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Abstract—Knowledge transfer (KT) plays a key role in mul-
titask optimization. However, most of the existing KT methods
still face two challenges. First, the tasks may commonly have
different dimensionalities (DDs), making the KT between het-
erogeneous search spaces very difficult. Second, the tasks may
have different degrees of similarity in different dimensions, mak-
ing that treating all dimensions with equal importance may
be harmful to the KT process. To address these two chal-
lenges, this article proposes a novel orthogonal transfer (OT)
method that is enabled by a cross-task mapping (CTM) strat-
egy, which can achieve high-quality KT among heterogeneous
tasks. For the first challenge, the CTM strategy maps the global
best individual of one task from its original search space to
the search space of the target task via an optimization process,
which can handle the difference in task dimensionality. For the
second challenge, the OT method is performed on the CTM-
obtained individual and a random individual of the target task
to find the best combination of different dimensions in these
two individuals rather than treating all the dimensions equally,
so as to achieve high-quality KT. To verify the effectiveness of
the proposed OT method and the resulted OT-based multitask
optimization (OTMTO) algorithm, this article not only uses the
existing multitask optimization benchmark but also proposes a
new benchmark test suite named multitask optimization prob-
lems (MTOPs) with DDs. Comprehensive experimental results on
the existing and the proposed benchmarks show that the proposed
OT method and the OTMTO algorithm are very advantageous
in providing high-quality KT and in handling the heterogeneity
of search space in MTOPs compared to the existing competitive
evolutionary multitask optimization (EMTO) algorithms.
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I. INTRODUCTION

EVOLUTIONARY computation (EC), inspired by natural
selection and genetics, is a kind of population-based

approach for solving optimization problems [1], [2]. The
population contains multiple individuals, and each individual
represents a candidate solution to the problem. After random
initialization, the population undergoes the reproduction pro-
cess to produce the offspring of the next generation. Then,
the fitness is evaluated to measure the solution quality of the
individual to help maintain the elite individuals. This pro-
cess is called fitness evaluation (FE). The evolutionary process
executes repeatedly until a stopping criterion is met. EC algo-
rithms have been successfully applied to complex optimization
problems, such as large-scale [3]–[5], dynamic [6], [7],
multimodal [8], [9], multi-/many-objective [10]–[12], expen-
sive [13]–[15], and real-world applications [16]–[20].

Currently, an emerging trend to use EC algorithms to solve
multiple optimization tasks simultaneously, namely, evolution-
ary multitask optimization (EMTO), has developed rapidly in
the EC community [21]. The corresponding problem related to
EMTO is called multitask optimization problem (MTOP). The
basic idea of EMTO is that we seldom handle optimization
problems independently from scratch. In contrast, we can
make use of the problem similarity between the tasks to
facilitate a more efficient search. Herein, a task corresponds
to an optimization problem. In the EMTO search paradigm,
we handle multiple tasks simultaneously and assume that
there is some similarity among these tasks. Therefore, dur-
ing the search process, some information from other similar
tasks can be transferred and reused to improve the solv-
ing performance of the current task. This information-sharing
mechanism between similar tasks is denoted as knowledge
transfer (KT). Currently, many EMTO algorithms have been
proposed based on various KT methods and have shown great
success in improving the search ability on similar optimization
tasks [22]–[24].

Despite the success brought by EMTO algorithms, the
design of effective KT still faces two main challenges, includ-
ing the difference in the task dimensionality and the unequal
importance of different dimensions.

First, for the challenge of the difference in the task dimen-
sionality, the MTOP may contain optimization tasks with
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different dimensionalities [21]. Herein, the MTOP with differ-
ent dimensionalities (DDs) is denoted as MTOP-DD. However,
many of the existing KT methods are based on the unified
solution representation (USR) strategy [22]–[24]. The USR
strategy adds some redundant dimensions to the individuals in
low-dimensional tasks to make different tasks with the same
dimensionality. Then, the KT is implemented in the form of
crossover between these redundant representations of indi-
viduals in different tasks. Therefore, these methods are not
well suited to solve the MTOP-DD since the difference in the
dimensionality between the tasks can lead to negative KT. For
example, when performing KT from a low-dimensional task
to a high-dimensional task, some redundant dimensions will
be added to the individual in the low-dimensional task due
to the USR strategy and will be transferred to the high-
dimensional task. However, these redundant dimensions have
no effect on the fitness calculation in the low-dimensional task,
and their quality is unknown. Therefore, transferring these
redundant dimensions to the high-dimensional task may cause
low-quality or even negative KT.

