
1

TEVC-00211-2022

Adaptive Ant Colony Optimization with Node

Clustering for the Multi-Depot Vehicle Routing

Problem

P. Stodola, J. Nohel

Abstract—This article deals with the novel metaheuristic

algorithm based on the Ant Colony Optimization (ACO) principle.

It implements several novel mechanisms that improve its overall

performance, lower the optimization time, and reduce the negative

behavior which is typically connected with ACO-based algorithms

(such as prematurely falling into local optima, or the impact of

setting of control parameters on the convergence for different

problem configurations). The most significant novel techniques,

implemented for the first time to solve the Multi-Depot Vehicle

Routing Problem (MDVRP), are as follows: (a) node clustering

where transition vertices are organized into a set of candidate lists

called clusters; (b) adaptive pheromone evaporation which is

adapted during optimization according to the diversity of the

population of ant solutions (measured by information entropy).

Moreover, a new termination condition, based also on the

population diversity, is formulated. The effectiveness of the

proposed algorithm for the MDVRP is evaluated via a set of

experiments on 23 well-known benchmark instances. Performance

is compared with several state-of-the-art metaheuristic methods;

the results show that the proposed algorithm outperforms these

methods in most cases. Furthermore, the novel mechanisms are

analyzed and discussed from points of view of performance,

optimization time, and convergence. The findings achieved in this

article bring new contributions to the very popular ACO-based

algorithms; they can be applied to solve not only the MDVRP, but

also, if adapted, to related complex NP-hard problems.

Index Terms—Ant Colony Optimization, Multi-Depot Vehicle

Routing Problem, node clustering, adaptive pheromone

evaporation, entropy.

I. INTRODUCTION

HE Multi-Depot Vehicle Routing Problem (MDVRP) is

a well-known NP-hard combinatorial optimization

problem related to the famous Traveling Salesman

Problem (TSP) formulated at Princeton University in the 1930s

[1]. The problem has been applied in many domains of human

activities such as logistics, transportation, distribution,

navigation, military, etc. [2].

A. Problem Formulation

The problem is formulated as follows. Let 𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑚}

be a set of vehicles (depots) of size 𝑚, and 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑛}

be a set of customers of size 𝑛. Let 𝐺 be a graph whose vertices

This work was supported by the Ministry of the Interior of the Czech

Republic (project “An Artificial Intelligence-Controlled Robotic System for
Intelligence and Reconnaissance Operations”, grant VJ02010036).

Corresponding author: P. Stodola

(nodes) comprise all the customers and vehicles: 𝑉 = 𝐷 ∪ 𝐶 =
{𝑑1, … , 𝑑𝑚 , 𝑐1, … , 𝑐𝑛} = {𝑣1, 𝑣2, … , 𝑣𝑛+𝑚}. The aim of the

problem is to serve all the customers by vehicles (each customer

must be served just once by any vehicle) so that the total

distance travelled is as small as possible.

Route 𝑅𝑘 for vehicle 𝑑𝑘 ∈ 𝐷 represents a sequence of

customers to be served in the exact order: 𝑅𝑘 = (𝑟1
𝑘 , 𝑟2

𝑘 , … , 𝑟𝑛𝑘
𝑘)

where 𝑟𝑗
𝑘 ∈ 𝑉, and 𝑛𝑘 is the number of vertices to be visited by

vehicle 𝑑𝑘 including its depot (𝑟1
𝑘 = 𝑟𝑛𝑘

𝑘 = 𝑑𝑘). The solution to

the problem is a sequence of routes: 𝑅 = (𝑅1, 𝑅2, … , 𝑅𝑚). The

objective function is in (1).

 |𝑅| = ∑ |𝑅𝑘|𝑚
𝑘=1 = ∑ ∑ |𝑟𝑗

𝑘 − 𝑟𝑗−1
𝑘 |

𝑛𝑘
𝑗=2

𝑚
𝑘=1 (1)

Several constraints must be satisfied. Constraint (2) ensures

that all customers must be served, constraint (3) forces each

vehicle to start and end its route at the depot, and constraint (4)

ensures that each customer is served just once.

 {𝑟1
1; … ; 𝑟𝑛1

1 ; 𝑟1
2; … ; 𝑟𝑛2

2 ; 𝑟1
𝑚; … ; 𝑟𝑛𝑚

𝑚 } = 𝐶 if 𝑟𝑗
𝑘 ∈ 𝐶 (2)

 {𝑟1
1; 𝑟𝑛1

1 ; 𝑟1
2; 𝑟𝑛2

2 ; 𝑟1
𝑚; 𝑟𝑛𝑚

𝑚 } = 𝐷 (3)

 𝑟𝑖
𝑘 ≠ 𝑟𝑗

𝑘 when 𝑟𝑖
𝑘 , 𝑟𝑖

𝑘 ∈ 𝐶 and 𝑖 ≠ 𝑗 (4)

Moreover, each customer demands a certain amount of goods

(marked 𝑟𝑗
𝑘 (𝑑𝑒𝑚𝑎𝑛𝑑)

), and vehicles in depots have a maximum

capacity (marked 𝑑𝑘
(𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦)

) which cannot be exceeded. This

means that the vehicle must return back to its depot if its

capacity would be exceeded by visiting the next customer on its

route (thus emptying its load); after that, the vehicle can

continue to serve the remaining customers on the route. Route

𝑅𝑘 may be thus composed of more than 1 consecutive sub-

sequences 𝑅𝑘
𝑖 ⊆ 𝐶 comprised of customers only (i.e. any part of

the route without returning to the depot): 𝑅𝑘 =
(𝑑𝑘; 𝑅𝑘

1; 𝑑𝑘; 𝑅𝑘
2; 𝑑𝑘; … ; 𝑑𝑘). Then, capacity constraint (5) must

be satisfied.

 ∑ 𝑟𝑗
𝑘(𝑑𝑒𝑚𝑎𝑛𝑑)

𝑅𝑘
𝑖 ≤ 𝑑𝑘

(𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦)
 for all 𝑅𝑘

𝑖 ⊆ 𝑅𝑘 (5)

P. Stodola is with the Department of Intelligence Support, University of

Defence, Brno, Czech Republic (e-mail: petr.stodola@unob.cz).
J. Nohel is with the Department of Intelligence Support, University of

Defence, Brno, Czech Republic (e-mail: jan.nohel@unob.cz).

T

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2022.3230042

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2

TEVC-00211-2022

B. Contributions

In this article, the novel metaheuristic algorithm based on the

Ant Colony Optimization (ACO) theory is proposed for the

MDVRP. This algorithm implements several unique techniques

which improve its performance and reduce the negative

behavior typically connected with ACO-based methods

(particularly the impact of the setting of control parameters on

performance in connection with the graph configuration, and

the tendency to fall prematurely into a local optimum).

The algorithm presented in this article extends the original

ACO algorithm proposed by the authors in [3]. Some of the key

techniques implemented in the original are as follows:

● Stochastic selection of depots before the node

transitions based on the pheromone potential.

● Hybridization with the simulated annealing principle;

this is used when determining a solution from the

population to update the pheromone matrix.

● Modified k-Opt local search optimization applied not

only to individual routes in the solution, but also to a

pair of routes (based on a mutual exchange of nodes).

This algorithm has been extended by three novel techniques

which further improve its performance. These techniques,

originally developed by the authors for the TSP in [4], have

been modified and adapted for the MDVRP, and integrated into

the algorithm. They are as follows:

● Node clustering principle. For every vertex,

candidate lists of transition vertices (called clusters)

are created. The vertices in clusters are organized

based on the probability that they will be a part of the

optimal solution; the higher the probability, the higher

the significance of the cluster. The probability is not

influenced only by the distance between vertices; the

graph configuration also is considered using the

sectorization principle. Node clustering does not

restrict the pheromone attraction principle to be used

only to a small set of vertices in a single candidate list,

but enables to access a complete set of transition

vertices.

● Adaptive pheromone evaporation. The adaptive

pheromone evaporation has been proposed because

the right speed of evaporation is one of the most

critical factors influencing the performance of the

algorithm. Thus, the speed of the evaporation reflects

the current optimization progress measured by the

information entropy expressing the diversity of

solutions in the population.

● Entropy-based termination condition. A new

termination condition has been formulated based on

the information entropy. The main idea behind this is

that when the entropy is low (i.e. solutions in the

population are the same or similar to one another), the

probability of improving the best solution is also low

and thus the optimization can be terminated.

Based on these new techniques, the proposed algorithm is

called the Adaptive Ant Colony Optimization with Node

Clustering (AACO-NC).

C. Motivation

The authors of this article chose the ACO-based methods

because these proved to be very successful in solving discrete

optimization problems [5], [6]. Several novel techniques have

been proposed and verified. The practical use of the AACO-NC

in the real software application (see details below) is based on

the MDVRP transformation into various real-world problems.

The AACO-NC has been integrated into the Tactical

Decision Support System (TDSS) as a key optimization

method. This system is being developed at the University of

Defence, Czech Republic, in long-term research. The aim is to

support military commanders of the Czech Armed Forces on

the battlefield in their decision-making [7]. The TDSS is

composed of a set of models of military tactics. Commanders

can use this system to plan their operations when one of the

models is compatible with the task at hand. The system plans

the variants to solve the task along with the second order effects,

and presents them to the commanders who can decide the next

course of action (they can choose one of the variants which is

immediately transmitted to subordinate soldiers or robotic

systems for execution). More information about this topic can

be found in [8], [9], [10], [11], [12], [13], [14], [15].

Some of the models of military tactics, in which the proposed

algorithm is implemented, are as follows:

● Cooperative reconnaissance of the area of intelligence

responsibility via a swarm of Unmanned Aerial

Systems (UAS). The algorithm is used to plan

trajectories of individual cooperating UASs so that the

reconnaissance is as fast and complete as possible.

● Cooperative reconnaissance of the area of intelligence

responsibility using a group of ground elements

(soldiers or unmanned ground systems).

● Persistent surveillance of the area or object of interest

via a swarm of UASs.

● Logistics to units on the battlefield via a group of

supply vehicles.

D. Article Organization

The article is further organized as follows. Section II reviews

the literature particularly with respect to the novel

improvements. In Section III, the proposed algorithm is

presented with a focus on the novel techniques. Section IV

shows the experimental results on a set of benchmark instances,

and compares the performance of the AACO-NC with other

state-of-the-art methods. The analysis and discussion about the

impact of the novel techniques on the performance and behavior

of the algorithm is in Section V. Finally, Section VI concludes

the article and suggests future work for the authors.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2022.3230042

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3

TEVC-00211-2022

II. LITERATURE REVIEW

The MDVRP is a well-known NP-hard problem that attracts

the full attention of researches. Since it was formulated in 1959

[16], many different methods have been proposed, both exact

and stochastic. The most recent survey of the MDVRP [2]

discusses mathematical models, state-of-the-art solution

methods, and real-life applications.

This section is organized as follows. First, some examples of

metaheuristic algorithms used for the MDVRP (or related

problems) are introduced in Section II-A. The bio-inspired

algorithms follow in Section II-B as a strong class of stochastic

methods. Then, ACO-based methods are presented in Section

II-C with a focus on modern techniques and mechanisms

integrated to enhance the overall performance. Finally, sections

II-D and II-E aim at the current state of research in the areas

that are related to the key contributions of this article – node

transition and adaptive parameters control. No part of this

section can bring the complete overview of scientific works;

therefore, only the state-of-the-art studies and/or key studies

related in some aspect to this work are included.

A. Metaheuristic Algorithms

Metaheuristic algorithms have proved to be very successful

for the constrained combinatorial problems. Genetic algorithms

have been often used for the MDVRP; the authors of [17]

proposed an improved genetic algorithm with various crossover

operators and pre-assigning customers to their nearest depots.

The genetic algorithm combined with the enhanced Ordered

Distance Vector (ODV) for population initialization is

introduced in [18]. Another popular approach is the Variable

Neighborhood Search (VNS); the approach in [19] integrates

biased-randomization strategies within a variable neighborhood

search framework in order to better guide the searching process.

