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Abstract—The convergence and diversity enhancement of 

multiobjective evolutionary algorithms (MOEAs) to efficiently 

solve many-objective optimization problems (MaOPs) is an active 

topic in evolutionary computation. By considering the advantages 

of the multiple populations for multiple objectives (MPMO) 

framework in solving multi-objective optimization problems and 

even MaOPs, this paper proposes an MPMO-based algorithm 

with a bias sorting (BS) method (termed MPMO-BS) for solving 

MaOPs to achieve both good convergence and diversity perfor-

mance. For convergence, the BS method is applied to each popu-

lation of the MPMO framework to enhance the role of nondomi-

nated sorting by biasedly paying more attention to the objective 

optimized by the corresponding population. This way, all the 

populations in the MPMO framework evolve together to promote 

the convergence performance on all objectives of the MaOP. For 

diversity, an elite learning strategy is adopted to generate locally 

mutated solutions, and a reference vector-based maintenance 

method is adopted to preserve diverse solutions. The performance 

of the proposed MPMO-BS algorithm is assessed on 29 widely 

used MaOP test problems and two real-world application prob-

lems. The experimental results show its high effectiveness and 

competitiveness when compared with seven state-of-the-art 

MOEAs for many-objective optimization. 

 

Index Terms—Many-objective optimization problems 

(MaOPs), evolutionary computation, multi-objective evolutionary 

algorithm (MOEA), bias sorting, coevolution.  

 

I. INTRODUCTION 

ANY promising multiobjective evolutionary algorithms 

(MOEAs) have been proposed in recent decades to solve 

multiobjective optimization problems (MOPs) [1][2]. These 

MOEAs include the elitist nondominated sorting genetic algo-

rithm (NSGA-II) [3], the improved strength Pareto evolution-

ary algorithm (SPEA2) [4], the indicator-based evolutionary 

algorithm (IBEA) [5], the MOEA with decomposition 

(MOEA/D) [6], and the multiple populations for multiple ob-

jectives (MPMO)-based algorithm [7]. However, almost all 

these MOEAs face a challenge: the proportion of nondomi-

nated solutions in the current population becomes larger when 

solving problems with more than three objectives, i.e., 

many-objective optimization problems (MaOPs). Such enor-

mous numbers of nondominated solutions lead to insufficient 

selection pressure, resulting in the degraded performance of 

MOEAs. This phenomenon is known as dominance resistance 

[8]. Another challenge in dealing with MaOPs is diversity 

maintenance since many existing diversity management 

methods may not work well in high-dimensional objective 

spaces. Due to the limitation of population size, it is more dif-

ficult for MOEAs to approximate the whole Pareto front (PF) 

when the number of objectives increases. 

To tackle the challenges in convergence and diversity that 

MOEAs encounter when dealing with MaOPs, many ap-

proaches have been proposed. In general, the most common 

approaches can be divided into four categories: domi-

nance-based, decomposition-based, indicator-based, and mul-

ti-population-based. Although they have shown good perfor-

mance in solving MaOPs, some side effects have also been 

observed. For example, dominance-based approaches usually 

increase selection pressure by enlarging the dominating area, 

which can cause the loss of diversity [9]. For decomposi-

tion-based approaches, the distributed reference vectors in 

these algorithms may have an adverse effect on diversity 

maintenance with nonuniform or convex PFs [10][11]. For 

indicator-based approaches, one well-known drawback is the 

high computational complexity of indicators such as hyper-

volume (HV) [12], especially on MaOPs. 

Among all the above approaches for solving MaOPs, the 

inherent multiple-population advantages in the MPMO 

framework make it very suitable to be extended for solving 

MaOPs with more objectives. In MPMO, a corresponding 
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population is adopted to optimize one objective approximating 

the PF. This strategy can accelerate each population ap-

proaching the PF. In every generation, different populations 

can communicate and share information. Compared with other 

approaches, the benefits of MPMO lie mainly in two aspects. 

First, the MPMO does not face the difficulty of sorting enor-

mous numbers of nondominated solutions caused by the many 

objectives in MaOPs because the MPMO mainly addresses one 

objective in each population. Second, the MPMO does not need 

to deal with a large number of subproblems because it does not 

need to decompose the original MaOP. Nevertheless, as shown 

in [13], only considering one objective in each population may 

cause the PF margin phenomenon when dealing with MaOPs. 

This indicates that each population in an MPMO-based algo-

rithm must consider the priority of the corresponding optimized 

objective and the equality among other objectives. 

In MOEAs, one of the common strategies that can reflect 

the equal relationship among all objectives is nondominated 

sorting (NDS) based on the Pareto dominance relationship. 

However, similar to the inefficiency of dominance-based ap-

proaches, the effectiveness of NDS will deteriorate on MaOPs 

due to the emergence of a large number of nondominated so-

lutions (more details are provided in Section II-C). Therefore, 

we propose a bias sorting (BS) method that prioritizes the 

corresponding population objective without ignoring other 

objectives. The BS method pays more attention to the conver-

gence on the corresponding population objective to increase the 

selection pressure. Solutions with better values on the corre-

sponding population objective will be preferentially ranked at 

the lower front (i.e., better front). Therefore, to combine the 

advantages of both the BS and NDS methods, this paper pro-

poses an adaptive sorting strategy. First, during the early search 

stage, solutions can quickly approach the PF with the guidance 

of the BS. Second, by considering the convergence status of 

each population, the sorting method is adaptively switched 

from BS to NDS in the later search stage to further promote 

convergence. 

Based on the consideration above, we propose an 

MPMO-based MOEA with BS (termed MPMO-BS) for solving 

MaOPs. The MPMO-BS follows the principle of convergence 

first and diversity second [14]. 

For convergence, each population in MPMO-BS optimizes 

a specific objective, and all of them together can promote the 

convergence performance on all objectives of the MaOP. For 

each population, two steps are carried out in every generation. 

First, solutions are ranked at several fronts via the more suitable 

sorting method between the BS or the NDS. Herein, the solu-

tions at the lower front are better than those at the higher front. 

Second, as for the solutions ranked at the same front, we de-

velop an auxiliary convergence fitness (ACF) strategy to fur-

ther distinguish their convergence status. Therefore, we can 

measure the relationship between any two solutions in each 

population through the above two strategies. 

For diversity, we use an archive to preserve 

well-performing solutions. After the parallel optimization 

process of all populations, the nondominated solutions in these 

populations are moved into the archive. An elite learning 

strategy (ELS) is developed to help jump out of possible local 

optima and help the archiving solutions efficiently converge to 

the PF. After that, solutions with good diversity in the archive 

are preserved via predefined uniform reference vectors. 

The contributions of this paper are as follows. 

1) We propose the BS method, which can increase selection 

pressure among solutions and accelerate convergence. Via the 

adaptive sorting strategy, the algorithm can adopt a suitable 

sorting method between BS and NDS according to the con-

vergence status of the population. 

2) We propose the ACF strategy, which can further dis-

tinguish the convergence relationship among solutions ranked 

at the same front and can adapt itself to different sorting 

methods.  

3) Derived from the MPMO framework, multiple popula-

tions in MPMO-BS evolve in parallel to ensure convergence on 

different objectives. The introduced ELS can promote the di-

versity of solutions selected from all populations. 

4) To facilitate communication among populations, we 

develop a population reallocation strategy between the archive 

and populations. 

The remainder of this paper is organized as follows. Section 

II provides the background. The details of the proposed 

MPMO-BS are given in Section III. Section IV presents the 

experimental results and detailed analysis of MPMO-BS on 

MaOPs and two real-world application problems. Finally, 

Section V concludes this paper. 

II. BACKGROUND 

A. MOPs and MaOPs 

Real-world problems usually involve multiple conflicting 

objectives that need to be considered simultaneously. Such 

complex problems are called MOPs. A MOP with M objectives 

to be minimized can be described as: 

 
T

1 2min ( ) = ( ), ( ), , ( ) ,

. Ω,
MF f f f

s.t 

x x x x

x

       (1) 

where Ω is the decision (variable) space, and x = (x1, ⋯, xD)
T
 is 

a candidate solution. F: Ω → RM represents M real-valued ob-

jective functions, and RM denotes the objective space. When 

the number of objectives in a MOP (i.e., the M) is larger than 

three, such a MOP is also called a MaOP. 

Because of conflicting objectives, there is no unique opti-

mal solution in a MOP that can optimize all the objectives 

simultaneously. Thus, the goal of solving a MOP is to obtain a 

set of optimal solutions, called Pareto optimal solutions. Given 

 
(a) DTLZ2                                           (b) WFG1 

Fig. 1.  Curves of the mean number of sorting fronts in the initial population 

versus M. 
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two solutions x, y ∈ Ω, x is said to Pareto dominate y (x ≺ y) if 

fi (x) ≤ fi (y) for ∀ i ∈ {1, ⋯, M} and ∃ j ∈ {1, ⋯, M} that fj(x) < 

fj(y). x is said to be a Pareto optimal solution if there does not 

exist another x*∈ Ω such that x* ≺ x. All Pareto optimal solu-

tions form the Pareto set (PS). The PF, the corresponding ob-

jective vector set of the Pareto optimal solutions, is defined as: 

PF = { ( ) | PS}MF R x x        (2) 

B. Related Works 

The existing approaches for tackling MaOPs can roughly be 

divided into four categories. 

The first category focuses on dominance-based MOEAs, 

which increase the selection pressure among nondominated 

solutions by modifying the Pareto dominance relationship. 