Second, for the challenge of unequal importance of different
dimensions, it is known that some dimensions of other tasks
contain important information that can be beneficial to the evo-
lutionary search of the current task, while some dimensions are
less important or even contain misleading information. A sim-
ple example is that the two tasks have some similar dimensions
in their global optima, while other dimensions differ greatly. In
this case, it is not reasonable to treat all transferred dimensions
with the same importance.

Besides the above two main challenges, another challenge
in KT is how to make the best use of knowledge between
different dimensions of different tasks because transferring
information across the similar dimensions of different tasks
may be useful. Some KT methods in the literature try to shuf-
fle the dimensions of the tasks to transfer knowledge across
different dimensions [25], [26]. However, if the KT based on
dimension shuffle does not consider the similarity between
different dimensions, it may cause negative transfer by trans-
ferring information between the dimensions that have a large
gap in the search distribution.

To address the above challenges, we propose a novel KT
method named orthogonal transfer (OT) to more efficiently
solve the MTOP, especially for solving the MTOP-DD. Thus,
an OT-based multitask optimization (OTMTO) algorithm is
proposed, which has the following four main features.

First, we propose a cross-task mapping (CTM) strat-
egy to enable the KT between heterogeneous tasks with
DDs. Specifically, by modeling the mapping process as an
optimization problem and solving it by a differential evolu-
tion (DE) algorithm, the global best individual of one task
can be well mapped to the search space of the target task and
the cross-task knowledge can be efficiently transferred to the
target task.

Second, based on the CTM-obtained transferred individual,
the OT method is performed on this individual and a random
individual of the target task. Since these two individuals are
under the same search space (i.e., the search space of the tar-
get task), the negative KT caused by the DDs can be reduced.

Moreover, the OT method adopts the orthogonal experimental
design (OED) method to find the best combination of dimen-
sions between these two individuals (i.e., the CTM-obtained
transferred individual and the randomly selected individual
of the target task). The OED method implicitly learns the
importance of different dimensions. In this way, some use-
ful information of other tasks is transferred to the target task
while the good information of the target task can be preserved.

Third, to make the best use of different dimensions between
different tasks and to avoid negative transfer, a similarity-based
cross-dimension transfer (CDT) method is proposed. The CDT
method is based on the similarity of the search distribution on
the dimensions between the tasks to transfer the knowledge. In
the CDT method, the information of some dimensions in the
source task is transferred to their most similar dimensions in
the target task, which can further improve the quality of KT.

Fourth, the occurrences of the OT and CDT processes are
determined by two probability parameters, respectively, which
are both adaptively adjusted according to the benefit brought
by the OT process and the CDT process, respectively. This
mechanism can adaptively control the intensity of KT brought
by OT and CDT, so as to encourage positive KT.

Therefore, the OT-based OTMTO algorithm is proposed
enabled by the CTM strategy and together with the CDT
method. The CTM and OT can well tackle with the two
main challenges of the current KT methods, i.e., the chal-
lenge of difference in the task dimensionality and the challenge
of unequal importance of different dimensions, respectively,
while the CDT can well tackle with the challenge of making
the best use of knowledge between different dimensions of
different tasks. In the experiments, unlike the existing studies
that are mainly conducted on same dimensional MTOPs, we
verify the advantages of OTMTO not only on the traditional
MTOP benchmark but also on a newly proposed MTOP-DD
benchmark test suite, by comparing it with the baseline and
state-of-the-art algorithms. The experimental results show that
the advantage of the OTMTO algorithm is significant both in
solving traditional MTOP and the proposed MTOP-DD.

The remainder of this article is organized as follows.
Section II briefly introduces the concept and development
of the MTOP, the motivation of this article, and the OED
method. Then, Section III presents the details of the proposed
OTMTO algorithm. Section IV provides the experimental
studies. Finally, Section V gives the concluding remarks of
this article.

II. PRELIMINARY

A. Evolutionary Multitask Optimization

Herein, we give the formulation of the MTOP. Without loss
of generality, we assume that there are K tasks that are all
single-objective minimization problems. We suppose that the
ith task has an objective function fi : Xi → R and the solu-
tion space is Xi ⊆ R

Di, where Di is the dimensionality of
the ith task. Then, an MTOP that contains K tasks can be
formulated as

{
x∗

1, . . . , x∗
K

} = {argmin f1(x1), . . . , argmin fK(xK)}. (1)
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The traditional EC algorithm solves the MTOP in a single-
task manner. That is, the traditional EC algorithm solves one
task in a single run. However, in real-world applications, prob-
lems seldom exist in isolation, and there is some synergy
among the problems of a specific class. Therefore, the key idea
of EMTO is that we can reuse the knowledge learned from
solving a problem to improve the performance of solving other
similar problems. As a result, how to perform KT between
tasks is essential to design an effective EMTO algorithm.

