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To Trust or Not to Trust: Evolutionary Dynamics of
an Asymmetric N-Player Trust Game

Ik Soo Lim and Naoki Masuda

Abstract—Trusting others and reciprocating the received trust
with trustworthy actions are fundaments of economic and social
interactions. The trust game (TG) is widely used for studying
trust and trustworthiness and entails a sequential interaction
between two players, an investor and a trustee. It requires at
least two strategies or options for an investor (e.g., to trust ver-
sus not to trust a trustee). According to the evolutionary game
theory, the antisocial strategies (e.g., not to trust) evolve such
that the investor and trustee end up with lower payoffs than
those that they would get with the prosocial strategies (e.g., to
trust). A generalization of the TG to a multiplayer (i.e., more
than two players) TG was recently proposed. However, its out-
comes hinge upon two assumptions that various real situations
may substantially deviate from: 1) investors are forced to trust
trustees and 2) investors can turn into trustees by imitation and
vice versa. We propose an asymmetric multiplayer TG that allows
investors not to trust and prohibits the imitation between players
of different roles; instead, investors learn from other investors
and the same for trustees. We show that the evolutionary game
dynamics of the proposed TG qualitatively depends on the non-
linearity of the payoff function and the amount of incentives
collected from and distributed to players through an institution.
We also show that incentives given to trustees can be useful and
sufficient to cost-effectively promote trust and trustworthiness
among self-interested players.

Index Terms—Evolutionary dynamics, evolutionary game the-
ory, incentives, replicator dynamics, trust game (TG).

I. INTRODUCTION

THE EVOLUTION of prosocial behaviors among self-
interested individuals has been a focus on research across

disciplines. For instance, the evolution of cooperation in
social dilemma situations, such as the prisoner’s dilemma
(PD) and its N-player generalization, the public goods game
(PGG), has attracted lots of attention [1], [2], [3], [4], [5],
[6]. Evolutionary game theory provides a theoretical frame-
work with which to study the evolution of strategies or
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behaviors among self-interested individuals in these social
dilemmas or other situations, in which successful strategies or
genes are spread by fitness-dependent reproduction and imi-
tation [7], [8]. It has also been widely used for applications,
such as modeling the propagation of competing technologies
and policies for green supply chain management [9], [10].

Nonsimultaneous or sequential interactions between two
players are common in many situations, such as buyer–seller
interactions, whereas the PD and PGG are concerned with
simultaneous interactions. Nonsimultaneous interactions yield
a problem of trust in the sense that the decision by one of
two players (e.g., a buyer) can make oneself vulnerable to
potential exploitation by the other (e.g., a seller) [11]. In such
situations, higher levels of trusting in others and reciprocating
the received trust with trustworthy actions have been asso-
ciated with more efficient judicial systems, higher quality in
government bureaucracies, lower corruption, greater financial
development, and better economic outcomes among other ben-
efits for the society [12]. The concept of trust has also attracted
interest in engineering research communities, ranging from
networking to human–machine interaction and artificial intel-
ligence [13], [14], [15], where many problems are cast as
buyer–seller interactions [16]. The trust game (TG) is a current
gold standard of formalization for nonsimultaneous interaction
in social dilemma situations and has widely been used to study
trust and trustworthiness [11], [12], [17], [18], [19], [20], [21],
[22], [23], [24]. The TG is composed of a one-shot sequential
interaction between two players in different roles, one as an
investor (representing, for example, a truster, buyer, or citizen)
and the other as a trustee (representing, for example, a seller or
governor). One of the simplest variants of TGs is the binary
TG, which involves two strategies per role [19], [25], [26].
An investor either invests (i.e., trusts) or does not invest in a
trustee. Then, the trustee decides to be either trustworthy or
untrustworthy to the investor [Fig. 1(a)].

The evolutionary game theory predicts that self-interested
strategies (e.g., for an investor not to invest) evolve in the
two-player binary TG. The classical game theory also yields
a similar conclusion via backward induction; given invest-
ment from an investor, a rational trustee is better off by being
untrustworthy and, anticipating it, a rational investor does not
invest in a trustee in the first place. Thus, the two players end
up with lower payoffs than those that they would get with
the prosocial strategies (i.e., for the investor to invest and for
the trustee to be trustworthy). Therefore, an additional mech-
anism is required for promoting the evolution of the prosocial
strategies in the TG [28], [29], [30].
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Fig. 1. Two-player binary TGs. (a) Game tree of the asymmetric two-player
binary TG, referred to as a general two-player TG1G in [27], in which the role
of each player is fixed. The payoffs of an investor are shown in green. Those
of a trustee are shown in orange. Adapted from [19]. We generalize this game
to an N-player game in this article. (b) Game tree of the two-player binary
TG that is used for the generalization to the NTG in [27]. This game does
not allow an investor not to invest. In both (a) and (b), we require 0 < r < 1,
where r represents the relative productivity of the prosocial strategies.

An N-player binary TG (NTG) was recently proposed as
a multiplayer (i.e., N ≥ 2) generalization of the binary
TG [27]. However, it suffers from two major difficulties that
hamper us from clarifying mechanisms of trust and trust-
worthiness in multiplayer situations in reasonably realistic
manners. First, in this NTG, the investor does not have
an option not to invest [Fig. 1(b)]; the investor is assumed
to invest. Therefore, one cannot investigate the evolution
and stability of trusting as opposed to nontrusting behav-
ior. Note that their NTG with N = 2 players is not the
two-player TG, which this model attempted to generalize.
Second, investors are allowed to turn into trustees and vice
versa by payoff-driven imitation. An evolutionary outcome
of this second assumption is the cease of game playing
because all players eventually become trustees [27]. Without
an investor, one cannot carry on the game. The justification
of this result and the underlying assumption of the role-
unaware imitation is unclear. The NTG with citizens and
governors was used as an example in [27], where citizens
were allowed to imitate and become governors. The evolu-
tionary outcome is that all players become governors. Once
there is no citizen, there is no NTG to be played. A popu-
lation composed of all governors but no citizen is not only
unrealistic but also incompatible with the behavioral exper-
iment setups of the TGs, which ensures that both a citizen
(or an investor) and a governor (or a trustee) are always
available to play the TG [12]. The follow-up studies of
the original NTG [27] also inherit the aforementioned two
assumptions, i.e., that the investor does not have a choice not
to invest and that players can turn into a preferred role by
imitation [31], [32], [33].

In reality, investor–trustee interactions often involve mul-
tiplayer interactions rather than dyadic ones; for instance,
multiple investors may be involved in a large project. Hence,
setting up reasonable NTGs and understanding their popula-
tion dynamics remains a worthwhile goal. Our contributions
in this article are threefold.

1) We propose an asymmetric NTG with two strategies per
role, which generalizes the two-player TG but does not
suffer from the two problems inherent in the previously
proposed NTG.

2) We introduce nonlinear payoff functions that can yield
evolutionary dynamics qualitatively different from that
of a linear one.

3) We propose an incentive scheme to cost-effectively steer
the self-interested players to take prosocial strategies
such that the population average of the payoff (or social
welfare) is maximized.

The source code used for this article is provided
on Github: https://github.com/iksoolim/asymmetric_N-player_
trust_game.

II. MODEL

A. Population and Group Formation

We consider an asymmetric NTG in which the role of each
individual is fixed as either investor or trustee throughout the
whole evolutionary dynamics. Furthermore, we assume that
social learning, i.e., payoff-led imitation of strategies, only
occurs among individuals of the same role as in the two-player
TG [19]. There are two strategies available for each role. An
investor either invests or does not invest in trustees. A trustee
selects to be either trustworthy or untrustworthy to investors.
We consider two infinitely large populations, one for investors
and the other for trustees. From time to time, a group of NI

investors and NT trustees, selected uniformly at random from
the respective population, is formed and these N ≡ NI + NT

individuals participate in a one-shot NTG. We assume that NI

and NT are fixed.

B. Payoffs

We assume that the total value of the investment aggregated
over the investing investors is equal to

1 − wki

1 − w
=
⎧
⎨

⎩

0, if ki = 0
1, if ki = 1
1 + w + w2 + · · · + wki−1, if ki ≥ 2

(1)

where ki ∈ {0, 1, . . . , NI} denotes the number of investing
investors in the group, and w > 0 determines how the value
of the investments accumulates when an additional investor
contributes to the collective good. A similar nonlinear payoff
function was previously used for the PGG [4]. If 0 < w < 1,
then the value of the contribution by each additional invest-
ing investor is diminishing, i.e., discounted or subadditive. If
w = 1, then the value of the contribution is 1 for any investor
regardless of the number of investing investors, ki. This linear
payoff function is the same as that for the original NTG [27].
Note that the total value of the investment is equal to ki when
w = 1, which follows from L’Hopital’s rule applied to the left-
hand side of (1). If w > 1, the value of the contribution per
investor increases as ki increases, i.e., representing synergistic
or super-additive benefits.