Some typical recent dominance relationships include 

ε-dominance [15], α-dominance [16], preference order ranking 

[17], and θ-dominance [18]. For example, a method that can 

control the dominance area of solutions was proposed in [19]. A 

fuzzy-based Pareto dominance was proposed in [20] to distin-

guish Pareto nondominated solutions. Such fuzzy logic was 

also adopted in some new dominance relations, such as 

L-dominance [21] and (1-k)-dominance [22]. A grid dominance 

was proposed in [23] to strengthen the selection pressure 

among solutions through three grid-based criteria. In addition, a 

strengthened dominance relation (SDR) was proposed in [24] 

for MaOPs. A niching technique based on the angles between 

solutions was adopted in SDR to help maintain solutions with 

the best convergence in each niche. 

The second category is decomposition-based approaches. 

They convert an original MaOP into several single-objective 

optimization subproblems and use predefined reference vectors 

to guarantee distribution. Solutions are guided to approximate 

the PF following the direction of each reference vector. 

NSGA-III [25] is one of the representative approaches of this 

category. In addition, many MOEA/D variants [26]-[28] have 

been developed recently. For example, an MOEA/D with an 

effective stable matching model (MOEA/D-STM) was pro-

posed in [29]. In [30], a Pareto adaptive scalarizing method was 

inserted into MOEA/D. In [31], a decomposition-based MOEA 

called RVEA was proposed, in which an angle penalized dis-

tance scalarization approach can equilibrate the diversity and 

convergence when dealing with MaOPs. 

The third category is called indicator-based approaches, in 

which indicators are used to assess the quality of solutions for 

selection. This category of approaches includes GDE-MOEA 

[32], MOMBI-II [33], and AR-MOEA [34]. In [35], a distinc-

tive hypervolume-based MOEA called HypE was proposed, in 

which a Monte Carlo simulation method was adopted to replace 

the accurate HV estimation for computationally complexity 

reduction. However, it is worth noting that the accuracy of this 

approximate calculation is influenced by the number of sam-

pling points. In [36], a utility tensor was introduced to reduce 

the computational cost of the hypervolume contribution. This 

method can improve efficiency by avoiding meaningless re-

petitive calculations. In [37], an inverted generational distance 

(IGD) [38] indicator-based MOEA called MaOEA/IGD was 

proposed, and a decomposition-based nadir point estimation 

method was adopted to promote the calculation of IGD. 

The fourth category is multi-population-based approaches. 

Although many MOEAs have been developed for solving 

MaOPs, most of them use only one population to simultane-

ously optimize all objectives. Such a population needs to co-

ordinate the optimized degree of each solution on all objectives, 

slowing down the approaching speed of the population to the 

PF. Therefore, it is difficult to explore all objectives by one 

population. Considering this, the MPMO framework was pro-

posed in [7], where multiple populations are adopted for solv-

ing multiple objectives simultaneously. Generally, various 

optimization algorithms, such as the genetic algorithm (GA) 

[39]-[41], ant colony system [42]-[45], PSO [7][13][46]-[48], 

and differential evolution [49]-[52], can be adopted for each 

population in the MPMO framework. The MPMO framework 

has shown promising performance in solving MOPs, indicating 

its potential ability to solve MaOPs. Therefore, an 

MPMO-based coevolutionary particle swarm optimization was 

proposed in [13] for solving MaOPs. In [13], the authors pro-

posed a bottleneck objective learning strategy, which can alle-

viate the side effect of poorly performing objectives (named 

bottleneck objectives) for particles in approximating the PF. 

This strategy pays particular attention to two objectives (the 

bottleneck objective and the optimized objective of the corre-

sponding population) in the process of particle updating while 

ignoring the influence of other objectives. It does accelerate 

particles toward the PF but may make populations only focus 

on their optimized bottleneck objectives. This may cause fall-

ing into local optima and be harmful to diversity. 

In addition to the above four categories of MOEAs, many 

studies have been proposed for solving MaOPs. For instance, a 

hybrid algorithm that mixes the preponderance of Pareto 

dominance and a reference vector-based decomposition ap-

proach, called SPEA/R, was proposed in [53]. As knee points 

are naturally preferred by decision-makers, the information of 

knee points is used in [54] to promote the convergence and 

diversity of the population. A preference-inspired coevolu-

tionary algorithm (PICEA-g) was proposed in [55], coevolving 

a family of preferences simultaneously with the population for 

better convergence. In [56], a MaOP was transformed into a 

MOP with two indicative objectives (i.e., convergence and 

diversity). During optimization, a population was assigned to 

different clusters according to the two indicative objective 

values, and well-performing solutions were selected from each 

cluster via a clustering-based sequential selection method. In 

[57], the authors integrated different solution selection methods 

into an ensemble framework to promote the performance of 

selected solutions. All these works show that the research into 

MaOPs is a significant and active research topic. 

C. Nondominated Sorting 

NDS has been widely used in MOEAs since it was pro-

posed in [58]. It is a strategy that can rank solutions in the 

population into different fronts based on their Pareto domi-

nance relationship. Given a population P with a set of solutions, 

these solutions can be ranked into v different fronts, denoted as 

Fi (i = 1, 2, …, v). After NDS, each solution at the front Fi is 
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dominated by at least one solution ranked at Fi-1. 

Over the past few decades, a number of NDS methods 

have been proposed in dominance-based MOEAs. Among 

them, the most representative is the fast nondominated sort in 

NSGA-II. Since then, many approaches have been proposed to 

simplify the NDS. For example, an arena’s principle-based 

NDS was proposed in [59]. In [60], a dominance tree and di-

vide-and-conquer mechanism were used to reduce the number 

of redundant comparisons of dominance relations among solu-

tions. In [61], a new M-front sorting method was proposed. By 

using the dominance relationship information at the last gen-

eration, M-front can reduce the best-case complexity. Moreover, 

an efficient nondominated sort was proposed in [62], in which a 

strategy of presorting was used to make the latter ranked solu-

tions unable to dominate the former. In this paper, we also 

adopt the efficient nondominated sorting approach in [62] for 

NDS. In addition to the abovementioned methods, some other 

methods have also been reported, e.g., [63][64].  

NDS has been widely used in dominance-based MOEAs for 

solving MOPs. For MaOPs, NDS has also been used in MOEAs 

such as NSGA-III [25] and KnEA [54]. However, one phe-

nomenon may be observed in NDS when solving MaOPs: most 

solutions in the population are ranked at similar fronts, which 

will weaken the selection pressure among solutions. Moreover, 

NDS should consider the priority of each solution on every 

objective. As the number of objectives increases, NDS be-

comes increasingly ineffective. Such NDS results will ulti-

mately deteriorate or even hinder the selection process. To 

illustrate this, we use NSGA-II, the most representative algo-

rithm using NDS, to conduct experiments on the DTLZ2 and 

WFG1 test instances with different objectives. The number of 

sorting fronts in the initial population is recorded, and the 

curves of the mean results in 10 runs are shown in Fig. 1. It can 

be seen that the number of sorting fronts versus M declines 

rapidly. Especially when M > 5, only two or three fronts remain. 

This indicates that a large number of solutions are located at the 

same front, which makes the algorithm unable to distinguish 

promising solutions using only the NDS method. 

III. PROPOSED MPMO-BS ALGORITHM 

A. The Framework of the MPMO-BS 

For a MaOP with M objectives, the main idea of MPMO is 

to use M populations to optimize the MaOP, with each popu-

lation (of size Ns) corresponding to only one objective and all 

populations working together to approximate the whole PF. 

MPMO-BS follows the MPMO framework, while the adaptive 

sorting strategy is used to accelerate the convergence in each 

population. Through adaptive sorting, solutions are ranked at 

different fronts to distinguish the convergence status. For so-

lutions at the same front, the ACF is adopted to further qualify 

their convergence status. An external archive A with size N is 

used to store the nondominated solutions from all populations. 

Finally, all solutions in A are reassigned to each population for 

information sharing. The final archive A is output once the 

termination condition is satisfied. The framework of 

MPMO-BS is shown in Fig. 2. 

B. BS Method 

Without loss of generality, population pi is taken as an 

example to describe the process of BS. The pseudocode of the 

BS process is given in Algorithm 1. 

First, we carry out M-1 times bi-objective NDS on objective 

i and each other objective j (j ∈ {1, ⋯, M} and j ≠ i) for all so-

lutions in population pi corresponding to the i-th objective 

(Lines 3-5 in Algorithm 1). Then each solution has M-1 sorting 

front results, and the largest one is defined as its bias front in pi 

(Line 6 in Algorithm 1). Notably, this sorting may cause a 

front chasm. That is, some solutions may be sorted to the higher 

front before the lower front has appeared. Under this situation, 

the bias front should be rearranged to eliminate the chasm (Line 

7 in Algorithm 1). For example, the bias front of pi is {1, 1, 4, 4, 

5, 2, 5}, and after rearrangement, it becomes {1, 1, 3, 3, 4, 2, 4} 

as the final bias front result. 

Through the above description of BS, we can see that there 

are some similarities between BS and the one-objective sorting 

method (i.e., only objective i is taken into account when sorting 

pi). They both tend to accelerate convergence by giving priority 

to one objective. However, compared with the one-objective 

sorting method, the BS can accommodate the other objectives 

and minimize the loss of diversity. It can be regarded as a 

sorting method lying between one-objective sorting and NDS 

since it can promote convergence while not ignoring diversity. 

Herein we present an example of a 4-objective space to il-

lustrate the BS method and compare the differences among BS, 

NDS, and one-objective sorting methods. 

Example: Consider a population p1 containing 5 solutions 

in the objective space: a (1, 4, 8, 3), b (2, 3, 7, 8), c (2, 4, 6, 5), d 

(8, 2, 7, 3), and e (3, 4, 5, 4), and 3 optimal solutions need to be 

selected from them. 