The Variable Tabu Neighborhood Search (VTNS) algorithm is

proposed in [20]; it combines the VNS with a tabu shaking

mechanism in the diversification phase of the search. The

Imperialist Competitive Algorithm (ICA) has been also often

used for the combinatorial problems. The authors of [21]

proposed the ICA with Independence and Constrained

Assimilation (ICA-ICA) which combines the classical ICA

assimilation and revolution operators, while maintaining

population diversity.

B. Bio-inspired Algorithms

In recent years, bio-inspired methods have become very

popular and widely used for combinatorial problems. The

authors of [22] proposed a variant of the Artificial Bee Colony

algorithm for the Multiobjective Energy Reduction MDVRP.

The Enhanced Firefly Algorithm, which improves the solution

quality by using the Clarke and Wright savings algorithm and a

local search technique for the Capacitated Vehicle Routing

Problem, is put forth in [23]. A hybrid nature-inspired heuristic

algorithm integrating the Clarke and Wright savings algorithm,

the Sweep Algorithm, and the Multi-Objective Particle Swarm

Optimization algorithm to solve the Multi-Depot Green VRP is

proposed in [24].

C. ACO Algorithms with Various Improvement Techniques

Ant Colony Optimization (ACO) is one of the most popular

metaheuristic optimization techniques inspired by the behavior

of ants when searching for food. It has been applied to a wide

range of combinatorial optimization problems. These

algorithms often combine the basic ACO-based principle with

particular techniques and mechanisms to enhance performance

and to reduce the negative effects typically connected with the

ACO algorithms. Some of the most recent research of the ACO-

based algorithms applied to the MDVRP or related problems

are [25] (ACO with an improved approach in updating the

pheromone matrix), [26] (clustering nodes into a desired

number of groups using k-means clustering algorithm, then

using ACO to generate routes for each cluster), [27] (ACO with

the scanning strategy and crossover operation), [28] (ACO with

two distinct types of ants, the first for assigning customers to

depots, the second to generate routes), [29] (ACO based on a

polygonal circumcenter used for assigning customers to

depots). A lot of ACO algorithms are also complemented by

some local search optimization technique, mostly k-Opt local

search, to enhance the overall performance, see e.g. [30], [31],

[32].

D. ACO Algorithms – Node Transition Techniques

The key phase of ACO-based algorithms is the sequential

nodes transition into ant solutions. In the original approach, any

node that is not yet part of the solution can be selected and

inserted. The probability of selecting a node depends typically

on the heuristic information (reverse distance between the last

node inserted and this node) and the strength of the pheromone

trail. These probabilities are necessary to calculate for all the

free nodes which leads to the quadratic dependence on the graph

size. The idea to restrict the set of nodes for selection is

therefore logical not only to reduce the computational

complexity, but also to increase the overall performance and

decrease the memory requirements [33]. The restricted set of

nodes for selection is typically called a candidate set or a

candidate list.

In the MDVRP and related graph theory problems, a single

candidate list has typically a fixed size and the nodes are

selected using the nearest neighbor principle (the general

assumption is that local transitions lead to good solutions), i.e.

the nodes closest to the last customer in the solution are inserted

into the candidate list [34]. An example of this approach is in

[35], where the authors developed a hybrid ACO algorithm to

solve the open vehicle routing problem. In the transition phase,

the customers are selected from the candidate lists comprised of

the closest customers; the size of the candidate list is limited to

some portion of the total number of customers. Another

example is in [36]; the authors proposed the Vectorized

Candidate Set Selection technique (VCSS) for a parallel ACO

algorithm, where the candidate list is generated from a set of the

nearest free neighbors using the roulette wheel principle. A

different approach is used in [37]; instead of creating a list of

candidate nodes, the pheromone matrix is restricted to the

constant number of nearest neighbors for each node. All these

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2022.3230042

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4

TEVC-00211-2022

approaches need some strategy to select a customer when there

is no free node in the candidate list. The easiest way is to select

the nearest free customer. However, a more advanced

procedure is proposed in [37]: a pheromone value is mapped to

every edge which is part of the best route; a node with the

highest pheromone value assigned to the edge adjacent to the

last node in the route is then inserted.

The node clustering principle introduced in this article brings

novelty in two ways. First, there is not a single candidate list

but a set of candidate lists comprising a complete number of

vertices. The selection of a vertex for transition is performed in

two phases: first, a candidate list from the set is determined,

then a vertex from this list is selected. In both phases, the

probability of selecting either a list or a vertex depends on the

heuristic information and the intensity of the pheromone trails.

Thus, the principal strength of the ACO is preserved for the full

set of vertices. Moreover, this approach does not need a special

strategy if there is not a free vertex inside the single candidate

list. The second enhancement is that the vertices are not

organized in clusters strictly using the nearest neighbor

approach, but the graph configuration is also considered using

the sectorization principle.

E. ACO Algorithms – Adaptive Parameters Control

Some research has been recently conducted in the area of

adaptivity of ACO-based algorithms in order to reduce negative

effects such as falling into local optima or the influence of the

setting of control parameters on performance for difference

graph configurations. A nucleolus game learning strategy in a

set of ant colonies was proposed in [38] to improve the

population diversity; the idea is to share pheromone distribution

among these colonies when the algorithm stalls. The authors of

[39] proposed an adaptive stagnation avoidance strategy in

which a cooperative game model based on the population

diversity determines the selection of the appropriate pheromone

matrix for different colonies.

The adaptive approach to evolving control parameters has

been addressed in several research articles. The alpha and beta

control parameters are adjusted in [40] using a set of rules based

on exploring the parameter and fitness landscape during the

search. The authors of [41] use the greedy strategy for the

dynamic change of alpha and beta control parameters to

accelerate the convergence speed linearly with iterations. The

linear change of alpha and beta control parameters and, in

addition, the evaporation coefficient is introduced in [42].

The diversity of the population of ants is measured in some

studies by information entropy [39], [43]. However, to the best

knowledge of the authors of this article, information entropy

has not yet been used for adaptive evolution of control

parameters (particularly the evaporation coefficient) as it is

used in this article. Using this principle, the convergence speed

is controlled via the speed of the pheromone evaporation

according to the current state of the population diversity

(greater diversity enables faster convergence, and vice versa).

III. ALGORITHM

This section is aimed at the key principles of the proposed

AACO-NC algorithm. This algorithm is inspired by the

behavior of ants in nature when searching for food and it

implements several techniques which improve its performance

and behavior for the MDVRP.

Fig. 1 presents the key phases of the AACO-NC in

pseudocode. The input of the algorithm is a set of graph vertices

𝑉 (customers and depots) and control parameters which are as

follows:

● 𝑛𝑎𝑛𝑡𝑠: number of ants in colonies;

● 𝑛𝑓𝑟𝑒𝑞: frequency of the local optimization;

● 𝑛𝑝𝑟𝑖𝑚: number of primary clusters;

● 𝑛𝑠𝑖𝑧𝑒: number of vertices in clusters;

● 𝑛𝑠𝑒𝑐𝑡: number of sectors;

● 𝑇𝑢𝑝𝑑𝑎𝑡𝑒: temperature updating coefficient;

● 𝛼𝑢𝑝𝑑𝑎𝑡𝑒: temperature cooling coefficient;

● 𝜌𝑚𝑖𝑛 , 𝜌𝑚𝑎𝑥: minimum and maximum limits of the

pheromone evaporation coefficient;

● 𝛿: pheromone updating coefficient;

● 𝛼: distance probability coefficient;

● 𝛽: pheromone probability coefficient.

The algorithm works with a number of ant colonies equal to

the number of depots (one colony is located at each depot); ants

starting from these colonies represent vehicles; their

movements represent routes in a solution. There is the same

number of ants in each colony controlled by parameter 𝑛𝑎𝑛𝑡𝑠. A

pheromone matrix is created for each colony. At the initial

phase of the algorithm (point 3), the pheromone matrixes are

initialized using (6). Also, clusters for every vertex of the graph

are created (points 4 and 5) – see Section III.A for details.

 𝜏𝑖𝑗
𝑘 = 1 for all 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉 and 𝑑𝑘 ∈ 𝐷 (6)

The algorithm runs in iterations (points 6 to 19). In each

iteration, solution 𝑅𝑎 is found (point 10) for every set of ants

(one ant from each colony belongs to this set) using the novel

node clustering principle (see Section III.A and III.B for

details). The best solution found in an iteration is labeled as

𝑅𝑏𝑒𝑠𝑡 (points 11 and 12). Then, the local optimization process

may be applied to solution 𝑅𝑏𝑒𝑠𝑡; it is applied with frequency

given by control parameter 𝑛𝑓𝑟𝑒𝑞 (points 13 and 14). The local

optimization uses the modified k-Opt local search algorithm for

individual routes in the solution, but also for the mutual

exchange of vertices between any pair of routes. More details

about the local optimization can be found in [3].

At the end of each iteration, pheromone matrixes are updated

(point 17), and then evaporated (point 19) – see Section III.C

for details. The speed of the evaporation is controlled via the

pheromone evaporation coefficient 𝜌 which is set adaptively in

range (𝜌𝑚𝑖𝑛 , 𝜌𝑚𝑎𝑥) in each iteration (point 18) – see Section

III.D. The best solution found so far 𝑅 is stored (points 14 and

15) in each iteration and returned (point 20) when the algorithm

is terminated (see Section III.E for termination conditions).

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2022.3230042

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5

TEVC-00211-2022

Fig. 1. The key phases of the AACO-NC.

A. Node Clustering Principle

Node clustering is the key principle improving the

performance of the algorithm. This principle is used in the

phase of creating a solution 𝑅𝑎 when searching for the next

node to be inserted into one of the routes of vehicles (ants).

A cluster is a set of vertices of a defined size 𝑛𝑠𝑖𝑧𝑒

(1 ≤ 𝑛𝑠𝑖𝑧𝑒 ≤ 𝑛). For every vertex 𝑣𝑖 ∈ 𝑉, a set of clusters

𝐾(𝑣𝑖) = {𝐾1
(𝑣𝑖)

, 𝐾2
(𝑣𝑖)

, … } is created independently so that they

together contain all the customers in the graph except vertex 𝑣𝑖

itself. Vertex 𝑣𝑖, for which clusters 𝐾(𝑣𝑖) are created, is then

referred to as the cluster vertex for these clusters.

Customers are inserted into clusters based on the probability

of being the neighboring vertices for cluster vertex 𝑣𝑖 on the

optimal route. Customers closer to the cluster vertex are more

probable, so they are placed into clusters with lower indexes

(the closest vertices are placed into the first cluster 𝐾1
(𝑣𝑖)

).

However, based on the topology of the problem at hand, even

customers relatively distant to the cluster vertex may be the

neighboring vertices on the optimal route. This may occur when

the problem is composed of several separate groups of

customers. For this reason, a simple algorithm for creating

clusters was proposed which takes this possibility into account.

This algorithm can be used when the positions of vertices in

their space representation are known (Euclidean or

geographical).

The algorithm for creating clusters is in Fig. 2. The principle

lies in dividing the space into a number of sectors 𝑛𝑠𝑒𝑐𝑡

(1 ≤ 𝑛𝑠𝑒𝑐𝑡 ≤ 𝑛𝑠𝑖𝑧𝑒). In the first phase (points 4 to 7), the closest

vertex in each sector is inserted into the first cluster. In the next

phase (points 8 to 14), the first cluster is completed by other

vertices closest to 𝑣𝑖 (up to 𝑛𝑠𝑖𝑧𝑒 if 𝑛𝑠𝑖𝑧𝑒 > 𝑛𝑠𝑒𝑐), and other

clusters are gradually filled by remaining vertices; the ones

closer to 𝑣𝑖 lie in clusters with lower indexes.

Fig. 2. Algorithm for creating clusters.

The first 𝑛𝑝𝑟𝑖𝑚 clusters of 𝐾(𝑣𝑖) for each cluster vertex 𝑣𝑖 are

called primary clusters. The vertices sequentially inserted into

routes of vehicles are preferentially selected from the primary

clusters. See more details in the next section.