The total investment is equally divided and distributed to the
NT trustees. Therefore, the payoff that an untrustworthy trustee
in the group receives from the game, denoted by �o

u(ki), is
given by

�o
u(ki) = 1

NT

1 − wki

1 − w
. (2)
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The payoff of a trustworthy trustee in the group, denoted by
�o

t (ki), is given by

�o
t (ki) = r�o

u(ki) = r
1

NT

1 − wki

1 − w
(3)

where r represents the relative productivity of the prosocial
strategies and satisfies 0 < r < 1. In the two-player TG,
when an investing investor and a trustworthy trustee inter-
act with each other, each of them gets the same payoff
[Fig. 1(a)]. In the N-player generalization, analogously, we
assume that when a group of investing investors and a group
of trustworthy trustees interact with each other, each group
gets the same (group) payoff. The aggregated return from the
kt ∈ {0, 1, . . . , NT} trustworthy trustees is equally distributed
to the ki investing investors in the group. Therefore, the payoff
that an investing investor receives from the game, denoted by
�o

i (ki, kt), is given by

�o
i (ki, kt) = 1

ki
kt�

o
t (ki)

︸ ︷︷ ︸
net gain

+ (NT − kt)

(

− 1

NT

)

︸ ︷︷ ︸
net loss

= kt

NT

r
(
1 − wki

)

ki(1 − w)
+
(

1 − kt

NT

)

· (−1). (4)

The payoff �o
i (ki, kt) is equal to the expected payoff of an

investing investor playing a two-player game with each of
the NT trustees; the net gain from a trustworthy trustee is
[r(1 − wki)]/[ki(1 − w)] and the net loss from an untrustwor-
thy trustee is −1. Lastly, the payoff of a noninvesting investor
is �o

n = 0. Note that a special case of NI = NT = 1 recovers
the two-player TG [Fig. 1(a)].

By including incentives and associated costs for the play-
ers, we define the final payoffs �i, �n, �t, and �u for an
investing investor, noninvesting investor, trustworthy trustee,
and untrustworthy trustee, respectively, by

�i(ki, kt) = �o
i (ki, kt) + vI − avI (5)

�n = �o
n − avI (6)

�t(ki) = �o
t (ki) + vT − avT (7)

�u(ki) = �o
u(ki) − avT (8)

where an investor pays a fee avI to the institution providing the
incentives and an investing investor receives a reward vI from
the institution, where vI ≥ 0. We assume the fee rate a > 1
such that the total incentive is less than the total fee, taking into
consideration the operating cost for the institution. Similarly,
a trustee pays a fee avT to the institution and a trustworthy
trustee receives a reward vT ≥ 0. A similar incentive scheme
has been assumed for the PGG [6]. For a given investor in a
group of N players, the probability that mt among NT trustees
are trustworthy (and thus NT − mt trustees are untrustworthy)
is
(NT

mt

)
ymt

t (1−yt)
NT−mt , where yt denotes the fraction of trust-

worthy trustees in the trustee population; 1 − yt is the fraction
of untrustworthy trustees. For a given investor, the probabil-
ity that mi among the other NI − 1 investors are investing
is
(NI−1

mi

)
ymi

i (1 − yi)
NI−1−mi , where yi denotes the fraction of

investing investors in the investor population. Therefore, the
expected payoff for an investing investor is

Pi =
NI−1∑

mi=0

(
NI − 1

mi

)

ymi
i (1 − yi)

NI−1−mi

×
NT∑

mt=0

(
NT

mt

)

ymt
t (1 − yt)

NT−mt�i(mi + 1, mt)

= r

NI(1 − w)

yt

yi

{
1 − [

1 + (w − 1)yi
]NI
}

+ yt − 1

+ vI − avI . (9)

Similarly, the expected payoffs Pn, Pt, and Pu for a nonin-
vesting investor, trustworthy trustee, and untrustworthy trustee,
respectively, are given by

Pn = −avI (10)

Pt =
NI∑

mi=0

(
NI

mi

)

ymi
i (1 − yi)

NI−mi

×
NT−1∑

mt=0

(
NT − 1

mt

)

ymt
t (1 − yt)

NT−1−mt�t(mi)

= r

NT(1 − w)

{
1 − [

1 + (w − 1)yi
]NI
}

+ vT − avT

(11)

Pu = 1

NT(1 − w)

{
1 − [

1 + (w − 1)yi
]NI
}

− avT . (12)

See Appendix-A for the derivation (9), (11), and (12).

C. Evolutionary Game Dynamics

For the evolutionary game dynamics, we use asymmetric
replicator equations given by

ẏi = yi(Pi − PI) = yi(1 − yi)(Pi − Pn)

= (1 − yi)yi

⎛

⎝
ryt

{
1 − [

1 + (w − 1)yi
]NI
}

NI(1 − w)yi
+ yt − 1 + vI

⎞

⎠

(13)

ẏt = yt(Pt − PT) = yt(1 − yt)(Pt − Pu)

= (1 − yt)yt

⎛

⎝
(r − 1)

{
1 − [

1 + (w − 1)yi
]NI
}

NT(1 − w)
+ vT

⎞

⎠ (14)

where the dot denotes a time derivative, PI = yiPi +(1−yi)Pn

is the average payoff of the investor in the entire population,
and PT = ytPt +(1−yt)Pu is the average payoff of the trustee.

To analyze the dynamics given by (13) and (14), we find all
equilibria by setting ẏi = ẏt = 0. The stability of an equilib-
rium is determined by the eigenvalues of the Jacobian matrix,
which is given by

J =
(

∂ ẏi
∂yi

∂ ẏi
∂yt

∂ ẏt
∂yi

∂ ẏt
∂yt

)

=
(

J11 J12
J21 J22

)

(15)

at the equilibrium, where

J11 = r(1 − yi)yt
[
(w − 1)yi + 1

]NI−1

−
ryt

{[
(w − 1)yi + 1

]NI − 1
}

NI(w − 1)
− (2yi − 1)(vI + yt − 1)

(16)
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(a) (b) (c) (d)

Fig. 2. Evolutionary game dynamics of the asymmetric NTG with fixed roles for the players. We set NI = 5, NT = 5, r = 0.6, vI = 0, and vT/v∗
T ∈

{0, 0.5, 1, 1.1}. (1st row) w = 0.7, (2nd) w = 1, and (3rd) w = 1.3. A filled circle represents a stable equilibrium. An open circle represents an unstable
equilibrium. On edges yi = 0 and yi = 1, the thick solid lines indicate stable equilibria and the hollow lines indicate unstable equilibria. The dashed lines
indicate the nullclines Pi − Pn = 0 (in green) and Pt − Pu = 0 (in red). (a) When vT = 0 (i.e., no incentive to trustworthy trustees), all trajectories converge
to a lower part of the edge yi = 0, and investment (i.e., trust) does not evolve. (b) When 0 < vT < v∗

T , an interior equilibrium point emerges and moves,
with increasing vT , from yi = 0 toward yi = 1. (c) When vT = v∗

T , the interior equilibrium disappears and all trajectories converge to an upper part of the
edge yi = 1. (d) When vT > v∗

T , all trajectories converge to (1, 1), i.e., the state of full trust and full trustworthiness. The nonlinearity in the payoff function
yields a stable interior equilibrium with trajectories spiraling into it or an unstable interior equilibrium with trajectories spiraling out of it. These dynamics
are qualitatively different from those in the case of the linear payoff function (i.e., a neutrally stable interior equilibrium with periodic trajectories around it).

J12 =
(1 − yi)

(
r
{[

(w − 1)yi + 1
]NI − 1

}
+ NI(w − 1)yi

)

NI(w − 1)

(17)

J21 = NI(r − 1)(1 − yt)yt
[
(w − 1)yi + 1

]NI−1

NT
(18)

J22 =
(2yt − 1)(r − 1)

{
1 − [

(w − 1)yi + 1
]NI
}

NT(w − 1)

− (2yt − 1)vT . (19)

If any of the two eigenvalues is positive, the equilibrium
is unstable. Otherwise, the equilibrium is stable; trajectories
starting close enough to the equilibrium remain close enough.
Especially, the equilibrium is asymptotically stable if and only
if all the eigenvalues are negative; in this case, trajectories
starting close enough to the equilibrium converge to it [34].
Note that (13), (14) (16), (17), and (19) are also valid for
w = 1 with the use of L’Hopital’s rule.

III. RESULTS

In this section, we characterize the equilibria, their stabil-
ity, and trajectories of the dynamical system given by (13)
and (14), of which the state space is {(yi, yt) ∈ [0, 1]2}. Note
that (13) and (14) imply that (0, 0), (0, 1), (1, 0), and (1, 1)

are always equilibria. For proof of the stability of these and
the other equilibria, see Appendix-B.

A. vT = 0

For vT = 0, the edge yi = 0 of the state space is a
line of equilibria. For vT = 0 ∧ 0 ≤ vI < 1, the part of
the edge satisfying 0 ≤ yt < [(1 − vI)/(r + 1)], including
the origin, (yi, yt) = (0, 0), is stable but not asymptoti-
cally stable [Fig. 2(a)]. The points on the line satisfying
[(1 − vI)/(r + 1)] < yt ≤ 1, including (0, 1), as well as (1, 0)

and (1, 1), are unstable equilibria. As Fig. 2(a) indicates, any
trajectory is eventually attracted to one of the stable equilibria.
This evolutionary outcome is qualitatively the same as that of
the two-player TG and it is so irrespectively of the nonlinear-
ity w in the payoff function (e.g., for any of w ∈ {0.6, 1, 1.4}).
With the special case of vT = 0 ∧ vI = 0 ∧ w = 1, we obtain
a baseline model, which is an N-player generalization of the
two-player TG without any other mechanism.

For vT = 0 ∧ vI > 1, the equilibrium (1, 0) is not
only asymptotically stable but also globally convergent (i.e.,
reached from any initial state). The equilibria (0, 0), (0, 1),
(1, 1), and yi = 0 are unstable.

B. 0 < vT < v∗
T

For 0 < vT < v∗
T ≡ ([(1 − r)(wNI − 1)]/[NT(w − 1)])∧0 ≤

vI < 1, an interior equilibrium

Q =
(

d1/NI − 1

w − 1
,

NI(1 − vI)
(
d1/NI − 1

)

NI
(
d1/NI − 1

)+ (d − 1)r

)

(20)
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emerges, where d = 1 + ([NTvT(w − 1)]/[1 − r]). The
interior equilibrium is at the intersection of the two null-
clines, Pi − Pn = 0 and Pt − Pu = 0 with 0 <

yi < 1 ∧ 0 < yt < 1; see Appendix-B5 for the
proof of the existence of the interior equilibrium. Note that
L’Hopital’s rule implies that v∗

T = ([NI(1 − r)]/NT) and
Q = (NTvT/[NI(1 − r)], [(1 − vI)/(1 + r)]) for w = 1.