The front result of these solutions by the NDS method is {1, 

Algorithm 1 BS (pi, i) 

Begin  

1:  Initialize L = {L1, …, LM};  

/* L is a storage of all bi-objective sorting results */  

2:  Li = ∅;  

3:  For Each j = 1, …, M and j ≠ i Do  

4:         {Lj 

 1, …} = NDS on objective i and  j;  

5:  End For  

6:  {F1, …, Fv} = max(L);  

7:  Rearrange {F1, …, Fv};  

8:  Return {F1, …, Fv};  

End  

 

 

 
Fig. 2.  Framework of MPMO-BS. 
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1, 1, 1, 1}, which indicates that these solutions are nondomi-

nated with each other. At this time, it is impossible to decide 

among these solutions which one is better without other auxil-

iary operators. In other words, they are all regarded as optimal 

solutions in the current generation. In contrast, these solutions 

are ranked at {1, 2, 2, 4, 3} if the one-objective sorting method 

is adopted on f1. At this time, solutions a, b, and c are seen as 

the 3 optimal solutions. However, if we take into account the 

other objective values, we can see that b is severely deficient on 

f4 compared with others, whereas d only performs worse on f1 

and e performs moderately on all objectives. It seems that 

choosing b may not be a good choice if diversity is considered. 

However, different results can appear if BS is used. Fig. 3 

illustrates the BS process in p1, and the bias front result is {1, 3, 

2, 3, 3}. Then, it can be distinguished that in p1, which is more 

biased to objective f1, only solution a is regarded as the best one. 

It is worth noting that b, d, and e are ranked at the same front, 

although there are significant differences in their f1 values. This 

is the result of BS after comprehensively considering the values 

of these solutions on other objectives.  

The above example shows the advantages of BS compared 

with NDS and one-objective sorting. On the one hand, the BS 

can make a more detailed rank division among solutions than 

NDS. This makes the sorting mechanism restore the capability 

to distinguish the merits of solutions on MaOPs. On the other 

hand, different from the one-objective sorting, the BS is not 

completely biased toward a single objective but takes diversity 

into account. Combined with the MPMO framework, the BS 

can work efficiently to eliminate the phenomenon of domi-

nance resistance and accelerate convergence rapidly. It is 

worth noting that herein we use the bi-objective NDS in our BS, 

but potential performance improvement may be achieved by 

extending the bi-objective NDS to k-objective NDS (2 < k < M) 

in the BS. Inevitably, the computational complexity will also 

increase because there will be more objective combinations in 

the BS process if k is larger. 

C. Convergence Maintenance 

In MPMO-BS, multiple populations search in parallel, and 

each population pays attention to its convergence. In this sec-

tion, we illustrate in detail how each population maintains 

convergence. 

1) Adaptive Sorting Strategy 

During the early search stage, solutions usually do not 

converge well. At this time, BS is very useful in accelerating 

convergence since it prioritizes different objectives in different 

populations. However, as the BS’s forward search process and 

convergence performance improve, there is no need to pay 

more attention to one specific objective. In contrast, all objec-

tives need to be treated equally to reduce the differences among 

populations. Considering this, the adaptive sorting strategy is 

developed here, which can adaptively switch from BS to NDS 

according to the convergence status of each population. 

For any population pi, a trigger of the sorting type (denoted 

as STi) is set to determine which sorting method should be used. 

The trigger STi is initialized to 1, which represents the BS 

method. The value of STi is verified during each generation, 

and it will be fixed to 2 once verified equal to 2 in a certain 

generation. In other words, the NDS method is and will be 

continuously used in current and all generations to come if STi 

= 2. Otherwise, if STi = 1, BS is used and the trigger STi will be 

updated. 

The update of STi is based on the BS result. After BS, the 

number of solutions at front F1 is counted as Nopt. Then the 

solution proportion (SP) of F1 in pi is calculated as: 

= 
opt

s

N
SP 

N
            (3) 

where SP is a number between (0, 1] that can numerically re-

flect the current population’s convergence status. The larger SP 

is, the more optimal solutions based on BS are, indicating that 

the smaller difference between BS and NDS on the result of 

sorting is. Therefore, when SP is greater than a threshold θ, STi 

is updated to 2 so that NDS can be adopted for subsequent 

sorting. In this paper, θ is set to 0.8, and its sensitivity is in-

vestigated in Section IV-F. 

2) ACF Strategy 

After sorting, the solutions at the same front are nondomi-

nated with each other. The ACF strategy is proposed to further 

distinguish the convergence status of the solutions at the same 

front. Mutual evaluation [65] is a loss function that can evaluate 

the quality of each solution, and ACF follows the main idea of 

this approach. 

First, the objective values of any solution x in pi need to be 

preprocessed to be positive, as follows: 

                          
                 (a) NDS on objective f1 and f2                                        (b) NDS on objective f1 and f3                                         (c) NDS on objective f1 and f4 

Fig. 3. Example of BS in population p1. The bi-objective NDS results in (a), (b) and (c) are L2 = {1,1,2,1,3}, L3 = {1,2,1,3,1}, and L4 = {1,3,2,2,2}, respectively. So 

the BS result in p1 is max{L2, L3, L4} = {1,3,2,3,3}. Noting that there is no front chasm in this example. 
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6
( ) ( ) min ( ) 10 ,  

i

k k kf f f p


   x x y y       (4) 

where 10-6 is to prevent the value from being equal to 0. 

Second, considering that there are Nr solutions at the r-th 

front in pi, the calculation method of ACF is designed accord-

ing to the type of adopted sorting method, which is specified as 

follows. 

If BS is adopted in pi, then for any two solutions at that front, 

the mutual evaluation of xm (m =1, …, Nr ) evaluated by xn (n = 

1, …, Nr and n ≠ m) is: 

( )
max ,    = 1, ..., and 

( )

k n
mn k

k m

f
cv k M k i

f
 

x

x
    (5) 

Otherwise, in the case that NDS is adopted in pi, then the 

mutual evaluation is defined as: 

( )
max ,    = 1, ..., 

( )

k n
mn k

k m

f
cv k M

f


x

x
      (6) 

Finally, the ACF value of each solution is as: 

( ) min ,    = 1, ..., AC m mn r
n m

f cv n N


x           (7) 

ACF can be considered to be a quality indicator to assess 

the convergence status of solutions at the same front. Solutions 

with larger ACF values have better convergence status once 

they are ranked at the same front. 

Now let us return to the previous example given in Section 

III-B. Solutions b, d, and e are ranked at the same front via BS 

in p1. Now, we calculate their ACF values according to Eq. (5) 

and (7). The results are fAC(b) = 1, fAC(d) = 2, and fAC(e) = 1.4. 

Therefore, solution d is regarded to be optimal among these 

three solutions. At this point, through BS and ACF, 3 optimal 

solutions selected from the 5 solutions are a, c, and d. 

3) Environmental Selection 

We choose Ns solutions with better convergence from each 

population and its offspring population during every generation. 

First, pi and its offspring population qi form a combined popu-

lation of size 2Ns. All solutions in this combined population are 

ranked at several fronts via the adaptive sorting strategy. 

Starting from F1, the solutions with better ACF values are 

preserved until the number of preserved solutions reaches Ns. 

These preserved solutions are adopted as pi for the next gener-

ation. 

D. Diversity Maintenance 

In MPMO-BS, archive A is used for the remaining 

well-converged solutions from all populations. Then solutions 

with good diversity are selected from A and preserved. In this 

section, we describe the diversity maintenance process. 

1) Archive Update and ELS 

Archive A is the storage of nondominated solutions from all 

populations. It is initialized to be empty and updated in every 

generation and is also regarded as the final solution set found by 

MPMO-BS. Algorithm 2 gives the process of archive updating. 

The input solution set S is copied into A if A is empty. Other-

wise, each solution sS is compared with all the solutions in A. 

First, the solutions that are dominated by s are removed from A. 

Then, s will be added into A if all remaining solutions in A are 

nondominated with s. 

After storing all nondominated solutions in each population 

into A, the ELS proposed in [7] is adopted to help solutions 

jump out of possible local optima. In MPMO-BS, we randomly 

select several solutions from A and copy them into a temporary 

set. The number of selected solutions equals half of the current 

size of A. For each solution x = (x1, …, xD) in this temporary set, 

a random dimension d is chosen to mutate by Gaussian distri-

bution as: 

2
( ) Gaussian(0, )

max min

d d d dx x x x           (8) 

where xd
max and xd

min are the upper and lower bounds of the d-th 

dimension, respectively. Gaussian (0, σ2) is a Gaussian distri-

bution with a mean value of 0 and a standard deviation value of 

σ (σ = 0.5). Then xd is confirmed to be within the feasible search 

range of [xd
min, xd

max]. If not, xd is set to the corresponding bound. 

After the mutation, all solutions in this temporary set are 

evaluated, and archive A will be updated by this temporary set. 

The update process is the same as Algorithm 2 with this tem-

porary set as input. 

2) Solutions Preservation 

At the end of every generation, solutions with poor diver-

sity performance are deleted from A if the size of A is larger 

than N. In this paper, the reference-vector-based solution se-

lection method in [13] is adopted. N solutions are selected from 

A based on reference vectors, which are generated by a dou-

ble-layer method. 

