. See more details in the next section. 

B. Ant Solution using the Node Clustering Principle 

Fig. 3 presents the algorithm for generating a solution for a 

set of ants using the node clustering principle. Routes 𝑅𝑑 for 

individual vehicles at depots 𝑑 ∈ 𝐷 are sequentially generated 

in a loop (points 6 to 17). Each vehicle starts from its depot 

(points 2 and 3). Set 𝑉𝑓𝑟𝑒𝑒  (point 1) contains all the customers 

not visited by any vehicle so far. The last vertex (customer or 

depot) inserted into each route is continuously stored in variable 

𝑣𝑑 (points 4 and 15), and the current load of the vehicles in 

variable 𝑞𝑑 (points 5 and 16). 

The first step in the loop is the selection of the depot 𝑑 ∈ 𝐷 

(point 7); one of the vertices from set 𝑉𝑓𝑟𝑒𝑒  is then inserted to 

the route 𝑅𝑑. The algorithm for the depot selection is elaborated 

in Fig. 4. 

The next step is the selection of the cluster 𝐾𝑘
(𝑣𝑑)

 (point 8); a 

vertex to be inserted into the route 𝑅𝑑 will be chosen only from 

free (as yet unvisited) vertices in this cluster; set 𝑉𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 

contains those vertices (see the intersection of sets 𝐾𝑘
(𝑣𝑑)

 and 

𝑉𝑓𝑟𝑒𝑒  in point 9). The algorithm for the cluster selection is 

elaborated in Fig. 5. 

The final step is the selection of the vertex 𝑣 ∈ 𝑉𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 to 

be inserted into the route 𝑅𝑑 (point 10). This algorithm is 

elaborated in Fig. 6. The selected vertex 𝑣 is then inserted into 

the route 𝑅𝑑 (point 14); however, the vehicle would return to its 

depot before visiting the vertex (thus emptying its load), if its 

AACO-NC(𝑉, 𝑛𝑎𝑛𝑡𝑠, 𝑛𝑓𝑟𝑒𝑞 , 𝑛𝑠𝑖𝑧𝑒 , 𝑛𝑠𝑒𝑐𝑡 , 𝑛𝑝𝑟𝑖𝑚, 

                    𝑇𝑢𝑝𝑑𝑎𝑡𝑒 , 𝛼𝑢𝑝𝑑𝑎𝑡𝑒, 𝜌𝑚𝑖𝑛 , 𝜌𝑚𝑎𝑥 , 𝛿, 𝛼, 𝛽) 

1. |𝑅| = ∞ 

2. 𝑖𝑡𝑒𝑟 = 0 

3. Initialize pheromone matrixes 𝜏 

4. For each 𝑣𝑖 ∈ 𝑉 do 

5.    𝐾(𝑣𝑖) = CreateClusters(𝐶, 𝑣𝑖 , 𝑛𝑠𝑖𝑧𝑒 , 𝑛𝑠𝑒𝑐𝑡) 

6. While not terminated 

7.    |𝑅𝑏𝑒𝑠𝑡| = ∞ 

8.    𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1 

9.    For 𝑎 = 1 to 𝑛𝑎𝑛𝑡 do 

10.       𝑅𝑎 = AntSolution(𝑉, 𝐾, 𝜏, 𝑛𝑝𝑟𝑖𝑚, 𝛼, 𝛽) 

11.       If |𝑅𝑎| < |𝑅𝑏𝑒𝑠𝑡| then do 

12.          𝑅𝑏𝑒𝑠𝑡 = 𝑅𝑎 

13.    If 𝑖𝑡𝑒𝑟 mod 𝑛𝑓𝑟𝑒𝑞 = 0 then do 

14.       𝑅𝑏𝑒𝑠𝑡 = LocalOptimization(𝑉, 𝑅𝑏𝑒𝑠𝑡) 

15.    If |𝑅𝑏𝑒𝑠𝑡| < |𝑅| then do 

16.       𝑅 = 𝑅𝑏𝑒𝑠𝑡  

17.    Update pheromone matrixes 𝜏 

18.    Calculate evaporation coefficient 𝜌 

19.    Evaporate pheromone matrixes 𝜏 using 𝜌 

20. Return 𝑅 

CreateClusters(𝑉, 𝑣𝑖 , 𝑛𝑠𝑖𝑧𝑒 , 𝑛𝑠𝑒𝑐𝑡)  

1. 𝑖𝑑 = 1 

2. 𝐾𝑖𝑑
(𝑣𝑖)

= ∅ 

3. 𝑉𝑓𝑟𝑒𝑒 = 𝑉 − {𝑣𝑖} 

4. For 𝑗 = 1 to 𝑛𝑠𝑒𝑐𝑡  do 

5.    Find closest vertex 𝑣 ∈ 𝑉𝑓𝑟𝑒𝑒  to 𝑣𝑖 in sector 𝑗 

6.    𝐾𝑖𝑑
(𝑣𝑖)

= 𝐾𝑖𝑑
(𝑣𝑖)

+ {𝑣} 

7.    𝑉𝑓𝑟𝑒𝑒 = 𝑉𝑓𝑟𝑒𝑒 − {𝑣} 

8. While 𝑉𝑓𝑟𝑒𝑒 ≠ ∅ do 

9.    If ቚ𝐾𝑖𝑑
(𝑣𝑖)

ቚ ≥ 𝑛𝑠𝑖𝑧𝑒 then do 

10.       𝑖𝑑 = 𝑖𝑑 + 1 

11.       𝐾𝑖𝑑
(𝑣𝑖)

= ∅ 

12.    Find closest vertex 𝑣 ∈ 𝑉𝑓𝑟𝑒𝑒  to 𝑣𝑖 

13.    𝐾𝑖𝑑
(𝑣𝑖)

= 𝐾𝑖𝑑
(𝑣𝑖)

+ {𝑣} 

14.    𝑉𝑓𝑟𝑒𝑒 = 𝑉𝑓𝑟𝑒𝑒 − {𝑣} 

15. Return 𝐾(𝑣𝑖) 
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capacity were exceeded (points 11 to 13). Then, the loop 

continues until all the customers are visited (i.e. 𝑉𝑓𝑟𝑒𝑒  is empty). 

All the vehicles then return to their depots (points 18 to 19), and 

the ant solution 𝑅 is returned (point 20). 

 

 
Fig. 3. Algorithm for finding an ant solution. 

 

Fig. 4 shows the algorithm for selecting a depot used in point 

7 of the AACO-NC algorithm in Fig. 3. For each depot, the 

probability of its selection is calculated (points 1 to 7), and one 

of the depots is selected with this probability distribution using 

a simple roulette wheel principle (point 8). The probabilities are 

proportional to the pheromone potential of each depot; this 

pheromone potential is represented by the sum of pheromone 

trails from the last vertex 𝑣𝑑 on the route to all available 

candidate nodes in the primary clusters. 

 

 
Fig. 4. Algorithm for selecting a depot. 

 

When the depot 𝑑 ∈ 𝐷 is determined, its route 𝑅𝑑 will be 

expanded by a vertex from one of the clusters (primary clusters 

are preferred to other clusters). This cluster is selected using the 

algorithm in Fig. 5. For each cluster in primary clusters, the 

average heuristic information 𝜂𝑘 (inverse distance) and average 

pheromone trail between the cluster node 𝑣𝑑 and all available 

(as yet unvisited) vertices are calculated (points 1 to 5). If there 

is not a single available vertex in the primary clusters (this is 

however a very rare situation), the first cluster behind the 

primary clusters with at least one available vertex is selected 

and returned (points 8 to 11). Otherwise, the probability of 

selecting individual primary clusters is proportional to the 

multiple of the calculated average heuristic information and the 

pheromone trail (points 12 to 13). The influence of the heuristic 

information and the pheromone trail on the probability is 

controlled by parameters 𝛼 and 𝛽. Then, the cluster is selected 

based on these probability distributions using the simple 

roulette wheel principle (point 14). 

