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Counterexample-Driven Genetic Programming for
Symbolic Regression with Formal Constraints

Iwo Błądek and Krzysztof Krawiec

Abstract—In symbolic regression with formal constraints, the
conventional formulation of regression problem is extended
with desired properties of the target model, like symmetry,
monotonicity, or convexity. We present a genetic programming
algorithm that solves such problems using a Satisfiability Modulo
Theories solver to formally verify the candidate solutions. The
essence of the method consists in collecting the counterexamples
resulting from model verification and using them to improve
search guidance. The method is exact: upon successful termi-
nation, the produced model is guaranteed to meet the specified
constraints. We compare the effectiveness of the proposed method
with standard constraint-agnostic machine learning regression
algorithms on a range of benchmarks, and demonstrate that it
outperforms them on several performance indicators.

Index Terms—Symbolic regression, Constraints, Satisfiability
Modulo Theories, Genetic Programming

I. INTRODUCTION

Contemporary machine learning continues to be primarily
data-centric in assuming that most of relevant information
about a problem can be induced from its training sample. This
simplifies designing models and training algorithms, but also
deprives them of valuable domain knowledge, and increases
their proneness to overfitting, especially when data is scarce.

While full account of domain knowledge is usually out of
reach in practical settings, parts of it are often available and
can be conveniently expressed as constraints. The usefulness
and expressive power of constraints has been demonstrated
by, among others, the theory and practice of continuous and
discrete optimization. In regression problems, which are the
subject of the study, a simple constraint may for instance
require the output variable to be bounded to avoid damage to
a controlled hardware component. More complex constraints
can engage multiple variables, e.g. the predicted dose of
an active substance administered to a patient may need to
monotonously increase with patient’s weight, or/and decrease
with the duration of therapy.

In conventional regression, constraints are implicitly im-
posed by the choice of the form of the model; for instance, a
logistic model will be more appropriate for some problems
than a linear one. However, just choosing the form of a
model is often insufficient to reflect the relevant intricacies
of the domain. Moreover, in symbolic regression (SR) that we
consider here, the exact form of the model is not mandated: it
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versity of Technology, Poznań, Poland, e-mails: ibladek@cs.put.poznan.pl,
krawiec@cs.put.poznan.pl.

Manuscript received December 12, 2021; revised June 20, 2022.

is constrained only by the grammar of expressions that can be
built from the available set of arithmetic operators, elementary
functions and constants. The space of models in SR often
subsumes the conventional regression (linear, polynomial, and
more), and overfitting becomes thus even more likely.

To address this challenge, we propose a SR method that, in
addition to the training sample, can incorporate constraints
expressed in transparent fashion and produces models that
are guaranteed to meet them. We coin such augmented task
Symbolic Regression with Formal Constraints (SRFC), and
formalize it in Section II. The constraints can be supplied
by the user, who either knows beforehand that they are true
of the system in question, or simply finds them desirable
or beneficial. In Section III, we enumerate and exemplify
a range of types of constraints of practical relevance. In
Sections IV and V we present the method and related work. In
Section VII we assess it on a suite of benchmarks proposed in
Section VI, both in quantitative fashion, by measuring test-set
generalization error, as well as in a qualitative fashion, i.e.,
in terms of constraints that are satisfied by the synthesized
regressor. Computational experiments include analyzing dif-
ferent variants of the method and comparison with the state
of the art constraint-agnostic regression algorithms.

II. SYMBOLIC REGRESSION WITH FORMAL CONSTRAINTS

Following our preliminary study on this topic [1], we define
Symbolic Regression with Formal Constraints (SRFC) as an
extension of the SR task in which, alongside a set of input-
output examples (tests), a set of constraints is also given, which
the synthesized function is supposed to satisfy. SRFC is a
special case of supervised learning with constraints [2].

Definition II.1. (Symbolic Regression with Formal Con-
straints) Given (i) a training set T of n examples
(x(1), y(1)), . . . , (x(n), y(n)), (ii) an error function L : Rn ×
Rn → R, (iii) a set M of admissible mathematical expres-
sions, and (iv) a set of constraints C, find a function f ∈ M
that minimizes L and satisfies all constraints in C.

As in ordinary regression, L measures and aggregates the
deviation of each ŷ(i) = f(x(i)) from the corresponding y(i).
Each constraint in C is a logical formula that should be
satisfied by f for an (often infinite) subset of its domain, for
example ∀x : f(x) ≥ 0, or ∀x : f(x) = f(−x). Technically, a
constraint can define function’s output for a single input (e.g.,
f(3) = 7), making it similar to the examples in T . However,
such hard constraints do not allow for any error, and are thus
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not equivalent to examples in T . When C = ∅, the above task
reduces to conventional SR.

The definition of SRFC is similar in spirit to that of Syntax-
Guided Synthesis (SyGuS) [3], where solutions are required
to be constructed based on the provided formal grammar.
Contrary to SyGuS, however, in SRFC there is a set of training
examples, which are not necessarily supposed to be fitted
perfectly (as this may lead to overfitting), but rather serve
as a basis for the discovery of the model that explains them
most adequately in terms of the error L and constraints C.

III. SOURCES AND TYPES OF CONSTRAINTS

Constraints can be easily deduced from the symbolic form
of a model; but how to obtain them for real-world problems,
when the underlying model is unknown? We argue that there
are several sources of constraints in such scenarios:
• Inference from a training set — training data can be

inspected for the satisfaction of a certain set of con-
straints. Presence of noise can make this harder and
require relaxation of constraint satisfiability.

• Desirable or required properties of models — in some
applications it is beneficial (and sometimes critical) for
models to exhibit certain properties. For example, if one
needs to explain the predictions of a model (e.g., regard-
ing credit), then monotonicity w.r.t. the most important
features may be required [4]. If the output of a model is
meant to control a piece of hardware, that will usually
require bounding it to a technically admissible interval.

• Expert knowledge and common sense — sometimes
certain properties of a model are known or assumed a
priori. For example, constraints appear in the domain
of marketing mix modeling [5], where it is common
to assume that an increase of advertising cannot nega-
tively impact sales [6]. Another example is the use of
constraints representing linguistic knowledge in natural
language processing tasks, e.g., identifying roots of He-
brew words [7], or learning named entities and relations
between them [8].

• Scientific method — positing the existence of specific
constraints is a typical part of the hypothesis-driven
scientific process, which is in fact never based only on
observation (induction), but also on empirical falsification
of hypotheses formulated given the knowledge obtained
at the earlier stages of the process.

In the remainder of this section, we present a number of
formal constraints that are common in practical applications
of SRFC. For each constraint, we discuss plausible usage
scenarios and provide its specification in SMT-LIB [9], [10],
the standard language of communication with Satisfiability
Modulo Theories (SMT) solvers, which we use in our ap-
proach.

Symmetry with respect to arguments. Many multivariate
models are expected to be symmetric with respect to the order
of their arguments. Examples include the equivalent resistance
of a number of electrical resistors (chained or arranged in
parallel), and the force of gravity that remains the same if

the interacting masses are swapped. In SMT-LIB, this can be
expressed as:

(assert (= (f x1 x2) (f x2 x1)))

In SRFC, this assertion would be included in the set of
constraints C, while the examples would be placed in T .
However, let us emphasize again that the assertion requires
f to meet the constraint for all possible values of x1 and
x2, not only for those present in T . Upon successful solving
of a SRFC task, the synthesized model is guaranteed to be
symmetric with respect to its arguments.

Symmetry with respect to argument’s sign. It is sometimes
desirable to require models to be even functions (f(x) =
f(−x)) or odd functions (−f(x) = f(−x)). In classical
physics, the direction of the restoring force of a spring depends
on the direction of displacement, which implies that the
dependency in question is an odd function F (x) = −kx,
where k is the spring constant. Expressing such constraints
in SMT-LIB is straightforward:

(assert (= (f x) (- (f (- x)))))

Such symmetry may be also useful when constraining multi-
variate models, where it may be selectively applied to individ-
ual variables. A bivariate model f(x,y) can be demanded to
be even with respect to x with the following assertion:

(assert (= (f x y) (f (- x) y)))

Bound (Range). There are multiple scenarios in which do-
main knowledge excludes certain ranges of values from f ’s
codomain. In classical physics, mass cannot be negative and
velocity cannot exceed the speed of light. In econometrics,
employee’s wage cannot be negative. In medicine, it may not
make sense to estimate patient’s life expectancy to more than
120 years. The last of these constraints can be expressed in
SMT-LIB as:

(assert (<= (f x y) 120.0))

Monotonicity. Monotonicity is one of the most common
properties required from models. In transportation, the cost of
delivery is almost always a monotonically increasing function
of distance (or time). Such a constraint can be encoded as:

(assert (forall ((x Real)(x1 Real))
(=> (> x1 x) (> (f x1) (f x)))

))

Convexity/concavity. Convex models are often desirable, be-
cause they can be later efficiently optimized. Convexity of a
univariate function can be defined using Jensen’s inequality:

∀x,y,t∈[0,1] f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

Similarly as for monotonicity, convexity constraint requires the
universal quantifier:

(assert (forall ((t Real)(x Real)(x1 Real))
(=> (and (>= t 0.0) (<= t 1.0))
(<= (f (+ (* t x) (* (- 1.0 t) x1)))

(+ (* t (f x)) (* (- 1.0 t) (f x1)))))
))
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Fig. 1. The conceptual diagram of CDSR.