E. Population Reallocation 

The solutions preserved in A perform better than those in 

each population because of the ELS and the multi-population 

coevolution technique. Therefore, if there are enough solutions 

Algorithm 2 Update_Archive (A, S) 

Begin 

1:   If A = ∅ Then 

2:         A = S; 

3:   Else 

4:         For Each s ∈ S Do 

5:                While ∃ a ∈ A is dominated by s Do 

6:                         Remove a from A; 

7:                End While 

8:                If ∀ a ∈ A are nondominated with s Then 

9:                         Add s into A; 

10:              End If 

11:       End For 

12: End If 

13: Return A; 

End 

 

Algorithm 3 Population_Reallocation (A) 

Begin 

1: Initialize P = ∅, S = A; 

2: While S is not empty Do 

3:         For Each i = 1, …, M Do 

4:                Move solution with the best value on objective i from S into pi; 

5:         End For 

6: End While 

7: P = {p1, p2, …, pM}; 

8: Return P; 

End 
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in archive A, reassigning solutions in A to each population can 

greatly improve search efficiency and information communi-

cation. Here we develop a population reallocation strategy to 

achieve this purpose. By this population reallocation strategy, 

solutions in each population are replaced by those from A. The 

pseudocode of the population reallocation process is shown in 

Algorithm 3. First, solutions in A are copied into a temporary 

set S, and all populations are set to the null set. Then, the solu-

tion with the best value on objective i (i =1, 2, …, M) in S is 

moved to pi one by one. The above operation will repeat until S 

is empty. Note that the population reallocation strategy is car-

ried out in every generation only when the size of archive A 

equals N so that all the solutions in A can be allocated to all the 

populations. 

F. Complete MPMO-BS and Complexity Analysis 

Based on the above operations, we propose an algorithm 

MPMO-BS for MaOPs. The framework of MPMO-BS can be 

summarized into three parts: 1) multi-population coevolution 

for convergence, 2) solution preservation archive for diversity 

and 3) population reallocation for information sharing. The 

pseudocode of MPMO-BS is shown in Algorithm 4. 

Within one generation, MPMO-BS consists of the follow-

ing seven operations: adaptive sorting, ACF calculation, envi-

ronmental selection, archive update, ELS, solution preservation, 

and population reallocation. For a MaOP with M objectives, 

assume the archive size is N, and the size of each population is 

Ns. 

First, we analyze the computational complexity of each 

operation in a single population. In the adaptive sorting, it takes 

O(MNs
2) in the worst-case for the combined population of size 

2Ns if NDS is adopted. Otherwise, a runtime of O(M2) is needed 

if the BS is chosen as the sorting method. Then, it takes 

O(NslogNs) time for the ACF calculation. In the environmental 

selection, it takes O(NslogNs) for selecting solutions according 

to their front results and ACF values. For archive updating, the 

computational complexity of Line 21 of Algorithm 4 is O(NNs). 

Therefore, the complexity of the MPMO component with M 

populations is O(M(MNs
2+NslogNs+NslogNs+NNs)) if NDS is 

adopted, and is O(M(M2+NslogNs+NslogNs+NNs)) if BS is 

adopted. Usually N > Ns > M, so the worst-case complexity of 

the MPMO component can be simplified to O(M2Ns
2+MNNs). 

The ELS requires O(N) computations, and the archive up-

dating of Line 24 of Algorithm 4 requires O(N2) computations. 

In solution preservation, the computational complexity here is 

O(M2N+M3+N+MN2), which is O(MN2). Finally, the population 

reallocation takes O(logN).  

Considering all the above computations, the overall 

worst-case computational complexity of one generation of 

MPMO-BS is O((M2Ns
2+MNNs)+N+N2+MN2+logN), which 

can be reduced to O(M 2Ns
2+MN2). In all of our simulations, we 

have used Ns ≈ N/M, so the worst-case complexity can finally be 

reduced to O(MN2).  

IV. EXPERIMENTAL STUDIES 

In this section, we present the experimental study of the 

proposed MPMO-BS and compare it with seven state-of-the-art 

MOEAs: NSGA-III [25], SPEA/R [53], MaOEA/IGD [37], 

KnEA [54], NSGA-II/SDR [24], Mo4Ma [56], and VMEF [57]. 

The codes for the first 5 compared MOEAs come from an open 

platform called PlatEMO [66], and the code of VMEF can be 

found on the homepage of the original authors. After that, we 

give an experimental analysis to show the effectiveness of each 

strategy in MPMO-BS.  

A. Benchmark Problems and Parameter Settings 

In this paper, 29 widely used test problems, including 

DTLZ1-7 [67], WFG1-9 [68], MaF1-6 [69][70], Minus 

DTLZ1-4 (DTLZ1-4-1) [71], Convex-DTLZ2 (CDTLZ2), and 

Scaled DTLZ (SDTLZ)1-2 in [25] are adopted to test the per-

formance of MPMO-BS. More parameter details about the test 

problems are shown in Table I. For WFG, K (position param-

eter) and L (distance parameter) are set to M – 1 and 10, re-

spectively. The scaling factor for SDTLZ1-2 is set to 2. 

The common parameter settings of all algorithms are given 

as follows. 

1) Operators: The simulated binary crossover (SBX) [72] with 

a distribution index of 20 and polynomial mutation [73] 

with a distribution index of 20 are used to generate off-

spring. The crossover probability pc and mutation proba-

bility pm are set as 1.0 and 1/D, respectively. 

Algorithm 4 MPMO-BS 

Begin 

1:  Initialize A = ∅, P = {p1, p2, …, pM}; 

2:  {ST1, …, STM} = {1, …, 1};  /* 1 stands for BS, 2 stands for NDS */ 

3:  For Each i = 1, …, M Do 

4:        {F1, …, Fv} = BS (pi, i); //Algorithm 1 

5:        Compute the fAC of each solution in pi via Eq. (5) and (7); 

6:        A = Update_Archive (A, F1); //Algorithm 2 

7:  End For 

8:  While not finished Do 

            /** Convergence maintenance **/ 

9:         For Each i = 1, …, M Do 

10:              Generate offspring population qi by pi; 

11:              pi = pi ∪ qi;  

12:              If STi == 1 Then 

13:                     {F1, …, Fv} = BS (pi, i); //Algorithm 1 

14:                     Update STi; 

15:                     Compute the fAC of each solution in pi via Eq. (5) and (7); 

16:              Else If STi == 2 Then 

17:                     {F1, …, Fv} = NDS (pi); //Section II-C 

18:                     Compute the fAC of each solution in pi via Eq. (6) and (7); 

19:              End If 

20:                 pi = Environmental_Selection ({F1, …, Fv}, fAC); //Section III-C-3) 

21:              A = Update_Archive (A, pi); //Algorithm 2 

22:       End For 

            /** Diversity maintenance **/ 

23:       ELS = Elitist_Learning_Strategy (A); //Section III-D-1) 

24:       A = Update_Archive (A, ELS); //Algorithm 2 

25:       If |A| > N Then 

26:              A = Solutions_Preservation (A); //Section III-D-2) 

27:       End If 

/** Population reallocation **/ 

28:       If |A| == N Then 

29:              P = Population_Reallocation (A); //Algorithm 3 

30:       End If 

31: End While 

32: Return A; 

End 

 

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2022.3212058

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 8 

2) Population (or archive in MPMO-BS) size: N = 156, 275, 

and 240 for 8-, 10-, and 15-objective problems, respec-

tively. 

3) Termination condition: 150000, 200000, and 240000 fit-

ness evaluations for 8-, 10-, and 15-objective problems, 

respectively. 

4) The number of runs: Each algorithm runs 30 times inde-

pendently.  

Other parameters not mentioned in the compared 

algorithms are set according to their original papers for a fair 

comparison. Specifically, the rate of knee points (T) in KnEA 

on different problems is listed in Table S.I in the supplementary 

material. For MPMO-BS, the size of each population Ns is set to 

⌈N/M ⌉. Therefore, the size of each population in MPMO-BS is 

equal to 20, 28, and 16 when M = 8, 10, and 15, respectively. 

The number of reference vectors in MPMO-BS is set to N.  

B. Performance Metrics 

IGD and HV are two widely used metrics in MOEAs since 

they consider both diversity and convergence while evaluating 

the obtained solutions. A small IGD value typically indicates a 

better performance of the solution set. In contrast, the smaller 

the HV value is, the worse the performance of the obtained 

solution set. 

IGD: Considering that P* is a well-distributed reference 

point set sampled on the true PF, for an approximate solution 

set P obtained by the optimization algorithm, the IGD is de-

fined as: 

  *

*
*

1
IGD( , ) min , ( )

| | P
v P

P P ed v F
P 



 
 
 
 x

x     (9) 

where ed (v, F(x)) is the Euclidean distance between v and F(x). 

Herein, the number of reference points in P* is set as 10000. 

HV: Let z = (z1, …, zm)T be a reference point that is domi-

nated  by all obtained solutions in the objective space, then the 

HV metric of solution set P is defined as: 

 1 1HV( ) VOL [ ( ), ] [ ( ), ]m m
P

P f z f z


  
x

x x (10) 

where VOL(.) is the Lebesgue measure. In our experiments, z is 

set as to (1.1, …, 1.1)T for all test instances. Note that each 

objective value of the obtained solutions was normalized be-

tween [0,1] according to the nadir point of true PF. In addition, 

Monte Carlo simulation is used to replace the accurate HV 

estimation because of the computational complexity. During 

each HV estimation, 1000000 sampling points are used. 

C. Experimental Results and Discussion 

1) Results on DTLZ and WFG 

Due to space limitations, only the statistical results in terms 

of IGD on DTLZ1-7 and WFG1-6 are given in Table II, where 

the best result is marked in boldface and the second-best result 

is italicized. The details of the entire experimental results can 

be found in the supplementary material. The statistical results 

in terms of IGD and HV on DTLZ and WFG problems are 

given in Table S.II and S.III, respectively. For all test instances, 

Wilcoxon's rank-sum test [74] at a 5% significance level is 

conducted to compare the significance of differences between 

MPMO-BS and the compared algorithms. The symbols ‘+’, ‘-’, 

and ‘=’ indicate that the metric value of MPMO-BS is signifi-

cantly better than, worse than, and similar to the corresponding 

compared algorithm, respectively. 

From the IGD results in Table II, we notice that MPMO-BS 

performs significantly better than the compared seven MOEAs 

on most instances. When comprehensively considering the best 

and second-best results, MPMO-BS achieves promising per-

formance on 26 out of 39 instances, superior to all the com-

pared algorithms. Moreover, the significant test results show 

that MPMO-BS is superior to NSGA-III, SPEA/R, 

MaOEA/IGD, KnEA, Mo4Ma, VMEF, and NSGA-II/SDR on 

29, 31, 35, 24, 29, 31, and 26 instances. 