 

 
Fig. 5. Algorithm for selecting a cluster. 

 

When the cluster 𝐾𝑘
(𝑣𝑑)

∈ 𝐾(𝑣𝑑) is determined, one of the as 

yet unvisited customers in this cluster is selected using the 

algorithm in Fig. 6. The probability of selecting a vertex (points 

1 to 2) is calculated using the standard ACO principles: it is 

proportional to the multiple of the heuristic information and the 

pheromone trail between the vertex and the cluster vertex 𝑣𝑑 

(again controlled by parameters 𝛼 and 𝛽). The vertex is then 

selected using the simple roulette wheel principle (point 3). 

 

 
Fig. 6. Algorithm for selecting a vertex. 

AntSolution(𝑉 = {𝐷, 𝐶}, 𝐾, 𝜏, 𝑛𝑝𝑟𝑖𝑚 , 𝛼, 𝛽)  

1. 𝑉𝑓𝑟𝑒𝑒 = 𝐶 

2. For each 𝑑 ∈ 𝐷 do 

3.    𝑅𝑑 = {𝑑} 

4.    𝑣𝑑 = 𝑑 

5.    𝑞𝑑 = 0 

6. While 𝑉𝑓𝑟𝑒𝑒 ≠ ∅ do 

7.    𝑑 = SelectDepot(𝑣𝑑 , 𝑉𝑓𝑟𝑒𝑒 , 𝐷, 𝐾(𝑣𝑑), 𝜏, 𝑛𝑝𝑟𝑖𝑚) 

8.    𝑘 = SelectCluster(𝑑, 𝑣𝑑 , 𝑉𝑓𝑟𝑒𝑒 , 𝐾(𝑣𝑑), 𝜏, 𝑛𝑝𝑟𝑖𝑚, 𝛼, 𝛽) 

9.    𝑉𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = 𝑉𝑓𝑟𝑒𝑒 ∩ 𝐾𝑘
(𝑣𝑑)

 

10.    𝑣 = SelectCustomer(𝑑, 𝑣𝑑 , 𝑉𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 , 𝜏, 𝛼, 𝛽) 

11.    If 𝑞𝑑 + 𝑣(𝑑𝑒𝑚𝑎𝑛𝑑) > 𝑑(𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦) then do 

12.       𝑅𝑑 = 𝑅𝑑 + {𝑑} 

13.       𝑞𝑑 = 0 

14.    𝑅𝑑 = 𝑅𝑑 + {𝑣} 

15.    𝑣𝑑 = 𝑣 

16.    𝑞𝑑 = 𝑞𝑑 + 𝑣(𝑑𝑒𝑚𝑎𝑛𝑑) 

17.    𝑉𝑓𝑟𝑒𝑒 = 𝑉𝑓𝑟𝑒𝑒 − {𝑣} 

18. For each 𝑑 ∈ 𝐷 do 

19.    𝑅𝑑 = 𝑅𝑑 + {𝑑} 

20. Return 𝑅 = {𝑅1, 𝑅2, … , 𝑅|𝐷|} 

SelectDepot(𝑣𝑑 , 𝑉𝑓𝑟𝑒𝑒 , 𝐷, 𝐾(𝑣𝑑), 𝜏, 𝑛𝑝𝑟𝑖𝑚)  

1. For each 𝑑𝑖 ∈ 𝐷 do 

2.    𝑉𝑐𝑎𝑛𝑑 = ∅ 

3.    For 𝑘 = 1 to 𝑛𝑝𝑟𝑖𝑚 do 

4.       𝑉𝑐𝑎𝑛𝑑 =  𝑉𝑐𝑎𝑛𝑑 + 𝑉𝑓𝑟𝑒𝑒 ∩ 𝐾𝑘
(𝑣𝑑)

 

5.    𝑝(𝑑𝑖) = ∑ 𝜏𝑣𝑑𝑣𝑗

𝑑𝑖
𝑣𝑗∈𝑉𝑐𝑎𝑛𝑑

 

6. 𝑝𝑠𝑢𝑚 = ∑ 𝑝(𝑑𝑖)𝑑𝑖∈𝐷  

7. 𝑝(𝑑𝑖) = 𝑝(𝑑𝑖) 𝑝𝑠𝑢𝑚Τ  

8. Select 𝑑𝑖 ∈ 𝐷 based on probabilities 𝑝(𝑑𝑖) 

9. Return 𝑑𝑖 

SelectCluster(𝑑, 𝑣𝑑 , 𝑉𝑓𝑟𝑒𝑒 , 𝐾(𝑣𝑑), 𝜏, 𝑛𝑝𝑟𝑖𝑚, 𝛼, 𝛽)  

1. For 𝑘 = 1 to 𝑛𝑝𝑟𝑖𝑚 𝐝𝐨 

2.    𝑉𝑐𝑎𝑛𝑑 = 𝑉𝑓𝑟𝑒𝑒 ∩ 𝐾𝑘
(𝑣𝑑)

 

3.    If 𝑉𝑐𝑎𝑛𝑑 = ∅ then 𝜂𝑘 = 𝜏𝑘 = 0 else do 

4.       𝜂𝑘 = |𝑉𝑐𝑎𝑛𝑑| ∙ ∑ |𝑣𝑑 − 𝑣𝑗|
−1

𝑣𝑗∈𝑉𝑐𝑎𝑛𝑑
 

5.       𝜏𝑘 =
1

|𝑉𝑐𝑎𝑛𝑑|
∙ ∑ 𝜏𝑣𝑑𝑣𝑗

𝑑
𝑣𝑗∈𝑉𝑐𝑎𝑛𝑑

 

6. 𝜂𝑠𝑢𝑚 = ∑ 𝜂𝑘
𝛼𝑛𝑝𝑟𝑖𝑚

𝑘=1  

7. 𝜏𝑠𝑢𝑚 = ∑ 𝜏𝑘
𝛽𝑛𝑝𝑟𝑖𝑚

𝑘=1  

8. If 𝜂𝑠𝑢𝑚 = 0 then do 

9.    For 𝑘 = 𝑛𝑝𝑟𝑖𝑚 + 1 to |𝐾(𝑣𝑑)| 𝐝𝐨 

10.       𝑉𝑐𝑎𝑛𝑑 = 𝑉𝑓𝑟𝑒𝑒 ∩ 𝐾𝑘
(𝑣𝑑)

 

11.       If 𝑉𝑐𝑎𝑛𝑑 ≠ ∅ then return 𝑘 

12. For 𝑘 = 1 to 𝑛𝑝𝑟𝑖𝑚 𝐝𝐨 

13.    𝑝 ቀ𝐾𝑘
(𝑣𝑑)

ቁ =
𝜂𝑘

𝛼∙𝜏𝑘
𝛽

𝜂𝑠𝑢𝑚∙𝜏𝑠𝑢𝑚
 

14. Select 𝐾𝑘
(𝑣𝑑)

∈ 𝐾(𝑣𝑑) based on probabilities 𝑝 ቀ𝐾𝑘
(𝑣𝑑)