Changing this constraint to concavity requires replacing <=

with >= in the quantified formula; replacing it with < would
mandate the function to be strictly convex.

Slope. In a given application, it may be known that the rate
of change of model’s output with respect to its input cannot
exceed a certain threshold. For instance, a body free-falling
in Earth’s gravitational field cannot accelerate faster than
9.81 m/s2. For SMT solvers, we express that by approximat-
ing the derivative with a finite differential (f(x+ε)−f(x))/ε.
In the following SMT-LIB formulation, we assume that the
expected derivative of a function f(x) is 2 at x = 1, ε = 10−6,
and the error tolerance of 0.001:

(define-fun df ((x Real)) Real
(/ (- (f (+ x 0.000001)) (f x)) 0.000001))

(assert (=> (= x 1.0)
(<= (abs (- (df x) 2.0)) 0.001)))

Note that this constraint affects only the slope of f at point
1.0, while not determining the desired value at that point.
Therefore, it cannot be alternatively enforced with input-output
tests in T that would implicitly constrain the slope, because
such tests would also necessarily fix the values of f .

Discussion. The above list presents only the simplest and
most common constraints. Other examples include periodicity
f(x) = f(x+kT ), k ∈ Z, additivity f(x+ y) = f(x) + f(y),
and multiplicativity f(xy) = f(x)f(y). Constraints can be
easily combined with logical operators, e.g. with conjunction.
Also, all above constraints can be defined either globally (i.e.,
in the entire domain of the function) or locally (i.e., in an
interval, at a given point, or otherwise constrained part of
function’s domain).

IV. COUNTEREXAMPLE-DRIVEN SYMBOLIC REGRESSION

Counterexample-Driven Symbolic Regression (CDSR) [1]
allows genetic programming (GP), a heuristic global opti-
mization technique, to produce provably correct solutions to
SRFC tasks. It builds upon Counterexample-Driven Genetic
Programming (CDGP) [11], [12], and uses an SMT solver to
formally verify correctness of candidate solutions and use the
resulting counterexamples to augment the training set.

Fig. 1 presents the key components of CDSR, which corre-
spond to the elements of SRFC task (Section II):
• GP search – an algorithm responsible for generating can-

didate programs inM. We use conventional generational
GP, with initialization and search operators detailed in

the experimental part; however, in principle any generate-
and-test search algorithm could be used here.

• The working set of test cases Tall = T ∪ Tcounter ∪
Tprops, initialized with the training set (T ) and aug-
mented with additional tests created from counterex-
amples (Tcounter) and constraints (Tprops; only in the
CDSRp variant; see Section IV-C).

• Testing – a procedure for evaluating candidate programs
and returning their fitness computed on Tall. In the
simplest scenario, fitness is the error L committed by
a program on both the training set and counterexamples.

• Verification – an SMT solver that verifies the correctness
of programs with respect to constraints in C.

The main loop of CDSR extends the traditional fitness
evaluation of GP as follows. The GP search produces a
candidate solution p and submits it to Testing. The error
committed by p on Tall becomes its fitness. If p passes at
least the ratio α of tests in T ∪ Tcounter, it is submitted to
Verification. If p does not satisfy the constraints in C, then a
counterexample is found and added to Tcounter. If p satisfies
the constraints, the search still continues, since minimization
of the error L is one of the objectives in SRFC. We detail
these components in the sections that follow.

A. Verification of programs

For formal verification of candidate solutions, CDSR uses
a Satisfiability Modulo Theories (SMT) solver [13], [14]. An
SMT problem is an extension of the SAT problem that allows
for terms and operators from specific theories, e.g., the theory
of nonlinear real arithmetic (NRA) used in this work. Cru-
cially, SMT provides decision procedures for proving logical
formulas expressed in a given theory.

A formal specification is assumed to have the form
(Pre, Post), where Pre and Post are logical formulas over a
certain theory. Pre(x) is the precondition that must be met by
an input x to the program, and Post(x, y) is the postcondition,
a logical predicate that should hold upon program completion.
The constraints presented earlier in Section III are examples
of postconditions. An SMT solver can be used to verify if a
given program p meets the specification by proving that:

∀x Pre(x) =⇒ Post(x, p(x)), (1)

where p(x) is the output returned by p for x. In practice,
it is common to request the solver to disprove the above
implication, i.e., prove that:

∃x Pre(x) 6=⇒ Post(x, p(x)). (2)

If the solver decides that formula (2) is unsatisfiable, p is
guaranteed to meet the specification; otherwise, the solver
produces a logical model, i.e., an input x for which the above
implication holds. Since this logical model consists of an input
exposing the wrong behavior of the program, it is commonly
referred to as a counterexample.

B. Evaluation of programs

The main evaluation loop in CDSR is presented in Al-
gorithm 1. In evaluation of the population P in a given
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Algorithm 1: Evaluation in CDSR, given the current popula-
tion P , the current sets of tests (T , Tcounter, Tprops), program
specification Spec ≡ (Pre, Post), and verification ratio α, re-
turns the evaluated population together with an updated set of
counterexamples. NUMPASSED counts the number of passed
tests. VERIFY verifies a program and returns a counterexample
when it is incorrect. See Algorithm 2 for EVAL.

1: function CDSREVAL(P , T , Tcounter, Tprops, Spec, α)
2: Tnew ← ∅
3: Tα ← T ∪ Tcounter
4: for all p ∈ P do
5: p.eval← EVAL(p, T , Tcounter, Tprops, Spec)
6: if NUMPASSED(p.eval, Tα) ≥ α|Tα| then
7: xc ← VERIFY(p, Spec)
8: if xc 6= ∅ then
9: Tnew ← Tnew ∪ {(xc, null)}

10: Tcounter ← Tcounter ∪ Tnew
11: return (P, Tcounter)

generation, the newly created test cases are collected in a
temporary set Tnew, and that set is merged into Tcounter only
at the end of a generation, so that all solutions in P are
assessed with respect to the same set of tests. Duplicates are
discarded in merging.

The verification is invoked in line 6 of the algorithm and
produces a counterexample xc if a program does not satisfy
the constraints. We want to use xc as additional guidance for
GP search, in addition to the original examples. However, xc
only defines an input that violates the specification, which is
incompatible with the (x, y) representation of regular tests. For
such inputs, there are usually many (and often infinitely many)
corresponding outputs that meet the postcondition. Therefore,
we transform xc into an incomplete test of the form (xc, null).
Incomplete tests require different handling than the complete
tests (x, y) provided in T . We denote the set of all incomplete
tests by Tcounter.

Verification can be computationally costly, so CDSR verifies
only programs that pass at least the ratio α of tests from Tα =
Tall\Tprops, α ∈ [0, 1], calculated by NUMPASSED in line 6 of
the algorithm. Passing is defined differently for incomplete and
complete tests, and in both cases is based on the information
returned by the EVAL function (Algorithm 2) called in line 5
that returns an evaluation vector eval of errors committed by
a program p on all tests in Tall. The error on an incomplete
test (t.x, null) is determined by calling the SMT solver via
ISCORRECT in line 6 of Algorithm 2, which returns 0 to mark
passing of a test (p(t.x) satisfies the constraints), and 1 for
failing. The error on a complete test (t.x, t.y) is determined
in a conventional way, by calculating the difference between
the output p(t.x) produced by the program and t.y (line 4),
and the corresponding element of eval is set to |p(t.x)−p.y|.
Solutions with smaller values in eval are preferred, and a zero
eval vector is an ideal evaluation.

The evaluation vector eval is used at a few steps of the
algorithm, one of them being the determination of the number
of passed tests in the NUMPASSED function mentioned earlier:
for incomplete tests, we simply count the number of those

passed; for complete tests, we use a relative threshold of 5% of
the target output of a given test, i.e., a test (x, y) is considered
passed if |ŷ−y|/|y| < 0.05. Another use of eval is to perform
selection of candidate solutions (Section IV-D).

It is worth noting that the SMT solver serves two purposes
in CDSR: verification of programs (VERIFY) and testing of
programs on tests (ISCORRECT, SATPROPERTY).