The interior equilibrium is asymptotically stable for w < 1,
neutrally stable for w = 1, and unstable for w > 1 [Fig. 2(b)].
The other equilibria are the four corners of the state space, all
of which are unstable. For w = 1, at which all the trajectories
surrounding Q form closed cycles, the time average of (yi, yt)

over each of the cycles is equal to (yi, yt) at Q given by (20);
see Appendix-C for the proof. For w > 1, all the trajectories
converge to the heteroclinic cycle consisting of the four unsta-
ble equilibria, which are saddle points, and the four edges that
connect them; (0, 0) → (0, 1) → (1, 1) → (1, 0) → (0, 0). In
this case, the time average of yi and yt over the heteroclinic
cycle does not converge; see Appendix-D for the proof.

For 0<vT < v∗
T ∧ vI>1, there does not exist any interior

equilibrium. In this case, only the four corners are equilib-
ria. The equilibrium (1, 0) is not only asymptotically stable
but also globally convergent. The equilibria (0, 0), (0, 1), and
(1, 1) are unstable.

C. vT = v∗
T

At vT = v∗
T , a line of equilibria yi = 1 emerges. For

vT = v∗
T ∧ 0 ≤ vI < 1, the part of the line satisfy-

ing ([NI(1 − vI)(w − 1)]/[r(wNI − 1) + NI(w − 1)]) < yt ≤
1, including (yi, yt) = (1, 1), is stable but not asymp-
totically stable [Fig. 2(c)]. The part of the line satisfying
0 ≤ ([NI(1 − vI)(w − 1)]/[r(wNI − 1) + NI(w − 1)]) < yt,
including (1, 0), and the equilibria (0, 0) and (0, 1) are
unstable.

For vT = v∗
T ∧ vI > 1, the whole line of equilibria, includ-

ing (1, 0) and (1, 1), is stable but not asymptotically stable.
The equilibria (0, 0) and (0, 1) are unstable. These results are
qualitatively the same across the different w values.

D. vT > v∗
T

For vT > v∗
T , only the four corners are equilibria. The

equilibrium (1, 1) is not only asymptotically stable but also
globally convergent [Fig. 2(d)]. Note that (1, 1) represents the
fully cooperative populations entirely consisting of investing
investors and trustworthy trustees. All the other equilibria,
namely, (0, 0), (0, 1), and (1, 0), are unstable. These results
hold true independently of the vI ≥ 0 and w values, except
for the dependence of v∗

T on w.
In Fig. 3, we show a schematic summarizing the analysis

so far. It presents the evolutionary dynamics that varies in
a qualitatively different manner depending on the incentive
values vI and vT .

E. Population Average of Payoff and Optimal Incentive

One of our goals for proposing and analyzing the present
NTG is to steer the self-interested players to behave proso-
cially, increase the efficiency of the equilibrium in terms of the

Fig. 3. Schematic summarizing the evolutionary dynamics as a function of
the incentive values vI and vT . On the boundaries of the state space, i.e., the
unit square, we only show the stable equilibria and trajectories flowing into
them. Nongeneric cases (i.e., vT = 0, vT = v∗

T , vI = 0, and vI = 1) are not
shown.

payoff the players gain and do so in a cost-efficient manner.
Therefore, in this section, we analyze the population average
of the payoff given by

P(yi, yt) = NI

NI + NT
PI(yi, yt) + NT

NI + NT
PT(yi, yt)

= −a(w − 1)(NIvI + NTvT) + 1

(w − 1)(NI + NT)
+ NI(vI − 1)

NI + NT
yi

+ NTvT(w − 1) − 2r + 1

(w − 1)(NI + NT)
yt + NI

NI + NT
yiyt

+
[
(2r − 1)yt + 1

][
(w − 1)yi + 1

]NI

(w − 1)(NI + NT)
(21)

after equilibration through the evolutionary dynam-
ics (e.g., stable equilibria). Note (∂P/∂vI) =
−([NI(a − yi)]/[NI + NT ]) < 0 since a > 1 and yi ≤ 1. In
other words, somewhat counterintuitively, the incentive given
to investing investors, vI , harms the overall social welfare
in that the population average of the payoff decreases as
vI increases. Therefore, for any given (yi, yt), one needs to
minimize vI to maximize P(yi, yt).

1) Optimal Payoff at (0, 0): The population average of the
payoff at (0, 0) is given by

P(0, 0) = − aNIvI

NI + NT
. (22)

If (0, 0) is a stable equilibrium (i.e., 0 ≤ vI < 1 ∧ vT = 0),
then P(0, 0) is maximized at vI = 0 ∧ vT = 0.

2) Optimal Payoff at (1, 0): The population average of the
payoff at (1, 0) is

P(1, 0) = NI(−avI + vI − 1)

NI + NT
+

NT

[
1−wNI

NT (1−w)
− avT

]

NI + NT
. (23)

We obtain (∂/∂vT)P(1, 0) = −(aNT/[NI + NT ]) < 0.
Therefore, if (1, 0) is an asymptotically stable equilibrium
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(a) (b)

Fig. 4. Effects of the incentive to trustworthy trustees, vT , and the nonlinear-
ity in the payoff function, w, on the evolutionary outcomes in the NTG. We use
the same parameter values as those used in Fig. 2 except for vT . (a) Fractions
of prosocial players as functions of the reward given to trustworthy trustees,
vT , in the equilibrium. We show the fraction of investing investors, yi, and
the fraction of trustworthy trustees, yt . For w > 1 and 0 < vT < v∗

T , the
time averages of yi and yt do not converge. Therefore, we instead plot the
ranges of asymptotic values of yi and yt by shaded regions. We observe that yi
increases as vT increases when vT < v∗

T . When vT > v∗
T , the full trust yi = 1

and full trustworthiness yt = 1 evolve. (b) Population-averaged payoff, P, as
a function of vT . We observe that P increases as vT increases when vT < v∗

T
and that P decreases as vT increases when vT > v∗

T . Note that the time aver-
age of P converges even if those of yi and yt do not. Panel (a) indicates that
as w increases (i.e., from sublinear to linear to super-linear), the evolution
of trust and trustworthiness becomes more difficult. In other words, a higher
value of vT is necessary for attaining the same fraction of prosocial players
when w is larger. In contrast, panel (b) indicates that the payoff of full trust
and trustworthiness increases as w increases.

(i.e., vI > 1 ∧ 0 ≤ vT < v∗
T ), then P(1, 0) is maximized at

vI = 1 + ε ∧ vT = 0, where 0 < ε 
 1.
3) Optimal Payoff at (1, 1): The population average of the

payoff at (1, 1) is

P(1, 1) = (1 − a)(NIvI + NTvT)

NI + NT
+ 2r

(
wNI − 1

)

(w − 1)(NI + NT)
. (24)

We obtain (∂/∂vT)P(1, 1) = −([(a − 1)NT ]/[NI + NT ]) < 0.
If (1, 1) is an asymptotically stable equilibrium (i.e., vT > v∗

T ),
then P(1, 1) is maximized at vI = 0 ∧ vT = v∗

T + ε.
4) Optimal Payoff at Q or on Cycles Around Q: Recall

that there exists a unique interior equilibrium Q for 0 ≤ vI <

1 ∧ 0 < vT < v∗
T . For w < 1, Q is an asymptotically stable

equilibrium and all the trajectories surrounding Q converge to
it. For w = 1, at which all the trajectories surrounding Q form
closed cycles, the time average of the population-mean payoff
over the cycle is the same as the payoff at the equilibrium,
i.e., P(Q); see Appendix-C for the proof. Therefore, seeking
the optimal payoff at Q is sufficient in both cases w < 1
and w = 1. The population average of the payoff at Q is
given by

P(Q) = NTvT − a(1 − r)(NIvI + NTvT)

(1 − r)(NI + NT)
. (25)

Note that P(Q) does not depend on w. We obtain
([∂P(Q)]/∂vT) = ([NT(1 − a + ar)]/[(1 − r)(NI + NT)]) > 0
when r > r∗

0 ≡ (a − 1)/a and ([∂P(Q)]/∂vT) < 0 when
r < r∗

0. Thus, P(Q) is monotonic as a function of vT

[Fig. 4(b)]. For 0 < w ≤ 1, if Q is asymptotically stable
(i.e., w < 1) or neutrally stable (i.e., w = 1), then P(Q) is
maximized at vI = 0 ∧ vT = v∗

T − ε when r > r∗
0 and at

vI = 0 ∧ v∗
T = 0 + ε when r < r∗

0.
For w > 1, the time averages of yi and yt do not converge,

but the time average of the payoff converges to

Phc =
⎡

⎢
⎣

1

(w − 1)
(

(r+1)(NI [1−r]+rNT vT )

NT vT(r[wNI −1]+NI(w−1))
− r

wNI −1

)

− a(NIvI + NTvT)

⎤

⎥
⎦

1

NI + NT
(26)

where Phc is a convex combination of P(0, 0), P(0, 1), P(1, 0)

and P(1, 1) as shown in Appendix-D. Note that (∂Phc/∂vI) =
−(aNI/[NI + NT ]) < 0 and that Phc is monotonic or has a
local maximum as a function of vT , as shown in Appendix-E2.
Therefore, given vI = 0, the maximum of Phc(vT) is either
Phc(0+ε), Phc(vhc

T ) or Phc(v∗
T −ε), where the local maximum

of Phc(vT) is at

vT = vhc
T ≡

{√

aNI
(
1 − r2

)
(w − 1)

[
r
(
wNI − 1

)+ NI(w − 1)
]− aNI

(
1 − r2

)
(w − 1)

}

aNT r(w − 1)
(
wNI − NIw + NI − 1

)

× (
wNI − 1

)
.