ቁ 

15. Return 𝑘 

SelectCustomer(𝑑, 𝑣𝑑 , 𝑉𝑐𝑎𝑛𝑑 , 𝛼, 𝛽, 𝜏)  

1. For each 𝑣𝑖 ∈ 𝑉𝑐𝑎𝑛𝑑  do 

2.    𝑝(𝑣𝑖) =
|𝑣𝑑−𝑣𝑖|−𝛼∙ቀ𝜏𝑣𝑑𝑣𝑖

𝑑 ቁ
𝛽

∑ |𝑣𝑑−𝑣𝑗|
−𝛼

𝑣𝑗∈𝑉𝑐𝑎𝑛𝑑
∙൬𝜏𝑣𝑑𝑣𝑗

𝑑 ൰
𝛽 

3. Select 𝑣𝑖 ∈ 𝑉𝑐𝑎𝑛𝑑 based on probabilities 𝑝(𝑣𝑖) 

4. Return 𝑣𝑖 
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C. Pheromone Matrix Update and Evaporation 

The update of the pheromone matrix (see point 17 in the 

algorithm in Fig. 1) uses the principles of the simulated 

annealing optimization method. This method uses the 

Metropolis criterion in each iteration to decide whether to 

accept the newly transformed solution, or preserve the original 

solution. If the transformed solution is better than the original, 

the transformed solution is always accepted; however, even the 

worse solution can be accepted. This idea extends the search in 

the search space, thus preventing the solution from falling into 

some local optima. 

The same idea is applied in the AACO-NC when determining 

which solution is used to update the pheromone matrix: (a) the 

best solution found in an iteration 𝑅𝑏𝑒𝑠𝑡, or (b) the best solution 

found so far 𝑅. In general, using the former results in 

maintaining the diversity of the population but also in slowing 

the convergence down; moreover, the promising solution can 

be sometimes lost. Therefore, it is advantageous to use the best 

solution found so far for the update from time to time instead. 

It results in faster convergence as well as in higher performance. 

The probability of using either 𝑅𝑏𝑒𝑠𝑡  or 𝑅 is determined by 

the Metropolis criterion using (7). If 𝑅𝑏𝑒𝑠𝑡  is better than 𝑅 (i.e. 

the new best solution is found in an iteration), then 𝑅𝑏𝑒𝑠𝑡  is 

always used. Otherwise, the 𝑅𝑏𝑒𝑠𝑡 is used with the probability 

which depends on the percentual difference between 𝑅𝑏𝑒𝑠𝑡  and 

𝑅, and the current value of temperature 𝑇𝑢𝑝𝑑𝑎𝑡𝑒  (the higher the 

temperature, the higher the probability of using the worse 

solution to update the pheromone matrix). The temperature, as 

one of the key control parameters of the AACO-NC, may 

change from iteration to iteration using the cooling coefficient  

𝛼𝑢𝑝𝑑𝑎𝑡𝑒 according to (8). 

 

 𝑝(𝑅𝑏𝑒𝑠𝑡) = 1 − 𝑝(𝑅) = { 𝑒
−

ቀቚ𝑅𝑏𝑒𝑠𝑡ቚ−|𝑅|ቁ |𝑅|⁄

𝑇𝑢𝑝𝑑𝑎𝑡𝑒   for  |𝑅𝑏𝑒𝑠𝑡| > |𝑅|,

 1                           otherwise.

 (7) 

  

 𝑇𝑢𝑝𝑑𝑎𝑡𝑒(𝑖𝑡𝑒𝑟 + 1) = 𝛼𝑢𝑝𝑑𝑎𝑡𝑒 ∙ 𝑇𝑢𝑝𝑑𝑎𝑡𝑒(𝑖𝑡𝑒𝑟) (8) 

 

The solution for updating the pheromone matrix 𝑅𝑢𝑝𝑑𝑎𝑡𝑒 is 

selected based on the calculated probabilities: 𝑅𝑢𝑝𝑑𝑎𝑡𝑒 = 𝑅𝑏𝑒𝑠𝑡  

with 𝑝(𝑅𝑏𝑒𝑠𝑡), or 𝑅𝑢𝑝𝑑𝑎𝑡𝑒 = 𝑅 with 𝑝(𝑅) = 1 − 𝑝(𝑅𝑏𝑒𝑠𝑡). The 

update itself is then conducted using (9); the pheromone trails 

lying on the routes are increased in proportion to the pheromone 

updating coefficient 𝛿 and the quality of the updating route (a 

ratio of |𝑅| to |𝑅𝑢𝑝𝑑𝑎𝑡𝑒|). 
 

 𝜏𝑖𝑗
𝑘 = 𝜏𝑖𝑗

𝑘 + 𝑥𝑖𝑗 ∙ 𝛿 ∙
|𝑅|

|𝑅𝑢𝑝𝑑𝑎𝑡𝑒|
   for all 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉 and 𝑑𝑘 ∈ 𝐷 (9) 

𝑥𝑖𝑗 = {
 1     if node 𝑣𝑖  precedes node 𝑣𝑗  in 𝑅𝑢𝑝𝑑𝑎𝑡𝑒 ,

 0     otherwise.
 

 

After the update, the pheromone matrix is evaporated 

(point 19 in the algorithm in Fig. 1) using (10). The speed of the 

evaporation is controlled by the pheromone evaporation 

coefficient 𝜌. 

 

 𝜏𝑖𝑗
𝑘 = 𝜏𝑖𝑗

𝑘 ∙ (1 − 𝜌)   for all 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉 and 𝑑𝑘 ∈ 𝐷 (10) 

 

D. Adaptive Pheromone Evaporation 

One of the most critical control parameters for ACO-based 

algorithms is the pheromone evaporation coefficient 𝜌. It 

affects the convergence speed: higher values mean a faster 

convergence but also a quick fall into some local optimum 

which is often too far from the global optimum; lower values 

mean a slower convergence (or even infinite convergence). 

Moreover, the setting of this control parameter is problem 

dependent; the best value can differ significantly for different 

graph topologies. 

To overcome this problem, the adaptive setting of the 

pheromone evaporation coefficient is proposed in this article. It 

is controlled in each iteration by the diversity of the population 

of ant solutions. The main idea behind this principle is that the 

value of the pheromone evaporation coefficient reflects the 

current progress in optimization. At the beginning of the 

optimization, the population diversity is big and therefore the 

convergence can be accelerated via the bigger value of the 

evaporation coefficient. During the optimization, when the 

solution converges towards some local optimum (documented 

by decreasing diversity in the population), the evaporation of 

the pheromone trails is lowered with the effect of slowing down 

the convergence and thus extending the search space. This 

principle works automatically during the whole optimization. 

The population diversity is measured by Shannon entropy 

using (11). The probability 𝑝𝑖𝑗  determines the probability that 

the edge between vertices 𝑣𝑖 and 𝑣𝑗 (𝑖 ≠ 𝑗) is part of any 

solution in the ant population. This probability is calculated 

statistically based of the number of edge occurrences in 

solutions using (12) where 𝑛𝑖𝑗 is the number of occurrences of 

the edge between vertices 𝑣𝑖 and 𝑣𝑗 in the entire population, and 

∑ 𝑛𝑖𝑗 is the sum of all edges used in all the solutions. 

 

  𝐻 = − ∑ ∑ 𝑝𝑖𝑗 ∙ log2 𝑝𝑖𝑗
𝑖−1
𝑗=1

𝑛
𝑖=2   (11) 

 

 𝑝𝑖𝑗 =
𝑛𝑖𝑗

∑ 𝑛𝑖𝑗
     for all 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉 (12) 

 

The minimum and maximum limits of entropy in the 

population are given by (13) and (14) respectively. 
 