For DTLZ1-3, MPMO-BS and NSGA-II/SDR perform 

better than the other compared algorithms. MPMO-BS out-

performs NSGA-II/SDR on most DTLZ1-3 instances whereas 

it underperforms NSGA-II/SDR on 15-objective DTLZ3. This 

may be due to the multimodal characteristic of DTLZ3 with 

many local optimal fronts. As different populations in 

MPMO-BS focus on different objectives, they may therefore be 

drawn into different local optimal fronts. This makes it difficult 

for MPMO-BS to completely jump out of the local optimum 

through the ELS. Nevertheless, MPMO-BS outperforms the 

other six MOEAs on DTLZ3. DTLZ4 is a nonuniform problem, 

which also creates a challenge for MPMO-BS in terms of di-

versity maintenance. On this problem, MPMO-BS only out-

performs NSGA-II/SDR. DTLZ5 and DTLZ6 are dimension 

reduction problems, and it can be seen that MPMO-BS obtains 

the best or second-best IGD results on these instances. In con-

trast, the other compared MOEAs perform poorly on both 

DTLZ5 and DTLZ6. This shows that these algorithms cannot 

handle redundant information well in degeneration cases. 

DTLZ7 is a test problem with disconnected PF, in which KnEA 

obtains the best IGD results. However, MPMO-BS still out-

performs most of the compared algorithms.  

WFG1 is designed to examine whether an algorithm can 

handle a problem with flat bias and a mixed shape of the PF. 

MPMO-BS and KnEA perform significantly better than the 

other six MOEAs. WFG2 has disconnected PF, aiming to ex-

amine the ability to handle non-separable, variable dependen-

cies. MPMO-BS does not perform the best on this problem. 

This may be due to some PF fragments in the middle of the 

objective space, making it difficult for MPMO-BS to choose 

the suitable population to converge to these PF fragments. In 

addition, the disconnectedness of PF also makes it difficult for 

MPMO-BS to share information among populations. Never-

theless, MPMO-BS generally outperforms most of the com-

pared algorithms on these two problems, with the second best 

performance on 8-objective and 10-objective WFG1 and the 

best performance on 8-objective WFG2. For WFG3 with a 

TABLE I  

PARAMETER SETTINGS OF TESTED BENCHMARK PROBLEMS 

Problems M D 

DTLZ1, DTLZ1-1, SDTLZ1 8, 10, 15 M + 4 

DTLZ2-6, MaF1-6, DTLZ2-4-1, 

SDTLZ2, CDTLZ2 
8, 10, 15 M + 9 

DTLZ7 8, 10, 15 M + 19 

WFG1-9 8, 10, 15 K + L 
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degeneration PF, MPMO-BS only performs worse than 

Mo4Ma and obtains the second-best results on 10- and 

15-objective instances. For WFG4 with multimodal character-

istics, MPMO-BS still performs well and obtains the best IGD 

value on the 8-objective instance, although it is beaten by 

NSGA-II/SDR on 10- and 15-objective instances. WFG5 is a 

problem with deceptiveness, and MPMO-BS outperforms the 

other seven MOEAs on the 8-objective instance and is only 

beaten by NSGA-II/SDR on the 10-objective instance and by 

KnEA on the 15-objective instance. 

Through the statistical test results both on IGD and HV, 

MPMO-BS shows excellent performance on DTLZ and WFG 

test problems. To better understand MPMO-BS, the distribu-

tion of the solutions obtained by each algorithm with the me-

dian IGD value on 15-objective DTLZ1 is shown in Fig. 4. 

From Fig. 4, it can be seen that SPEA/R, KnEA, Mo4Ma, and 

VMEF cannot approximate the PF well. The appearance of 

inferior solutions in SPEA/R may be due to the phenomenon of 

falling into local optima. The main idea of KnEA is to use knee 

points to enhance the search performance in MaOPs, while 

DTLZ1 is a problem with linear hyperplane PF but no knee 

point. Therefore, it is impractical to solve DTLZ1 by KnEA. 

NSGA-III, MaOEA/IGD, and NSGA-II/SDR can converge 

well to the true PF, but they have poor performance in terms of 

diversity. In addition, it is worth noting that NSGA-II/SDR 

approximates only some parts (especially the center) of the PF 

and biases toward a few objectives, such as f2 and f5. This may 

be because the PF of DTLZ1 is a hyperplane, while the domi-

nance area shape of SDR resembles a curve bending outward. 

Such a dominance area can have a greater probability of elim-

inating boundary solutions and making the obtained solutions 

concentrated in the PF center. However, the solutions obtained 

by MPMO-BS can approximate the whole PF. Limited by 

space, the distribution of obtained solutions with the median 

IGD value on 15-objective WFG3 is shown in Fig. S.1 in the 

supplementary material. It can be seen that only the solutions 

obtained by MPMO-BS and Mo4Ma can approximate the true 

PF very well, although those by MPMO-BS show some 

deficiencies in diversity.  

2) Results on Other Test Problems 

To further validate the performance of MPMO-BS on 

problems with more complex PF shapes, comparison 

TABLE II 

MEAN AND STANDARD DEVIATION IGD VALUES OBTAINED BY EIGHT ALGORITHMS ON DTLZ1-7 AND WFG1-6 PROBLEMS 

Problem M MPMO-BS NSGA-III SPEA/R MaOEA/IGD KnEA Mo4Ma VMEF NSGA-II/SDR 

DTLZ1 

8 9.9598e-2 (1.63e-3) 1.1918e-1 (2.13e-2) + 1.6003e-1 (2.20e-2) + 3.9722e-1 (3.70e-1) + 3.5278e-1 (4.56e-2) + 2.0649e-1 (1.68e-2) + 1.1254e-1 (6.69e-3) + 1.5889e-1 (1.42e-2) + 

10 1.1075e-1 (2.13e-3) 1.2447e-1 (3.61e-2) + 1.6462e-1 (2.80e-2) + 1.6176e-1 (1.68e-1) + 3.2691e-1 (7.52e-2) + 1.9441e-1 (1.87e-2) + 1.5318e-1 (5.38e-2) + 1.7198e-1 (1.23e-2) + 

15 1.3123e-1 (1.73e-2) 1.3286e-1 (1.49e-2) + 3.0790e-1 (1.44e-1) + 2.1452e-1 (2.07e-1) + 2.3537e-1 (3.11e-2) + 2.4365e-1 (1.85e-2) + 9.4587e-1 (5.45e-1) + 2.2438e-1 (2.47e-2) + 

DTLZ2 

8 3.1685e-1 (3.06e-4) 3.5962e-1 (2.52e-2) + 3.6542e-1 (3.08e-3) + 3.4658e-1 (1.01e-2) + 3.8327e-1 (7.05e-3) + 4.2103e-1 (2.04e-2) + 3.5853e-1 (2.56e-3) + 5.4486e-1 (1.39e-1) + 

10 4.1905e-1 (1.92e-3) 4.7718e-1 (5.96e-2) + 4.3784e-1 (4.34e-4) + 4.3981e-1 (3.97e-3) + 4.5057e-1 (4.39e-2) + 4.6759e-1 (9.53e-3) + 4.2729e-1 (2.40e-3) + 4.4173e-1 (6.63e-3) + 

15 5.2755e-1 (1.03e-2) 5.5941e-1 (3.53e-2) + 5.3101e-1 (6.64e-4) + 9.4432e-1 (2.02e-1) + 7.1229e-1 (2.16e-1) + 6.1706e-1 (1.56e-2) + 5.4863e-1 (1.99e-3) + 5.8054e-1 (1.45e-2) + 

DTLZ3 

8 3.4326e-1 (3.88e-2) 6.0806e-1 (6.78e-1) + 6.6288e+0 (3.82e+0) + 1.1656e+1 (7.49e+0) + 1.0122e+0 (1.42e-1) + 7.3298e-1 (2.03e-1) + 1.0068e+1 (5.31e+0) + 4.6366e-1 (1.28e-1) + 

10 6.1751e-1 (1.66e-1) 7.2595e-1 (5.73e-1) + 6.3070e+0 (5.41e+0) + 5.7475e+0 (3.84e+0) + 1.1112e+0 (1.23e-1) + 7.7484e-1 (1.98e-1) + 4.7255e+1 (2.18e+1) + 4.3552e-1 (4.79e-3) = 

15 8.2015e-1 (6.78e-2) 7.2479e-1 (1.43e-1) - 4.4135e+0 (3.58e+0) + 3.4929e+0 (2.58e+0) + 3.1374e+0 (5.77e+0) + 9.4166e-1 (1.81e-1) + 1.3931e+2 (2.47e+1) + 6.0979e-1 (3.18e-2) - 

DTLZ4 

8 4.2695e-1 (1.41e-1) 4.0857e-1 (7.93e-2) - 3.6696e-1 (2.83e-3) = 3.7134e-1 (8.35e-2) - 3.7350e-1 (6.00e-3) = 4.0296e-1 (1.32e-2) = 3.5923e-1 (2.60e-3) = 7.6728e-1 (7.28e-2) + 

10 4.6607e-1 (5.97e-2) 4.9374e-1 (7.05e-2) + 4.3800e-1 (5.79e-4) - 4.3641e-1 (1.51e-2) - 4.3504e-1 (1.25e-2) - 4.5348e-1 (1.17e-2) - 4.2934e-1 (2.11e-3) - 7.7490e-1 (4.41e-2) + 