5) Comparison of the Optimal Payoff at the Different
Equilibria: We now compare the average payoff at the dif-
ferent equilibria. At each equilibrium, including the case of
neutral and heteroclinic cycles, we denote by P∗ the payoff
maximized with respect to vI and vT . We compare P∗ across
the different equilibria to seek the overall maximum of the
payoff and the associated optimal incentive.

For 0 < w ≤ 1, if r > r∗
1 ≡ ([a − 1]/[a + 1]), then the

optimal payoff among the different equilibria is P∗(1, 1); if
r < r∗

1, then the optimal payoff is P∗(0, 0); the associated
optimal incentives are vI = 0 ∧ vT = v∗

T + ε and vI = 0 ∧
vT = 0, respectively. For w > 1, as NI → ∞ or w → ∞,
if r > r∗

2 ≡ a/(a + 1), then the optimal payoff is P∗(1, 1);
if r < r∗

2, then the optimal payoff is P∗(1, 0); the associated
optimal incentives are vI = 0 ∧ vT = v∗

T + ε and vI = 1 +
ε ∧ vT = 0, respectively. See Appendix-E for the derivation of
the optimal incentives. For relatively small values of w > 1
and NI ≥ 2, the analytical derivation is not feasible and we
instead numerically obtain the optimal incentives. Different
from the case of large NI or w, the incentive yielding the
heteroclinic cycle can realize the optimal payoff (Fig. 5). Note
that the copresence of incentives to investors and trustees (i.e.,
vI > 0 ∧ vT > 0) is never optimal.

In summary, if the productivity of the prosocial strategies, r,
is high enough relative to the fee rate a, the incentive leading
to the full prosociality (i.e., full trust and full trustworthiness)
is optimal. If the productivity is relatively low, the incentive
leading to lower prosociality, including the case of the null
incentive, is optimal.

F. Other Nonlinear Payoff Functions

To test the robustness of the results with respect to details
of nonlinear payoff functions, we numerically examine evo-
lutionary dynamics with nonlinear payoff functions that are
different from but qualitatively similar to those given by (1).
Specifically, we consider log(ki+1)/ log(2) as a sublinear pay-
off function that is qualitatively similar to (1) with 0 < w < 1
and exp(0.7ki) − 1 as a super-linear payoff function that is
qualitatively similar to (1) with w > 1. Fig. 6 indicates that
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Fig. 5. Optimal incentives and associated evolutionary outcomes. Each
colored region shows the parameter region in which the associated stable
equilibrium or the heteroclinic cycle yields the largest population aver-
age of the payoff given by (21). Among the two horizontal dashed lines,
the lower and upper ones indicate r = r∗1 = ([a − 1]/[a + 1]) and
r = r∗2 = (a/[a + 1]), respectively. The dotted curve indicates r(w) =
r∗2 −([aNI(w − 1)]/[(a + 1)(wNI − 1)]), where P∗(1, 1) = P∗(1, 0); note that
r(w) → r∗2 as w increases. The vertical dotted line indicates w = w∗ > 1 that
we obtained by numerically solving P∗(0, 0) = P∗(1, 0). As the fee rate a
increases, the parameter region in which (0, 0) is optimal with the null incen-
tive (in orange) and the region in which the heteroclinic cycle is optimal with
a positive incentive (in red) become larger. As NI or w increases, the border
between the parameter region in which P∗(1, 1) is optimal (in dark green) and
that in which P∗(1, 0) is optimal (in light yellow) converges to r = r∗2 , which
we have analytically derived in the limit NI → ∞ or w → ∞. For a larger
fee rate, a, or a larger size of the investor group, NI , the incentive yielding
full trust and trustworthiness is optimal for a smaller parameter region (i.e.,
the green regions in the figure).

each of these payoff functions yields qualitatively the same
evolutionary dynamics as those obtained with (1).

IV. DISCUSSION

The N-player generalization of a TG game proposed in [27]
assumes that an investor always invests. Therefore, their NTG
is structurally different from both the two-player TG and our
NTG. It may be instead called the trustworthiness game in that
the payoff of the game is entirely determined by the strategy
of a trustee. The ultimatum game (UG) and the dictator game
(DG) already have a parallel to this distinction between the TG
and the trustworthiness game. The UG involves a nonsimulta-
neous interaction on resource split between a proposer and a
responder [35]. The simplest variant of the UG assumes two
options for each role: 1) for a proposer to propose an unfair
split in favor of the proposer or a fair split and 2) for a respon-
der to accept or reject the proposal. If the responder accepts,
both the proposer and responder obtain the proposed payoffs.
If the response rejects, both players get nothing. The DG is

similar to the UG except that a responder has no option other
than to accept any proposal made by the proposer. Hence, the
payoff entirely depends on what a proposer does and thus the
proposer is called a dictator. The DG is related to but struc-
turally different from the UG, and therefore the DG has been
analyzed on its own [36], [37], [38]. In the UG, the reputa-
tion mechanism, which is equivalent to a responder refusing
an unfair split, can lead a proposer to offer a fair one [35].
However, the reputation mechanism cannot work for the DG
since a responder has no option of refusing any split. Our NTG
is of the UG type in that it allows the investor an option not
to invest, which has enabled us to investigate the evolution of
trust as well as trustworthiness.

The evolutionary game dynamics in [27] assumes role-
unaware imitation, which allows imitation between the dif-
ferent roles and leads to the cease of game playing. The
justification of this assumption is unclear. To the best of our
knowledge, this type of game dynamics has not been used prior
to [27], regardless of two-player or N-player games. In fact,
there have been two canonical approaches to modeling the evo-
lutionary dynamics of nonsimultaneous games. One approach
is to assume that each player plays each role half of the time
and imitates others in a role-aware manner [35], [39], [40].
The player’s strategy is then a tuple consisting of the strate-
gies under the different roles (e.g., one as an investor and the
other as a trustee). This symmetrization probably better char-
acterizes scenarios in which each player has multiple roles,
and thus, the payoff of the player is the average of the payoffs
from the different roles. For instance, a bank can lend money
to or borrow money from other banks, playing two roles, as a
lender/investor and a borrower/trustee. By this symmetrization,
one can consider the TG using a single population and the cor-
responding replicator dynamics [30], [40]. The same approach
has also been used for other asymmetric games such as the
UG [35], [40]. Developing and analyzing NTGs with this sym-
metrization method is an open question. A second approach is
to fix the two roles such that players can imitate others in their
own role only [19], [41]. We took this approach to formulate
an asymmetric NTG, which is a faithful generalization of a
previously proposed two-player TG [19]. Then, different from
the previous work allowing the imitation between the differ-
ent roles and hence leading to the extinction of investors [27],
we found that investors do not perish but evolve not to trust
trustees unless an incentive is in place.

The payoff in [27] is a linear function of the number of
investing investors, which is also inherited in its follow-up
studies [31], [32], [33]. With a linear payoff function, any N-
player game is equivalent to a sum of two-player games and
thus the evolutionary outcome of the former is similar to that
of the latter. In N-player games, however, unlike two-player
games, nonlinear payoff functions can yield evolutionary out-
comes that are qualitatively different from those of linear ones.
We have introduced nonlinear payoff functions in the asym-
metric NTG. Even with the nonlinear payoff functions, we
have found that it is more challenging for prosocial behav-
iors to evolve in the asymmetric NTG than in the PGG. The
PGG is one of the most widely studied N-player games [42].
With linear payoff functions, the PGG becomes a dominance
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Fig. 6. Robustness of the evolutionary dynamics with respect to details of nonlinear payoff functions. The parameters are the same as those used in Fig. 2.
The top panels show that a sublinear payoff function log(ki +1)/ log(2) leads to evolutionary dynamics similar to that for (1) with w = 0.7, which is presented
in the top panels in Fig. 2. The bottom panels show that a super-linear payoff function exp(0.7ki) − 1 leads to evolutionary dynamics similar to that for (1)
with w = 1.3, which is presented in the bottom panels in Fig. 2.

game for which anti-social behavior (i.e., defection) dominates
prosocial behavior in terms of the payoff value and hence only
anti-social behavior evolves. With the nonlinear payoff func-
tions of the same form used in this article, the PGG becomes
either a coexistence game or a coordination game for which
prosocial behavior can evolve [4]. Therefore, incentives have
been applied only to the linear PGGs but not the nonlinear
PGGs; see [43] for a review. In the asymmetric NTG with
fixed roles, however, we have found that the nonlinear pay-
off functions are not sufficient for prosocial behavior to evolve
and an additional mechanism, such as an incentive, is required.
We have found that the incentive to trustworthy trustees can
be sufficient for the full prosociality to evolve in both investor
and trustee populations, i.e., the full trust (i.e., investment)
and the full trustworthiness. An intuitive explanation of this
result is as follows. If the fraction of trustworthy trustees is
high enough, the payoff of investing investors is higher than
that of noninvesting ones and thus investing investors evolve.
Hence, if the incentive to trustworthy trustees is large enough
for them to evolve, then it also yields the evolution of investing
investors.