  𝐻𝑚𝑖𝑛 = − log2
𝑛𝑎𝑛𝑡𝑠

∑ 𝑛𝑖𝑗
  (13) 

 

  𝐻𝑚𝑎𝑥 = − log2
1

∑ 𝑛𝑖𝑗
  (14) 

 

The pheromone evaporation coefficient is then controlled 

within the predefined limits using (15) where 𝜌𝑚𝑖𝑛  is the 

minimum value of the pheromone evaporation coefficient, and 

𝜌𝑚𝑎𝑥 is the maximum value. The setting of these limits is not 

as sensitive and dependent on the graph configuration as is the 

setting of a single evaporation parameter. The value adapts to 

the actual situation based on the current diversity in the 

population (linear dependence on entropy). 
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  𝜌 = 𝜌𝑚𝑖𝑛 + (𝜌𝑚𝑎𝑥 − 𝜌𝑚𝑖𝑛) ∙
𝐻−𝐻𝑚𝑖𝑛

𝐻𝑚𝑎𝑥−𝐻𝑚𝑖𝑛
  (15) 

 

E. Entropy-based Termination 

The algorithm is terminated when at least one of the following 

conditions is satisfied: 

 

● Maximum number of iterations is exceeded. 

● Maximum optimization time is exceeded. 

● Maximum number of iterations without improvement 

in solution is exceeded. 

● Diversity of solutions in the population is too low. 

 

The newly proposed last condition is based on the fact that 

when the diversity of solutions in the population is too low then 

the probability of finding a better solution is also low. This is 

because individual ant solutions are very similar to one another 

(there are a lot of common edges in the solutions) and, 

therefore, the discovery of new information is not plausible. 

The diversity in the population is measured by Shannon 

entropy, mentioned in the previous section. The algorithm is 

terminated when the relative difference between the current 

entropy 𝐻 and the lower limit 𝐻𝑚𝑖𝑛 is equal to or lower than the 

relative distance expressed by coefficient 𝜔 – see (16). 

 

  
𝐻−𝐻𝑚𝑖𝑛

𝐻𝑚𝑖𝑛
≤ 𝜔  (16) 

 

F. Computational Complexity 

The computational complexity of the original algorithm of 

finding a single ant solution (i.e. without the node clustering 

principle) is in (17); it is quadratically dependent on the number 

of vertices 𝑛 (the quadratic dependence is caused by the 

calculation of transition probabilities for all the free nodes in 

the phase of insertion vertices into the solution). The term 𝑚 

represents the selection of a depot before the vertex transition. 

 

  𝑂(𝑛 ∙ (𝑚 + 𝑛)) = 𝑂(𝑛2 + 𝑛 ∙ 𝑚) (17) 

 

The node clustering principle significantly decreases the 

computational complexity for this algorithm – see (18). The 

selection of a node to be inserted into the solution now proceeds 

in two phases: (a) selection of a cluster (there is 𝑛𝑝𝑟𝑖𝑚 primary 

clusters for selection), and (b) selection of a vertex from the 

cluster (there is 𝑛𝑠𝑖𝑧𝑒 vertices in the selected cluster). 

 

  𝑂 ቀ𝑛 ∙ (𝑚 + 𝑛𝑝𝑟𝑖𝑚 + 𝑛𝑠𝑖𝑧𝑒)ቁ  (18) 

 

The increase of the optimization speed is apparent as, 

principally, parameters 𝑛𝑝𝑟𝑖𝑚 and 𝑛𝑠𝑖𝑧𝑒 are substantially lower 

than the total number of vertices (𝑛𝑝𝑟𝑖𝑚 ≪ 𝑛, 𝑛𝑠𝑖𝑧𝑒 ≪ 𝑛). 

Moreover, the node clustering principle preserves the key 

feature of the original algorithm: nodes inserted successively 

into the solution are always selected from the substantial set of 

free nodes (𝑛𝑝𝑟𝑖𝑚 ∙ 𝑛𝑠𝑖𝑧𝑒) using pheromone attracting principles 

(it is not limited to a small set of closest vertices). 

IV. EXPERIMENTS AND RESULTS 

This section presents the experimental results on a set of 

benchmark instances, and compares them with several state-of-

the-art stochastic methods. 

A. Benchmark Instances 

As benchmarks, 23 of the well-known Cordeau’s MDVRP 

instances [44] are used to verify the performance of the 

proposed AACO-NC algorithm. Table I records their 

dimension (number of vertices and depots) and constraints 

(maximum vehicle capacity and maximum route length). The 

layout is either random (the vertices are distributed randomly), 

or regular (there is at least a particular regular pattern). 

 

TABLE I 

BENCHMARK INSTANCES 

 

Instance 
Vertices 

𝒏 

Depots 

𝒎 

Vehicle 

capacity 

Route 

length 
Layout 

p01 50 4 80 ∞ Random 

p02 50 4 160 ∞ Random 

p03 75 5 140 ∞ Random 

p04 100 2 100 ∞ Random 

p05 100 2 200 ∞ Random 

p06 100 3 100 ∞ Random 

p07 100 4 100 ∞ Random 

p08 249 2 500 310 Random 

p09 249 3 500 310 Random 

p10 249 4 500 310 Random 

p11 249 5 500 310 Random 

p12 80 2 60 ∞ Regular 

p13 80 2 60 200 Regular 

p14 80 2 60 180 Regular 

p15 160 4 60 ∞ Regular 

p16 160 4 60 200 Regular 

p17 160 4 60 180 Regular 

p18 240 6 60 ∞ Regular 

p19 240 6 60 200 Regular 

p20 240 6 60 180 Regular 

p21 360 9 60 ∞ Regular 

p22 360 9 60 200 Regular 

p23 360 9 60 180 Regular 

 

B. Experimental Results 

The algorithm was implemented in C++ programming 

language using the Visual Studio IDE. The optimizations were 

conducted on a personal computer with parameters as follows: 

Intel Core i9-10940X CPU 3.30 GHz, 32 GB RAM. 

All the results were achieved using control parameters set as 

follows: 𝑛𝑎𝑛𝑡𝑠 = 192, 𝑛𝑓𝑟𝑒𝑞 = 10, 𝑛𝑝𝑟𝑖𝑚 = 4, 𝑛𝑠𝑖𝑧𝑒 = 24, 

𝑛𝑠𝑒𝑐𝑡 = 16, 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 = 0.1, 𝛼𝑢𝑝𝑑𝑎𝑡𝑒 = 1, 𝜌𝑚𝑖𝑛 = 0.001, 

𝜌𝑚𝑎𝑥 = 0.1, 𝛿 = 3, 𝛼 = 1, 𝛽 = 1. The setting of control 

parameters is either based on the experiments conducted in the 

previous research [3], [4] (parameters 𝑛𝑎𝑛𝑡𝑠, 𝑛𝑓𝑟𝑒𝑞 , 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 , 

𝛼𝑢𝑝𝑑𝑎𝑡𝑒, 𝛿, 𝛼, 𝛽), or, in case of the new parameters connected 

with the node clustering (𝑛𝑝𝑟𝑖𝑚, 𝑛𝑠𝑖𝑧𝑒, 𝑛𝑠𝑒𝑐𝑡,) and adaptive 
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pheromone evaporation (𝜌𝑚𝑖𝑛 , 𝜌𝑚𝑎𝑥), on the general analysis 

of the impact of these parameters on the behavior and 

performance of the algorithm. Due to the limited number of 

pages, there is not enough space to present the complete results 

here; the shortened version is presented in Section V. 