C. CDSRp: CDSR with properties

In the basic variant of CDSR described above, the out-
come of the program’s confrontation with the specification in
VERIFY does not influence its evaluation vector eval: it can
only give rise to an incomplete test to be used for evaluating
programs in subsequent generations. One may wonder whether
allowing programs to be directly confronted with constraints
could lead to a more informative search guidance.

This observation inclined us to introduce an extended vari-
ant, dubbed CDSRp, in which we augment Tall with the
additional tests Tprops that verify if a candidate program
passes a given constraint. Technically, given a specification
(Pre, Post), Post can be represented as a conjunction of
one or more properties Posti. For each property, we create a
test of the form (Pre, Posti). In EVAL, properties are treated
similarly to incomplete tests, i.e., the SMT solver is invoked
to verify whether p meets a property, in which case we set
the corresponding element of eval to 0, and otherwise to
1. In Algorithm 2 this is represented by calling the function
SATPROPERTY in line 8. In the following, we treat properties
like incomplete tests, with the exception that they are not
counted towards the verification ratio α, since that could stop
the counterexample generating process altogether in certain
circumstances (e.g., α = 1). Unless stated otherwise, further
considerations about CDSR apply also to CDSRp.

D. Using evaluation vectors for selection

The basic variant of CDSR uses simple tournament selec-
tion, which requires scalar fitness, so we compute the sum of
squares of the elements of eval (i.e., the square error), and use
the resulting scalar as fitness to be minimized. The impact of
failing an incomplete test (and a property in CDSRp) is thus
unitary (deteriorates the fitness by 1), while each complete test
(x, y) contributes |ŷ−y|2 to the fitness. The relative influence
of complete and incomplete tests depends thus on the errors
committed on complete tests. This is, unfortunately, task-
specific: if the output variable y has large magnitude or/and the
training set T is large, the relative importance of constraints
is low. This could be addressed by weighing the elements of
eval that represent the outcomes of complete and incomplete
tests. However, tuning that parameter per benchmark would
likely be tedious.

Rather than that, we propose a non-scalar variant of CDSR,
which relies on lexicase selection [15], a selection method
that treats each test as a separate objective and so avoids
aggregation of solution’s performance on individual tests.
This characteristic addresses the incomparability of solution’s
performance on complete and incomplete tests. We rely on ε-
lexicase [16], which can handle continuous test outcomes, and
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Algorithm 2: Evaluation of a single program p in CDSR, given
the current sets of tests (T , Tcounter, Tprops), and program
specification Spec ≡ (Pre, Post), returns an evaluation
vector. ISCORRECT returns 0 if output of a program p for input
t.x satisfies Spec, and 1 otherwise. SATPROPERTY returns
0 if a program p satisfies the constraint associated with test
t ∈ Tprops, and 1 otherwise.

1: function EVAL(p, T , Tcounter, Tprops, Spec)
2: eval← []
3: for all t ∈ T do
4: eval.append(|p(t.x)− t.y|)
5: for all t ∈ Tcounter do
6: eval.append

(
ISCORRECT(p(t.x), t.x, Spec)

)
7: for all t ∈ Tprops do
8: eval.append

(
SATPROPERTY(p, t)

)
9: return eval

let it directly inspect the evaluation vectors. Given a population
P of programs, each holding an evaluation vector eval of
length n, a single act of selection proceeds as follows:

1) Let I be the set of indices of tests, I = {1, . . . , n}.
2) A random index i is drawn from I without replacement.
3) If i corresponds to an incomplete test in Tall, all pro-

grams that fail it are discarded from P (unless they all
fail, in which case P remains intact). If i corresponds
to a complete test, programs that commit on it errors
greater than the median absolute deviation from the
median of errors committed by all programs on that test
[16] are discarded.

4) If |P | = 1, the only program left in P is returned as the
outcome of selection.

5) If I = ∅, a random element of P is returned. Otherwise,
go to step 2.

E. Weighing of properties in CDSRp

Lexicase selection does not fuse the outcomes of complete
and incomplete tests, and is thus immune to the output
magnitude problem. Nevertheless, the relative importance of
complete tests and properties in CDSRp still depends on their
numbers in Tall. The number of properties is usually small
(up to 7 in the benchmarks used in this paper) compared to
the size of the training set (300). As a result, their impact on
selection can be relatively low.

To address this problem, we equip CDSRp with a parameter
wp that weighs the contribution of properties to the selection
process. When using CDSR with lexicase selection, wp im-
pacts the odds of drawing incomplete tests in step 2 (Sec.
IV-D. Consider Tall that holds 9 complete tests and 1 property:
with the default setting of wp = 1, the probability of using
the property in the first iteration of selection is 1/10. Setting
wp = 3 increases it to 3/12. Analogously, in the CDSR variant
with tournament selection, the binary outcomes of testing
programs for properties (0 or 1) are multiplied by wp, so that
they effectively become 0 or wp, and thus not satisfying a
constraint is associated with a larger penalty.

F. Stopping condition and calculation of result

To reduce overfitting, CDSR performs early stopping by
terminating search when the error of the best-so-far solution on
a validation set (comprising 75 examples in our experiments)
does not improve in a certain time window (here: 25 genera-
tions). The solution with the lowest error on the validation set
is updated throughout the run and returned as a final result.

V. RELATED WORK

Apart from the CDGP [11], [12] that CDSR is based
on, only a handful of studies explicitly introduce formal
constraints in evolutionary program synthesis.

Johnson [17] incorporated model checking by specifying
tasks via Computation Tree Logic (CTL) to evolve finite state
machines, and used it to learn a controller for a vending ma-
chine. The fitness was the number of satisfied CTL formulas.
A similar approach by He et al. [18] computes fitness as the
number of postcondition clauses which can be inferred from
the precondition and the program being evaluated. Hoare logic
was used to specify tasks and verification.

Katz and Peled considered combining model checking and
GP [19], [20]. In their method, program specification consists
of several independent Linear Temporal Logic (LTL) prop-
erties, and several levels of passing a property are defined
(i.e., passing for all/some/no input). Other than these levels
and the LTL formalism, this approach is very similar to
the two described above. For parametric programs (i.e., with
unbounded input size), the authors abandoned the idea of
providing full correctness guarantees and tested programs on
counterexamples found by model checking. In [19] Katz and
Peled briefly considered using an SMT solver for verification
instead of model checking, and even used counterexamples to
provide for more granular fitness in a similar spirit as CDSR.

The use of coevolutionary GP to synthesize programs from
formal specifications in first order logic (augmented with
arrays and arithmetic operators) was researched by Arcuri
and Yao [21]. They maintained separate populations of tests
(generated from the specification) and programs within a
competitive coevolution framework. Programs were rewarded
for passing tests and tests for failing programs. The fitness
of programs was calculated using a heuristic that estimated
how close a postcondition was from being satisfied by the
program’s output for specific tests, so there is no guarantee
that the returned program is consistent with the specification
for all possible inputs.

In formal approaches to program synthesis, the closest
approach to CDSR is Counterexample Guided Inductive Syn-
thesis (CEGIS), introduced by Solar-Lezama et al. [22], [23].
CEGIS is a general scheme of combining an inductive program
synthesizer with a formal verification procedure. One starts
with a randomly generated test case, from which the syn-
thesizer produces a program. The program is verified, which
returns a counterexample that is added to the set of test cases.
This cycle is repeated until a globally correct program is found.
From that perspective, CDSR is an instance of CEGIS, where
the inductive program synthesizer is GP, and the verification
is realized by an SMT solver.
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TABLE I
THE LIST OF SRFC BENCHMARKS. ∆f(x) > 0 MEANS f IS MONOTONOUSLY INCREASING WITH x.