15 5.7401e-1 (4.00e-2) 5.5142e-1 (3.70e-2) - 5.2982e-1 (1.57e-3) - 5.5212e-1 (8.32e-3) = 5.4435e-1 (3.50e-3) - 5.8720e-1 (9.99e-3) + 5.5204e-1 (2.34e-3) = 7.9198e-1 (3.61e-2) + 

DTLZ5 

8 1.1545e-1 (3.48e-2) 2.3770e-1 (5.23e-2) + 7.1346e-1 (1.09e-1) + 5.1541e-1 (1.92e-1) + 2.8178e-1 (4.87e-2) + 1.5694e-1 (8.78e-2) + 3.2806e-1 (1.17e-1) + 1.1751e-1 (2.15e-2) = 

10 1.0516e-1 (3.23e-2) 3.3785e-1 (8.24e-2) + 6.0281e-1 (1.43e-1) + 4.3854e-1 (1.79e-1) + 2.9500e-1 (4.23e-2) + 1.7726e-1 (5.06e-2) + 3.8512e-1 (1.84e-1) + 1.4944e-1 (3.01e-2) + 

15 1.4962e-1 (2.79e-2) 4.7684e-1 (1.42e-1) + 9.2157e-1 (2.67e-1) + 5.1185e-1 (2.02e-1) + 3.3481e-1 (5.03e-2) + 1.8877e-1 (5.33e-2) + 4.9011e-1 (1.45e-1) + 1.8712e-1 (5.33e-2) + 

DTLZ6 

8 2.5134e-1 (9.77e-2) 3.7303e-1 (2.43e-1) + 3.7499e+0 (1.33e+0) + 7.0938e-1 (1.22e-1) + 5.0978e-1 (1.20e-1) + 2.9705e-1 (5.65e-2) + 7.9089e-1 (2.47e-1) + 2.1246e-1 (6.28e-2) = 

10 2.0015e-1 (5.80e-2) 3.3579e-1 (1.08e-1) + 1.0302e+0 (4.36e-1) + 6.8890e-1 (7.07e-2) + 5.9308e-1 (1.16e-1) + 3.0354e-1 (5.83e-2) + 1.1449e+0 (3.69e-1) + 2.3906e-1 (7.53e-2) = 

15 2.4282e-1 (8.89e-2) 6.8457e-1 (4.39e-1) + 1.6881e+0 (3.41e-1) + 6.7913e-1 (1.08e-1) + 6.4922e-1 (1.54e-1) + 3.9318e-1 (1.87e-1) + 1.1000e+0 (3.82e-1) + 2.0395e-1 (8.51e-2) = 

DTLZ7 

8 9.0185e-1 (5.98e-2) 8.1608e-1 (3.83e-2) - 1.3072e+0 (5.46e-2) + 1.1988e+0 (5.51e-2) + 7.0472e-1 (2.79e-2) - 1.0792e+0 (1.86e-1) + 9.5646e-1 (7.60e-2) + 9.8921e-1 (1.10e-1) + 

10 1.2277e+0 (1.40e-1) 1.1740e+0 (8.99e-2) = 2.4367e+0 (5.91e-1) + 1.4425e+0 (4.92e-2) + 9.0507e-1 (1.70e-2) - 1.2258e+0 (1.66e-1) = 1.3421e+0 (1.77e-1) + 1.5485e+0 (2.81e-1) + 

15 5.2439e+0 (8.19e-2) 4.4358e+0 (7.53e-1) - 2.3938e+1 (1.74e+1) + 2.2002e+0 (8.81e-2) - 2.4245e+0 (2.51e-1) - 4.4096e+0 (8.00e-1) - 6.0755e+0 (4.10e-1) + 4.3042e+0 (3.67e-1) - 

WFG1 

8 9.2697e-1 (4.14e-2) 9.8938e-1 (4.65e-2) + 1.2946e+0 (8.17e-2) + 7.7598e+0 (2.00e+0) + 9.2529e-1 (4.52e-2) = 1.2519e+0 (7.04e-2) + 1.0054e+0 (3.26e-2) = 1.6543e+0 (1.66e-1) + 

10 1.0259e+0 (2.48e-2) 1.1022e+0 (7.34e-2) + 1.3450e+0 (8.22e-2) + 7.3825e+0 (3.70e+0) + 9.8753e-1 (1.47e-2) = 1.2425e+0 (4.72e-2) + 1.1525e+0 (4.33e-2) + 1.7890e+0 (1.37e-1) + 

15 1.6754e+0 (1.83e-1) 1.4404e+0 (1.20e-1) - 1.7814e+0 (9.37e-2) + 1.1255e+1 (5.59e+0) + 1.5607e+0 (7.09e-2) - 1.7912e+0 (6.68e-2) + 1.8956e+0 (8.35e-2) + 2.4341e+0 (4.97e-2) + 

WFG2 

8 1.0257e+0 (1.08e-1) 1.1589e+0 (1.82e-1) + 1.0930e+0 (1.88e-2) + 2.2537e+0 (2.62e-1) + 1.0741e+0 (2.70e-2) + 1.0694e+0 (4.58e-2) + 1.0297e+0 (2.65e-2) = 1.4381e+0 (1.63e-1) + 

10 1.2156e+0 (2.58e-1) 1.3787e+0 (1.66e-1) + 1.1802e+0 (2.06e-2) -  2.3799e+0 (4.77e-1) + 1.1787e+0 (3.22e-2) = 1.1047e+0 (3.05e-2) - 1.2370e+0 (4.43e-2) + 1.5958e+0 (1.25e-1) + 

15 1.8144e+0 (3.75e-1) 1.5885e+0 (6.05e-2) = 1.4391e+0 (1.76e-2) - 3.2157e+0 (6.10e-1) + 1.6986e+0 (5.10e-2) = 1.6885e+0 (3.67e-2) = 1.9876e+0 (8.63e-2) + 2.3587e+0 (9.83e-2) + 

WFG3 

8 1.2343e+0 (1.02e+0) 1.2838e+0 (4.77e-1) + 1.4926e+0 (9.98e-2) + 8.8784e+0 (3.14e-2) + 1.0283e+0 (1.78e-1) - 2.1784e-1 (6.98e-2) - 1.1174e+0 (1.43e-1) - 1.0720e+0 (1.93e-1) = 

10 8.9504e-1 (8.52e-1) 2.6651e+0 (4.73e-1) + 2.7195e+0 (1.46e-1) + 1.1185e+1 (1.84e-2) + 1.1844e+0 (1.59e-1) + 2.1745e-1 (8.22e-2) - 1.2266e+0 (1.81e-1) + 1.6377e+0 (3.76e-1) + 

15 1.6873e+0 (5.92e-1) 2.7566e+0 (1.02e+0) + 4.1363e+0 (2.92e-1) + 9.7540e+0 (5.57e+0) + 2.4288e+0 (4.72e-1) + 2.8143e-1 (4.26e-2) - 3.0670e+0 (5.56e-1) + 4.1154e+0 (1.29e+0) + 

WFG4 

8 2.9589e+0 (1.16e-2) 3.3180e+0 (8.88e-2) + 3.3240e+0 (1.59e-2) + 9.7270e+0 (2.35e-1) + 3.7913e+0 (3.65e-2) + 3.3984e+0 (8.98e-2) + 3.1566e+0 (3.23e-2) + 3.2451e+0 (4.80e-2) + 

10 4.5444e+0 (2.72e-2) 5.1554e+0 (1.46e-1) + 5.1149e+0 (7.98e-3) +  1.2294e+1 (1.31e+0) + 5.1493e+0 (3.67e-2) + 4.5639e+0 (1.12e-1) = 4.4725e+0 (3.53e-2) - 4.3951e+0 (4.42e-2) - 

15 8.2538e+0 (1.52e-1) 8.0695e+0 (3.22e-2) - 8.0800e+0 (1.58e-2) - 2.0723e+1 (4.26e+0) + 9.0139e+0 (1.01e-1) + 8.3584e+0 (2.25e-1) + 8.3736e+0 (6.90e-2) + 8.1105e+0 (1.87e-1) - 

WFG5 

8 2.9405e+0 (7.18e-3) 3.2600e+0 (2.02e-3) + 3.2673e+0 (6.03e-3) + 1.4399e+1 (7.28e-1) + 3.3457e+0 (3.04e-2) + 3.3580e+0 (9.27e-2) + 3.1405e+0 (2.92e-2) + 3.2665e+0 (5.21e-2) + 

10 4.4722e+0 (1.47e-2) 5.0743e+0 (3.01e-3) + 5.0786e+0 (6.15e-3) + 1.5922e+1 (4.83e+0) + 4.4963e+0 (3.00e-2) = 4.5972e+0 (1.21e-1) + 4.4726e+0 (3.49e-2) = 4.4477e+0 (6.25e-2) - 

15 7.9019e+0 (6.09e-2) 7.9790e+0 (8.81e-2) = 8.0239e+0 (3.46e-2) = 2.8465e+1 (4.24e+0) + 7.3101e+0 (9.30e-2) - 8.4038e+0 (1.86e-1) + 8.3472e+0 (7.91e-2) + 8.0933e+0 (2.54e-1) + 

WFG6 

8 2.9626e+0 (7.97e-3) 3.2745e+0 (1.12e-2) + 3.3200e+0 (2.10e-2) +  8.1576e+0 (4.01e+0) + 3.4765e+0 (5.71e-2) + 3.6664e+0 (1.56e-1) + 3.2284e+0 (4.77e-2) + 3.3761e+0 (7.84e-2) + 

10 4.5529e+0 (1.34e-2) 5.0811e+0 (7.35e-3) + 5.1043e+0 (1.73e-2) + 8.9743e+0 (4.85e+0) + 4.5985e+0 (4.88e-2) + 4.9777e+0 (1.38e-1) + 4.6105e+0 (3.98e-2) + 4.5076e+0 (6.88e-2) - 

15 8.1225e+0 (7.04e-2) 8.1754e+0 (1.69e-1) + 8.1687e+0 (1.17e-1) - 2.0229e+1 (8.80e+0) + 8.0980e+0 (6.29e-1) = 9.5278e+0 (3.94e-1) + 8.4303e+0 (1.08e-1) + 8.3076e+0 (7.74e-1) = 

+/-/= 

DTLZ 15/5/1 18/2/1 17/3/1 15/5/1 17/2/2 18/1/2 14/2/5 

WFG 14/2/2 13/4/1 18/0/0 9/3/6 12/4/2 13/2/3 12/4/2 

Total 29/7/3 31/6/2 35/3/1 24/8/7 29/6/4 31/3/5 26/6/7 
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experiments are conducted on MaF, DTLZ-1, CDTLZ2, and 

SDTLZ1-2. The significance test results in terms of IGD are 

summarized in Table III, where the complete statistical results 

in terms of IGD and HV are given in Table S.IV and S.V in the 

supplementary material. From the results, we can see that 

MPMO-BS performs evidently better than NSGA-III, SPEA/R, 

and MaOEA/IGD, and shows strong competitiveness compared 

with KnEA, Mo4Ma, VMEF, and NSGA-II/SDR. 