For each benchmark instance, 100 optimization trials were 

performed. The complete results (including individual solutions 

for all the optimization trials) are available for download here: 

https://zenodo.org/record/7341076; this enables comparison of 

the AACO-NC with other algorithms in the future including 

paired statistical tests. 

Table II shows the results. The best-known solutions (BKS) 

were taken from [44]. These solutions are, however, outdated 

in some cases; better solutions for several instances can be 

found in the literature. However, these solutions are often only 

reported but not available for download (i.e. they cannot be 

verified). Therefore, reference [44] is used for the BKS in this 

article as it provides complete reference solutions for the 

benchmark instances. The BKS values in bold are proven 

optima [45]. Table II records the best and the worst solutions 

found by the AACO-NC in the optimization trials, the average 

values along with the standard deviation, and the optimization 

time in seconds.  

 

TABLE II 

RESULTS OF THE AACO-NC 

 
Instance BKS Best Worst Avg Stdev Time (s) 

p01 576.87 576.87 605.63 586.28 8.70 8 

p02 473.53 473.53 506.65 484.83 6.91 2 

p03 641.19 641.19 670.30 650.31 6.49 7 

p04 1001.04 1003.05 1032.49 1019.98 6.69 114 

p05 750.03 750.72 780.04 758.71 6.40 27 

p06 876.50 876.50 908.93 889.54 6.67 99 

p07 885.80 884.66 916.08 897.83 6.34 68 

p08 4420.95 4427.17 4553.23 4490.40 29.80 4183 

p09 3900.22 3887.14 4011.69 3931.78 24.24 2358 

p10 3663.02 3637.51 3781.29 3702.61 28.68 1976 

p11 3554.18 3546.06 3664.88 3607.73 23.32 1483 

p12 1318.95 1318.95 1349.00 1325.25 6.61 2 

p13 1318.95 1318.95 1329.70 1322.43 5.00 1 

p14 1360.12 1360.12 1422.65 1379.62 28.86 2 

p15 2505.42 2505.42 2595.30 2552.13 19.72 48 

p16 2572.23 2572.23 2662.73 2596.92 20.72 6 

p17 2709.09 2709.09 2816.57 2748.97 11.58 10 

p18 3702.85 3702.85 3823.96 3769.35 27.17 342 

p19 3827.06 3827.06 3921.82 3858.10 20.33 34 

p20 4058.07 4091.78 4150.92 4115.73 12.89 90 

p21 5474.84 5474.84 5643.74 5514.84 37.33 3189 

p22 5702.16 5702.16 5760.00 5727.51 15.15 179 

p23 6095.46 6123.18 6212.81 6175.80 15.21 775 

Avg 2669.07 2670.04 2744.37 2700.29 16.30 652 

 

The AACO-NC managed to find better or the same solutions 

for 18 instances when compared to the BKS (see the grey cells 

in Table II). In the remaining 5 instances, the difference 

between the best solutions and the BKS is below 1%.  In 4 

cases, the BKS were improved (p07, p09, p10, p11). The 

algorithm provides very good results regardless of the graph 

configuration (random or regular), particularly for larger 

instances: in case of 3 instances with 249 nodes and random 

graph configuration (p09, p10, p11), the BKS were significantly 

improved; in case of 2 instances with 360 nodes and 9 depots 

and regular graph configuration (p21, p22), the same solutions 

as the BKS were achieved. 

The last row in Table II shows the average values in 

individual columns over all the instances. The difference 

between the best solutions found and the BKS is minimal 

(0.01%). The difference between the average and worst 

solutions and the BKS is 1.27% and 3.30% respectively.  

The optimization time differs sometimes substantially. It is 

caused, for one, by the graph configurations which may 

influence the convergence speed radically. The local 

optimization process also has a big impact on the optimization 

speed, especially the mutual exchange of vertices between 

vehicle routes (see [3] for details). This can be accelerated when 

the maximum route length is limited (the exchange of vertices 

between routes too far from one another is pointless). The effect 

of this acceleration can be seen on instances p21, p22, and p23: 

instance p21 does not have a limited maximum route length, 

and thus the optimization time is considerably longer than in 

case of instances p22 and p23, even though all these instances 

have the same graph complexity (360 vertices and 9 depots). 

C. Comparison with other Methods 

The performance of the AACO-NC on the benchmark 

instances was compared to 5 state-of-the-art stochastic 

methods. These methods are comprised of three recent ACO-

based algorithms as well as two different metaheuristic 

principles. 

When choosing methods for comparison, those based on 

ACO principles were preferred. They were supplemented by 

two methods based on different metaheuristic principles. All 

selected methods meet the following conditions: (a) they are 

state-of-the-art methods with high performance; (b) they have 

been published in renowned scientific journals in recent years; 

(c) sufficiently detailed results for benchmark instances are 

available in the publications. The latter condition results from 

the unavailability of source codes or the difficulty of making 

them operational; in some cases, however, the published results 

are not complete. 

The methods for comparison are as follows: 

 

● IACO: Improved Ant Colony Optimization with a 

scanning strategy [27]. 

● TSACS: Two-Stage Ant Colony System with the two 

types of ants (for assigning customers to depots and 

for generating routes) [28]. 

● BPC-HACO: Hybrid Ant Colony Optimization Based 

on a Polygonal Circumcenter [29]. 

● ICA-ICA: Imperialist Competitive Algorithm with 

Independence and Constrained Assimilation [21]. 

● VND-TSH: hybrid algorithm combining Variable 

Neighborhood Descent and Tabu Search Heuristic 

[46]. 
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Table III compares the best results found. The best values for 

each instance are emphasized by a grey background. The 

AACO-NC provided better or the same solutions for 17 

instances. The last row of Table III records the average 

solutions over all the instances. The AACO-NC outperformed 

the rival algorithms in this regard followed by the ICA-ICA 

(gap 0.23%), IACO (gap 0.4%), BPC-HACO (gap 0.48%), 

TSACS (gap 0.7%), and VND-TSH (gap 0.84%). The gap is 

calculated using (19) where 𝐴𝑣𝑔 is the average of the best 

solutions from Table III found by one of the algorithms (see the 

last row of Table III). 

 

 𝑔𝑎𝑝 =
𝐴𝑣𝑔𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚−𝐴𝑣𝑔𝐴𝐴𝐶𝑂−𝑁𝐶

𝐴𝑣𝑔𝐴𝐴𝐶𝑂−𝑁𝐶 ∙ 100   [%]  (19) 

 

TABLE III 

COMPARISON OF THE AACO-NC WITH OTHER METHODS 

(BEST SOLUTIONS FOUND) 

 