B. Ant Solution using the Node Clustering Principle

Fig. 3 presents the algorithm for generating a solution for a

set of ants using the node clustering principle. Routes 𝑅𝑑 for

individual vehicles at depots 𝑑 ∈ 𝐷 are sequentially generated

in a loop (points 6 to 17). Each vehicle starts from its depot

(points 2 and 3). Set 𝑉𝑓𝑟𝑒𝑒 (point 1) contains all the customers

not visited by any vehicle so far. The last vertex (customer or

depot) inserted into each route is continuously stored in variable

𝑣𝑑 (points 4 and 15), and the current load of the vehicles in

variable 𝑞𝑑 (points 5 and 16).

The first step in the loop is the selection of the depot 𝑑 ∈ 𝐷

(point 7); one of the vertices from set 𝑉𝑓𝑟𝑒𝑒 is then inserted to

the route 𝑅𝑑. The algorithm for the depot selection is elaborated

in Fig. 4.

The next step is the selection of the cluster 𝐾𝑘
(𝑣𝑑)

 (point 8); a

vertex to be inserted into the route 𝑅𝑑 will be chosen only from

free (as yet unvisited) vertices in this cluster; set 𝑉𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠

contains those vertices (see the intersection of sets 𝐾𝑘
(𝑣𝑑)

 and

𝑉𝑓𝑟𝑒𝑒 in point 9). The algorithm for the cluster selection is

elaborated in Fig. 5.

The final step is the selection of the vertex 𝑣 ∈ 𝑉𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 to

be inserted into the route 𝑅𝑑 (point 10). This algorithm is

elaborated in Fig. 6. The selected vertex 𝑣 is then inserted into

the route 𝑅𝑑 (point 14); however, the vehicle would return to its

depot before visiting the vertex (thus emptying its load), if its

AACO-NC(𝑉, 𝑛𝑎𝑛𝑡𝑠, 𝑛𝑓𝑟𝑒𝑞 , 𝑛𝑠𝑖𝑧𝑒 , 𝑛𝑠𝑒𝑐𝑡 , 𝑛𝑝𝑟𝑖𝑚,

 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 , 𝛼𝑢𝑝𝑑𝑎𝑡𝑒, 𝜌𝑚𝑖𝑛 , 𝜌𝑚𝑎𝑥 , 𝛿, 𝛼, 𝛽)

1. |𝑅| = ∞

2. 𝑖𝑡𝑒𝑟 = 0

3. Initialize pheromone matrixes 𝜏

4. For each 𝑣𝑖 ∈ 𝑉 do

5. 𝐾(𝑣𝑖) = CreateClusters(𝐶, 𝑣𝑖 , 𝑛𝑠𝑖𝑧𝑒 , 𝑛𝑠𝑒𝑐𝑡)

6. While not terminated

7. |𝑅𝑏𝑒𝑠𝑡| = ∞

8. 𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1

9. For 𝑎 = 1 to 𝑛𝑎𝑛𝑡 do

10. 𝑅𝑎 = AntSolution(𝑉, 𝐾, 𝜏, 𝑛𝑝𝑟𝑖𝑚, 𝛼, 𝛽)

11. If |𝑅𝑎| < |𝑅𝑏𝑒𝑠𝑡| then do

12. 𝑅𝑏𝑒𝑠𝑡 = 𝑅𝑎

13. If 𝑖𝑡𝑒𝑟 mod 𝑛𝑓𝑟𝑒𝑞 = 0 then do

14. 𝑅𝑏𝑒𝑠𝑡 = LocalOptimization(𝑉, 𝑅𝑏𝑒𝑠𝑡)

15. If |𝑅𝑏𝑒𝑠𝑡| < |𝑅| then do

16. 𝑅 = 𝑅𝑏𝑒𝑠𝑡

17. Update pheromone matrixes 𝜏

18. Calculate evaporation coefficient 𝜌

19. Evaporate pheromone matrixes 𝜏 using 𝜌

20. Return 𝑅

CreateClusters(𝑉, 𝑣𝑖 , 𝑛𝑠𝑖𝑧𝑒 , 𝑛𝑠𝑒𝑐𝑡)

1. 𝑖𝑑 = 1

2. 𝐾𝑖𝑑
(𝑣𝑖)

= ∅

3. 𝑉𝑓𝑟𝑒𝑒 = 𝑉 − {𝑣𝑖}

4. For 𝑗 = 1 to 𝑛𝑠𝑒𝑐𝑡 do

5. Find closest vertex 𝑣 ∈ 𝑉𝑓𝑟𝑒𝑒 to 𝑣𝑖 in sector 𝑗

6. 𝐾𝑖𝑑
(𝑣𝑖)

= 𝐾𝑖𝑑
(𝑣𝑖)

+ {𝑣}

7. 𝑉𝑓𝑟𝑒𝑒 = 𝑉𝑓𝑟𝑒𝑒 − {𝑣}

8. While 𝑉𝑓𝑟𝑒𝑒 ≠ ∅ do

9. If ቚ𝐾𝑖𝑑
(𝑣𝑖)

ቚ ≥ 𝑛𝑠𝑖𝑧𝑒 then do

10. 𝑖𝑑 = 𝑖𝑑 + 1

11. 𝐾𝑖𝑑
(𝑣𝑖)

= ∅

12. Find closest vertex 𝑣 ∈ 𝑉𝑓𝑟𝑒𝑒 to 𝑣𝑖

13. 𝐾𝑖𝑑
(𝑣𝑖)

= 𝐾𝑖𝑑
(𝑣𝑖)

+ {𝑣}

14. 𝑉𝑓𝑟𝑒𝑒 = 𝑉𝑓𝑟𝑒𝑒 − {𝑣}

15. Return 𝐾(𝑣𝑖)

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2022.3230042

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6

TEVC-00211-2022

capacity were exceeded (points 11 to 13). Then, the loop

continues until all the customers are visited (i.e. 𝑉𝑓𝑟𝑒𝑒 is empty).

All the vehicles then return to their depots (points 18 to 19), and

the ant solution 𝑅 is returned (point 20).

Fig. 3. Algorithm for finding an ant solution.

Fig. 4 shows the algorithm for selecting a depot used in point

7 of the AACO-NC algorithm in Fig. 3. For each depot, the

probability of its selection is calculated (points 1 to 7), and one

of the depots is selected with this probability distribution using

a simple roulette wheel principle (point 8). The probabilities are

proportional to the pheromone potential of each depot; this

pheromone potential is represented by the sum of pheromone

trails from the last vertex 𝑣𝑑 on the route to all available

candidate nodes in the primary clusters.

Fig. 4. Algorithm for selecting a depot.

When the depot 𝑑 ∈ 𝐷 is determined, its route 𝑅𝑑 will be

expanded by a vertex from one of the clusters (primary clusters

are preferred to other clusters). This cluster is selected using the

algorithm in Fig. 5. For each cluster in primary clusters, the

average heuristic information 𝜂𝑘 (inverse distance) and average

pheromone trail between the cluster node 𝑣𝑑 and all available

(as yet unvisited) vertices are calculated (points 1 to 5). If there

is not a single available vertex in the primary clusters (this is

however a very rare situation), the first cluster behind the

primary clusters with at least one available vertex is selected

and returned (points 8 to 11). Otherwise, the probability of

selecting individual primary clusters is proportional to the

multiple of the calculated average heuristic information and the

pheromone trail (points 12 to 13). The influence of the heuristic

information and the pheromone trail on the probability is

controlled by parameters 𝛼 and 𝛽. Then, the cluster is selected

based on these probability distributions using the simple

roulette wheel principle (point 14).

Fig. 5. Algorithm for selecting a cluster.

When the cluster 𝐾𝑘
(𝑣𝑑)

∈ 𝐾(𝑣𝑑) is determined, one of the as

yet unvisited customers in this cluster is selected using the

algorithm in Fig. 6. The probability of selecting a vertex (points

1 to 2) is calculated using the standard ACO principles: it is

proportional to the multiple of the heuristic information and the

pheromone trail between the vertex and the cluster vertex 𝑣𝑑

(again controlled by parameters 𝛼 and 𝛽). The vertex is then

selected using the simple roulette wheel principle (point 3).

Fig. 6. Algorithm for selecting a vertex.

AntSolution(𝑉 = {𝐷, 𝐶}, 𝐾, 𝜏, 𝑛𝑝𝑟𝑖𝑚 , 𝛼, 𝛽)

1. 𝑉𝑓𝑟𝑒𝑒 = 𝐶

2. For each 𝑑 ∈ 𝐷 do

3. 𝑅𝑑 = {𝑑}

4. 𝑣𝑑 = 𝑑

5. 𝑞𝑑 = 0

6. While 𝑉𝑓𝑟𝑒𝑒 ≠ ∅ do

7. 𝑑 = SelectDepot(𝑣𝑑 , 𝑉𝑓𝑟𝑒𝑒 , 𝐷, 𝐾(𝑣𝑑), 𝜏, 𝑛𝑝𝑟𝑖𝑚)

8. 𝑘 = SelectCluster(𝑑, 𝑣𝑑 , 𝑉𝑓𝑟𝑒𝑒 , 𝐾(𝑣𝑑), 𝜏, 𝑛𝑝𝑟𝑖𝑚, 𝛼, 𝛽)

9. 𝑉𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = 𝑉𝑓𝑟𝑒𝑒 ∩ 𝐾𝑘
(𝑣𝑑)

10. 𝑣 = SelectCustomer(𝑑, 𝑣𝑑 , 𝑉𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 , 𝜏, 𝛼, 𝛽)

11. If 𝑞𝑑 + 𝑣(𝑑𝑒𝑚𝑎𝑛𝑑) > 𝑑(𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦) then do

12. 𝑅𝑑 = 𝑅𝑑 + {𝑑}

13. 𝑞𝑑 = 0

14. 𝑅𝑑 = 𝑅𝑑 + {𝑣}

15. 𝑣𝑑 = 𝑣

16. 𝑞𝑑 = 𝑞𝑑 + 𝑣(𝑑𝑒𝑚𝑎𝑛𝑑)

17. 𝑉𝑓𝑟𝑒𝑒 = 𝑉𝑓𝑟𝑒𝑒 − {𝑣}

18. For each 𝑑 ∈ 𝐷 do

19. 𝑅𝑑 = 𝑅𝑑 + {𝑑}

20. Return 𝑅 = {𝑅1, 𝑅2, … , 𝑅|𝐷|}

SelectDepot(𝑣𝑑 , 𝑉𝑓𝑟𝑒𝑒 , 𝐷, 𝐾(𝑣𝑑), 𝜏, 𝑛𝑝𝑟𝑖𝑚)

1. For each 𝑑𝑖 ∈ 𝐷 do

2. 𝑉𝑐𝑎𝑛𝑑 = ∅

3. For 𝑘 = 1 to 𝑛𝑝𝑟𝑖𝑚 do

4. 𝑉𝑐𝑎𝑛𝑑 = 𝑉𝑐𝑎𝑛𝑑 + 𝑉𝑓𝑟𝑒𝑒 ∩ 𝐾𝑘
(𝑣𝑑)

5. 𝑝(𝑑𝑖) = ∑ 𝜏𝑣𝑑𝑣𝑗

𝑑𝑖
𝑣𝑗∈𝑉𝑐𝑎𝑛𝑑

6. 𝑝𝑠𝑢𝑚 = ∑ 𝑝(𝑑𝑖)𝑑𝑖∈𝐷

7. 𝑝(𝑑𝑖) = 𝑝(𝑑𝑖) 𝑝𝑠𝑢𝑚Τ

8. Select 𝑑𝑖 ∈ 𝐷 based on probabilities 𝑝(𝑑𝑖)

9. Return 𝑑𝑖

SelectCluster(𝑑, 𝑣𝑑 , 𝑉𝑓𝑟𝑒𝑒 , 𝐾(𝑣𝑑), 𝜏, 𝑛𝑝𝑟𝑖𝑚, 𝛼, 𝛽)

1. For 𝑘 = 1 to 𝑛𝑝𝑟𝑖𝑚 𝐝𝐨

2. 𝑉𝑐𝑎𝑛𝑑 = 𝑉𝑓𝑟𝑒𝑒 ∩ 𝐾𝑘
(𝑣𝑑)