MaF1 and MaF4 are two inverted DTLZ variants. 

MPMO-BS does not perform the best on these two problems 

but is still promising. The PF shapes of these problems are 

inverted, which means that the population tends to focus on one 

boundary point when only optimizing one objective. This cre-

ates a significant challenge for MPMO-BS in diversity 

maintenance when dealing with these kinds of problems. MaF2 

is a DTLZ2 variant with more difficulty in convergence, and 

MPMO-BS performs better than the others except for KnEA on 

this problem. MaF3, MaF5, and CDTLZ2 are three problems 

with convex PF shapes. MPMO-BS achieves the best or sec-

ond-best performance on these three problems. This indicates 

that MPMO-BS is capable of handling these problems with 

convex PF. Fig. S.2 in the supplementary material gives the 

distribution of obtained solutions on the 15-objective MaF5 

instance, in which only MPMO-BS, Mo4Ma, and VMEF obtain 

the solutions with good performance both in convergence and 

diversity. Similar to DTLZ5, MaF6 is a problem for examining 

whether an algorithm can deal with degenerated PF. From 

Table S.IV and S.V, we can see that MPMO-BS performs 

worse than Mo4Ma and NSGA-II/SDR on the two metrics. Fig. 

S.3 in the supplementary material gives the distribution of the 

obtained solutions on the 15-objective MaF6 instance. As seen 

from it, there are still many solutions obtained by VMEF and 

NSGA-II/SDR that do not converge to the PF, while solutions 

obtained by MPMO-BS have converged well with poor 

diversity. SDTLZ1-2 are two problems with scaled PF shapes, 

and MPMO-BS obtains promising performance on most 

instances of these two problems. Fig. S.4 in the supplementary 

material gives the distribution of the obtained solutions on the 

15-objective SDTLZ1 instance.  

Moreover, we further verify the performance of MPMO-BS 

on DTLZ-1 problems with inverted triangular PF shapes. The 

results from Table S.IV and S.V show that MPMO-BS is still 

competitive among all compared algorithms, although it may 

not perform particularly well on some instances (i.e., DTLZ4-1 

instances), whereas it is still competitive among all the 

compared algorithms. Specifically, MPMO-BS can beat 

NSGA-III, SPEA/R, MaOEA/IGD, Mo4Ma, and VMEF on 

most DTLZ1-3-1 instances. Overall, the performance of 

MPMO-BS on DTLZ-1 is generally promising, although the 

advantage is not so significant as that on DTLZ. The reasons 

may be twofold: (1) MPMO-BS uses reference vectors to 

maintain diversity, while problems with inverted PF shapes are 

very challenging for these reference vector-based algorithms in 

diversity maintenance. For this point, more analysis can be 

found in [71]. (2) DTLZ-1 can be viewed as a DTLZ version 

with maximized objectives. Therefore, the gap between 

different objectives gradually widens with convergence. This 

makes it more difficult to share information among different 

populations and poses a challenge for ELS to improve diversity. 

Fig. S.5 and S.6 in the supplementary material give the 

distributions of the obtained solutions on the 8-objective 

DTLZ1-1 and DTLZ2-1 instances. It can be seen that all 

 
                        (a) MPMO-BS                                        (b) NSGA-III                                             (c) SPEA/R                                         (d) MaOEA/IGD 

 
             (e) KnEA                                                (f) Mo4Ma                                                                         (g) VMEF                                          (h) NSGA-II/SDR 

Fig. 4. Distribution of the obtained solutions with the median IGD value for the eight algorithms on DTLZ1 with 15 objectives. 

TABLE III 

SIGNIFICANCE TEST BETWEEN MPMO-BS AND OTHER SEVEN MOEAS IN TERMS OF IGD ON MAF, DTLZ-1, CDTLZ2, AND SDTLZ1-2 PROBLEMS 

Algorithm NSGA-III SPEA/R MaOEA/IGD KnEA Mo4Ma VMEF NSGA-II/SDR 

+/-/= 25/11/3 34/4/1 37/2/0 24/13/2 28/8/3 21/12/6 27/9/3 
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algorithms have poor diversity performance on these instances 

to varying degrees, whereas MPMO-BS is competitive in both 

convergence and diversity. 

In summary, MPMO-BS can be applied to deal with 

MaOPs with different characteristics. The statistical results 

from the comparison experiments show the high competitive-

ness and robustness of MPMO-BS.  

D. Contribution of Archive 

In this section, we discuss the contribution of the archive 

adopted in MPMO-BS. We design a variant of MPMO-BS 

(named noArch) and conduct comparison experiments between 

it and MPMO-BS. The noArch is a variant that replaces archive 

A with the set of populations P after environmental selection at 

each generation. In other words, all operations in Algorithm 4 

related to A, e.g., ELS in Line 23, solution preservation in Line 

26, and population reallocation in Line 29, are replaced by 

using P.  

Table S.VI in the supplementary material shows the mean 

and standard deviation IGD values given by noArch and 

MPMO-BS on DTLZ and MaF test suites, where the best is 

marked in boldface. It can be seen that MPMO-BS performs 

better than noArch on almost all instances. The experimental 

results confirm that the adoption of the archive can significantly 

improve the performance of MPMO-BS. The reason for this 

difference is that the optimal solutions of all generations up to 

now are preserved in the archive. This is equivalent to an elite 

reservation strategy.  

Fig. S.7 in the supplementary material plots the obtained 

solution set by noArch and MPMO-BS on 10-objective DTLZ2. 

It can be seen that the diversity of the solution set obtained by 

MPMO-BS is much better than that obtained by noArch. This 

shows the role of the archive in promoting diversity. 

E. Analysis of Each Strategy 

In this section, the contribution of each strategy in 

MPMO-BS is exhibited. Adaptive sorting, BS, ACF, ELS, and 

population reallocation strategies are the core of MPMO-BS. 

Accordingly, we design six variants with different combina-

tions of the strategies: 

 1objS: variant that adopts the one-objective sorting method, 

and a random selection strategy is used to replace the ACF 

strategy. 

 noBS: variant that only adopts the NDS, and a random 

selection strategy is used to replace the ACF strategy. 

 noAS: variant that only adopts the BS. In other words, the 

adaptive sorting strategy is abandoned. In addition, the 

ACF strategy is replaced by a random selection strategy. 

 noACF: a random selection strategy is used to replace the 

ACF strategy in MPMO-BS. 

 noELS: variant that without ELS. 

 noReA: variant that without population reallocation strat-

egy. 

The variants are compared with MPMO-BS on DTLZ and 

MaF test suites. The IGD and HV value details are presented in 

Table S.VII and Table S.VIII in the supplementary material. In 

this paper, only the significance test results in terms of the IGD 

metric are summarized in Table IV, which is based on Wil-

coxon's rank-sum test at a 5% significance level. From Table 

IV, it can be seen that MPMO-BS outperforms all its variants. 

Specifically, 1objS, noBS, noAS, noACF, noELS, and noReA 

are beaten by MPMO-BS on 17, 14, 17, 11, 18, and 16 out of 21 

DTLZ instances, and on 14, 10, 12, 4, 11, and 12 out of 18 MaF 

instances. This comparison result shows that the BS, adaptive 

sorting, ELS, and population reallocation strategies play sig-

nificant roles in improving the performance of the MPMO-BS. 

On the one hand, the comparison among 1objS, noBS, and 

noAS shows that the performance of noAS is somewhere be-

tween that of 1objS and noBS. This result confirms our previ-

ous positioning of BS, which can be considered a sorting 

method between the one-objective sorting and NDS. On the 

other hand, the comparison among noBS, noAS, and noACF 

shows that the use of ACF strategies may not make a large 

difference but can slightly improve the performance of 

MPMO-BS.  

Here, we choose the 15-objective DTLZ1 instance and 

compare the performance of these variants on it. Fig. S.8 in the 

supplementary material shows the distribution of the obtained 

solution set with the median IGD values for MPMO-BS and its 

variants. In Fig. S.8, it can be seen that MPMO-BS is the 

best-performing algorithm whether in terms of convergence or 

diversity. However, noBS does not perform well both in terms 

of convergence and diversity, whereas 1objS and noAS only 

have defects in diversity. This further confirms the role of BS or 

one-objective sorting in convergence maintenance. However, 

the comparison between 1objS and noAS shows that the solu-

tions obtained by 1objS tend to favor some objectives more 

seriously, resulting in worse diversity performance. In addition, 

noACF performs better than both noBS and noACF but slightly 

worse than MPMO-BS. Solutions obtained by noELS and 

noReA have a serious deficiency in diversity. These results 

suggest that they play an important role in diversity mainte-

nance for MPMO-BS.  