Instance 
AACO-

NC 
IACO TSACS 

BPC-

HACO 

ICA- 

ICA 

VND-

TSH 

p01 576.87 576.87 576.87 576.87 576.87 576.87 

p02 473.53 473.53 473.53 473.53 473.53 473.53 

p03 641.19 641.19 641.19 641.19 641.19 641.19 

p04 1003.05 1001.59 1010.57 1003.73 1006.66 1008.62 

p05 750.72 750.26 751.15 750.03 753.40 752.04 

p06 876.50 876.50 880.57 876.50 876.50 882.71 

p07 884.66 885.69 881.97 884.66 895.53 896.01 

p08 4427.17 4482.44 4516.75 4406.68 4420.94 4417.34 

p09 3887.14 3912.23 3939.52 3897.60 3900.22 3940.56 

p10 3637.51 3663.00 3724.93 3663.02 3666.35 3696.31 

p11 3546.06 3648.95 3624.67 3580.80 3554.18 3578.14 

p12 1318.95 1318.95 1318.95 1318.95 1318.95 1318.95 

p13 1318.95 1318.95 1318.95 1318.95 1318.95 1318.95 

p14 1360.12 1365.68 1360.12 1360.12 1365.68 1360.12 

p15 2505.42 2505.42 2505.42 2505.42 2565.67 2538.79 

p16 2572.23 2587.87 2572.23 2572.23 2572.23 2572.23 

p17 2709.09 2709.09 2709.09 2731.37 2709.09 2731.37 

p18 3702.85 3781.04 3749.34 3741.99 3710.49 3798.58 

p19 3827.06 3827.06 3827.06 3863.90 3827.06 3827.06 

p20 4091.78 4058.07 4058.07 4097.06 4058.07 4097.06 

p21 5474.84 5474.84 5619.95 5575.79 5495.54 5643.55 

p22 5702.16 5702.16 5702.16 5718.00 5702.16 5708.36 

p23 6123.18 6095.46 6078.75 6145.58 6145.58 6145.58 

Avg 2670.04 2680.73 2688.77 2682.78 2676.30 2692.34 

 

Table IV compares the average solutions (results for the 

TSACS and VND-TSH are missing as they are not available in 

the literature). The AACO-NC, BPC-HACO and ICA-ICA 

provides similar results overall: the AACO-NC is followed by 

BPC-HACO (gap 0.21%), ICA-ICA (gap 0.48%), and finally 

IACO (gap 3.44%). The gap is calculated using (19) where 𝐴𝑣𝑔 

is the average of the solutions from Table IV found by one of 

the algorithms (see the last row of Table IV). The BPC-HACO, 

although it has slightly lower overall performance than AACO-

NC, provides better average solutions for more instances (8 

cases) than the AACO-NC (6 cases). Despite this, the AACO 

has more cases of best solutions found (17 cases) than the BCP-

ACO (11 cases). This corresponds to the AACO-NC having 

larger standard deviation (averaged 16.3) than the BCP-ACO 

(averaged 9.06). 

 

TABLE IV 

COMPARISON OF THE AACO-NC WITH OTHER METHODS 

(AVERAGE SOLUTIONS) 

 

Instance 
AACO-

NC 
IACO TSACS 

BPC-

HACO 

ICA- 

ICA 

VND-

TSH 

p01 586.28 576.87 NA 582.42 576.87 NA 

p02 484.83 480.14 NA 482.36 481.24 NA 

p03 650.31 646.52 NA 652.50 655.29 NA 

p04 1019.98 1010.60 NA 1010.91 1015.11 NA 

p05 758.71 763.84 NA 760.06 789.15 NA 

p06 889.54 892.46 NA 885.24 887.71 NA 

p07 897.83 886.31 NA 894.31 916.79 NA 

p08 4490.40 4594.73 NA 4426.52 4493.66 NA 

p09 3931.78 4105.22 NA 3908.78 3975.29 NA 

p10 3702.61 3732.06 NA 3672.58 3696.71 NA 

p11 3607.73 3816.79 NA 3590.26 3604.88 NA 

p12 1325.25 1330.31 NA 1328.35 1359.49 NA 

p13 1322.43 1343.73 NA 1325.87 1320.79 NA 

p14 1379.62 1376.24 NA 1370.69 1394.01 NA 

p15 2552.13 2564.32 NA 2513.26 2644.14 NA 

p16 2596.92 2598.53 NA 2591.40 2577.66 NA 

p17 2748.97 2746.41 NA 2750.54 2742.93 NA 

p18 3769.35 3968.06 NA 3751.04 3756.70 NA 

p19 3858.10 3994.65 NA 3901.37 3857.36 NA 

p20 4115.73 4356.70 NA 4139.11 4134.88 NA 

p21 5514.84 5889.46 NA 5596.32 5564.61 NA 

p22 5727.51 6196.03 NA 5818.34 5753.71 NA 

p23 6175.80 6376.24 NA 6283.17 6205.46 NA 

Avg 2700.29 2793.31 NA 2705.89 2713.24 NA 

 

Table V presents optimization times (in seconds) of the 

algorithms taken from the literature (they are not available for 

the TSACS and BPC-HACO). This is for purposes of 

illustration only because the optimizations were taken on 

different hardware configurations and, therefore, the deeper 

analysis would not be appropriate. However, some basic 

conclusions can be drawn. The AACO-NC is noticeably faster 

than other methods for simpler instances with random 

distribution of nodes (p01, p02, p03); times are comparable to 

other algorithms for instances up to 100 nodes (p04, p05, p06, 

p07). Even bigger differences are apparent for instances with 

regular distribution of nodes (p12, p13, p14, p15, p15, p17); this 

also applies for some more complex instances (p19, p20, p22). 

On the other hand, the AACO-NC is visibly slower for complex 

instances with random distribution of nodes (p08, p09, p10, 

p11) – except for the ICA-ICA which is slower in all cases. 

 

TABLE V 

COMPARISON OF THE AACO-NC WITH OTHER METHODS 

(OPTIMIZATION TIME IN SECONDS) 

 

Instance 
AACO-

NC 
IACO TSACS 

BPC-

HACO 

ICA- 

ICA 

VND-

TSH 

p01 8 58 NA NA 252 25 

p02 2 61 NA NA 372 45 

p03 7 62 NA NA 474 16 

p04 114 92 NA NA 744 119 

p05 27 88 NA NA 1218 111 

p06 99 94 NA NA 882 128 

p07 68 93 NA NA 690 96 
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p08 4183 146 NA NA 3912 634 

p09 2358 135 NA NA 4056 752 

p10 1976 137 NA NA 4932 740 

p11 1483 127 NA NA 4260 506 

p12 2 70 NA NA 600 15 

p13 1 74 NA NA 534 11 

p14 2 112 NA NA 402 24 

p15 48 178 NA NA 1530 288 

p16 6 192 NA NA 960 126 

p17 10 168 NA NA 738 95 

p18 342 206 NA NA 4392 195 

p19 34 213 NA NA 2538 66 

p20 90 306 NA NA 4416 121 

p21 3189 403 NA NA 4914 1900 

p22 179 419 NA NA 5160 584 

p23 775 602 NA NA 5022 100 

Avg 652 175 NA NA 2304 291 

 

Wilcoxon signed-rank tests are performed to further compare 

the AACO-NC with the IACO, BPC-HACO, and ICA-ICA 

(insufficient data is available for the TSACS and VND-TSH to 

perform these tests). The Wilcoxon tests were chosen because 

the AACO-NC results are significantly different from normal 

distribution (confirmed by Shapiro-Wilk’s tests). The 

hypotheses are as follows (𝐻method denotes  𝐻IACO, 𝐻BCP-HACO, 

or 𝐻ICA−ICA according to the method benchmarked with the 

AACO-NC in the pairwise tests): 

 

• Null hypothesis 𝐻0: 𝜇AACO-NC = 𝜇method; there is no 

significant difference between the AACO-NC and the 

benchmarked method. 

• Alternative hypothesis 𝐻AACO-NC: 𝜇AACO-NC < 𝜇method; 

there is a significant difference between the 

AACO-NC and the benchmarked method (the 

AACO-NC provides better results). 