3. If 𝑉𝑐𝑎𝑛𝑑 = ∅ then 𝜂𝑘 = 𝜏𝑘 = 0 else do

4. 𝜂𝑘 = |𝑉𝑐𝑎𝑛𝑑| ∙ ∑ |𝑣𝑑 − 𝑣𝑗|
−1

𝑣𝑗∈𝑉𝑐𝑎𝑛𝑑

5. 𝜏𝑘 =
1

|𝑉𝑐𝑎𝑛𝑑|
∙ ∑ 𝜏𝑣𝑑𝑣𝑗

𝑑
𝑣𝑗∈𝑉𝑐𝑎𝑛𝑑

6. 𝜂𝑠𝑢𝑚 = ∑ 𝜂𝑘
𝛼𝑛𝑝𝑟𝑖𝑚

𝑘=1

7. 𝜏𝑠𝑢𝑚 = ∑ 𝜏𝑘
𝛽𝑛𝑝𝑟𝑖𝑚

𝑘=1

8. If 𝜂𝑠𝑢𝑚 = 0 then do

9. For 𝑘 = 𝑛𝑝𝑟𝑖𝑚 + 1 to |𝐾(𝑣𝑑)| 𝐝𝐨

10. 𝑉𝑐𝑎𝑛𝑑 = 𝑉𝑓𝑟𝑒𝑒 ∩ 𝐾𝑘
(𝑣𝑑)

11. If 𝑉𝑐𝑎𝑛𝑑 ≠ ∅ then return 𝑘

12. For 𝑘 = 1 to 𝑛𝑝𝑟𝑖𝑚 𝐝𝐨

13. 𝑝 ቀ𝐾𝑘
(𝑣𝑑)

ቁ =
𝜂𝑘

𝛼∙𝜏𝑘
𝛽

𝜂𝑠𝑢𝑚∙𝜏𝑠𝑢𝑚

14. Select 𝐾𝑘
(𝑣𝑑)

∈ 𝐾(𝑣𝑑) based on probabilities 𝑝 ቀ𝐾𝑘
(𝑣𝑑)

ቁ

15. Return 𝑘

SelectCustomer(𝑑, 𝑣𝑑 , 𝑉𝑐𝑎𝑛𝑑 , 𝛼, 𝛽, 𝜏)

1. For each 𝑣𝑖 ∈ 𝑉𝑐𝑎𝑛𝑑 do

2. 𝑝(𝑣𝑖) =
|𝑣𝑑−𝑣𝑖|−𝛼∙ቀ𝜏𝑣𝑑𝑣𝑖

𝑑 ቁ
𝛽

∑ |𝑣𝑑−𝑣𝑗|
−𝛼

𝑣𝑗∈𝑉𝑐𝑎𝑛𝑑
∙൬𝜏𝑣𝑑𝑣𝑗

𝑑 ൰
𝛽

3. Select 𝑣𝑖 ∈ 𝑉𝑐𝑎𝑛𝑑 based on probabilities 𝑝(𝑣𝑖)

4. Return 𝑣𝑖

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2022.3230042

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7

TEVC-00211-2022

C. Pheromone Matrix Update and Evaporation

The update of the pheromone matrix (see point 17 in the

algorithm in Fig. 1) uses the principles of the simulated

annealing optimization method. This method uses the

Metropolis criterion in each iteration to decide whether to

accept the newly transformed solution, or preserve the original

solution. If the transformed solution is better than the original,

the transformed solution is always accepted; however, even the

worse solution can be accepted. This idea extends the search in

the search space, thus preventing the solution from falling into

some local optima.

The same idea is applied in the AACO-NC when determining

which solution is used to update the pheromone matrix: (a) the

best solution found in an iteration 𝑅𝑏𝑒𝑠𝑡, or (b) the best solution

found so far 𝑅. In general, using the former results in

maintaining the diversity of the population but also in slowing

the convergence down; moreover, the promising solution can

be sometimes lost. Therefore, it is advantageous to use the best

solution found so far for the update from time to time instead.

It results in faster convergence as well as in higher performance.

The probability of using either 𝑅𝑏𝑒𝑠𝑡 or 𝑅 is determined by

the Metropolis criterion using (7). If 𝑅𝑏𝑒𝑠𝑡 is better than 𝑅 (i.e.

the new best solution is found in an iteration), then 𝑅𝑏𝑒𝑠𝑡 is

always used. Otherwise, the 𝑅𝑏𝑒𝑠𝑡 is used with the probability

which depends on the percentual difference between 𝑅𝑏𝑒𝑠𝑡 and

𝑅, and the current value of temperature 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 (the higher the

temperature, the higher the probability of using the worse

solution to update the pheromone matrix). The temperature, as

one of the key control parameters of the AACO-NC, may

change from iteration to iteration using the cooling coefficient

𝛼𝑢𝑝𝑑𝑎𝑡𝑒 according to (8).

 𝑝(𝑅𝑏𝑒𝑠𝑡) = 1 − 𝑝(𝑅) = { 𝑒
−

ቀቚ𝑅𝑏𝑒𝑠𝑡ቚ−|𝑅|ቁ |𝑅|⁄

𝑇𝑢𝑝𝑑𝑎𝑡𝑒 for |𝑅𝑏𝑒𝑠𝑡| > |𝑅|,

 1 otherwise.

 (7)

 𝑇𝑢𝑝𝑑𝑎𝑡𝑒(𝑖𝑡𝑒𝑟 + 1) = 𝛼𝑢𝑝𝑑𝑎𝑡𝑒 ∙ 𝑇𝑢𝑝𝑑𝑎𝑡𝑒(𝑖𝑡𝑒𝑟) (8)

The solution for updating the pheromone matrix 𝑅𝑢𝑝𝑑𝑎𝑡𝑒 is

selected based on the calculated probabilities: 𝑅𝑢𝑝𝑑𝑎𝑡𝑒 = 𝑅𝑏𝑒𝑠𝑡

with 𝑝(𝑅𝑏𝑒𝑠𝑡), or 𝑅𝑢𝑝𝑑𝑎𝑡𝑒 = 𝑅 with 𝑝(𝑅) = 1 − 𝑝(𝑅𝑏𝑒𝑠𝑡). The

update itself is then conducted using (9); the pheromone trails

lying on the routes are increased in proportion to the pheromone

updating coefficient 𝛿 and the quality of the updating route (a

ratio of |𝑅| to |𝑅𝑢𝑝𝑑𝑎𝑡𝑒|).

 𝜏𝑖𝑗
𝑘 = 𝜏𝑖𝑗

𝑘 + 𝑥𝑖𝑗 ∙ 𝛿 ∙
|𝑅|

|𝑅𝑢𝑝𝑑𝑎𝑡𝑒|
 for all 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉 and 𝑑𝑘 ∈ 𝐷 (9)

𝑥𝑖𝑗 = {
 1 if node 𝑣𝑖 precedes node 𝑣𝑗 in 𝑅𝑢𝑝𝑑𝑎𝑡𝑒 ,

 0 otherwise.

After the update, the pheromone matrix is evaporated

(point 19 in the algorithm in Fig. 1) using (10). The speed of the

evaporation is controlled by the pheromone evaporation

coefficient 𝜌.

 𝜏𝑖𝑗
𝑘 = 𝜏𝑖𝑗

𝑘 ∙ (1 − 𝜌) for all 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉 and 𝑑𝑘 ∈ 𝐷 (10)

D. Adaptive Pheromone Evaporation

One of the most critical control parameters for ACO-based

algorithms is the pheromone evaporation coefficient 𝜌. It

affects the convergence speed: higher values mean a faster

convergence but also a quick fall into some local optimum

which is often too far from the global optimum; lower values

mean a slower convergence (or even infinite convergence).

Moreover, the setting of this control parameter is problem

dependent; the best value can differ significantly for different

graph topologies.

To overcome this problem, the adaptive setting of the

pheromone evaporation coefficient is proposed in this article. It

is controlled in each iteration by the diversity of the population

of ant solutions. The main idea behind this principle is that the

value of the pheromone evaporation coefficient reflects the

current progress in optimization. At the beginning of the

optimization, the population diversity is big and therefore the

convergence can be accelerated via the bigger value of the

evaporation coefficient. During the optimization, when the

solution converges towards some local optimum (documented

by decreasing diversity in the population), the evaporation of

the pheromone trails is lowered with the effect of slowing down

the convergence and thus extending the search space. This

principle works automatically during the whole optimization.

The population diversity is measured by Shannon entropy

using (11). The probability 𝑝𝑖𝑗 determines the probability that

the edge between vertices 𝑣𝑖 and 𝑣𝑗 (𝑖 ≠ 𝑗) is part of any

solution in the ant population. This probability is calculated

statistically based of the number of edge occurrences in

solutions using (12) where 𝑛𝑖𝑗 is the number of occurrences of

the edge between vertices 𝑣𝑖 and 𝑣𝑗 in the entire population, and

∑ 𝑛𝑖𝑗 is the sum of all edges used in all the solutions.

 𝐻 = − ∑ ∑ 𝑝𝑖𝑗 ∙ log2 𝑝𝑖𝑗
𝑖−1
𝑗=1

𝑛
𝑖=2 (11)

 𝑝𝑖𝑗 =
𝑛𝑖𝑗

∑ 𝑛𝑖𝑗
 for all 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉 (12)

The minimum and maximum limits of entropy in the

population are given by (13) and (14) respectively.

 𝐻𝑚𝑖𝑛 = − log2
𝑛𝑎𝑛𝑡𝑠

∑ 𝑛𝑖𝑗
 (13)

 𝐻𝑚𝑎𝑥 = − log2
1

∑ 𝑛𝑖𝑗
 (14)

The pheromone evaporation coefficient is then controlled

within the predefined limits using (15) where 𝜌𝑚𝑖𝑛 is the

minimum value of the pheromone evaporation coefficient, and

𝜌𝑚𝑎𝑥 is the maximum value. The setting of these limits is not

as sensitive and dependent on the graph configuration as is the

setting of a single evaporation parameter. The value adapts to

the actual situation based on the current diversity in the

population (linear dependence on entropy).

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2022.3230042

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8

TEVC-00211-2022

 𝜌 = 𝜌𝑚𝑖𝑛 + (𝜌𝑚𝑎𝑥 − 𝜌𝑚𝑖𝑛) ∙
𝐻−𝐻𝑚𝑖𝑛

𝐻𝑚𝑎𝑥−𝐻𝑚𝑖𝑛
 (15)

E. Entropy-based Termination

The algorithm is terminated when at least one of the following

conditions is satisfied:

● Maximum number of iterations is exceeded.

● Maximum optimization time is exceeded.

● Maximum number of iterations without improvement

in solution is exceeded.

● Diversity of solutions in the population is too low.

The newly proposed last condition is based on the fact that

when the diversity of solutions in the population is too low then

the probability of finding a better solution is also low. This is

because individual ant solutions are very similar to one another

(there are a lot of common edges in the solutions) and,

therefore, the discovery of new information is not plausible.

The diversity in the population is measured by Shannon

entropy, mentioned in the previous section. The algorithm is

terminated when the relative difference between the current

entropy 𝐻 and the lower limit 𝐻𝑚𝑖𝑛 is equal to or lower than the

relative distance expressed by coefficient 𝜔 – see (16).

𝐻−𝐻𝑚𝑖𝑛

𝐻𝑚𝑖𝑛
≤ 𝜔 (16)

F. Computational Complexity

The computational complexity of the original algorithm of

finding a single ant solution (i.e. without the node clustering

principle) is in (17); it is quadratically dependent on the number

of vertices 𝑛 (the quadratic dependence is caused by the

calculation of transition probabilities for all the free nodes in

the phase of insertion vertices into the solution). The term 𝑚

represents the selection of a depot before the vertex transition.

 𝑂(𝑛 ∙ (𝑚 + 𝑛)) = 𝑂(𝑛2 + 𝑛 ∙ 𝑚) (17)

The node clustering principle significantly decreases the

computational complexity for this algorithm – see (18). The

selection of a node to be inserted into the solution now proceeds

in two phases: (a) selection of a cluster (there is 𝑛𝑝𝑟𝑖𝑚 primary

clusters for selection), and (b) selection of a vertex from the

cluster (there is 𝑛𝑠𝑖𝑧𝑒 vertices in the selected cluster).