Benchmark: gravity
Solution:
f(m1,m2, r) = 6.674·10−11m1m2

r2

Precondition: m1,m2, r > 0

Constraints:
f(m1,m2, r) = f(m2,m1, r)

f(m1,m2, r) ≥ 0

∆f(m1) > 0

∆f(m2) > 0

Benchmark: keijzer5
Solution: f(x, y, z) = 30xz

(x−10)·y2

Precondition: y 6= 0, x 6= 10

Constraints:
x = z = 0 =⇒ f(x, y, z) = 0

x = y = z ∧ x > 10 =⇒ f(x, y, z) > 0

x = y = z ∧ x < 10 =⇒ f(x, y, z) < 0

Benchmark: keijzer12
Solution: f(x, y) = x4−x3 + y2

2
−y

Precondition: none
Constraints:
x ≥ 0 =⇒ f(x, y) ≤ f(−x, y)

y ≥ 0 =⇒ f(x, y) ≤ f(x,−y)

x = y = 0 =⇒ f(x, y) = 0

x ≤ 0 =⇒ ∆f(x) < 0

y ≥ 1 =⇒ ∆f(y) > 0

y ≤ 1 =⇒ ∆f(y) < 0

Benchmark: keijzer14
Solution: f(x, y) = 8

2+x2+y2

Precondition: none
Constraints:
f(x, y) ≥ 0

f(x, y) ≤ 4

f(x, y) ≤ f(0, 0)

f(x, y) = f(y, x)

Benchmark: keijzer15
Solution: f(x, y) = x3

5
+ y3

2
− y− x

Precondition: none
Constraints:
x = y = 0 =⇒ f(x, y) = 0

x = −y ∧ x ≤ 0 =⇒ f(x, y) ≥ 0

x = −y ∧ x ≥ 0 =⇒ f(x, y) ≤ 0

Benchmark: nguyen1
Solution: f(x) = x3 + x2 + x

Precondition: none
Constraints:
x > 0 =⇒ f(x) ≥ 0

x < 0 =⇒ f(x) ≤ 0

x > 0 =⇒ f(x) ≥ f(−x)

Benchmark: nguyen3
Solution: f(x) =

∑5
k=1 x

k

Precondition: none
Constraints:
x > 0 =⇒ f(x) ≥ 0

x < 0 =⇒ f(x) ≤ 0

x > 0 =⇒ f(x) ≥ f(−x)

Benchmark: nguyen4
Solution: f(x) =

∑6
k=1 x

k

Precondition: none
Constraints:
x > 0 =⇒ f(x) ≥ 0

x < 0 =⇒ f(x) ≥ −0.75

x > 0 =⇒ f(x) ≥ f(−x)

Benchmark: pagie1
Solution: f(x, y) = 1

1+x−4 + 1
1+y−4

Precondition: x, y 6= 0

Constraints:
f(x, y) ≥ 0

f(x, y) ≤ 2

f(x, y) = f(y, x)

Benchmark: res2
Solution: f(r1, r2) = r1r2

r1+r2

Precondition: r1, r2 > 0

Constraints:
f(r1, r2) = f(r2, r1)

f(r1, r2) ≤ r1 ∧ f(r1, r2) ≤ r2
f(r1, r2) > 0

Benchmark: res3
Solution: f(r1, r2, r3) = r1r2r3

r1r2+r1r3+r2r3

Precondition: r1, r2, r3 > 0

Constraints:
f(r1, r2, r3) = f(r2, r1, r3), f(r1, r2, r3) = f(r3, r2, r1), f(r1, r2, r3) = f(r1, r3, r2)

f(r1, r2, r3) ≤ r1 ∧ f(r1, r2, r3) ≤ r2 ∧ f(r1, r2, r3) ≤ r3
f(r1, r2, r3) > 0

R ::= R + R | R - R | R * R | R / R | x1 |
x2 | ... | xn | U(−1, 1)

Fig. 2. The grammar of programs generated by CDSR. xi is the ith input
variable, and U(−1, 1) is an random constant sampled from [−1, 1].

VI. BENCHMARKS

Since there are no well-established benchmarks for SRFC,
we adapted several well-known regression benchmarks from
[24] (page 8, table 3) and defined formal constraints for
them; see Tables II and I. We included also three benchmarks
(gravity, res2, res3) from our previous work [1] based on the
well-known laws of physics – Newton’s law of universal grav-
itation, and the equivalent resistance of two and three resistors
connected in parallel, respectively. Additionally, we included
a real-world benchmark hardware and its modified version
hardware2, both with unknown correct model, described in

Listing 1: The res2 benchmark in SyGuS format (noise-free
version). Each constraint defines one property. Constraints
representing tests are omitted.

(set-logic NRA)
(synth-fun res2 ((r1 Real)(r2 Real)) Real)
(declare-var r1 Real)
(declare-var r2 Real)
(precondition (and (> r1 0.0) (> r2 0.0)))
(constraint (= (res2 r1 r2) (res2 r2 r1)))
(constraint (and (<= (res2 r1 r2) r1)

(<= (res2 r1 r2) r2)))
(constraint (> (res2 r1 r2) 0.0))
(check-synth)

more detail in Section VIII.
Each benchmark consists of:

• Preconditions specifying which function’s arguments are
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TABLE II
CHARACTERISTICS OF THE SRFC BENCHMARKS. U(a, b) STANDS FOR A

UNIFORM DISTRIBUTION IN RANGE [a, b], INCLUSIVE FOR a AND b.

Benchmark Arity Training set # constraints

gravity 3 U(0.0001, 21) 4
keijzer5 3 U(−10, 11) 3
keijzer12 2 U(−10, 11) 6
keijzer14 2 U(−10, 11) 4
keijzer15 2 U(−10, 11) 3
nguyen1 1 U(−10, 11) 3
nguyen3 1 U(−10, 11) 3
nguyen4 1 U(−10, 11) 3
pagie1 2 U(−10, 11) 3
res2 2 U(0.0001, 21) 3
res3 3 U(0.0001, 21) 5
hardware 6 real-world dataset 3
hardware2 6 real-world dataset 3

valid. For example, for gravity these are m1,m2, r > 0.
• A set of formal constraints we devised based on the

properties of solutions. For example, for gravity we
selected symmetry with respect to masses g(m1,m2, r) =
g(m2,m1, r), non-negative codomain g(m1,m2, r) ≥ 0,
and increasing monotonicity with respect to masses.

• 500 examples generated from the benchmark-dependent
uniform distribution specified in Table II — for problems
with a known target model (all except hardware bench-
marks). All examples are required to meet the precondi-
tion. Examples are generated once per each benchmark,
and in every algorithm’s run they are randomly parti-
tioned into a training set (300 examples), a validation set
(75), and a test set (125).

There are two variants of each benchmark (with the excep-
tion of the hardware benchmarks): in the noise-free bench-
marks, examples are generated directly from the ground truth
formulas; in the noisy ones (’N’ appended to name), inputs and
outputs generated for the noise-free benchmark are distorted
by a multiplicative Gaussian noise with µ = 1 and σ = 0.01
(i.e., x′j = xj · N (1, 0.01)).

The benchmarks are represented in the SyGuS format [25],
which we slightly extended to explicitly delineate precondi-
tions; see example in Listing 1.

VII. EXPERIMENTS

We examine the efficiency and generalization power of
CDSR variants in different configurations. CDSR inherits most
of its hyperparameters and components from GP, and adds
several of its own. The hyperparameters of CDSR that remain
constant throughout experiments are shown in Table III. All
setups use the most common GP search operators, i.e., subtree-
swapping crossover and a mutation operator that replaces a
randomly selected subtree with a new randomly generated
subtree.

The instruction set of CDSR contains standard arithmetic
operators (+, -, *, /), and the formal grammar is presented in
Figure 2. Division by 0 is not tolerated and is penalized with
the worst possible fitness (+∞).

TABLE III
THE SETTINGS OF HYPERPARAMETERS OF CDSR.

Parameter Value

Number of runs 50
Population size 1000
Maximum number of generations ∞
Maximum runtime in seconds 1800
Verification threshold α {0.75, 1}
Solver timeout in seconds 3
Probability of mutation 0.5
Probability of crossover 0.5
Test passing threshold (relative MAE) 0.05
Tournament size 7
Maximum height of initial programs 4
Maximum height of trees inserted by mutation 4
Maximum height of programs in population 12
Validation set improvement window (generations) 25

TABLE IV
THE SETTINGS OF HYPERPARAMETERS OF CONVENTIONAL REGRESSION

ALGORITHMS USED IN THE EXPERIMENT.

Algorithm Parameter: values
AdaBoost
Regressor

n_estimators: 10, 100, 1000

learning_rate: 0.01, 0.1, 1, 10

GradientBoosting
Regressor

n_estimators: 10, 100, 1000

min_weight_fraction_leaf: 0.0, 0.25, 0.5

max_features: sqrt, log2, None

KernelRidge kernel: linear, poly, rbf, sigmoid
alpha: 1e−4, 1e−2, 0.1, 1

gamma: 0.01, 0.1, 1, 10

LassoLARS alpha: 1e−04, 0.001, 0.01, 0.1, 1

LinearRegression defaults

MLPRegressor activation:logistic, tanh, relu
solver: lbfgs, adam, sgd
learning_rate: constant, invscaling, adaptive

RandomForest
Regressor

n_estimators:10, 100, 1000

min_weight_fraction_leaf: 0.0, 0.25, 0.5

max_features: sqrt, log2, None

SGDRegressor alpha:1e−06, 1e−04, 0.01, 1

penalty: l2, l1, elasticnet

LinearSVR C: 1e−06, 1e−04, 0.1, 1

loss: epsilon_insensitive, squared_epsilon_insensitive

XGBoost n_estimators:10, 50, 100, 250, 500, 1000

learning_rate: 1e−4, 0.01, 0.05, 0.1, 0.2

gamma: 0, 0.1, 0.2, 0.3, 0.4

max_depth: 6

subsample: 0.5, 0.75, 1

Our implementation1 uses the Z3 [26], [27] SMT solver.