With the nonlinear payoff function given by (1), one can
express the discount (i.e., sublinear) and synergy (i.e., super-
linear) effects by tuning the single parameter w. This payoff
function is advantageous because it allows us to analytically
examine the evolutionary dynamics for arbitrary group sizes
NI and NT . However, our results are not confined to this partic-
ular form of the payoff function. We ran numerical simulations
with different payoff functions to support that our results are
robust with respect to details of the nonlinearity of the payoff
function. We remark that, unlike with (1), different nonlin-
ear payoff functions require separate analyses of evolutionary
dynamics for each combination of the values of NI and NT in
general. Specifically, one needs to numerically find the interior
equilibrium and carry out the linear stability analysis for each
given NI and NT .

Given an investing investor, the two-player TG creates a
social dilemma [19], [27]. The total wealth (i.e., the sum of
the payoffs of an investing investor and a trustee) depends
on the strategy of a trustee. Although a self-interested (i.e.,
untrustworthy) trustee earns higher than a prosocial (i.e.,
trustworthy) trustee does, the former leads to a lower total
wealth (= 0) than the latter does (= 2r) [Fig. 1(a)]. Our
NTG preserves the nature of a social dilemma. For a lin-
ear payoff function, given the number of investing investors,
ki, if all trustees in a group are self-interested, they earn
more than any prosocial trustees would. However, the for-
mer leads to a lower total wealth (= 0) than the latter does
(= 2rki).

Most previous studies on institutional incentives have
focused on which incentives promote prosocial behaviors the
best [33], [44], [45]. However, a better criterion for the suc-
cess of an incentive may be the population average of payoff
at the evolutionarily stable state [46]. Thus, we have sought
the optimal incentive that yields the highest payoff, taking into
consideration the operating cost of managing incentives. We
have found that the incentive leading to the most prosocial
behavior (i.e., full trust and full trustworthiness) often yields
the highest payoff but not always. When the productivity of the
prosocial behaviors is not high enough, the incentive leading
to less prosocial behaviors (e.g., the combination of full trust
and null trustworthiness) can yield the highest payoff; even
the null incentive leading to null trust and null trustworthiness
can be optimal when the operating cost of managing incentives
outweighs the benefits from prosocial behaviors. A limitation
of our incentive scheme is to have assumed that an incentive
is tailored to individual players while the game is played in
groups. Although this type of the individually targeted incen-
tive is widely used for N-player games [6], [45], [47], [48], it
may be less feasible than it is for two-player games, in which
actions of the individual players are more easily identified than
in N-player games. Relaxing this assumption is worthwhile
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investigation. For instance, a diluted incentive scheme, which
provides an incentive to a group, may be more feasible for
N-player games. In such an incentive scheme, all individuals
in a group receive the same incentive by construction, and
whether a group receives an incentive is determined based on
aggregated information such as the proportion of trustworthy
trustees in the group.

In summary, we started by noting that the N-player TG
in [27] is structurally different from the TG and proposed an
asymmetric N-player TG with two fixed roles. With this setup,
it is more challenging for prosocial strategies to evolve than
in the celebrated PGG. Nonetheless, we showed that incen-
tives provided to trustees can cost-effectively promote the
evolution of trust and trustworthiness among self-interested
players. We also showed that nonlinear payoff functions in
the N-player TG yield a richer set of evolutionary dynam-
ics and the associated optimal incentives than linear payoff
functions. We hope that our contribution paves the way
for further studies of N-player TGs and their variations,
such as the symmetrization of asymmetric N-player TGs,
the impacts of structured populations [49], [50], repeated
interactions on the evolution of trust/trustworthiness, and
stochastic evolutionary dynamics in finite populations. There
can be different generalizations of the two-player TG each
of which recovers the two-player TG when NI = NT = 1;
such generalizations are interesting to explore. Applications
of N-player TGs are also worthwhile seeking; for instance,
multihop relay in wireless sensors or ad hoc networks
could be mapped to an N-player TG among self-interested
nodes [51], [52].

APPENDIX

A. Derivation of (9)

We obtain
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where we have assumed that yi �= 0 and used the expres-
sion of the mean of a binomial distribution
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. To show the last equality in (27), with substitu-

tion ki ≡ mi + 1, we used

NI−1∑

mi=0

(
NI

mi + 1

)

ymi
i (1 − yi)

NI−1−mi
(

1 − wmi+1
)

=
NI∑

ki=1

(
NI

ki

)

yki−1
i (1 − yi)

NI−ki
(

1 − wki
)

= 1

yi

NI∑

ki=1

(
NI

ki

)

yki
i (1 − yi)

NI−ki
(

1 − wki
)

= 1

yi

⎡

⎣
NI∑

ki=0

(
NI

ki

)

yki
i (1 − yi)

NI−ki
(

1 − wki
)

−
(

NI

0

)

y0
i (1 − yi)

NI
(

1 − w0
)
⎤

⎦

= 1

yi

⎡

⎣
NI∑

ki=0

(
NI

ki

)

yki
i (1 − yi)

NI−ki
(

1 − wki
)
⎤

⎦

= 1

yi

⎡

⎣(yi + 1 − yi)
NI −

NI∑

ki=0

(
NI

ki

)

yki
i (1 − yi)

NI−kiwki

⎤

⎦

= 1

yi

⎡

⎣1 −
NI∑

ki=0

(
NI

ki

)

(wyi)
ki(1 − yi)

NI−ki

⎤

⎦

= 1

yi

[
1 − (wyi + 1 − yi)

NI
]

= 1

yi

[
1 − (1 + (w − 1)yi)

NI
]
. (28)

We have Pi = Po
i + vI − avI , where Po

i is given by (27). We
can similarly derive Pt and Pu.

B. Existence and Stability of the Equilibria

One can deduce the signs of the two eigenvalues λ1 and
λ2 of the Jacobian matrix, J, at an equilibrium by its deter-
minant and trace, which are equal to λ1λ2 and λ1 + λ2,
respectively. We denote by Det|y and Tr|y the determinant and
trace, respectively, of J evaluated at y ∈ [0, 1]2. Especially, the
asymptotical stability of an equilibrium requires λ1 < 0 and
λ2 < 0, which lead to Det|y > 0 and Tr|y < 0. We determine
the stability of each equilibrium as follows.
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1) (0, 0): The Jacobian matrix at (yi, yt) = (0, 0) is
given by

J(0,0) =
(

vI − 1 0
0 vT

)

. (29)

We obtain

Det|(0,0) = (vI − 1)vT (30)

and

Tr|(0,0) = vI + vT − 1. (31)

If 0 ≤ vI < 1 ∧ vT = 0, then Det|(0,0) = 0 ∧ Tr|(0,0) < 0 such
that (0, 0) is stable but not asymptotically stable. Otherwise,
(0, 0) is unstable.

2) (0, 1): The Jacobian at (0, 1) is given by

J(0,1) =
(

r + vI 0
0 −vT

)

. (32)

We obtain

Det|(0,1) = −vT(r + vI) (33)

and

Tr|(0,1) = r + vI − vT . (34)

If vT = 0, then Det|(0,1) = 0 ∧ Tr|(0,1) > 0 such that (0, 1)

is unstable. If vT > 0, then Det|(0,1) < 0 such that (0, 1) is
unstable.

3) (1, 0): The Jacobian at (1, 0) is given by

J(1,0) =
(

1 − vI 0

0 vT − (1−r)(wNI −1)
NT (w−1)

)

=
(

1 − vI 0
0 vT − v∗

T

)

. (35)

We obtain

Det|(1,0) = (
vT − v∗

T

)
(1 − vI) (36)

and

Tr|(0,1) = vT − v∗
T + 1 − vI (37)

where

v∗
T = (1 − r)

(
wNI − 1

)

NT(w − 1)
> 0. (38)

If vI > 1∧ vT < v∗
T , then Det|(1,0) > 0∧Tr|(1,0) < 0 such that

(1, 0) is asymptotically stable. If (vI > 1 ∧ vT = v∗
T) ∨ (vI =

1 ∧ vT < v∗
T), then Det|(1,0) = 0 ∧ Tr|(1,0) < 0 such that

(1, 0) is stable but not asymptotically stable. Otherwise, (1, 0)

is unstable.

4) (1, 1): The Jacobian at (1, 1) is given by

J(1,1) =
⎛
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− r(wNI −1)
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0
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We obtain

Det|(1,1) = (
vT − v∗

T

)
[

vI + NTrv∗
T

NI(1 − r)

]

(40)

and

Tr|(1,1) =
[

1 − NTr

NI(1 − r)

]

v∗
T − vI − vT . (41)

We obtain sign(Det|(1,1)) = sign(vT − v∗
T) since vI +

(NTrv∗
T/[NI(1 − r)]) > 0, which is guaranteed by 0 < r < 1,

vI ≥ 0 and v∗
T > 0. If vT > [1−(NTr/[NI(1 − r)])]v∗

T−vI , then
Tr|(1,1) < 0. We also note [1 − (NTr/[NI(1 − r)])]v∗

T − vI ≤
[1 − (NTr/[NI(1 − r)])]v∗

T < v∗
T . Therefore, if vT > v∗

T , then
Det|(1,1) > 0 ∧ Tr|(1,1) < 0 such that (1, 1) is asymptotically
stable.

If vT = v∗
T , then Det|(1,1) = 0 ∧ Tr|(1,1) < 0. Therefore,

(1, 1) is stable but not asymptotically stable.
If vT < v∗

T , then Det|(1,1) < 0. Therefore, (1, 1) is unstable.
5) Interior Equilibrium Q : We show that there exists a

unique interior equilibrium Q if and only if 0 < vT < v∗
T =

([(1 − r)(wNI − 1)]/[NT(w − 1)]) and vI < 1. The internal
equilibrium, if it exists, is located at the intersection of the
nullclines Pt(yi, yt)−Pu(yi, yt) = 0 and Pi(yi, yt)−Pn(yi, yt) =
0 with 0 < yi < 1 ∧ 0 < yt < 1. Let us investigate the two
nullclines one by one.