• Alternative hypothesis 𝐻method: 𝜇AACO-NC > 𝜇method; 

there is a significant difference between the 

AACO-NC and the benchmarked method: (the rival 

method provides better results). 

 

Table VI presents the results of the tests. To fail to reject the 

null hypothesis, test statistic 𝑍 must lie within the critical 

interval (−1.96; 1.96) for the level of significance 𝛼 = 0.05. 

When 𝑍 is below the lower value, 𝐻AACO-NC is accepted (the 

AACO-NC outperforms the benchmarked rival method), when 

it is above the higher value, 𝐻method is accepted (the 

benchmarked method outperforms the AACO-NC). 

Wilcoxon tests show that the AACO-NC outperforms the 

IACO and ICA-ICA in most cases (hypothesis 𝐻AACO-NC  

accepted in 15 and 11 cases respectively, typically for more 

complex problems), while these methods outperform the 

AACO-NC in 6 cases (hypotheses 𝐻IACO and 𝐻ICA-ICA are 

mostly accepted for simpler problems). The BPC-HACO and 

the AACO-NC are comparable; hypothesis 𝐻AACO-NC is 

accepted in 10 cases, 𝐻BPC-HACO in 12 cases, and there is not 

enough evidence to reject the null hypothesis in 1 case (p14). 

The BPC-HACO has higher performance mostly on instances 

with random distribution of nodes, while the AACO-NC mostly 

on instances with regular distribution of nodes. Although the 

BPC-HACO provides higher performance in more cases (12 

compared to 10), the higher standard deviation of the 

AACO-NC ensures the noticeably more best solutions found in 

the set of performed experiments (11 compared to 2). 

 

TABLE VI 

WILCOXON SIGNED-RANKED TESTS FOR BENCHMARKS 

 

 
AACO-NC 

vs IACO 

AACO-NC 

vs BPC-HACO 

AACO-NC 

vs ICA-ICA 

Instance Z Hyp. Z Hyp. Z Hyp. 

p01 7.770 𝐻IACO 3.153 𝐻BPC-HACO 7.770 𝐻ICA-ICA 

p02 5.766 𝐻IACO 2.995 𝐻BPC-HACO 4.394 𝐻ICA-ICA 

p03 5.096 𝐻IACO -3.397 𝐻AACO-NC -6.124 𝐻AACO-NC 

p04 8.121 𝐻IACO 8.032 𝐻BPC-HACO 5.897 𝐻ICA-ICA 

p05 -6.254 𝐻AACO-NC -2.507 𝐻AACO-NC -8.682 𝐻AACO-NC 

p06 -4.100 𝐻AACO-NC 5.329 𝐻BPC-HACO 1.939 𝐻0 

p07 8.668 𝐻IACO 4.731 𝐻BPC-HACO -8.682 𝐻AACO-NC 

p08 -8.682 𝐻AACO-NC 8.682 𝐻BPC-HACO -0.774 𝐻0 

p09 -8.682 𝐻AACO-NC 7.520 𝐻BPC-HACO -8.438 𝐻AACO-NC 

p10 -7.234 𝐻AACO-NC 7.643 𝐻BPC-HACO 1.564 𝐻0 

p11 -8.682 𝐻AACO-NC 6.137 𝐻BPC-HACO 1.368 𝐻0 

p12 -6.065 𝐻AACO-NC -5.261 𝐻AACO-NC -8.682 𝐻AACO-NC 

p13 -8.682 𝐻AACO-NC -6.866 𝐻AACO-NC 0.615 𝐻0 

p14 0.378 𝐻0 0.378 𝐻0 -6.763 𝐻AACO-NC 

p15 -5.446 𝐻AACO-NC 8.558 𝐻BPC-HACO -8.682 𝐻AACO-NC 

p16 -1.812 𝐻0 2.276 𝐻BPC-HACO 7.812 𝐻ICA-ICA 

p17 2.139 𝐻IACO -2.960 𝐻AACO-NC 5.735 𝐻ICA-ICA 

p18 -8.682 𝐻AACO-NC 5.539 𝐻BPC-HACO 4.246 𝐻ICA-ICA 

p19 -8.682 𝐻AACO-NC -8.620 𝐻AACO-NC -0.058 𝐻0 

p20 -8.682 𝐻AACO-NC -8.431 𝐻AACO-NC -8.221 𝐻AACO-NC 

p21 -8.682 𝐻AACO-NC -8.510 𝐻AACO-NC -7.533 𝐻AACO-NC 

p22 -8.682 𝐻AACO-NC -8.682 𝐻AACO-NC -8.572 𝐻AACO-NC 

p23 -8.682 𝐻AACO-NC -8.682 𝐻AACO-NC -8.665 𝐻AACO-NC 

 

V. ANALYSIS AND DISCUSSION 

This section analyses the behavior of the proposed algorithm 

from the new enhancements point of view. 

A. Node Clustering 

Fig. 7 shows the impact of node clustering on the 

performance of the AACO-NC on 8 selected benchmark 

instances. This selection was based of the problem complexity 

(from simple to the most complex) and distribution of nodes 

(random or regular). One representative is included in each 

category (𝑛 = 50, 75, 100, 249 for random distribution, and 

𝑛 = 80, 160, 240, 360 for regular distribution). The dark blue 

color shows the average error (the relative difference between 

the average solution and the BKS) of the algorithm without 

using node clustering (named AACO), i.e. the full set of nodes 

is available for selection in the transition phase. The light blue 

color shows the average error of the AACO-NC, i.e. with node 

clustering. In both cases, the local search optimization was 

switched off to emphasize the influence of the node clustering 

principle. However, the adaptive pheromone evaporation was 

preserved. In all cases, performance improved; the more 

complex the problem, the bigger the improvement. For 

example, in instance p22 (360 nodes, 9 depots), the error is over 

8% when not using node clustering, and it improved to about 
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5% when using this mechanism. Moreover, for illustration, the 

violet color shows the average error when the complete AACO-

NC with the local search optimization is used (see results in 

Table II). The improvement is substantial both for random and 

regular graphs. 

 

 
Fig. 7. Impact of node clustering on performance. 

 

An even bigger enhancement is achieved in the optimization 

time – see Fig. 8. Note that the axis scale is logarithmic because 

of the significant differences over instances. The reduction of 

the optimization time depends on the problem complexity; e.g. 

for instance p11 (249 nodes, 5 depots), the AACO-NC without 

the local search (light blue color) is almost 5 times faster 

compared to AACO (dark blue color), for instance p22 (360 

nodes, 9 depots), it is more than 25 times faster. The local 

search (violet color) has a very interesting impact. In most cases 

(the exception is instance p11), it accelerates the optimization; 

it is especially extensive in the case of regular graphs (p13, p16, 

p19, p22). This is caused due to a much faster convergence (the 

local search is very efficient for the regular graphs).  

 

 
Fig. 8. Impact of node clustering on the optimization time. 

 

The following assumptions can be made from the analysis 

conducted: (a) the node clustering increases the performance of 

the algorithm; (b) the more complex problem, the higher the 

performance improvement (the performance of the general 

ACO algorithm without other supporting techniques 

deteriorates with increasing problem complexity; the node 

clustering reduces this deterioration); (c) it is important to 

integrate the general ACO algorithm with the local search 

optimization to further reduce the deterioration; (d) the 

optimization time is reduced significantly when using the node 

clustering; (e) the more complex problem, the higher the time 

acceleration (due to the significantly lower computational 

complexity – see (18)); (f) the local search optimization usually 

shorten the optimization time even though it is computationally 

demanding (because it accelerates convergence). 