A. Impact of verification threshold α
In the following, we compare CDSR and CDSRp in com-

bination with two considered selection methods: tournament
and ε-lexicase, with various settings of hyperparameters. For
CDSRp, we use wp = 1 and wp = 5. We also employ regular
GP as a baseline, which is configured in the same way as
CDSR but no formal verification is conducted during runtime
and constraints are effectively ignored.

We assess first the impact of α, the ratio of tests that a
program must pass in order to be submitted to verification.

1https://github.com/iwob/CDGP
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TABLE V
SUCCESS RATES FOR ALL BENCHMARKS (N=NOISE).

GP CDSR CDSRp
Tour Lex Tour Lex Tour Lex

wp 1 5 1 5
gravity 0.00 0.14 0.02 0.08 0.00 0.00 0.02 0.06
keijzer12 0.02 0.04 0.04 0.10 0.00 0.00 0.04 0.12
keijzer14 0.66 0.02 0.58 0.00 0.64 0.70 0.20 0.72
keijzer15 0.00 0.00 0.00 0.06 0.00 0.02 0.14 0.28
keijzer5 0.02 0.04 0.02 0.04 0.02 0.00 0.02 0.08
nguyen1 0.80 0.12 0.90 0.42 0.90 0.86 0.62 0.64
nguyen3 0.18 0.10 0.40 0.12 0.36 0.26 0.22 0.38
nguyen4 0.10 0.10 0.12 0.12 0.24 0.24 0.34 0.50
pagie1 0.28 0.12 0.32 0.10 0.42 0.24 0.40 0.58
res2 0.78 0.70 0.90 0.84 0.86 0.80 0.66 0.76
res3 0.06 0.40 0.10 0.40 0.00 0.00 0.28 0.22
gravityN 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.04
keijzer12N 0.02 0.02 0.02 0.00 0.00 0.00 0.00 0.02
keijzer14N 0.66 0.00 0.50 0.00 0.62 0.64 0.26 0.74
keijzer15N 0.00 0.06 0.02 0.02 0.00 0.02 0.14 0.22
keijzer5N 0.00 0.06 0.00 0.06 0.02 0.02 0.10 0.06
nguyen1N 0.26 0.40 0.36 0.38 0.40 0.50 0.70 0.52
nguyen3N 0.12 0.20 0.22 0.20 0.24 0.28 0.24 0.36
nguyen4N 0.22 0.22 0.28 0.18 0.28 0.24 0.42 0.40
pagie1N 0.32 0.00 0.32 0.08 0.44 0.18 0.44 0.74
res2N 0.26 0.16 0.54 0.66 0.70 0.42 0.72 0.58
res3N 0.00 0.18 0.02 0.30 0.00 0.00 0.18 0.24
hardware 0.34 0.66 0.34 0.42 0.74 0.76 0.76 0.82
hardware2 0.46 0.66 0.48 0.82 0.66 0.48 0.84 0.92
Mean 0.23 0.19 0.27 0.23 0.31 0.28 0.32 0.42
Rank 5.96 5.15 4.71 4.90 4.60 5.00 3.62 2.06

TABLE VI
THE AVERAGE RATIO OF SATISFIED CONSTRAINTS FOR ALL

BENCHMARKS (N=NOISE).

GP CDSR CDSRp
Tour Lex Tour Lex Tour Lex

wp 1 5 1 5
gravity 0.38 0.48 0.40 0.46 0.41 0.39 0.48 0.53
keijzer12 0.07 0.06 0.10 0.12 0.46 0.40 0.43 0.56
keijzer14 0.68 0.05 0.62 0.03 0.67 0.73 0.23 0.73
keijzer15 0.00 0.00 0.03 0.07 0.03 0.03 0.17 0.36
keijzer5 0.27 0.19 0.23 0.19 0.23 0.16 0.20 0.32
nguyen1 0.80 0.12 0.90 0.42 0.90 0.86 0.66 0.69
nguyen3 0.18 0.13 0.40 0.12 0.37 0.26 0.33 0.50
nguyen4 0.10 0.11 0.12 0.12 0.24 0.25 0.35 0.56
pagie1 0.47 0.46 0.48 0.40 0.67 0.56 0.73 0.84
res2 0.81 0.79 0.91 0.88 0.87 0.86 0.77 0.83
res3 0.12 0.48 0.10 0.45 0.10 0.14 0.46 0.42
gravityN 0.38 0.36 0.38 0.38 0.41 0.42 0.47 0.49
keijzer12N 0.19 0.19 0.15 0.13 0.38 0.36 0.35 0.49
keijzer14N 0.73 0.06 0.56 0.01 0.66 0.70 0.33 0.77
keijzer15N 0.05 0.07 0.03 0.03 0.05 0.05 0.17 0.29
keijzer5N 0.21 0.16 0.21 0.23 0.24 0.19 0.33 0.35
nguyen1N 0.38 0.48 0.45 0.42 0.49 0.59 0.77 0.68
nguyen3N 0.23 0.32 0.39 0.33 0.35 0.45 0.37 0.52
nguyen4N 0.32 0.24 0.31 0.22 0.35 0.30 0.50 0.49
pagie1N 0.51 0.35 0.52 0.37 0.74 0.61 0.74 0.88
res2N 0.47 0.43 0.69 0.77 0.81 0.62 0.81 0.78
res3N 0.02 0.30 0.05 0.38 0.10 0.10 0.33 0.50
hardware 0.55 0.79 0.56 0.69 0.83 0.85 0.87 0.91
hardware2 0.58 0.81 0.59 0.86 0.76 0.61 0.89 0.96
Mean 0.35 0.31 0.38 0.34 0.46 0.44 0.49 0.60
Rank 6.02 6.17 5.17 5.69 3.75 4.42 3.15 1.65

TABLE VII
THE AVERAGE RATIO OF SATISFIED CONSTRAINTS, AGGREGATED ACROSS

ALL BENCHMARKS.

CDSR CDSRp
Tour Lex Tour Lex

wp 1 5 1 5
α=0.75 0.40 0.35 0.46 0.44 0.49 0.61
α=1.0 0.38 0.34 0.46 0.44 0.49 0.60

Table VII presents the average ratios of satisfied constraints,
aggregated across all benchmarks, for α = 0.75 and α = 1.0.
Note that this metric is different from the success rate, where
‘success’ is identified with all constraints being satisfied. We
can observe that α did not make a big difference in the
number of constraints satisfied by the algorithms. However,
the MSE on test set was overall much better for α = 1.0,
and thus we continue our analysis only for that setting, which
requires a program to pass all tests in order to be submitted
to verification.

B. Comparison of CDSR variants

We evaluate the variants of CDSR on the success rate (Ta-
ble V), the ratio of satisfied constraints to the total number of
constraints of a given benchmark (‘qualitative’ generalization,
Table VI), and on the median MSE on test set (‘quantitative’
generalization, Table VIII). Overall, the highest success rate
and satisfiability ratio, both on benchmarks with and without
noise, was obtained by CDSRp/Lex/wp=5. This proves that
the additional focus on constraints was effective. This was,
however, achieved at the cost of a significantly worse MSE,
especially for CDSRp with lexicase selection.

TABLE VIII
THE MEDIAN MSE ON TEST SET FOR ALL BENCHMARKS (N=NOISE).

GP CDSR CDSRp
Tour Lex Tour Lex Tour Lex

wp 1 5 1 5
gravity 2.7E−14 1.3E−16 7.3E−15 6.7E−16 3.4E−15 1.1E−14 7.2E−15 7.4E−15
keijzer12 4.6E−3 2.4E−2 3.7E−2 3.0E−1 6.5E2 7.0E2 6.0E2 4.7E2

keijzer14 1.2E−1 2.2E−5 1.3E−1 7.7E−5 1.3E−1 1.2E−1 9.6E−2 1.3E−1
keijzer15 5.1E2 2.5E−1 1.1E2 5.1E−1 1.2E3 1.3E3 2.9E2 1.5E2

keijzer5 1.1E8 2.2E6 4.9E6 1.7E6 1.3E7 1.4E6 1.3E8 1.2E8

nguyen1 2.6E−27 3.1E−27 2.7E−27 3.0E−27 3.0E−27 2.8E−27 2.4E−2 2.8E−2
nguyen3 5.2E−23 2.5E0 6.0E−23 1.8E1 6.2E−23 5.4E−23 6.0E2 1.5E3