 𝑂 ቀ𝑛 ∙ (𝑚 + 𝑛𝑝𝑟𝑖𝑚 + 𝑛𝑠𝑖𝑧𝑒)ቁ (18)

The increase of the optimization speed is apparent as,

principally, parameters 𝑛𝑝𝑟𝑖𝑚 and 𝑛𝑠𝑖𝑧𝑒 are substantially lower

than the total number of vertices (𝑛𝑝𝑟𝑖𝑚 ≪ 𝑛, 𝑛𝑠𝑖𝑧𝑒 ≪ 𝑛).

Moreover, the node clustering principle preserves the key

feature of the original algorithm: nodes inserted successively

into the solution are always selected from the substantial set of

free nodes (𝑛𝑝𝑟𝑖𝑚 ∙ 𝑛𝑠𝑖𝑧𝑒) using pheromone attracting principles

(it is not limited to a small set of closest vertices).

IV. EXPERIMENTS AND RESULTS

This section presents the experimental results on a set of

benchmark instances, and compares them with several state-of-

the-art stochastic methods.

A. Benchmark Instances

As benchmarks, 23 of the well-known Cordeau’s MDVRP

instances [44] are used to verify the performance of the

proposed AACO-NC algorithm. Table I records their

dimension (number of vertices and depots) and constraints

(maximum vehicle capacity and maximum route length). The

layout is either random (the vertices are distributed randomly),

or regular (there is at least a particular regular pattern).

TABLE I

BENCHMARK INSTANCES

Instance
Vertices

𝒏

Depots

𝒎

Vehicle

capacity

Route

length
Layout

p01 50 4 80 ∞ Random

p02 50 4 160 ∞ Random

p03 75 5 140 ∞ Random

p04 100 2 100 ∞ Random

p05 100 2 200 ∞ Random

p06 100 3 100 ∞ Random

p07 100 4 100 ∞ Random

p08 249 2 500 310 Random

p09 249 3 500 310 Random

p10 249 4 500 310 Random

p11 249 5 500 310 Random

p12 80 2 60 ∞ Regular

p13 80 2 60 200 Regular

p14 80 2 60 180 Regular

p15 160 4 60 ∞ Regular

p16 160 4 60 200 Regular

p17 160 4 60 180 Regular

p18 240 6 60 ∞ Regular

p19 240 6 60 200 Regular

p20 240 6 60 180 Regular

p21 360 9 60 ∞ Regular

p22 360 9 60 200 Regular

p23 360 9 60 180 Regular

B. Experimental Results

The algorithm was implemented in C++ programming

language using the Visual Studio IDE. The optimizations were

conducted on a personal computer with parameters as follows:

Intel Core i9-10940X CPU 3.30 GHz, 32 GB RAM.

All the results were achieved using control parameters set as

follows: 𝑛𝑎𝑛𝑡𝑠 = 192, 𝑛𝑓𝑟𝑒𝑞 = 10, 𝑛𝑝𝑟𝑖𝑚 = 4, 𝑛𝑠𝑖𝑧𝑒 = 24,

𝑛𝑠𝑒𝑐𝑡 = 16, 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 = 0.1, 𝛼𝑢𝑝𝑑𝑎𝑡𝑒 = 1, 𝜌𝑚𝑖𝑛 = 0.001,

𝜌𝑚𝑎𝑥 = 0.1, 𝛿 = 3, 𝛼 = 1, 𝛽 = 1. The setting of control

parameters is either based on the experiments conducted in the

previous research [3], [4] (parameters 𝑛𝑎𝑛𝑡𝑠, 𝑛𝑓𝑟𝑒𝑞 , 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 ,

𝛼𝑢𝑝𝑑𝑎𝑡𝑒, 𝛿, 𝛼, 𝛽), or, in case of the new parameters connected

with the node clustering (𝑛𝑝𝑟𝑖𝑚, 𝑛𝑠𝑖𝑧𝑒, 𝑛𝑠𝑒𝑐𝑡,) and adaptive

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2022.3230042

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

9

TEVC-00211-2022

pheromone evaporation (𝜌𝑚𝑖𝑛 , 𝜌𝑚𝑎𝑥), on the general analysis

of the impact of these parameters on the behavior and

performance of the algorithm. Due to the limited number of

pages, there is not enough space to present the complete results

here; the shortened version is presented in Section V.

For each benchmark instance, 100 optimization trials were

performed. The complete results (including individual solutions

for all the optimization trials) are available for download here:

https://zenodo.org/record/7341076; this enables comparison of

the AACO-NC with other algorithms in the future including

paired statistical tests.

Table II shows the results. The best-known solutions (BKS)

were taken from [44]. These solutions are, however, outdated

in some cases; better solutions for several instances can be

found in the literature. However, these solutions are often only

reported but not available for download (i.e. they cannot be

verified). Therefore, reference [44] is used for the BKS in this

article as it provides complete reference solutions for the

benchmark instances. The BKS values in bold are proven

optima [45]. Table II records the best and the worst solutions

found by the AACO-NC in the optimization trials, the average

values along with the standard deviation, and the optimization

time in seconds.

TABLE II

RESULTS OF THE AACO-NC

Instance BKS Best Worst Avg Stdev Time (s)

p01 576.87 576.87 605.63 586.28 8.70 8

p02 473.53 473.53 506.65 484.83 6.91 2

p03 641.19 641.19 670.30 650.31 6.49 7

p04 1001.04 1003.05 1032.49 1019.98 6.69 114

p05 750.03 750.72 780.04 758.71 6.40 27

p06 876.50 876.50 908.93 889.54 6.67 99

p07 885.80 884.66 916.08 897.83 6.34 68

p08 4420.95 4427.17 4553.23 4490.40 29.80 4183

p09 3900.22 3887.14 4011.69 3931.78 24.24 2358

p10 3663.02 3637.51 3781.29 3702.61 28.68 1976

p11 3554.18 3546.06 3664.88 3607.73 23.32 1483

p12 1318.95 1318.95 1349.00 1325.25 6.61 2

p13 1318.95 1318.95 1329.70 1322.43 5.00 1

p14 1360.12 1360.12 1422.65 1379.62 28.86 2

p15 2505.42 2505.42 2595.30 2552.13 19.72 48

p16 2572.23 2572.23 2662.73 2596.92 20.72 6

p17 2709.09 2709.09 2816.57 2748.97 11.58 10

p18 3702.85 3702.85 3823.96 3769.35 27.17 342

p19 3827.06 3827.06 3921.82 3858.10 20.33 34

p20 4058.07 4091.78 4150.92 4115.73 12.89 90

p21 5474.84 5474.84 5643.74 5514.84 37.33 3189

p22 5702.16 5702.16 5760.00 5727.51 15.15 179

p23 6095.46 6123.18 6212.81 6175.80 15.21 775

Avg 2669.07 2670.04 2744.37 2700.29 16.30 652

The AACO-NC managed to find better or the same solutions

for 18 instances when compared to the BKS (see the grey cells

in Table II). In the remaining 5 instances, the difference

between the best solutions and the BKS is below 1%. In 4

cases, the BKS were improved (p07, p09, p10, p11). The

algorithm provides very good results regardless of the graph

configuration (random or regular), particularly for larger

instances: in case of 3 instances with 249 nodes and random

graph configuration (p09, p10, p11), the BKS were significantly

improved; in case of 2 instances with 360 nodes and 9 depots

and regular graph configuration (p21, p22), the same solutions

as the BKS were achieved.

The last row in Table II shows the average values in

individual columns over all the instances. The difference

between the best solutions found and the BKS is minimal

(0.01%). The difference between the average and worst

solutions and the BKS is 1.27% and 3.30% respectively.

The optimization time differs sometimes substantially. It is

caused, for one, by the graph configurations which may

influence the convergence speed radically. The local

optimization process also has a big impact on the optimization

speed, especially the mutual exchange of vertices between

vehicle routes (see [3] for details). This can be accelerated when

the maximum route length is limited (the exchange of vertices

between routes too far from one another is pointless). The effect

of this acceleration can be seen on instances p21, p22, and p23:

instance p21 does not have a limited maximum route length,

and thus the optimization time is considerably longer than in

case of instances p22 and p23, even though all these instances

have the same graph complexity (360 vertices and 9 depots).

C. Comparison with other Methods

The performance of the AACO-NC on the benchmark

instances was compared to 5 state-of-the-art stochastic

methods. These methods are comprised of three recent ACO-

based algorithms as well as two different metaheuristic

principles.

When choosing methods for comparison, those based on

ACO principles were preferred. They were supplemented by

two methods based on different metaheuristic principles. All

selected methods meet the following conditions: (a) they are

state-of-the-art methods with high performance; (b) they have

been published in renowned scientific journals in recent years;

(c) sufficiently detailed results for benchmark instances are

available in the publications. The latter condition results from

the unavailability of source codes or the difficulty of making

them operational; in some cases, however, the published results

are not complete.

The methods for comparison are as follows:

● IACO: Improved Ant Colony Optimization with a

scanning strategy [27].

● TSACS: Two-Stage Ant Colony System with the two

types of ants (for assigning customers to depots and

for generating routes) [28].

● BPC-HACO: Hybrid Ant Colony Optimization Based

on a Polygonal Circumcenter [29].

● ICA-ICA: Imperialist Competitive Algorithm with

Independence and Constrained Assimilation [21].

● VND-TSH: hybrid algorithm combining Variable

Neighborhood Descent and Tabu Search Heuristic

[46].

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2022.3230042

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://zenodo.org/record/7341076

10

TEVC-00211-2022

Table III compares the best results found. The best values for

each instance are emphasized by a grey background. The

AACO-NC provided better or the same solutions for 17

instances. The last row of Table III records the average

solutions over all the instances. The AACO-NC outperformed

the rival algorithms in this regard followed by the ICA-ICA

(gap 0.23%), IACO (gap 0.4%), BPC-HACO (gap 0.48%),

TSACS (gap 0.7%), and VND-TSH (gap 0.84%). The gap is

calculated using (19) where 𝐴𝑣𝑔 is the average of the best

solutions from Table III found by one of the algorithms (see the

last row of Table III).

 𝑔𝑎𝑝 =
𝐴𝑣𝑔𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚−𝐴𝑣𝑔𝐴𝐴𝐶𝑂−𝑁𝐶

𝐴𝑣𝑔𝐴𝐴𝐶𝑂−𝑁𝐶 ∙ 100 [%] (19)

TABLE III

COMPARISON OF THE AACO-NC WITH OTHER METHODS

(BEST SOLUTIONS FOUND)

Instance
AACO-

NC
IACO TSACS

BPC-

HACO

ICA-

ICA

VND-

TSH

p01 576.87 576.87 576.87 576.87 576.87 576.87

p02 473.53 473.53 473.53 473.53 473.53 473.53

p03 641.19 641.19 641.19 641.19 641.19 641.19

p04 1003.05 1001.59 1010.57 1003.73 1006.66 1008.62

p05 750.72 750.26 751.15 750.03 753.40 752.04

p06 876.50 876.50 880.57 876.50 876.50 882.71

p07 884.66 885.69 881.97 884.66 895.53 896.01

p08 4427.17 4482.44 4516.75 4406.68 4420.94 4417.34

p09 3887.14 3912.23 3939.52 3897.60 3900.22 3940.56

p10 3637.51 3663.00 3724.93 3663.02 3666.35 3696.31

p11 3546.06 3648.95 3624.67 3580.80 3554.18 3578.14

p12 1318.95 1318.95 1318.95 1318.95 1318.95 1318.95

p13 1318.95 1318.95 1318.95 1318.95 1318.95 1318.95

p14 1360.12 1365.68 1360.12 1360.12 1365.68 1360.12

p15 2505.42 2505.42 2505.42 2505.42 2565.67 2538.79

p16 2572.23 2587.87 2572.23 2572.23 2572.23 2572.23

p17 2709.09 2709.09 2709.09 2731.37 2709.09 2731.37

p18 3702.85 3781.04 3749.34 3741.99 3710.49 3798.58

p19 3827.06 3827.06 3827.06 3863.90 3827.06 3827.06

p20 4091.78 4058.07 4058.07 4097.06 4058.07 4097.06

p21 5474.84 5474.84 5619.95 5575.79 5495.54 5643.55

p22 5702.16 5702.16 5702.16 5718.00 5702.16 5708.36

p23 6123.18 6095.46 6078.75 6145.58 6145.58 6145.58

Avg 2670.04 2680.73 2688.77 2682.78 2676.30 2692.34

Table IV compares the average solutions (results for the

TSACS and VND-TSH are missing as they are not available in

the literature). The AACO-NC, BPC-HACO and ICA-ICA

provides similar results overall: the AACO-NC is followed by

BPC-HACO (gap 0.21%), ICA-ICA (gap 0.48%), and finally

IACO (gap 3.44%). The gap is calculated using (19) where 𝐴𝑣𝑔

is the average of the solutions from Table IV found by one of

the algorithms (see the last row of Table IV). The BPC-HACO,

although it has slightly lower overall performance than AACO-

NC, provides better average solutions for more instances (8

cases) than the AACO-NC (6 cases). Despite this, the AACO

has more cases of best solutions found (17 cases) than the BCP-

ACO (11 cases). This corresponds to the AACO-NC having

larger standard deviation (averaged 16.3) than the BCP-ACO

(averaged 9.06).