1) Analysis of Adaptive Sorting Strategy 

 BS is a strategy that can accelerate convergence. The 

comparison between noBS and noAS shows that BS alone 

TABLE IV 

SIGNIFICANCE TEST BETWEEN MPMO-BS AND ITS VARIANTS IN TERMS 

OF IGD ON DTLZ AND MAF PROBLEMS 

Problem 1objS noBS noAS noACF noELS noReA 

DTLZ 
MaF 

17/1/3 
14/1/3 

14/5/2 
10/2/6 

17/1/3 
12/2/4 

11/1/9 
4/0/14 

18/2/1 
11/1/6 

16/3/2 
12/0/6 

+/-/= 31/2/6 24/7/8 29/3/7 15/1/23 29/3/7 28/3/8 

 
 

(a)                                                    (b) 

Fig. 5.  The mean IGD curves of (a) 1objS, noBS, noAS, and noACF on DTLZ1 

with 10 objectives, and (b) output of noACF and MPMO-BS on DTLZ6 with 

10-objectives. 
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cannot promote performance heavily since BS and NDS are 

complementary. Meanwhile, the adaptive sorting strategy is 

considered a balanced strategy between different sorting 

methods, and it can improve the performance of MPMO-BS by 

switching the sorting method between BS and NDS. The co-

operation of the two can promote the performance of 

MPMO-BS to the best. 

 To illustrate this, we plot the mean IGD curves of 1objsS, 

noBS, noAS, and noACF on 10-objective DTLZ1, as shown in 

Fig. 5(a). From Fig. 5(a), it can be seen that the IGD of 1objS is 

always the worst since the IGD is a metric that comprehen-

sively considers convergence and diversity. However, the 

one-objective sorting method is only excellent in convergence, 

whereas diversity maintenance is ignored. In addition, the IGD 

values by the two algorithms with BS (noAS and noACF) can 

drop faster than noBS at the early search stage. More specifi-

cally, noAS and noACF can reduce IGD values to approxi-

mately 0.14 by 50,000 fitness evaluations, while the IGD value 

of noBS is still above 0.16 at that time. This illustrates that the 

use of BS can accelerate convergence in the search process. 

Meanwhile, noBS gradually narrows the IGD gap with noAS 

and surpasses it. However, noACF is almost always ahead in 

the IGD value, showing that NDS is more advantageous than 

BS as the population approximates the true PF. In other words, 

noACF, the variant adopting the adaptive sorting strategy, can 

choose the better sorting method appropriately to promote the 

search capability. The curve comparison of Fig. 5(a) further 

confirms that the adaptive sorting strategy with BS is one of the 

keys to the high performance of MPMO-BS.  

2) Analysis of ACF Strategy 

ACF is an auxiliary strategy that can further distinguish the 

convergence status among solutions that are at the same sorting 

front to increase the selection pressure. To investigate the in-

fluence of ACF on the performance of MPMO-BS, we use 

MPMO-BS and its variant noACF to conduct comparison ex-

periments on 10-objective DTLZ6. Note that only the set of all 

populations P after environmental selection is taken as the 

output at the end of every generation. However, archive A is not 

removed, which is different from the variant noArch mentioned 

above. This is done to eliminate the influence of other strategies 

on the results as much as possible, and more clearly explain the 

role of ACF in MPMO-BS. 

 Fig. 5(b) shows the mean IGD curves of the output by 

MPMO-BS and noACF. In Fig. 5(b), the IGD curves of 

MPMO-BS and noACF both decrease rapidly to below 1 in 

very few evaluations. However, the curve of MPMO-BS drops 

faster than that of noACF. This shows that MPMO-BS con-

verges faster than noACF because of the ACF strategy. In 

addition, the IGD curve of noACF fluctuates greatly compared 

with that of MPMO-BS. This is because, in noACF, solutions 

are randomly selected but not through the ACF value when 

turning to the second condition in the environmental selection. 

This random selection method may retain solutions with poor 

convergence. Through the IGD curve comparison, we can see 

that the ACF promotes the performance of MPMO-BS, alt-

hough its effect is slight. 

F. Sensitivity Analysis of Parameter Settings 

1) Sensitivity Analysis of ELS 

ELS was first designed to jump out of the local optima, and 

it has shown its effectiveness in diversity maintenance. Ac-

cording to our previous research experience in [75], the effec-

tiveness of ELS is affected by the value of σ. In this subsection, 

we investigate the sensitivity of parameter σ in ELS. The value 

of σ varies from 0.1 to 1. Because of the space limitation, Fig. 6 

only shows the curves of different IGD values for different σ 

settings on DTLZ1 and WFG6 with different objectives, av-

eraging over 20 independent runs. Note that log100(.) function is 

appended to the IGD calculation on WFG6 instances for easy 

visual comparison. It can be seen that the performance of 

MPMO-BS is heavily affected by the value of σ on DTLZ1, 

whereas it is only slightly affected on WFG6. This indicates 

that the sensitivity of the σ parameter is not fixed for different 

optimization problems. However, σ values that are too large or 

too small are inappropriate for ELS since the IGD curves ap-

pear to be concave. In Fig. 6(a), the optimal setting for σ gets 

larger from 0.2 to 0.5 with the increase of objectives. In Fig. 

6(b), there is no obvious correlation between the optimal setting 

of σ and the number of objectives, whereas the optimal σ value 

is always approximately 0.4. More sensitivity investigation 

results on other problems can be seen in Fig. S.9 in the sup-

plementary material. Through the experimental comparison in 

Fig. 6 and Fig. S.9, we can conclude that σ in ELS can be set to 

between 0.2 and 0.7, and a larger σ seems to be appropriate for 

problems with more objectives. In this paper, we set σ to 0.5. 

2) Sensitivity Analysis of Threshold θ 

The threshold θ is a trigger that determines the conversion 

from BS to NDS in the adaptive sorting strategy. In this sub-

section, we investigate the sensitivity of θ, which varies from 

0.6 to 0.9. Fig. 7 shows the IGD curves for different θ settings 

on DTLZ1 and WFG6 with different objectives, averaging over 

20 independent runs. Fig. 7 shows that the performance of 

MPMO-BS is not particularly sensitive to the value of θ. It can 

 
      (a) DTLZ1                                                (b) WFG6 

Fig. 6. IGD values of MPMO-BS with different setting for σ, averaging over 20 

independent runs. 

  
          (a) DTLZ1                                               (b) WFG6 

Fig. 7. IGD values of MPMO-BS with different setting for θ, averaging over 20 

independent runs. 
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be seen that all IGD curves show a concave shape with less 

obvious curvature, and a suitable setting range for θ is between 

0.7 and 0.85. Such situations can also be seen on other prob-

lems such as DTLZ4 and WFG8 (Fig. S.10 in the supplemen-

tary material). However, the performance of MPMO-BS is very 

sensitive to θ on other problems, such as MaF6 shown in Fig. 

S.10(c), and the suitable setting range for θ is between 0.8 and 

0.85. Considering the above analysis, we set θ to 0.8 in this 

paper. 

G. Experiments on Real-world Problems 

In this subsection, we try to investigate the performance of 

MPMO-BS in dealing with real-world MaOPs. Two applica-

tion problems (named water resource planning and car cab 

design) derived from the real world are adopted herein, which 

were proposed in [76]. Some properties of these two problems 

and the parameter settings for all compared algorithms are 

given in Table S.IX, and the statistical results in terms of HV 

are given in Table V. Note that since the true PF is unknown, 

before HV calculation, the non-dominated solutions obtained 

by all algorithms after 30 independent runs are formed into a set, 

and the final solutions of each algorithm are normalized by the 

ideal and nadir points of this set. We first set the reference point 

z as (1.1, …, 1.1)T for HV calculation, just like in the above 

experiments. To make the experimental results more compre-

hensive, we also use the reference point setting method pro-

posed in [77] for HV calculation. According to this method, z is 

set as (1.25, …, 1.25)T and (4/3, …, 4/3)T on water resource 

planning and car cab design, respectively. In addition, the IGD 

metric is not adopted since the true PF of these two real-world 

problems is unknown.  

From Table V we can see that MPMO-BS obtains the best 

and third-best HV results on water resource planning and car 

cab design problems, respectively. These results show that our 

proposed algorithm has the potential to solve real-world ap-

plication problems. Fig. 8 plots the distribution of the solutions 

obtained by MPMO-BS with the median HV value on these 

problems when z = (1.1, …, 1.1)T, and those obtained by the 

other algorithms are given in Fig. S.11 and S.12 in the sup-

plementary material, respectively. 

V. CONCLUSION 

 This paper focuses on the MPMO framework and proposes 

a multi-population coevolutionary MOEA for many-objective 

optimization. The proposed MPMO-BS algorithm uses differ-

ent sorting methods to boost population convergence depend-

ing on the convergence status. The BS method is employed for 

accelerating convergence at the early search stage while 

switching to the NDS method at the later search stage for all 

objective equality. For those solutions at the same sorting front, 

the ACF strategy can further distinguish their convergence 

status. At environmental selection, well-converged solutions 

are preserved according to two conditions: 1) at the lower 

sorting front, and 2) with a larger ACF value. 

In addition, with the assistance of the MPMO framework 

and the ELS in diversity maintenance, MPMO-BS can remain 

solutions with good convergence and diversity performance. 

The performance of MPMO-BS is further improved by incor-

porating a population reallocation strategy, which strengthens 

communication and information sharing among populations. 

To assess the performance of MPMO-BS, the experiments 

and comparisons have been conducted on 29 test problems with 

5, 8, and 10 objectives. The results confirm the effectiveness 

and robustness of the MPMO-BS in solving MaOPs. The re-

sults on water resource planning and car cab design problems 

also show its effectiveness in solving real-world application 

problems. 
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