nguyen4 7.8E−21 5.1E2 7.4E−21 3.5E3 4.4E−2 9.3E−21 1.8E5 4.0E5

pagie1 6.2E−2 4.4E−3 1.1E−1 4.4E−3 1.1E−1 1.0E−1 1.0E−1 1.2E−1
res2 2.0E−31 2.6E−31 2.5E−31 2.6E−31 2.4E−31 2.5E−31 3.1E−31 2.6E−31
res3 1.4E−1 1.0E−5 1.4E−1 2.4E−4 6.3E−1 6.9E−1 7.8E−2 2.1E−1
gravityN 1.1E−14 3.3E−15 3.3E−15 1.2E−15 2.1E−14 1.3E−14 2.1E−14 1.1E−14
keijzer12N 3.1E4 2.8E4 2.8E4 2.9E4 3.4E4 3.7E4 3.3E4 2.9E4

keijzer14N 1.2E−1 8.1E−5 1.2E−1 1.1E−4 1.1E−1 1.1E−1 1.1E−1 1.2E−1
keijzer15N 3.4E2 6.6E1 8.5E2 7.0E1 1.3E3 1.4E3 1.5E2 1.5E2

keijzer5N 2.0E7 2.4E6 3.4E6 2.7E6 2.8E6 6.8E6 7.5E7 8.2E6

nguyen1N 2.4E2 2.7E2 2.9E2 2.4E2 2.4E2 2.5E2 2.7E2 2.8E2

nguyen3N 4.9E6 5.3E6 4.9E6 4.3E6 4.9E6 5.0E6 5.2E6 5.5E6

nguyen4N 5.8E8 6.4E8 6.4E8 7.4E8 6.1E8 6.3E8 7.0E8 6.1E8

pagie1N 1.1E−1 5.0E−3 1.1E−1 6.7E−3 1.1E−1 8.6E−2 8.6E−2 1.4E−1
res2N 4.1E−3 3.9E−3 3.9E−3 4.1E−3 4.1E−3 3.9E−3 4.1E−3 4.2E−3
res3N 2.2E−1 2.2E−3 1.3E−1 1.5E−3 6.5E−1 5.9E−1 2.7E−1 1.5E−1
hardware 4.7E3 3.8E3 2.8E3 3.9E3 4.4E3 4.6E3 4.6E3 5.6E3

hardware2 3.4E3 2.8E3 3.7E3 3.1E3 5.4E3 5.1E3 4.3E3 3.5E3

Rank 4.12 2.73 4.04 3.04 5.19 5.06 5.69 6.12

For CDSRp, lexicase achieves better constraints satisfiability
than the corresponding tournament selection variants. How-
ever, for test-set MSE, tournament variants of CDSRp are
better than the lexicase ones. Interestingly, the situation is
reversed for ‘vanilla’ CDSR, where lexicase leads to lower
MSE on the test set, while the fraction of satisfied constraints
is higher for tournament selection. Unsurprisingly, GP fares
the worst in terms of satisfaction of constraints, although it
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must be noted that its test-set MSE is competitive and, in the
case of lexicase selection, outperforms the CDSR variants.

Statistical analysis with the Friedman test and Nemenyi
post-hoc test [28] showed that CDSRp/Lex/wp=5 satis-
fies significantly more constraints (p-values < 0.0023)
than all other configurations except CDSRp/Tour/wp=1 and
CDSRp/Lex/wp=1, the latter of which satisfies significantly
more constraints (p-value < 0.0078) than the worst CDSR
configuration, i.e., CDSR/Lex, and all GP configurations (p-
values < 0.002). For test-set MSE, CDSR/Lex was better (p-
values < 0.002) than both CDSRp/Lex variants, and GP/Lex
was better than all CDSRp/Lex (p-values = 0.001) and
CDSRp/Tour variants (p-values < 0.022).

C. Comparison with conventional regression algorithms

In this section, we compare CDSR with several popular
constraint-agnostic regression algorithms. For such algorithms,
the only source of information about a regression problem
is the training set of examples. Therefore, if a model they
produce meets the constraints, this can be only due to some
inherent biases of a given algorithm, its (usually implicit)
capability of “inferring” a constraint from the training sample,
or simply pure chance.

The regression algorithms, together with a grid of hyper-
parameters they were tested on, are presented in Table IV.
We followed [29] in the selection of algorithms and their hy-
perparameters and used the open-source framework proposed
there2. We assess each setting of hyperparameters with the
average prediction error obtained from 5-fold cross-validation.
To measure the performance of the best parametrization of
a given algorithm (i.e., that with the lowest cross-validation
error), we test it on the test set. This entire procedure is
repeated 10 times for different partitioning of data into training
set and test set, and the average test error is the final measure
of quality of the regression algorithm.

Because some of the regression algorithms considered here
produce models that involve operations not supported by the
NRA logic in contemporary SMT-solvers (e.g., logarithms
or trigonometric functions), we cannot apply to them formal
verification to determine whether a model satisfies a given con-
straint or not. Therefore, we apply approximate verification, in
which for each constraint we check whether it is satisfied for
a number of points in the grid of benchmark’s inputs domain
(Table II). We use the following heuristic to determine the
number of points for each benchmark: a grid of 41 equally
spaced points per dimension for arity 1 (41 points in total),
11 points for arity 2 (121 points in total), and 7 points for
arity 3 (343 points in total). For the hardware benchmarks
with arity 6 there are 1024 points in total. This evaluation
is only approximate, and false positive errors (i.e., constraints
incorrectly claimed as satisfied) can occur; for CDSR runs, we
compared the results of the approximate verifier with those of
the formal verification, and the discrepancy was low.

We evaluate the algorithms on the ratio of satisfied con-
straints (Table IX) and the MSE on the test set (Table X).
As expected, the benchmarks vary in difficulty. The best MSE

2https://github.com/EpistasisLab/srbench

TABLE IX
THE AVERAGE RATIO OF SATISFIED CONSTRAINTS. THE DEEPER THE
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A
da

B
oo

st

G
ra

di
en

tB
oo

st
in

g

K
er

ne
lR

id
ge

L
as

so
L

A
R

S

L
in

ea
rR

eg
re

ss
io

n

L
in

ea
rS

V
R

M
L

PR
eg

re
ss

or

R
an

do
m

Fo
re

st

SG
D

R
eg

re
ss

or

X
G

B
oo

st

gravity 0.50 0.50 0.00 0.50 0.50 0.50 0.00 0.50 0.50 0.50
keijzer12 0.17 0.00 0.33 0.17 0.17 0.17 0.00 0.00 0.17 0.17
keijzer14 0.75 0.50 1.00 1.00 0.25 0.50 0.25 0.75 0.25 0.75
keijzer15 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
keijzer5 0.33 0.67 0.67 0.67 0.33 0.33 0.33 0.67 0.67 0.33
nguyen1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
nguyen3 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
nguyen4 1.00 1.00 0.67 0.67 0.67 0.67 1.00 1.00 0.67 1.00
pagie1 0.67 0.33 0.67 0.00 0.00 0.33 0.00 0.67 0.33 0.67
res2 0.67 0.67 0.67 0.33 0.33 0.33 0.33 0.67 0.33 0.67
res3 0.80 0.80 0.80 0.20 0.20 0.20 0.00 0.80 0.20 0.80
gravityN 0.50 0.50 0.50 0.50 0.25 0.50 0.00 0.50 0.50 0.50
keijzer12N 0.17 0.00 0.17 0.17 0.17 0.17 0.00 0.00 0.17 0.17
keijzer14N 0.75 0.50 1.00 1.00 0.25 0.50 0.25 0.75 0.25 0.75
keijzer15N 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
keijzer5N 0.33 0.67 0.67 0.67 0.33 0.33 0.33 0.67 0.67 0.33
nguyen1N 1.00 1.00 0.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00
nguyen3N 1.00 1.00 0.33 1.00 1.00 1.00 1.00 1.00 1.00 1.00
nguyen4N 1.00 1.00 0.67 0.67 0.67 0.67 1.00 1.00 0.67 1.00
pagie1N 0.67 0.33 1.00 0.33 0.00 0.67 0.33 0.33 0.00 0.33
res2N 0.67 0.67 0.67 0.33 0.33 0.33 0.33 0.67 0.33 0.67
res3N 0.80 0.80 0.80 0.20 0.20 0.20 0.00 0.80 0.20 0.80
hardware 1.00 1.00 0.00 1.00 0.67 0.67 0.33 1.00 0.67 1.00
hardware2 1.00 1.00 0.33 1.00 0.67 0.67 0.67 1.00 1.00 1.00
Mean 0.69 0.65 0.55 0.59 0.44 0.52 0.41 0.69 0.51 0.67
Rank 4.27 4.75 5.25 5.27 7.00 6.19 7.38 4.40 6.08 4.42

is achieved by KernelRidge, which has also a decent rate of
satisfied constraints. In contrast, the second algorithm with
the best MSE, i.e., MLP (multilayer perceptron), achieved the
lowest ratio of satisfied constraints. The presence of noise,
at least at the assumed magnitude (normal distribution with
σ = 1% of the value which is being distorted), does not have
much effect on the number of satisfied constraints. The success
rate (not presented here for brevity) was either 0% or 100%,
and the latter case was always co-occurring with 100% of
satisfied properties.