Because Pt − Pu = ([(1 − r){1 − [(w − 1)yi + 1]NI }] /
[NT(w − 1)]) + vT does not depend on yt, the nullcline
Pt − Pu = 0 is of the form yi = constant. Specifically,
Pt − Pu = 0 leads to yi = yi,Q ≡ (d1/NI − 1)/(w − 1), where
d = 1 + ([NTvT(w − 1)]/[1 − r]). We obtain (d/dyi)[Pt −
Pu] = −([NI(1 − r)[(w − 1)yi + 1]NI−1]/NT) < 0. Therefore,
if and only if 0 < vT < v∗

T , then Pt(0, yt)−Pu(0, yt) = vT > 0
and Pt(1, yt)− Pu(1, yt) = vT − v∗

T < 0 such that the nullcline
Pt − Pu = 0 (i.e., yi = yi,Q) exists with 0 < yi,Q < 1.

To examine the other nullcline, we look into Pi − Pn =
([ryt{1 − [1 + (w − 1)yi]NI }]/[NI(1 − w)yi]) + yt − 1 + vI . In
fact, (∂/∂yt)[Pi − Pn] > 0 and Pi(yi, 1) − Pn(yi, 1) > 0 hold
true for 0 < yi < 1, which we will show later. Therefore, if and
only if vI < 1, then Pi(yi, 0)−Pn(yi, 0) = vI −1 < 0 such that
the nullcline Pi − Pn = 0 exists in the range 0 < yt < 1. Note
that the nullcline Pi −Pn = 0 can be represented by yt = g(yi)

because there exists a unique yt satisfying Pi − Pn = 0 for
any yi.

We now show (∂/∂yt)[Pi − Pn] =
([r{1 − [1 + (w − 1)yi]NI }]/[NI(1 − w)yi]) + 1 > 0 for
0 < yi < 1. If 0 < w < 1, then we obtain 0 < 1+(w−1)yi < 1
such that 1 − [1 + (w − 1)yi]NI and 1 − w are both positive. If
w > 1, then 1 < 1 + (w − 1)yi such that 1 − [1 + (w − 1)yi]NI

and 1−w are both negative. If w = 1, then (∂/∂yt)[Pi −Pn] =
([limw→1 r{1 − [1 + (w − 1)yi]NI }]/[limw→1 NI(1 − w)yi]) +
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1 = r+1 > 0. Therefore, we have proved (∂/∂yt)[Pi−Pn] > 0
for any w.

We now show Pi(yi, 1) − Pn(yi, 1) > 0. If w �= 1, then we
obtain Pi(yi, 1)−Pn(yi, 1) = ([r{1−[1+(w−1)yi]NI }]/[NI(1−
w)yi])+vI > 0. If w = 1, then we obtain Pi(yi, 1)−Pn(yi, 1) =
([ limw→1 r{1−[1+(w−1)yi]NI }]/[ limw→1 NI(1−w)yi])+vI =
r + vI > 0. Therefore, Pi(yi, 1) − Pn(yi, 1) > 0 holds true for
any w.

Finally, these results imply that there is a unique intersection
of yi = yi,Q and yt = g(yi) satisfying 0 < yi < 1∧0 < yt < 1,
which is an interior equilibrium Q.

We now analyze the stability of the interior equilibrium Q.
The Jacobian at Q is given by

JQ =
(

JQ
11 JQ

12
JQ

21 0

)

(42)

where

JQ
11 = NIwd − d1/NI {d[(NI − 1)w + NI] + w} + [d(NI − 1) + 1]d2/NI

(w − 1)
{
d1/NI [NI − (d − 1)r] − NId2/NI

}

× r(1 − vI)

JQ
12 = −

{
NId1/NI + [(d − 1)r − NI]

}(
d1/NI − w

)

NI(w − 1)2

and

JQ
21 = −d1−1/NI

(
d1/NI − 1

){
NIvId1/NI + [(d − 1)r − NIvI]

}

NT
{
NId1/NI + [(d − 1)r − NI]

}2

× N2
I (r − 1)(vI − 1).

We first show Det|Q > 0 and sign(Tr|Q) = sign(w − 1).
For w �= 1, we have Det|Q = (vI − 1)NI(1 −

r)d1−1/NI ([(d1/NI − 1)(d1/NI − w)[NIvI(d1/NI − 1) + (d −
1)r]] / [NT(w − 1)2[NI(d1/NI − 1) + (d − 1)r]]). We note that
([NIvI(d1/NI − 1) + (d − 1)r]/[NI(d1/NI − 1) + (d − 1)r])
is positive because sign(d − 1) = sign(d1/NI − 1). Since
0 < vT < v∗

T = ([(1 − r)(wNI − 1)]/[NT(w − 1)]) for
the existence of the interior equilibrium, we have d = 1 +
([NTvT(w − 1)]/[1 − r]) = 1 + s(wNI − 1), where vT = sv∗

T
and 0 < s < 1. Therefore, we obtain wNI − d = (1 − s)(wNI −
1) =⇒ sign(wNI −d) = sign(wNI −1) =⇒ sign(w−d1/NI ) =
sign(w − 1) =⇒ (w < d1/NI < 1) ∨ (1 < d1/NI < w) =⇒
(d1/NI −1)(d1/NI −w) < 0 =⇒ sign((d1/NI −1)(d1/NI −w)) =
−1. For d �= 1, we obtain sign(Det|Q) = sign(1 − vI) because
sign(Det|Q) = sign(vI − 1)sign[(d1/NI − 1)(d1/NI − w)] ×
sign([NIvI(d1/NI −1)+ (d−1)r]/[NI(d1/NI −1)+ (d−1)r]) =
(−1) · (−1) · 1 = 1. Recall that 0 ≤ vI < 1 is required
for the existence of Q. For w = 1, we obtain Det|Q =
([(1 − vI)vT(r + vI)[NI(1 − r) − NTvT ]]/[NI(1 − r2)]) > 0
since 0 < vT < v∗

T = ([ limw→1(1 − r)(wNI −
1)]/[ limw→1 NT(w − 1)]) = ([NI(1 − r)]/NT) is required for
the existence of Q. Hence, we have shown Det|Q > 0 or
sign(Det|Q) = 1 regardless of the w value.

For w �= 1, we obtain

Tr|Q = r(1 − vI)d−1/NI
{
d1/NI [(d(NI − 1) + 1] − dNI

}

NI
(
d1/NI − 1

)+ (d − 1)r

w − d1/NI

w − 1
.

We obtain ([sign(w − d1/NI )]/[sign(w − 1)]) = 1 since
sign(w − d1/NI ) = sign(w − 1) as already shown. For d �= 1,

we have q(d) ≡ d1/NI [d(NI − 1) + 1] − dNI > 0 since
q(1) = 0 is the global minimum of q(d) for d > 0, the lat-
ter of which can be shown as follows. First, q(1) is a local
minimum of q(d) since (∂q/∂d)|d=1 = {([d1/NI−1[d(N2

I −
1) + 1]]/NI) − NI}|d=1 = 0 and (∂2q/∂d2)|d=1 = ([(NI −
1)d1/NI−2(dNI +d −1)]/N2

I )|d=1 = (NI − 1)/NI > 0. Second,
d = d∗ ≡ 1/(NI + 1) ∈ (0, 1) is the only inflection point
of the function q(d) for d > 0 since (∂2q/∂d2) < 0 for
d < d∗, (∂2q/∂d2) = 0 at d = d∗, and (∂2q/∂d2) > 0 for
d > d∗. Therefore, there is no local minimum in d ≤ d∗
and at most one local minimum in d > d∗, which is
at d = 1. Third, we obtain q(0) = 0 = q(1). Hence,
q(1) = 0 is the global minimum of q(d) for d > 0. We
obtain sign(NI(d1/NI − 1) + (d − 1)r) = sign(w − 1) since
sign(d1/NI − 1) = sign(d − 1) = sign(w − 1). It follows that

sign
(
Tr|Q

) = sign(1 − vI)
sign

(
d1/NI [(d(NI − 1) + 1] − dNI

)

sign
(
NI
(
d1/NI − 1

)+ (d − 1)r
)

sign
(
w − d1/NI

)

sign(w − 1)
= 1 · 1

sign(w − 1)
· 1 = sign(w − 1).

For w = 1, it holds true that sign(Tr|Q) = 0 because Tr|Q = 0.
Hence, we have shown sign(Tr|Q) = sign(w − 1) regardless
of the w value.

For w < 1, we obtain Det|Q > 0 ∧ Tr|Q < 0 such that
Q is asymptotically stable. For w > 1, we obtain Det|Q >

0 ∧ Tr|Q > 0 such that Q is unstable. For w = 1, we obtain
Det|Q > 0 and Tr|Q = 0. In this case, the discriminant D =
(Tr|Q)2 − 4 Det|Q < 0 and Tr|Q = 0, which implies that the
eigenvalues are purely imaginary. Therefore, Q is neutrally
stable and the trajectories cycle around it.