B. Adaptive Pheromone Evaporation 

The impact of the pheromone coefficient on the convergence 

speed is shown in Fig. 9. It presents the dependence of the 

average error on the number of performed iterations for instance 

p10. This instance was chosen as one of the most complex 

representatives of problems with random distribution of nodes.   

Two of the curves (green and blue color) indicate the 

optimization progress when the constant value of the 

pheromone evaporation coefficient was used (𝜌 = 0.001 and 

𝜌 = 0.1). On the other hand, the violet curve is the optimization 

progress with the adaptive pheromone evaporation (𝜌𝑚𝑖𝑛 =
0.001, 𝜌𝑚𝑎𝑥 = 0.1). Adaptive evaporation ensures almost the 

same performance at the end of the optimization (average error 

1.08%) compared to the constant evaporation when  𝜌 = 0.001 

(average error 0.89%). However, the convergence was much 

faster (with the adaptive approach, the 2% error is provided 

about iteration 10,000; without this approach, it takes almost 

twice as long to achieve the same error). When the larger value 

of the constant pheromone evaporation coefficient is used (𝜌 =
0.1), the convergence is fast, but at the expense of the overall 

performance (average error 1.98%). 

 

 
Fig. 9. Optimization progress for instance p10 using constant 

and adaptive pheromone evaporation. 

 

Fig. 10 shows the progress of the diversity of the population 

of ants for the same optimization as in Fig. 9. The information 

entropy curve corresponds to the average error curve in Fig. 9. 

When the large value of the pheromone evaporation coefficient 

is used (𝜌 = 0.1), the diversity quickly becomes very low (blue 

color). On the other hand, when 𝜌 = 0.001, high diversity is 
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maintained significantly longer (green color). Adaptive 

evaporation ensures that the population diversity is between 

these two extremes (violet color); this enables to high-quality 

results to be achieved faster. 

 

 
Fig. 10. Information entropy progress for instance p10 using 

constant and adaptive pheromone evaporation. 

 

The same analysis is shown in Fig. 11 and 12, this time for 

instance p22 as a representative for the most complex instances 

with regular distribution of nodes. The faster convergence, than 

as in case of random distribution of nodes, is noticeable in 

Fig. 11; the best solution is usually found before iteration 

10,000 when using the adaptive evaporation. Otherwise, the 

optimization progress (Fig. 11) as well as entropy progress 

(Fig. 12) have the same development as in case of the problem 

with random distribution of nodes (Fig. 8 and 9). 

 

 
Fig. 11. Optimization progress for instance p22 using constant 

and adaptive pheromone evaporation. 

 

 
Fig. 12. Information entropy progress for instance p22 using 

constant and adaptive pheromone evaporation. 

 

Several assumptions about differences between algorithms 

with the adaptive and constant evaporation (AACO vs ACO) 

can be formulated: (a) AACO ensures faster convergence to a 

local or the global optimum than ACO when 𝜌𝑚𝑖𝑛 = 𝜌 and 

𝜌𝑚𝑎𝑥 > 𝜌; (b) the overall performance of AACO is very close 

to the performance of ACO when 𝜌𝑚𝑖𝑛 = 𝜌; (c) achieving the 

comparable performance as with ACO, however faster, could 

be done via AACO when 𝜌𝑚𝑖𝑛 < 𝜌; (d) solutions of similar 

quality are found noticeably faster via AACO when 𝜌𝑚𝑖𝑛 = 𝜌. 

C. Entropy-based termination condition 

The impact of the new condition on the termination of the 

algorithm is shown in this sub-section. The optimizations were 

executed with other termination conditions switched off, i.e. 

only the entropy-based condition terminated the algorithm 

(𝜔 = 0.1). The total number of iterations performed as well as 

the iteration in which the best solution was found (both values 

averaged over 30 experiments for each instance) were recorded 

and the ratio between these two values is calculated and 

presented in Fig. 13. This ratio represents the “wasted” 

optimization time, i.e. the iterations that were performed at the 

end of the optimization but did not improve the solution. 

 

 
Fig. 13. Ratio of the total number of performed iterations to the 

iteration with the last improvement in solution. 

8.5

9.0

9.5

10.0

0 10000 20000 30000 40000 50000

In
fo

rm
at

io
n

 e
n

tr
o

p
y

ρ = 0.001 ρ = 0.1 ρ = 0.001/0.1

0%

1%

2%

3%

4%

5%

0 10000 20000 30000

A
ve

ra
ge

 e
rr

o
r 

(%
)

ρ = 0.001 ρ = 0.1 ρ = 0.001/0.1

9.0

9.5

10.0

10.5

11.0

0 10000 20000 30000

In
fo

rm
at

io
n

 e
n

tr
o

p
y

ρ = 0.001 ρ = 0.1 ρ = 0.001/0.1

7
.3

0
5

.7
7

3
.2

3
2

.0
2

1
.6

6 2
.2

4
1

.6
2

1
.1

5
1

.1
5

1
.0

9
1

.2
5

5
.6

8
6

.9
4

4
.1

0
1

.5
1

3
.0

6
1

.8
3

1
.1

5 1
.9

7
1

.2
8

1
.1

8
1

.1
7

1
.3

0

0

1

2

3

4

5

6

7

8

p
0

1
p

0
2

p
0

3
p

0
4

p
0

5
p

0
6

p
0

7
p

0
8

p
0

9
p

1
0

p
1

1
p

1
2

p
1

3
p

1
4

p
1

5
p

1
6

p
1

7
p

1
8

p
1

9
p

2
0

p
2

1
p

2
2

p
2

3

R
at

io

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2022.3230042

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



14 

TEVC-00211-2022 

 

 

The results show that for the simple problems (𝑛 < 100), the 

ratio is relatively high. The reason for this is that a high-quality 

local or the global optimum is found quickly, long before the 

diversity in the population decreases to the termination 

threshold. However, the ratio for more complex problems 

(𝑛 > 100) is mostly below 2 (or slightly exceeds 2 in two 

cases); the only exception to this is instance p16 (ratio above 3). 

For the more complex problems (𝑛 = 249 for random topology 

of nodes, 𝑛 = 360 for regular topology of nodes), the ratio is 

even lower (below 1.3, that is no more than 30% of iterations 

are wasted). Also, the termination condition works without the 

significant difference both for random and regular distribution 

of nodes. For the simpler problems, the entropy-based 

termination condition is recommended to complement with 

another termination condition, preferably by limiting the 

number of iterations without improving the solution. 

VI. CONCLUSION 

The proposed algorithm with the novel techniques (node 

clustering, adaptive pheromone evaporation, and entropy-based 

termination condition) improves the overall performance when 

applied to solve the MDVRP. This was verified on a set of 

benchmark instances of various complexity, both with random 

and regular distribution of vertices. The comparison with other 

state-of-the-art metaheuristic methods showed the high 

potential and competitiveness of the proposed algorithm for 

complex combinatorial optimization problems. 

The novelty in this article lies in the adaptation of the three 

supporting optimization mechanics to the MDVRP, and their 

integration into the ACO-based algorithm. Moreover, the 

findings achieved in this study could inspire further 

modifications of the proposed techniques for other 

combinatorial problems. 

 The future work of the authors will be focused on the 

organization of vertices into clusters. The goal is to increase the 

probability that the vertex forming the optimal route is included 

in the primary clusters; at the same time, the size of the primary 

clusters should be as small as possible. The authors plan to 

achieve this goal via data mining techniques (the vertices will 

be classified into clusters by selected data mining methods). 
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