Friedman’s test for multiple achievements of multiple sub-
jects with the Nemenyi post-hoc test [28] indicates that
AdaBoost, RandomForest, and XGBoost satisfy significantly
more constraints (p-value < 0.025) than MLP. As for the MSE
on the test set, there were several statistically significant differ-
ences – LassoLars, LinearRegression, LinearSVR, and SGD
were dominated (p-values < 0.034) by all other approaches
with the exception of AdaBoost, which was significantly better
(p-values < 0.04) only than LassoLars and LinearSVR. Only
KernelRidge managed to be significantly better than AdaBoost
(p-value 0.03).

In Table XI, we juxtapose the above best constraint-agnostic
algorithms, RandomForest (the best ratio of satisfied con-
straints and success rate) and KernelRidge (the best MSE on
the test set), with the two best-performing CDSR configura-
tions: CDSRp/Lex/α=1.0/wp=5 (the best ratio; CDSRsat in the
following) and CDSR/Lex/α=1.0 (the best MSE; CDSRMSE in
the following). CDSRsat boasts the best average success rate
of 42% and ranks first on this metric calculated per benchmark.
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TABLE X
THE MEDIAN MSE ON TEST SET (N=NOISE). DARKER SHADING MARKS BETTER VALUES; BEST VALUE IN BOLD.
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gravity 2.6E−14 5.5E−14 5.5E−14 5.6E−14 5.5E−14 5.6E−14 5.5E−14 5.6E−14 5.6E−14 4.2E−14
keijzer12 4.6E5 4.2E3 3.9E2 9.0E6 9.1E6 9.1E6 1.9E3 3.6E3 9.1E6 1.6E3

keijzer14 1.1E−2 2.5E−2 2.6E−4 6.4E−2 6.4E−2 6.3E−2 3.9E−3 1.3E−3 6.4E−2 1.2E−3
keijzer15 1.3E3 2.1E2 1.4E−10 1.0E4 1.0E4 1.0E4 8.2E0 5.2E2 1.0E4 1.3E2

keijzer5 7.5E4 1.1E7 2.8E9 1.1E7 2.3E7 4.3E4 1.2E7 1.4E7 8.3E6 2.7E8

nguyen1 6.5E2 5.2E1 2.1E−9 5.0E4 5.0E4 5.1E4 5.9E1 2.6E1 5.0E4 1.5E1

nguyen3 2.8E7 1.3E6 2.1E3 6.0E8 6.0E8 6.0E8 7.7E4 1.3E6 6.0E8 7.4E5

nguyen4 5.1E9 1.6E8 3.2E9 7.1E10 7.1E10 7.1E10 1.3E7 3.1E7 7.2E10 3.6E7

pagie1 1.3E−2 1.2E−3 3.0E−3 1.4E−1 1.4E−1 1.4E−1 1.3E−3 1.1E−2 1.4E−1 2.7E−3
res2 1.0E−1 1.8E−2 3.1E−5 1.4E0 1.4E0 1.4E0 7.2E−4 1.6E−2 1.4E0 8.2E−3
res3 1.5E−1 2.4E−2 3.1E−3 6.4E−1 6.4E−1 6.4E−1 4.1E−3 1.7E−2 6.4E−1 8.9E−3
gravityN 2.1E−14 1.4E−14 1.2E−14 1.4E−14 1.3E−14 1.4E−14 1.4E−14 1.4E−14 1.4E−14 9.9E−15

keijzer12N 4.8E5 3.8E4 2.4E4 8.9E6 8.8E6 8.8E6 2.3E4 3.2E4 8.9E6 3.5E4

keijzer14N 1.1E−1 7.1E−2 5.9E−4 2.1E−1 2.1E−1 2.1E−1 6.0E−3 2.5E−2 2.1E−1 1.2E−2
keijzer15N 1.4E3 2.8E2 6.7E1 1.1E4 1.1E4 1.1E4 8.5E1 7.0E2 1.1E4 2.2E2

keijzer5N 4.5E6 1.4E7 4.3E7 1.4E7 2.6E7 4.5E6 9.8E6 1.9E7 1.6E7 1.1E8

nguyen1N 9.8E2 3.9E2 2.6E2 4.0E4 4.0E4 4.0E4 2.5E2 3.2E2 4.0E4 3.3E2

nguyen3N 1.4E7 1.0E7 7.5E6 5.9E8 5.9E8 5.9E8 7.7E6 1.1E7 5.9E8 1.0E7

nguyen4N 4.9E9 8.9E8 4.4E8 1.1E11 1.1E11 1.1E11 3.7E8 7.8E8 1.2E11 1.0E9

pagie1N 2.5E−2 7.6E−3 3.0E−3 1.8E−1 1.8E−1 1.9E−1 1.9E−3 2.2E−2 1.8E−1 7.7E−3
res2N 1.3E−1 2.0E−2 5.5E−3 1.0E0 9.9E−1 1.0E0 4.0E−3 2.1E−2 1.0E0 1.1E−2
res3N 1.7E−1 2.0E−2 4.8E−3 7.8E−1 7.8E−1 7.8E−1 1.3E−2 3.4E−2 7.8E−1 1.3E−2
hardware 6.8E3 2.3E3 3.3E3 1.0E4 7.8E3 1.3E4 4.2E3 5.1E3 8.2E3 3.7E3

hardware2 2.4E3 1.3E4 1.0E4 1.8E4 1.5E4 1.6E4 1.2E4 1.5E4 1.4E4 1.4E4

Rank 5.35 4.21 2.48 8.10 7.81 7.92 2.65 4.75 8.12 3.60

TABLE XI
COMPARISON OF THE BEST CONSTRAINT-AGNOSTIC REGRESSION

ALGORITHMS WITH THE BEST CONFIGURATIONS OF CDSR.

Kernel-
Ridge

Random-
Forest

CDSRMSE CDSRsat

(avg. rank) median tests set MSE 2.25 3.54 1.38 2.83
(avg. rank) satisfiability ratio 2.33 2.02 3.44 2.21
(avg. rank) success rate 3.21 2.67 2.40 1.73
(avg.) satisfiability ratio 0.55 0.69 0.34 0.60
(avg.) success rate 0.17 0.33 0.23 0.42
(avg.) runtime (s) 38.36 179.25 987.75 1733.75

Its success rate per benchmark is also much more evenly
distributed, in contrast to the constraint-agnostic algorithms,
which either have a success rate of 0% or 100%. To ensure
fair comparison, all methods are verified stochastically, i.e.,
by querying models on inputs sampled uniformly from the
domains listed in Table II and checking whether the constraints
are met. Notice that this does not guarantee meeting the
constraints, but only indicates that no constraint violation has
been observed in the process.

Surprisingly, both constraint-agnostic methods managed to
satisfy on average a greater fraction of constraints than the
best variants of CDSR. This may, however, originate in the
specific choice of constraints used in our benchmark suite. To
investigate that aspect, in Table XII we present the satisfiability
ratio for each constraint in each benchmark, and label them
by type (for brevity, we present these only for the noise-free
benchmarks; the results for the noisy benchmarks are very sim-
ilar). Clearly, some constraints are easy to satisfy for CDSRsat
and hard for constraint-agnostic algorithms, for example the

equality constraint for keijzer12 (x = y = 0 =⇒ f(x, y) =
0), monotonicity constraints for gravity (∆f(mi) > 0), and the
output bound for res2 (f(r1, r2) ≤ r1 ∧ f(r1, r2) ≤ r2). On
the other hand, CDSR is worse on many other constraints. A
clear pattern can be observed in terms of types of constraints:
while the conventional algorithms outperform CDSR on sym-
metry constraints and bound constraints, CDSR is unmatched
on monotonicity and equality constraints. The prevalence of
the former two types of constraints in our suite (34 vs. 12
constraints) is indeed the cause of better average satisfiability
of constraint-agnostic methods, reported in Table XI.

In Table XI, CDSRMSE achieves the best average rank
on MSE, and in general most of the lowest MSE scores
were obtained by either of the CDSR variants. This result
is surprising: it is natural to expect CDSR, and especially
CDSRsat (which uses CDSRp), to trade its MSE in favor of
meeting the constraints. A possible explanation is that the
search space for CDSR, restricted by the constraints, is effec-
tively smaller than for the constraint-agnostic methods, which
reduces the risk of overfitting and improves generalization.
However, the properties of representations used by particular
methods (regression trees and kernels vs. explicit mathematical
formulas used by CDSR) can play a role here too.