6) yi = 0: We find that (0, yt), where 0 < yt < 1, is a line
of equilibria if and only if vT = 0. In this case, the Jacobian
at (0, yt) is given by

J(0,yt) =
(

ryt + vI + yt − 1 0
−NI(r−1)(yt−1)yt

NT
0

)

. (43)

We obtain Det|(0,yt) = 0 and Tr|(0,yt) = (r + 1)yt + vI − 1.
If vT = 0 ∧ yt < ([1 − vI]/[r + 1]), then Tr|(0,yt) < 0 such
that (0, yt) is stable but not asymptotically stable. If vT =
0 ∧ yt > (1 − vI)/(r + 1), then Tr|(0,yt) > 0 such that (0, yt)

is unstable.
7) yi = 1: We find that (1, yt), where 0 < yt < 1, is a line

of equilibria if and only if vT = v∗
T . In this case, the Jacobian

at (1, yt) is given by

J(1,yt) =
⎛

⎝
− ryt(wNI −1)

NI(w−1)
− vI − yt + 1 0

−NI(r−1)(yt−1)ytwNI−1

NT
0

⎞

⎠. (44)

We obtain Det|(1,yt) = 0 and Tr|(1,yt) = −([ryt(wNI −
1)]/[NI(w − 1)])− vI − yt + 1. If vT = v∗

T ∧ 0 ≤ vI < 1 ∧ yt >

([NI(1−vI)(w−1)]/[r(wNI −1)+NI(w−1)]), then Tr|(0,yt) < 0
such that (1, yt) is stable but not asymptotically stable, where
0 < ([NI(1 − vI)(w − 1)]/[r(wNI − 1) + NI(w − 1)]) < 1. If
vT = v∗

T ∧0 ≤ vI < 1∧yt < ([NI(1−vI)(w−1)]/[r(wNI −1)+
NI(w − 1)]), then Tr|(0,yt) > 0 such that (1, yt) is unstable. If
vT = v∗

T ∧ vI > 1, then Tr|(0,yt) < 0 such that the entire line
of equilibria is stable.
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8) yt = 0: We find that (yi, 0), where 0 < yi < 1, is a line
of equilibria if and only if vI = 1. In this case, the Jacobian
at (yi, 0) is given by

J(yi,0) =
⎛

⎝
0 − (yi−1)

(
r
(
((w−1)yi+1)NI −1

)+NI(w−1)yi
)

NI(w−1)

0
(r−1)

(

[(w−1)yi+1]NI −1
)

NT (w−1)
+ vT

⎞

⎠.

(45)

We obtain

Det|(yi,0) = 0 (46)

Tr|(yi,0) =
(r − 1)

([
(w − 1)yi + 1

]NI − 1
)

NT(w − 1)
+ vT

(47)

and

∂

∂yi
Tr|(yi,0) = −NI(1 − r)

[
1 + (w − 1)yi

]NI−1

NT
< 0. (48)

If vT = 0, then Tr|(yi,0) > 0 such that (yi, 0) is unstable.
If 0 < vT < v∗

T ∧ yi > ([([NTvT(1 − w)]/[r − 1] + 1)1/NI −
1]/[w − 1]) = (d1/NI −1)/(w − 1), then Tr|(yi,0) < 0 such that
(yi, 0) is stable but not asymptotically stable. If 0 < vT < v∗

T ∧
yi < (d1/NI − 1)/(w − 1), then Tr|(yi,0) > 0 such that (yi, 0) is
unstable. Note that we obtain 0 < (d1/NI −1)/(w − 1) < 1 for
0 < vT < v∗

T . If vT ≥ v∗
T , then Tr|(yi,0) > 0 such that (yi, 0) is

unstable.
9) yt = 1: There is no equilibrium on the edge (yi, 1).

This is because ẏi = (1 − yi)yi([r{1 − [1 + (w −
1)yi]NI }]/[NI(1 − w)yi]) + vI) > 0, which follows from the
combination of ([1 − [1 + (w − 1)yi]NI ]/[1 − w]) > 0 shown
in Appendix-B5 and 0 < yi < 1.

C. Time Average of (yi, yt) and the Payoff Over Cycle for
w = 1

We need to show (yi, yt) = (yi,Q, yt,Q) for w = 1, where
yi = (1/T)

∫ T
0 yidt, yt = (1/T)

∫ T
0 ytdt, T denotes the period

of a cycle and Q = (yi,Q, yt,Q) is given by (20). By dividing
both sides of (13) by yi(1 − yi) > 0 and substituting w = 1,
we obtain (ẏi/[yi(1 − yi)]) = (r/NI + 1)yt − 1 + vI . Averaging
both sides of the equation over time yields 0 = ([r/NI] +
1)yt − 1 + vI since (1/T)

∫ T
0 (ẏi/[yi(1 − yi)])dt = 0, which

follows from yi(0) = yi(T). On the other hand, (20) yields
(r/NI + 1)yt,Q − 1 + vI = 0. Therefore, we obtain yt = yt,Q.
Similarly, we can show yi = yi,Q by starting with dividing
both sides of (14) by yt(1 − yt) > 0.

We need to show (1/T)
∫ T

0 Pdt = P(Q), where P(yi, yt) =
([2rNIyiyt + NIvIyi + NTvTyt − a(NIvI + NTvT)]/[NI + NT ]).
Because we have shown yi = yi,Q and yt = yt,Q above, we
only need to show yiyt = yi yt. To show this, we note that
(1/[yiyt])([d(yiyt)]/dt) = yiyt[(NI(1 − r)/NT) − r − 1] +
yi[(NI(r − 1)/NT) − vI + 1] + yt(r − vT + 1) + vI + vT − 1.
Averaging both sides of the equation over time yields
0 = yiyt([NI(1 − r)/NT ] − r − 1) + yi([NI(r − 1)/NT ] −
vI + 1) + yt(r − vT + 1) + vI + vT − 1 since
(1/T)

∫ T
0 (1/[yiyt])([d(yiyt)]/dt)dt = 0. Therefore, we

use yi = yi,Q = (NTvT/[NI(1 − r)]) and yt = yt,Q =

([1 − vI]/[1 + r]) to obtain yiyt = ([yi(NI(r−1)+NT(1−vI))

+ytNT(r−vT +1)+NT(vI +vT −1)] /[r(NI + NT) − NI + NT ])
= ([NTvT(1 − vI)]/[NI(1 − r)(1 + r)]) = yi yt.

D. Heteroclinic Cycle for w > 1

Assume that w > 1, 0 < vT < v∗
T and 0 ≤ vI < 1.

We first show that the heteroclinic cycle F0 ≡ (0, 0) →
F1 ≡ (0, 1) → F2 ≡ (1, 1) → F3 ≡ (1, 0) → F0
is attracting, i.e., trajectories converge to it. We obtain
λ1|y > 0 and λ2|y < 0, where λ1|y and λ2|y are
eigenvalues of the Jacobian at y ∈ {F0, F1, F2, F3}.
Specifically, we obtain λ1|F0 = vT , λ1|F1 = r + vI ,
λ1|F2 = ([(1 − r)(wNI − 1) − NTvT(w − 1)]/[NT(w − 1)]),
λ1|F3 = 1 − vI , λ2|F0 = −1 + vI , λ2|F1 = −vT ,
λ2|F2 = −([r(wNI − 1) + NIvI(w − 1)]/[NI(w − 1)]) and
λ2|F3 = −([(1 − r)(wNI − 1) − NTvT(w − 1)]/[NT(w − 1)]).
In other words, each y is a saddle point. The heteroclinic
cycle F0 → F1 → F2 → F3 → F0 is attracting since ρ ≡
(−λ2|F0/λ1|F0)(−λ2|F1/λ1|F1)(−λ2|F2/λ1|F2)(−λ2|F3/λ1|F3)= ([r(wNI − 1) + NIvI(w − 1)]/[NI(w − 1)(r + vI)]) > 1,
according to the proof of Lemma 1 of [53].

We show ([r(wNI −1)+NIvI(w−1)] /[NI(w−1)(r+vI)]) > 1
as follows. Using w > 1, we obtain 1+NI(−1+w)−wNI < 0
since (∂/∂w)[1 + NI(−1 + w) − wNI ] = NI(1 − wNI−1) < 0
and [1 + NI(−1 + w) − wNI ]|w=1 = 0. We then obtain
1 + NI(−1 + w) − wNI < 0 ⇐⇒ r(1 + NI(−1 +
w) − wNI ) < 0 ⇐⇒ NIr(w − 1) < r(wNI − 1) ⇐⇒
NIr(w − 1) + NIvI(w − 1) < r(wNI − 1) + NIvI(w − 1) ⇐⇒
([r(wNI − 1) + NIvI(w − 1)]/[NI(w − 1)(r + vI)]) > 1.

The time average (1/T)
∫ T

0 (yi, yt)dt does not converge,
where (yi, yt) = (yi(t), yt(t)) is a trajectory converging to
the heteroclinic cycle. According to [53, Th. 1], instead,
(1/T)

∫ T
0 (yi, yt)dt asymptotically spirals toward the boundary

of a polygon (i.e., a quadrangle) A0A1A2A3, where

Ai ≡ Fi+1 + ρi+2Fi+2 + ρi+2ρi+3Fi+3 + ρi+2ρi+3ρi+4Fi+4

1 + ρi+2 + ρi+2ρi+3 + ρi+2ρi+3ρi+4

ρi ≡ (−λ2|Fi−1/λ1|Fi) and the indices are counted by mod-
ulo 4 (e.g., F4 = F0, ρ5 = ρ1). Because the points Ai, Ai+1

(with i ∈ {1, 2, 3, 4}) and Fi+1 are collinear, (1/T)
∫ T

0 (yi, yt)dt
asymptotically moves on a line from Ai to Ai+1 in the direction
of Fi+1 in each cycle [53].

Although the time averages of yi and yt do not converge,
the time average of the payoff P = (1/T)

∫ T
0 Pdt converges.