TABLE IV

COMPARISON OF THE AACO-NC WITH OTHER METHODS

(AVERAGE SOLUTIONS)

Instance
AACO-

NC
IACO TSACS

BPC-

HACO

ICA-

ICA

VND-

TSH

p01 586.28 576.87 NA 582.42 576.87 NA

p02 484.83 480.14 NA 482.36 481.24 NA

p03 650.31 646.52 NA 652.50 655.29 NA

p04 1019.98 1010.60 NA 1010.91 1015.11 NA

p05 758.71 763.84 NA 760.06 789.15 NA

p06 889.54 892.46 NA 885.24 887.71 NA

p07 897.83 886.31 NA 894.31 916.79 NA

p08 4490.40 4594.73 NA 4426.52 4493.66 NA

p09 3931.78 4105.22 NA 3908.78 3975.29 NA

p10 3702.61 3732.06 NA 3672.58 3696.71 NA

p11 3607.73 3816.79 NA 3590.26 3604.88 NA

p12 1325.25 1330.31 NA 1328.35 1359.49 NA

p13 1322.43 1343.73 NA 1325.87 1320.79 NA

p14 1379.62 1376.24 NA 1370.69 1394.01 NA

p15 2552.13 2564.32 NA 2513.26 2644.14 NA

p16 2596.92 2598.53 NA 2591.40 2577.66 NA

p17 2748.97 2746.41 NA 2750.54 2742.93 NA

p18 3769.35 3968.06 NA 3751.04 3756.70 NA

p19 3858.10 3994.65 NA 3901.37 3857.36 NA

p20 4115.73 4356.70 NA 4139.11 4134.88 NA

p21 5514.84 5889.46 NA 5596.32 5564.61 NA

p22 5727.51 6196.03 NA 5818.34 5753.71 NA

p23 6175.80 6376.24 NA 6283.17 6205.46 NA

Avg 2700.29 2793.31 NA 2705.89 2713.24 NA

Table V presents optimization times (in seconds) of the

algorithms taken from the literature (they are not available for

the TSACS and BPC-HACO). This is for purposes of

illustration only because the optimizations were taken on

different hardware configurations and, therefore, the deeper

analysis would not be appropriate. However, some basic

conclusions can be drawn. The AACO-NC is noticeably faster

than other methods for simpler instances with random

distribution of nodes (p01, p02, p03); times are comparable to

other algorithms for instances up to 100 nodes (p04, p05, p06,

p07). Even bigger differences are apparent for instances with

regular distribution of nodes (p12, p13, p14, p15, p15, p17); this

also applies for some more complex instances (p19, p20, p22).

On the other hand, the AACO-NC is visibly slower for complex

instances with random distribution of nodes (p08, p09, p10,

p11) – except for the ICA-ICA which is slower in all cases.

TABLE V

COMPARISON OF THE AACO-NC WITH OTHER METHODS

(OPTIMIZATION TIME IN SECONDS)

Instance
AACO-

NC
IACO TSACS

BPC-

HACO

ICA-

ICA

VND-

TSH

p01 8 58 NA NA 252 25

p02 2 61 NA NA 372 45

p03 7 62 NA NA 474 16

p04 114 92 NA NA 744 119

p05 27 88 NA NA 1218 111

p06 99 94 NA NA 882 128

p07 68 93 NA NA 690 96

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2022.3230042

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

11

TEVC-00211-2022

p08 4183 146 NA NA 3912 634

p09 2358 135 NA NA 4056 752

p10 1976 137 NA NA 4932 740

p11 1483 127 NA NA 4260 506

p12 2 70 NA NA 600 15

p13 1 74 NA NA 534 11

p14 2 112 NA NA 402 24

p15 48 178 NA NA 1530 288

p16 6 192 NA NA 960 126

p17 10 168 NA NA 738 95

p18 342 206 NA NA 4392 195

p19 34 213 NA NA 2538 66

p20 90 306 NA NA 4416 121

p21 3189 403 NA NA 4914 1900

p22 179 419 NA NA 5160 584

p23 775 602 NA NA 5022 100

Avg 652 175 NA NA 2304 291

Wilcoxon signed-rank tests are performed to further compare

the AACO-NC with the IACO, BPC-HACO, and ICA-ICA

(insufficient data is available for the TSACS and VND-TSH to

perform these tests). The Wilcoxon tests were chosen because

the AACO-NC results are significantly different from normal

distribution (confirmed by Shapiro-Wilk’s tests). The

hypotheses are as follows (𝐻method denotes 𝐻IACO, 𝐻BCP-HACO,

or 𝐻ICA−ICA according to the method benchmarked with the

AACO-NC in the pairwise tests):

• Null hypothesis 𝐻0: 𝜇AACO-NC = 𝜇method; there is no

significant difference between the AACO-NC and the

benchmarked method.

• Alternative hypothesis 𝐻AACO-NC: 𝜇AACO-NC < 𝜇method;

there is a significant difference between the

AACO-NC and the benchmarked method (the

AACO-NC provides better results).

• Alternative hypothesis 𝐻method: 𝜇AACO-NC > 𝜇method;

there is a significant difference between the

AACO-NC and the benchmarked method: (the rival

method provides better results).

Table VI presents the results of the tests. To fail to reject the

null hypothesis, test statistic 𝑍 must lie within the critical

interval (−1.96; 1.96) for the level of significance 𝛼 = 0.05.

When 𝑍 is below the lower value, 𝐻AACO-NC is accepted (the

AACO-NC outperforms the benchmarked rival method), when

it is above the higher value, 𝐻method is accepted (the

benchmarked method outperforms the AACO-NC).

Wilcoxon tests show that the AACO-NC outperforms the

IACO and ICA-ICA in most cases (hypothesis 𝐻AACO-NC

accepted in 15 and 11 cases respectively, typically for more

complex problems), while these methods outperform the

AACO-NC in 6 cases (hypotheses 𝐻IACO and 𝐻ICA-ICA are

mostly accepted for simpler problems). The BPC-HACO and

the AACO-NC are comparable; hypothesis 𝐻AACO-NC is

accepted in 10 cases, 𝐻BPC-HACO in 12 cases, and there is not

enough evidence to reject the null hypothesis in 1 case (p14).

The BPC-HACO has higher performance mostly on instances

with random distribution of nodes, while the AACO-NC mostly

on instances with regular distribution of nodes. Although the

BPC-HACO provides higher performance in more cases (12

compared to 10), the higher standard deviation of the

AACO-NC ensures the noticeably more best solutions found in

the set of performed experiments (11 compared to 2).

TABLE VI

WILCOXON SIGNED-RANKED TESTS FOR BENCHMARKS

AACO-NC

vs IACO

AACO-NC

vs BPC-HACO

AACO-NC

vs ICA-ICA

Instance Z Hyp. Z Hyp. Z Hyp.

p01 7.770 𝐻IACO 3.153 𝐻BPC-HACO 7.770 𝐻ICA-ICA

p02 5.766 𝐻IACO 2.995 𝐻BPC-HACO 4.394 𝐻ICA-ICA

p03 5.096 𝐻IACO -3.397 𝐻AACO-NC -6.124 𝐻AACO-NC

p04 8.121 𝐻IACO 8.032 𝐻BPC-HACO 5.897 𝐻ICA-ICA

p05 -6.254 𝐻AACO-NC -2.507 𝐻AACO-NC -8.682 𝐻AACO-NC

p06 -4.100 𝐻AACO-NC 5.329 𝐻BPC-HACO 1.939 𝐻0

p07 8.668 𝐻IACO 4.731 𝐻BPC-HACO -8.682 𝐻AACO-NC

p08 -8.682 𝐻AACO-NC 8.682 𝐻BPC-HACO -0.774 𝐻0

p09 -8.682 𝐻AACO-NC 7.520 𝐻BPC-HACO -8.438 𝐻AACO-NC

p10 -7.234 𝐻AACO-NC 7.643 𝐻BPC-HACO 1.564 𝐻0

p11 -8.682 𝐻AACO-NC 6.137 𝐻BPC-HACO 1.368 𝐻0

p12 -6.065 𝐻AACO-NC -5.261 𝐻AACO-NC -8.682 𝐻AACO-NC

p13 -8.682 𝐻AACO-NC -6.866 𝐻AACO-NC 0.615 𝐻0

p14 0.378 𝐻0 0.378 𝐻0 -6.763 𝐻AACO-NC

p15 -5.446 𝐻AACO-NC 8.558 𝐻BPC-HACO -8.682 𝐻AACO-NC

p16 -1.812 𝐻0 2.276 𝐻BPC-HACO 7.812 𝐻ICA-ICA

p17 2.139 𝐻IACO -2.960 𝐻AACO-NC 5.735 𝐻ICA-ICA

p18 -8.682 𝐻AACO-NC 5.539 𝐻BPC-HACO 4.246 𝐻ICA-ICA

p19 -8.682 𝐻AACO-NC -8.620 𝐻AACO-NC -0.058 𝐻0

p20 -8.682 𝐻AACO-NC -8.431 𝐻AACO-NC -8.221 𝐻AACO-NC

p21 -8.682 𝐻AACO-NC -8.510 𝐻AACO-NC -7.533 𝐻AACO-NC

p22 -8.682 𝐻AACO-NC -8.682 𝐻AACO-NC -8.572 𝐻AACO-NC

p23 -8.682 𝐻AACO-NC -8.682 𝐻AACO-NC -8.665 𝐻AACO-NC

V. ANALYSIS AND DISCUSSION

This section analyses the behavior of the proposed algorithm

from the new enhancements point of view.

A. Node Clustering

Fig. 7 shows the impact of node clustering on the

performance of the AACO-NC on 8 selected benchmark

instances. This selection was based of the problem complexity

(from simple to the most complex) and distribution of nodes

(random or regular). One representative is included in each

category (𝑛 = 50, 75, 100, 249 for random distribution, and

𝑛 = 80, 160, 240, 360 for regular distribution). The dark blue

color shows the average error (the relative difference between

the average solution and the BKS) of the algorithm without

using node clustering (named AACO), i.e. the full set of nodes

is available for selection in the transition phase. The light blue

color shows the average error of the AACO-NC, i.e. with node

clustering. In both cases, the local search optimization was

switched off to emphasize the influence of the node clustering

principle. However, the adaptive pheromone evaporation was

preserved. In all cases, performance improved; the more

complex the problem, the bigger the improvement. For

example, in instance p22 (360 nodes, 9 depots), the error is over

8% when not using node clustering, and it improved to about

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2022.3230042

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

12

TEVC-00211-2022

5% when using this mechanism. Moreover, for illustration, the

violet color shows the average error when the complete AACO-

NC with the local search optimization is used (see results in

Table II). The improvement is substantial both for random and

regular graphs.

Fig. 7. Impact of node clustering on performance.

An even bigger enhancement is achieved in the optimization

time – see Fig. 8. Note that the axis scale is logarithmic because

of the significant differences over instances. The reduction of

the optimization time depends on the problem complexity; e.g.

for instance p11 (249 nodes, 5 depots), the AACO-NC without

the local search (light blue color) is almost 5 times faster

compared to AACO (dark blue color), for instance p22 (360

nodes, 9 depots), it is more than 25 times faster. The local

search (violet color) has a very interesting impact. In most cases

(the exception is instance p11), it accelerates the optimization;

it is especially extensive in the case of regular graphs (p13, p16,

p19, p22). This is caused due to a much faster convergence (the

local search is very efficient for the regular graphs).