Statistical analysis with the Friedman test and Nemenyi
post-hoc test [28] reveals that all algorithms satisfy signif-
icantly more constraints than CDSRMSE (p-values < 0.017),
CDSRMSE achieves significantly lower MSE than RandomFor-
est and CDSRsat (p-values 0.001), and KernelRidge had sig-
nificantly lower MSE than RandomForest (p-value < 0.003).
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Fig. 3. Comparison in terms of rank on test-set MSE (minimized), success
rate (maximized), and satisfaction of constraints (marker size and hue).

The conventional regression algorithms are much faster
than CDSR, which is slowed down by the burden of formal
verification. The fraction of the runtime spent in the SMT
solver to the total runtime of CDSR is on average 0.1 for
α = 1 and 0.3 for α = 0.75, while for CDSRp it is about
0.9 for tournament selection and 0.3 for lexicase selection,
regardless of the value of α – lexicase selection is more
expensive computationally, and thus the calls to the solver take
a smaller fraction of total time than for tournament selection.
However, optimizing CDSR for maximum speed was not our
priority, and relatively easy improvements (e.g., approximate
verification of constraints in CDSRp instead of full verification
with the SMT solver) could significantly reduce its runtime.

Figure 3 summarizes the results visually in terms of gen-
eralization (test-set MSE, horizontal axis, minimized rank)
and the average success rate (vertical axis, maximized). The
Pareto front spanning these two metrics is formed mostly by
configurations of CDSR, stretching from CDSR/Lex/α=1.0 on
one end to CDSRp/Lex/α=0.75/wp=5 on the other. The only
nondominated reference method is GP/Lex, but it is located at
the very end of the front and achieves a very low success rate.
Notably, many of the reference methods align in two horizontal
bands, which is due to the fact that they meet the constraints by
mere chance and do that on a systematic basis. The percentage
of satisfied constraints (reflected by marker size) significantly
correlates with the average success rate, though less so for the
constraint-agnostic methods.

VIII. REAL-WORLD CASE STUDY

Even though some of the benchmarks used here can be
viewed as realistic in concerning the known laws of physics
and involving noise, most of them do not involve real data. To
corroborate our claims in a real-world scenario, our suite of

TABLE XII
SATISFIABILITY RATIO OF INDIVIDUAL CONSTRAINTS FOR THE

NOISE-FREE BENCHMARKS. LEGEND: (E) EQUALITY ,

(C) CONSTANT OUTPUT BOUND , (V) VARIABLE OUTPUT BOUND ,

(S) SYMMETRY W.R.T. ARGUMENTS , (M) MONOTONICITY . THE

ORDER OF CONSTRAINTS IS THE SAME AS IN TABLE I.

.

KernelRidge RandomForest CDSRMSE CDSRsat

(E) keijzer12-2 0.10 0.62
(E) keijzer15-0 0.06 0.34
(E) keijzer5-0 0.14 0.14
(C) gravity-1 1.00 0.64 0.96
(C) keijzer14-0 1.00 1.00 0.06 0.74
(C) keijzer14-1 1.00 1.00 0.74
(C) keijzer15-1 1.00 0.06 0.38
(C) keijzer15-2 1.00 0.08 0.36
(C) keijzer5-1 1.00 1.00 0.32 0.58
(C) keijzer5-2 1.00 1.00 0.10 0.24
(C) nguyen1-0 1.00 1.00 0.42 0.72
(C) nguyen1-1 1.00 1.00 0.42 0.64
(C) nguyen3-0 1.00 0.12 0.56
(C) nguyen3-1 1.00 0.12 0.40
(C) nguyen4-0 1.00 1.00 0.12 0.58
(C) nguyen4-1 1.00 1.00 0.12 0.52
(C) pagie1-0 1.00 1.00 0.70 0.98
(C) pagie1-1 1.00 0.40 0.96
(C) res2-2 1.00 1.00 0.94 0.92
(C) res3-4 1.00 1.00 0.62 0.74
(C) hardware-0 1.00 0.64 0.92
(C) hardware2-0 1.00 0.82 0.96
(V) keijzer12-0 1.00 0.12 0.78
(V) keijzer12-1 1.00 0.12 0.74
(V) keijzer14-2 1.00 1.00 0.06 0.74
(V) nguyen1-2 1.00 1.00 0.42 0.72
(V) nguyen3-2 1.00 0.12 0.54
(V) nguyen4-2 1.00 0.12 0.58
(V) res2-1 0.86 0.76
(V) res3-3 0.42 0.24
(S) gravity-0 1.00 0.40 0.94
(S) keijzer14-3 1.00 0.72
(S) pagie1-2 1.00 0.10 0.58
(S) res2-0 1.00 1.00 0.84 0.82
(S) res3-0 1.00 1.00 0.40 0.38
(S) res3-1 1.00 1.00 0.40 0.36
(S) res3-2 1.00 1.00 0.40 0.36
(M) gravity-2 0.40 0.10
(M) gravity-3 0.38 0.10
(M) keijzer12-3 0.12 0.78
(M) keijzer12-4 0.12 0.22
(M) keijzer12-5 0.12 0.20
(M) hardware-1 1.00 0.64 0.86
(M) hardware-2 1.00 0.80 0.94
(M) hardware2-1 1.00 1.00 0.84 0.96
(M) hardware2-2 1.00 0.92 0.96

Rank 2.59 2.05 2.98 2.38

benchmarks includes also the Computer Hardware Data Set
problem from the UCI ML repository [30], for which the
underlying true model of the sought dependency is not known.
The task is to estimate the relative performance score of a CPU
based on six integer-valued parameters (the largest number in
our suite): machine cycle length, the size of cache memory,
the minimum and maximum admissible size of memory, and
the minimum and maximum number of channels. The dataset
contains 209 examples, which we split randomly into a training
set (157 examples) and a test set (52 examples).

We devise three constraints for this task that seem plausible
according to the domain knowledge: (1) the performance score
must be non-negative (range constraint), (2) the score cannot
deteriorate when decreasing the machine cycle length and (3)
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when increasing the cache size (monotonicity).
Applying all CDSR variants and the reference regression

methods to this problem reveals the superiority of Gradi-
entBoosting in terms of the training-set MSE (median of
9.6 × 101). However, the test-set MSE of this model is
much worse (2.3 × 103), suggesting heavy overfitting, and
many configurations of CDSR catch up with it: the median
MSE ranges from 2.8 (CDSR/Tour/α=1.0) to 5.6 × 103

(CDSRp/Lex/α=1.0/wp=1). In terms of constraints, Gradient-
Boosting and a few other reference models (AdaBoost, Lasso-
Lars, RandomForrest and XGBoost) achieve 100% ratio of sat-
isfied constraints on average, while CDSR configurations man-
age to meet between 25% of constraints (CDSR/Tour/α=0.75)
and 89% of constraints (CDSR/Lex/α=1.0/wp=5); neverthe-
less, many CDSR runs produced models that met all con-
straints.

We hypothesize that the main reason why CDSR yields
to the reference methods is the relative simplicity of the
hardware problem – the authors of the benchmark admit that
even a simple linear regression model achieves almost perfect
correlation with the target score. To illustrate validity of this
claim, we consider a transformed variant of this problem,
in which we replace the machine cycle variable with its
reciprocity, i.e., the frequency of the CPU clock. While both
CDSR and reference methods sustain roughly the same ratio of
satisfied properties, the test-set MSE of the latter deteriorates
substantially, and ranges between 2.4 × 103 and 1.8 × 104.
CDSR, to the contrary, maintains roughly the same MSE on
the test set as on the training set, ranging from 3.1 × 103 to
5.4× 103. This suggests that the reference methods meet the
required constraints by mere chance, and fail to generalize
well when a problem becomes more complex. CDSR, to the
contrary, provides both good generalization and good ratio of
fulfilled constraints.

The detailed results for the original benchmark (hardware)
and its modified version (hardware2) are included at the
bottom of the previously presented tables.

IX. CONCLUSIONS

We demonstrated that CDSR achieves better success rate,
better MSE on the test set, can synthesize models that sat-
isfy constraints which prove impossible to achieve for the
constraint-agnostic approaches, and performs well on real-
world problems. This clearly merits involving formal veri-
fication, which allows virtually unlimited expressiveness. In
this study, we used fairly general constraints; there are ar-
guably many applications where domain knowledge implies
constraints that are more complex and precise, which may
further limit the search space and improve generalization.

We consider the satisfiability ratio of formal constraints
to be an interesting measure of generalization. At a more
detailed level, individual properties can be considered a form
of multiobjective characterization of generalization. Contrary
to the quantitative evaluation of generalization that reflects the
point-wise errors, constraints describe behavior that a function
exhibits over multiple data points, and thus can be thought of
as a ‘higher-order generalization’, or, as we call it in this study,

qualitative generalization. Exploring a conceptual framework
built on these observations can be an interesting avenue of
future research.
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