According to [53, Lemma 1], the time for which the trajectory
spends near the saddle points Fi asymptotically grows ρ times
larger every cycle, whereas the time required to move from
a neighborhood of one saddle point to that of the next one
changes little. Thus, we can neglect the latter in comparison
with the former. Then, we obtain

P = t0P(F0) + t1P(F1) + t2P(F2) + t3P(F3)

t0 + t1 + t2 + t3

= P(F0) + t1
t0

P(F1) + t2
t0

P(F2) + t3
t0

P(F3)

1 + t1
t0

+ t2
t0

+ t3
t0

= P(F0) + t1
t0

P(F1) + t1
t0

t2
t1

P(F2) + t1
t0

t2
t1

t3
t2

P(F3)

1 + t1
t0

+ t1
t0

t2
t1

+ t1
t0

t2
t1

t3
t2
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= P(F0) + ρ1P(F1) + ρ1ρ2P(F2) + ρ1ρ2ρ3P(F3)

1 + ρ1 + ρ1ρ2 + ρ1ρ2ρ3
(49)

where ti denotes the time for which the trajectory spends in
an arbitrarily small neighborhood of Fi and we have used
(ti+1/ti) = ρi+1 from [53, Lemma 1]. Note that Phc is a convex
combination of P(F0), P(F1), P(F2), and P(F3). By substitut-
ing (21) with (yi, yt) = (0, 0), (0, 1), (1, 0), and (1, 1) in (49),
we obtain

Phc =
⎡

⎢
⎣

1

(w − 1)
{

(r+1)[NI(1−r)+rNT vT ]
NT vT[r(wNI −1)+NI(w−1)] − r

wNI −1

}

− a(NIvI + NTvT)

⎤

⎥
⎦

1

NI + NT
. (50)

E. Optimal Incentives

In this section, we calculate the optimal incentive and payoff
when w ≤ 1 and when (w > 1 ∧ NI → ∞) ∨ (w → ∞).

1) w ≤ 1: To obtain the optimal payoff, we need
to know max{P∗(0, 0), P∗(1, 0), P∗(1, 1), P∗(Q)}. We obtain
P∗(1, 1) − P∗(Q) = ([r(wNI − 1)]/[(NI + NT)(w − 1)]) +
([(a − 1)NT ]/[NINT ])ε > 0. In addition, we have

�P1 ≡ P∗(1, 1) − P∗(1, 0)

= [(a + 1)r − a]
(
wNI − 1

)

(NI + NT)(w − 1)
+ aNI

NI + NT
+ (a − 1)ε

> 0 (51)

for 0 < w ≤ 1 because �P1 is a monotonic func-
tion of w > 0, we have �P1|w=0 = ([a(NI + r − 1) +
r]/[NI + NT ]) + (a − 1)ε > 0, and we have �P1|w=1 =
([(a + 1)rNI]/[NI + NT ]) + (a − 1)ε > 0. Therefore, it
holds true that max{P∗(0, 0), P∗(1, 0), P∗(1, 1), P∗(Q)} =
max{P∗(0, 0), P∗(1, 1)}.

If r > r∗
1 = ([a − 1]/[a + 1]), then

�P2 ≡ P∗(1, 1) − P∗(0, 0)

= (a + 1)r − a + 1

NI + NT

wNI − 1

w − 1
+ (1 − a)ε > 0. (52)

In this case, the optimal payoff is P∗(1, 1), and the correspond-
ing optimal incentive is vI = 0 ∧ vT = v∗

T + ε. If r < r∗
1, then

�P2 < 0. In this case, the optimal payoff is P∗(0, 0), and the
corresponding optimal incentive is vI = 0 ∧ vT = 0.

2) (w > 1 ∧ NI → ∞) ∨ (w → ∞): As NI → ∞, we
obtain

�P1 = P∗(1, 1) − P∗(1, 0) → (a + 1)r − a

NI + NT

wNI − 1

w − 1
.

(53)

The sign of �P1 is determined by that of (a + 1)r − a since
(wNI − 1)/(w − 1) > 0. Therefore, if r > r∗

2 = a/(a + 1),
then P∗(1, 1) > P∗(1, 0), and if r < r∗

2, then P∗(1, 1) <

P∗(1, 0). As NI → ∞, we also obtain

P∗(1, 0) − P
∗
hc → ∞ (54)

where we remind that P
∗
hc denotes the maximum of Phc with

respect to vI and vT . We prove (54) in Appendix-F.
Equations (53) and (54) imply the following. First,

if r > r∗
2, then max{P∗(0, 0), P∗(1, 1), P∗(1, 0), P

∗
hc} =

max{P∗(0, 0), P∗(1, 1)}. Since r > r∗
1, which follows from

r∗
2 > r∗

1, we obtain �P2 = P∗(1, 1) − P∗(0, 0) > 0, which
we showed in (52). Therefore, max{P∗(0, 0), P∗(1, 1)} =
P∗(1, 1); P∗(1, 1) is the optimal payoff, and the associ-
ated optimal incentive is vI = 0 ∧ vT = v∗

T + ε. Second,
if r < r∗

2, then max{P∗(0, 0), P∗(1, 1), P∗(1, 0), P
∗
hc} =

max{P∗(0, 0), P∗(1, 0)}. In this case, we obtain
�P3 ≡ P∗(1, 0) − P∗(0, 0) = 1/(NI + NT)(−NIa +
[1 − wNI ]/[1 − w]) − [(a − 1)NI/(NI + NT)]ε → ∞.
Therefore, P∗(1, 0) is the optimal payoff, and the associated
optimal incentive is vI = 1 + ε ∧ vT = 0.

Finally, when NI is finite and w → ∞, we have the same
outcome via similar calculations.

F. Proof of (54)

To prove (54), we first show that Phc is monotonic or has
a local maximum as a function of vT ∈ (0, v∗

T). Since the
denominator of (∂Phc/∂vT) is (w − 1){NI[(1 − r2)(wNI − 1)−
NTrvT(w−1)]+NTrvT(wNI −1)}2 > 0, the sign of (∂Phc/∂vT)

is determined by that of its numerator, c(vT) ≡ −v2
TN3

Tar2(w−
1)(wNI − NIw + NI − 1)2 + 2vTNIN2

Tar(w − 1)(wNI − 1)(r2 −
1)[(wNI − 1) − NI(w − 1)] + NTNI(1 − r2)(wNI − 1)2[NI(w −
1)(ar2 −a+1)+ r(wNI −1)], which is a quadratic equation of
vT . Of the two real solutions of c(vT) = 0, we consider only
the larger one

vT = vhc
T =

{√

aNI
(
1 − r2

)
(w − 1)

[
r
(
wNI − 1

)+ NI(w − 1)
]− aNI

(
1 − r2

)
(w − 1)

}

aNT r(w − 1)
(
wNI − NIw + NI − 1

)

× (
wNI − 1

)

because the smaller one is guaranteed to be always negative
and vT ≥ 0. Since the coefficient of the quadratic term v2

T
is negative, the sign of c(vT) over the domain (0, v∗

T) can be
entirely positive, entirely negative, or change from positive to
negative just once. In other words, Phc is monotonic or has
a local maximum as a function of vT ∈ (0, v∗

T). The local
maximum of Phc, if it exists, is realized at vT = vhc

T . Because
(∂Phc/∂vI) = −(aNI/[NI + NT ]) < 0 implies that the max-
imum of Phc in terms of vI is realized at vI = 0 regardless
of the value of vT , we conclude that P

∗
hc is equal to either

Phc(0 + ε), Phc(vhc
T ) or Phc(v∗

T − ε).
We obtain

P∗(1, 0) − Phc(0 + ε) = 1 − wNI

(1 − w)(NI + NT)
− aNI

NI + NT

+ [(1 − a)NI + aNT ]

NI + NT
ε

− 1

(w − 1)(NI + NT)
{

(r+1)[NI(1−r)+NT rε]
NTε[r(wNI −1)+NI(w−1)] − r

wNI −1

} → ∞

as NI → ∞ and ε → 0. At vT = vhc
T , we have

P∗(1, 0) − Phc

(
vhc

T

)

=
aN2

I r(w − 1)2 + 2
(
wNI − 1

)√

aNI
(
1 − r2

)
(w − 1)

[
r
(
wNI − 1

)+ NI(w − 1)
]

r(w − 1)(NI + NT )
(
wNI − NIw + NI − 1

)
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+ NI{a[(r − 1)r − 1] − r − 1}(wNI − 1
)

r(NI + NT )
(
wNI − NIw + NI − 1

) + aNI

NI + NT
ε → ∞

as NI → ∞ and ε → 0. Finally, we have

P∗(1, 0) − Phc
(
v∗

T − ε
) = [a(1 − r) + 1]

(
wNI − 1

)

(w − 1)(NI + NT)

− aNI

NI + NT
+ (1 − a)NI − aNT

NI + NT
ε

− 1
(r+1){r[(r−1)wNI +NT wε−NTε−r+1]+NI(r−1)(w−1)}

[r(wNI −1)+NI(w−1)][(r−1)wNI +NT wε−NTε−r+1] − r
wNI −1

× 1

(w − 1)(NI + NT)

which tends to

2
(
wNI − 1

)√

r
(
wNI − 1

)+ NI(w − 1)

r(w − 1)(NI + NT)
(
wNI − NIw + NI − 1

)

×
√

−aNI
(
r2 − 1

)
(w − 1) − aNI[NI(1 − w) + r − 1]

(NI + NT)
(
wNI − NIw + NI − 1

)

+ aNI
(
[(r − 1)r − 1]wNI + 1

)

r(NI + NT)
(
wNI − NIw + NI − 1

)

− NI(r + 1)(wNI − 1)

r(NI + NT)(wNI − NIw + NI − 1)

as ε → 0. As NI → ∞, this quantity tends to
([2w(NI−1/2)

√
aNI(1 − r2)]/[

√
r(NI + NT)]) → ∞. This con-

cludes the proof of (54).
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