Fig. 8. Impact of node clustering on the optimization time.

The following assumptions can be made from the analysis

conducted: (a) the node clustering increases the performance of

the algorithm; (b) the more complex problem, the higher the

performance improvement (the performance of the general

ACO algorithm without other supporting techniques

deteriorates with increasing problem complexity; the node

clustering reduces this deterioration); (c) it is important to

integrate the general ACO algorithm with the local search

optimization to further reduce the deterioration; (d) the

optimization time is reduced significantly when using the node

clustering; (e) the more complex problem, the higher the time

acceleration (due to the significantly lower computational

complexity – see (18)); (f) the local search optimization usually

shorten the optimization time even though it is computationally

demanding (because it accelerates convergence).

B. Adaptive Pheromone Evaporation

The impact of the pheromone coefficient on the convergence

speed is shown in Fig. 9. It presents the dependence of the

average error on the number of performed iterations for instance

p10. This instance was chosen as one of the most complex

representatives of problems with random distribution of nodes.

Two of the curves (green and blue color) indicate the

optimization progress when the constant value of the

pheromone evaporation coefficient was used (𝜌 = 0.001 and

𝜌 = 0.1). On the other hand, the violet curve is the optimization

progress with the adaptive pheromone evaporation (𝜌𝑚𝑖𝑛 =
0.001, 𝜌𝑚𝑎𝑥 = 0.1). Adaptive evaporation ensures almost the

same performance at the end of the optimization (average error

1.08%) compared to the constant evaporation when 𝜌 = 0.001

(average error 0.89%). However, the convergence was much

faster (with the adaptive approach, the 2% error is provided

about iteration 10,000; without this approach, it takes almost

twice as long to achieve the same error). When the larger value

of the constant pheromone evaporation coefficient is used (𝜌 =
0.1), the convergence is fast, but at the expense of the overall

performance (average error 1.98%).

Fig. 9. Optimization progress for instance p10 using constant

and adaptive pheromone evaporation.

Fig. 10 shows the progress of the diversity of the population

of ants for the same optimization as in Fig. 9. The information

entropy curve corresponds to the average error curve in Fig. 9.

When the large value of the pheromone evaporation coefficient

is used (𝜌 = 0.1), the diversity quickly becomes very low (blue

color). On the other hand, when 𝜌 = 0.001, high diversity is

2.
33

% 3.
16

%

3.
89

%

11.31%

0.
56

%

3.
01

% 4.
38

%

8.
14

%

1.
88

%

2.
08

%

3.
57

%

9.
17

%

0.
46

%

2.
60

% 3.
84

% 5.
06

%

1.
63

%

1.
42

%

1.
36

%

1.
51

%

0.
26

%

0.
96

%

0.
81

%

0.
44

%

0%

2%

4%

6%

8%

10%

12%

p01 p03 p07 p11 p13 p16 p19 p22

A
ve

ra
ge

 e
rr

o
r

AACO AACO-NC (no local search) AACO-NC (with local search)

22

37

41
0

26
70

8

11
0

10
56

19065

14

33

14
0

55
4

4

32

20
4

75
8

8 7

68

14
83

1

6

34

17
9

1

10

100

1 000

10 000

p01 p03 p07 p11 p13 p16 p19 p22

O
p

ti
m

iz
at

io
n

 t
im

e
(s

)

AACO AACO-NC (no local search) AACO-NC (with local search)

0%

2%

4%

6%

8%

10%

0 10000 20000 30000 40000 50000

A
ve

ra
ge

 e
rr

o
r

(%
)

ρ = 0.001 ρ = 0.1 ρ = 0.001/0.1

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2022.3230042

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

13

TEVC-00211-2022

maintained significantly longer (green color). Adaptive

evaporation ensures that the population diversity is between

these two extremes (violet color); this enables to high-quality

results to be achieved faster.

Fig. 10. Information entropy progress for instance p10 using

constant and adaptive pheromone evaporation.

The same analysis is shown in Fig. 11 and 12, this time for

instance p22 as a representative for the most complex instances

with regular distribution of nodes. The faster convergence, than

as in case of random distribution of nodes, is noticeable in

Fig. 11; the best solution is usually found before iteration

10,000 when using the adaptive evaporation. Otherwise, the

optimization progress (Fig. 11) as well as entropy progress

(Fig. 12) have the same development as in case of the problem

with random distribution of nodes (Fig. 8 and 9).

Fig. 11. Optimization progress for instance p22 using constant

and adaptive pheromone evaporation.

Fig. 12. Information entropy progress for instance p22 using

constant and adaptive pheromone evaporation.

Several assumptions about differences between algorithms

with the adaptive and constant evaporation (AACO vs ACO)

can be formulated: (a) AACO ensures faster convergence to a

local or the global optimum than ACO when 𝜌𝑚𝑖𝑛 = 𝜌 and

𝜌𝑚𝑎𝑥 > 𝜌; (b) the overall performance of AACO is very close

to the performance of ACO when 𝜌𝑚𝑖𝑛 = 𝜌; (c) achieving the

comparable performance as with ACO, however faster, could

be done via AACO when 𝜌𝑚𝑖𝑛 < 𝜌; (d) solutions of similar

quality are found noticeably faster via AACO when 𝜌𝑚𝑖𝑛 = 𝜌.

C. Entropy-based termination condition

The impact of the new condition on the termination of the

algorithm is shown in this sub-section. The optimizations were

executed with other termination conditions switched off, i.e.

only the entropy-based condition terminated the algorithm

(𝜔 = 0.1). The total number of iterations performed as well as

the iteration in which the best solution was found (both values

averaged over 30 experiments for each instance) were recorded

and the ratio between these two values is calculated and

presented in Fig. 13. This ratio represents the “wasted”

optimization time, i.e. the iterations that were performed at the

end of the optimization but did not improve the solution.

Fig. 13. Ratio of the total number of performed iterations to the

iteration with the last improvement in solution.

8.5

9.0

9.5

10.0

0 10000 20000 30000 40000 50000

In
fo

rm
at

io
n

 e
n

tr
o

p
y

ρ = 0.001 ρ = 0.1 ρ = 0.001/0.1

0%

1%

2%

3%

4%

5%

0 10000 20000 30000

A
ve

ra
ge

 e
rr

o
r

(%
)

ρ = 0.001 ρ = 0.1 ρ = 0.001/0.1

9.0

9.5

10.0

10.5

11.0

0 10000 20000 30000

In
fo

rm
at

io
n

 e
n

tr
o

p
y

ρ = 0.001 ρ = 0.1 ρ = 0.001/0.1

7
.3

0
5

.7
7

3
.2

3
2

.0
2

1
.6

6 2
.2

4
1

.6
2

1
.1

5
1

.1
5

1
.0

9
1

.2
5

5
.6

8
6

.9
4

4
.1

0
1

.5
1

3
.0

6
1

.8
3

1
.1

5 1
.9

7
1

.2
8

1
.1

8
1

.1
7

1
.3

0

0

1

2

3

4

5

6

7

8

p
0

1
p

0
2

p
0

3
p

0
4

p
0

5
p

0
6

p
0

7
p

0
8

p
0

9
p

1
0

p
1

1
p

1
2

p
1

3
p

1
4

p
1

5
p

1
6

p
1

7
p

1
8

p
1

9
p

2
0

p
2

1
p

2
2

p
2

3

R
at

io

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2022.3230042

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

14

TEVC-00211-2022

The results show that for the simple problems (𝑛 < 100), the

ratio is relatively high. The reason for this is that a high-quality

local or the global optimum is found quickly, long before the

diversity in the population decreases to the termination

threshold. However, the ratio for more complex problems

(𝑛 > 100) is mostly below 2 (or slightly exceeds 2 in two

cases); the only exception to this is instance p16 (ratio above 3).

For the more complex problems (𝑛 = 249 for random topology

of nodes, 𝑛 = 360 for regular topology of nodes), the ratio is

even lower (below 1.3, that is no more than 30% of iterations

are wasted). Also, the termination condition works without the

significant difference both for random and regular distribution

of nodes. For the simpler problems, the entropy-based

termination condition is recommended to complement with

another termination condition, preferably by limiting the

number of iterations without improving the solution.

VI. CONCLUSION

The proposed algorithm with the novel techniques (node

clustering, adaptive pheromone evaporation, and entropy-based

termination condition) improves the overall performance when

applied to solve the MDVRP. This was verified on a set of

benchmark instances of various complexity, both with random

and regular distribution of vertices. The comparison with other

state-of-the-art metaheuristic methods showed the high

potential and competitiveness of the proposed algorithm for

complex combinatorial optimization problems.

The novelty in this article lies in the adaptation of the three

supporting optimization mechanics to the MDVRP, and their

integration into the ACO-based algorithm. Moreover, the

findings achieved in this study could inspire further

modifications of the proposed techniques for other

combinatorial problems.

 The future work of the authors will be focused on the

organization of vertices into clusters. The goal is to increase the

probability that the vertex forming the optimal route is included

in the primary clusters; at the same time, the size of the primary

clusters should be as small as possible. The authors plan to

achieve this goal via data mining techniques (the vertices will

be classified into clusters by selected data mining methods).

REFERENCES

[1] M. M. Flood, “The Traveling-Salesman Problem,” Operations Research,

vol. 4, no. 1, pp. 61–75, Feb. 1956, doi: 10.1287/opre.4.1.61.

[2] D. G. N. D. Jayarathna, G. H. J. Lanel, and Z. a. M. S. Juman, “Survey on
Ten Years of Multi-Depot Vehicle Routing Problems: Mathematical

Models, Solution Methods and Real-Life Applications,” Sustainable

Development Research, vol. 3, no. 1, pp. 36–47, Feb. 2021, doi:
10.30560/sdr.V3N1P36.

[3] P. Stodola, “Hybrid ant colony optimization algorithm applied to the multi-

depot vehicle routing problem,” Nat Comput, vol. 19, no. 2, pp. 463–475,
Jun. 2020, doi: 10.1007/s11047-020-09783-6.

[4] P. Stodola, P. Otřísal, and K. Hasilová, “Adaptive Ant Colony

Optimization with node clustering applied to the Travelling Salesman
Problem,” Swarm and Evolutionary Computation, vol. 70, art. no. 101056,

Apr. 2022, doi: 10.1016/j.swevo.2022.101056.

[5] A. Prakasam and N. Savarimuthu, „Metaheuristic algorithms and
probabilistic behaviour: a comprehensive analysis of Ant Colony

Optimization and its variants", Artif Intell Rev, vol. 45, no. 1, pp. 97–130,

2016, doi: 10.1007/s10462-015-9441-y.
[6] Z. Han, Y. Wang, and D. Tian, „Ant colony optimization for assembly

sequence planning based on parameters optimization", Front. Mech. Eng.,

vol. 16, no. 2, pp. 393–409, 2021, doi: 10.1007/s11465-020-0613-3.
[7] P. Stodola and J. Mazal, “Tactical Decision Support System to Aid

Commanders in Their Decision-Making,” in Modelling and Simulation for

Autonomous Systems, vol. 9991, Cham: Springer International Publishing,
2016, pp. 396–406. doi: 10.1007/978-3-319-47605-6_32.

[8] M. Rybansky, “Determination the ability of military vehicles to override

vegetation,” Journal of Terramechanics, vol. 91, pp. 129–138, Oct. 2020,
doi: 10.1016/j.jterra.2020.06.004.

[9] J. Rada, M. Rybansky, and F. Dohnal, “The Impact of the Accuracy of

Terrain Surface Data on the Navigation of Off-Road Vehicles,” IJGI, vol.
10, no. 3, art. no. 106, Feb. 2021, doi: 10.3390/ijgi10030106.

[10] D. Kristalova et al., “Modelling and Simulation of Microrelief Impact on

Ground Path Extension,” in Modelling and Simulation for Autonomous
Systems, vol. 13207, Cham: Springer International Publishing, 2022, pp.

93–112. doi: 10.1007/978-3-030-98260-7_6.

[11] J. Hrdina, P. Vašík, J. Procházka, L. Kutěj, and R. Ščurek, “The Weighted
Core of Games Based on Tactical Decisions,” in Modelling and Simulation

for Autonomous Systems, Cham, 2020, pp. 244–252. doi: 10.1007/978-3-

030-43890-6_19.
[12] Š. Hošková-Mayerová, V. Talhofer, P. Otřísal, and M. Rybanský,

“Influence of Weights of Geographical Factors on the Results of

Multicriteria Analysis in Solving Spatial Analyses,” ISPRS International
Journal of Geo-Information, vol. 9, no. 8, art. no. 489, Aug. 2020, doi:

10.3390/ijgi9080489.

[13] A. Dringuš, L. Madarász, M. Oravec, and V. Gašpar, “Concept of
situational control in road tunnels,” in IEEE International Symposium on

Logistics and Industrial Informatics, Smolnice, Sep. 2012, pp. 113–120.

doi: 10.1109/LINDI.2012.6319472.
[14] P. Stodola, J. Drozd, K. Šilinger, J. Hodický, and D. Procházka, “Collective

Perception Using UAVs: Autonomous Aerial Reconnaissance in a

Complex Urban Environment,” Sensors, vol. 20, no. 10, art. no. 2926, Jan.
2020, doi: 10.3390/s20102926.

[15] J. Drozd, P. Stodola, D. Kristálová, and J. Kozubek, “Experiments with the

UAS Reconnaissance Model in the Real Environment,” in Modelling and
Simulation for Autonomous Systems, Cham, 2017, pp. 340–349. doi:

10.1007/978-3-319-76072-8_24.

[16] G. B. Dantzig and J. H. Ramser, “The Truck Dispatching Problem,”

Management Science, vol. 6, no. 1, pp. 80–91, Oct. 1959, doi:

10.1287/mnsc.6.1.80.

[17] V. Singh, L. Ganapathy, and A. K. Pundir, “An Improved Genetic
Algorithm for Solving Multi Depot Vehicle Routing Problems,”

International Journal of Information Systems and Supply Chain

Management, vol. 12, no. 4, pp. 1–26, 2019, doi:
10.4018/IJISSCM.2019100101.

[18] U. Prabu, P. Ravisasthiri, R. Sriram, N. Malarvizhi, and J. Amudhavel,
“EODVGA: An Enhanced ODV Based Genetic Algorithm for Multi-Depot

Vehicle Routing Problem,” EAI Endorsed Transactions on Scalable

Information Systems, vol. 6, no. 21, Jun. 2019, doi: 10.4108/eai.10-6-
2019.159099.

[19] L. Reyes-Rubiano, L. Calvet, A. A. Juan, J. Faulin, and L. Bové, “A biased-

randomized variable neighborhood search for sustainable multi-depot
vehicle routing problems,” Journal of Heuristics, vol. 26, no. 3, pp. 401–

422, 2020, doi: 10.1007/s10732-018-9366-0.

[20] M. E. Hesam Sadati, B. Çatay, and D. Aksen, “An efficient variable
neighborhood search with tabu shaking for a class of multi-depot vehicle

routing problems,” Computers & Operations Research, vol. 133, art. no.

105269, Sep. 2021, doi: 10.1016/j.cor.2021.105269.

[21] I. Dzalbs, T. Kalganova, and I. Dear, “Imperialist Competitive Algorithm

with Independence and Constrained Assimilation,” in International

Congress on Human-Computer Interaction, Optimization and Robotic
Applications (HORA), Jun. 2020, pp. 1–11. doi:

10.1109/HORA49412.2020.9152916.

[22] E. Rapanaki, I.-D. Psychas, M. Marinaki, and Y. Marinakis, “An Artificial
Bee Colony Algorithm for the Multiobjective Energy Reduction Multi-

Depot Vehicle Routing Problem,” in Learning and Intelligent

Optimization, Cham, 2020, pp. 208–223. doi: 10.1007/978-3-030-38629-
0_17.

[23] R. Yesodha and T. Amudha, “An Improved Firefly Algorithm for

Capacitated Vehicle Routing Optimization,” in Amity International

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2022.3230042

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

15

TEVC-00211-2022

Conference on Artificial Intelligence (AICAI), Feb. 2019, pp. 163–169. doi:

10.1109/AICAI.2019.8701269.
[24] Y. Wang, K. Assogba, J. Fan, M. Xu, Y. Liu, and H. Wang, “Multi-depot

green vehicle routing problem with shared transportation resource:

Integration of time-dependent speed and piecewise penalty cost,” Journal
of Cleaner Production, vol. 232, pp. 12–29, Sep. 2019, doi:

10.1016/j.jclepro.2019.05.344.

[25] Y. Li, H. Soleimani, and M. Zohal, “An improved ant colony optimization
algorithm for the multi-depot green vehicle routing problem with multiple

objectives,” Journal of Cleaner Production, vol. 227, pp. 1161–1172, Aug.

2019, doi: 10.1016/j.jclepro.2019.03.185.
[26] S. Rajak, P. Parthiban, and R. Dhanalakshmi, “Multi-depot vehicle routing

problem based on customer satisfaction,” International Journal of Services

Technology and Management, vol. 26, no. 2–3, pp. 252–265, Jan. 2020,
doi: 10.1504/IJSTM.2020.106693.

[27] B. Yao, C. Chen, X. Song, and X. Yang, “Fresh seafood delivery routing

problem using an improved ant colony optimization,” Annals of Operations
Research, vol. 273, no. 1, pp. 163–186, 2019, doi: 10.1007/s10479-017-

2531-2.

[28] W. Zhang, Y. Gajpal, S. S. Appadoo, and Q. Wei, “Multi-Depot Green
Vehicle Routing Problem to Minimize Carbon Emissions,” Sustainability,

vol. 12, no. 8, p. 3500, Jan. 2020, doi: 10.3390/su12083500.

[29] F. Wan, H. Gou, W. Pan, J. Hou, and S. Chen, “A Mathematical Method
for Solving Multi-Depot Vehicle Routing Problem,” Heliyon, early access,

Oct. 2021, doi: 10.2139/ssrn.3943419.

[30] A. Thammano and Y. Oonsrikaw, “Improved Ant Colony Optimization
with Local Search for Traveling Salesman Problem,” in IEEE/ACIS

International Conference on Software Engineering, Artificial Intelligence,

Networking and Parallel/Distributed Computing (SNPD), Jul. 2019, pp.
22–27. doi: 10.1109/SNPD.2019.8935817.

[31] M. Mavrovouniotis, I. S. Bonilha, F. M. Müller, G. Ellinas, and M.

Polycarpou, “Effective ACO-Based Memetic Algorithms for Symmetric
and Asymmetric Dynamic Changes,” in IEEE Congress on Evolutionary

Computation (CEC), Jun. 2019, pp. 2567–2574. doi:

10.1109/CEC.2019.8790025.
[32] Y. Wu, W. Ma, Q. Miao, and S. Wang, “Multimodal continuous ant colony

optimization for multisensor remote sensing image registration with local

search,” Swarm and Evolutionary Computation, vol. 47, pp. 89–95, Jun.
2019, doi: 10.1016/j.swevo.2017.07.004.

[33] L. Dawson and I. A. Stewart, “Candidate Set Parallelization Strategies for

Ant Colony Optimization on the GPU,” in Algorithms and Architectures
for Parallel Processing, vol. 8285, Cham: Springer International

Publishing, 2013, pp. 216–225. doi: 10.1007/978-3-319-03859-9_18.

[34] M. Randall and J. Montgomery, “Candidate Set Strategies for Ant Colony
Optimisation,” in Ant Algorithms, Berlin, Heidelberg, 2002, pp. 243–249.

doi: 10.1007/3-540-45724-0_22.

[35] M. Sedighpour, V. Ahmadi, M. Yousefikhoshbakht, F. Didehvar, and F.
Rahmati, “Solving the open vehicle routing problem by a hybrid ant colony

optimization,” Kuwait Journal of Science, vol. 41, no. 3, pp. 139–162, Sep.
2014.

[36] J. Peake, M. Amos, P. Yiapanis, and H. Lloyd, “Vectorized candidate set

selection for parallel ant colony optimization,” in Proceedings of the
Genetic and Evolutionary Computation Conference Companion, Kyoto

Japan, Jul. 2018, pp. 1300–1306. doi: 10.1145/3205651.3208274.

[37] J. Peake, M. Amos, P. Yiapanis, and H. Lloyd, “Scaling techniques for
parallel ant colony optimization on large problem instances,” in

Proceedings of the Genetic and Evolutionary Computation Conference,

Prague Czech Republic, Jul. 2019, pp. 47–54. doi:
10.1145/3321707.3321832.

[38] K. Yang, X. You, S. Liu, and H. Pan, “A novel ant colony optimization

based on game for traveling salesman problem,” Appl Intell, vol. 50, no.

12, pp. 4529–4542, Dec. 2020, doi: 10.1007/s10489-020-01799-w.

[39] L. Meng, X. You, S. Liu, and S. Li, “Multi-Colony Ant Algorithm Using

Both Generative Adversarial Nets and Adaptive Stagnation Avoidance
Strategy,” IEEE Access, vol. 8, pp. 53250–53260, 2020, doi:

10.1109/ACCESS.2020.2967076.

[40] A. F. Tuani, E. Keedwell, and M. Collett, “Heterogenous Adaptive Ant
Colony Optimization with 3-opt local search for the Travelling Salesman

Problem,” Applied Soft Computing, vol. 97, art. no. 106720, Dec. 2020, doi:

10.1016/j.asoc.2020.106720.
[41] W. Li, L. Xia, Y. Huang, and S. Mahmoodi, “An ant colony optimization

algorithm with adaptive greedy strategy to optimize path problems,” J

Ambient Intell Human Comput, vol. 13, no. 3, pp. 1557–1571, Mar. 2022,

doi: 10.1007/s12652-021-03120-0.
[42] P. Wang, Y. Zhang, and D. Yan, “An improved self-adaptive ant colony

algorithm based on genetic strategy for the traveling salesman problem,” in

AIP Conference Proceedings, Busan, South Korea, 2018, vol. 1967, art. no.
040046. doi: 10.1063/1.5039120.

[43] J. Chen, X.-M. You, S. Liu, and J. Li, “Entropy-Based Dynamic

Heterogeneous Ant Colony Optimization,” IEEE Access, vol. 7, pp. 56317–
56328, 2019, doi: 10.1109/ACCESS.2019.2900029.

[44] NEO Research Group, “Multiple Depot VRP Instances,” Accessed on:

Feb. 10, 2022, [Online]. Available: https://neo.lcc.uma.es/vrp/vrp-
instances/multiple-depot-vrp-instances/ (accessed).

[45] C. Contardo and R. Martinelli, “A new exact algorithm for the multi-depot

vehicle routing problem under capacity and route length constraints,”
Discrete Optimization, vol. 12, pp. 129–146, May 2014, doi:

10.1016/j.disopt.2014.03.001.

[46] M. E. Hesam Sadati, D. Aksen, and N. Aras, “A trilevel r-interdiction
selective multi-depot vehicle routing problem with depot protection,”

Computers & Operations Research, vol. 123, p. 104996, Nov. 2020, doi:

10.1016/j.cor.2020.104996.

Petr Stodola received the Ph.D. degree in military technology,

informatics and robotics from the University of Defence, Brno,

Czech Republic, in 2006.

He is currently a full professor with the Department of

Intelligence Support, University of Defence, Brno, Czech

Republic, where he works as a senior researcher and lecturer.

His current research interests include optimization,

metaheuristic methods, combat modeling and simulation and

command and control decision support systems. He is the

author or co-author of more than 160 scientific papers.

Jan Nohel received the Ph.D. degree in military management

from the University of Defence, Brno, Czech Republic, in 2015.

He is currently an assistant professor with the Department of

Intelligence Support, University of Defence, Brno, Czech

Republic, where he works as a researcher and lecturer. His

current research interests include the information support of the

decision-making process of commanders at the tactical

command and control level, tactical and terrain analyses and

cross-country movement modeling. He is focused on the issue

of mathematical algorithms design for data processing and

fusion and their integration in C4ISR systems.

Before starting his research career, he accumulated military

experience from being a commander and staff officer of Czech

Republic army units.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2022.3230042

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