B. Related Work

The proposal of EMTO is inspired by transfer learning
that achieves better learning performance by sharing com-
mon knowledge between similar tasks. Different from transfer
learning, the EMTO paradigm emphasizes the optimization
process using EC algorithms. However, similar considerations
can still be drawn from transfer learning [27] to improve
multitask optimization performance. That is, researchers con-
sider the issues of “what and how to transfer” and “when to
transfer.”

For the first issue of what and how to transfer, researchers
are interested in designing effective KT methods to transfer
common knowledge among tasks. These existing works can
be mainly categorized as single population-based methods and
multipopulation-based methods.

For the single population-based methods, researchers
mainly consider evolving a single population that con-
tains individuals of different tasks and performing KT
between individuals. Multifactorial optimization is one of
the most popular approaches aiming to solve MTOP with
a single population [22]. The corresponding algorithm is
called a multifactorial evolutionary algorithm (MFEA). The
MFEA proposed assortative mating and vertical cultural trans-
mission to enable KT among tasks and showed promising
performance on continuous and discrete MTOPs. Following
MFEA, many studies have been carried out to improve KT
in EMTO. Bali et al. [23] proposed using linearized domain
adaption to improve KT in MFEA by minimizing the distri-
bution gap between two heterogeneous tasks. Zhou et al. [24]
proposed an adaptive KT method that used multiple crossover
operators to transfer knowledge and distinguished the suit-
able KT crossover operator toward the task based on the
information collected during the evolutionary process.

For the multipopulation-based methods, researchers mainly
consider evolving multiple populations for multiple tasks,
respectively, and performing KT between populations based
on the evolutionary information such as the search distribution.
Wu and Tan [25] proposed a multitasking genetic algo-
rithm (MTGA) to minimize the bias of the optima in different
tasks and to enable KT between tasks with DDs by perform-
ing random shuffle on the dimensions. MTGA is a simple
yet efficient EMTO algorithm. However, the random shuffle
on the dimension does not consider the similarity between
dimensions. Feng et al. [28] proposed a multipopulation-based
EMTO algorithm with an explicit autoencoder, which allowed
KT between tasks whose dimensionalities were different.
Zhou et al. [29] proposed using a kernelized autoencoder to

perform a nonlinear mapping between populations to achieve
effective KT between tasks. Li et al. [30] proposed a multi-
population framework that included a new mutation operator
to allow KT between multiple populations. Very recently,
Li et al. [31] found that transferring task-specific knowledge
like the high-quality solutions between tasks was not suffi-
cient and proposed a novel KT method that could transfer
meta-knowledge between populations of the tasks. The meta-
knowledge is the “knowledge (e.g., how to do to obtain the) of
knowledge (e.g., high-quality solution),” which is more gen-
eral to be transferred between various kinds of tasks (e.g.,
high, medium, or low similar).

For the second issue of when to transfer, researchers are
interested in studying in what situations the knowledge should
or should not be transferred. Since the similarity between tasks
is usually not known in advance, performing KT between tasks
may not be always useful. Therefore, an important issue is
to estimate the similarity between tasks and encourage KT
when the tasks are similar. To this aim, Zheng et al. [32]
proposed a self-regulated EMTO algorithm. In their proposed
strategy, when the tasks show some similarity in the search
process, the intensity of the cross-task KT will be enhanced.
Bali et al. [33] proposed MFEA2 with an online parameter
estimation strategy that can estimate the similarity between
tasks, so that can encourage positive KT in suitable time when
the tasks were considered to be similar.

To summarize, a good design of an EMTO algo-
rithm usually considers the issues of “what and how to
transfer” and “when to transfer” simultaneously. In addi-
tion, there are also other studies that focus on different
types of problems by EMTO algorithms, such as many-
task optimization problems [34]–[37], combinatorial prob-
lems [38]–[40], multiobjective problems [41]–[43], computa-
tionally expensive problems [44]–[46], theoretical analysis of
the effectiveness of the EMTO algorithm [47]–[49], and appli-
cations of EMTO algorithms to real-world problems [50]–[53].

C. Motivation

In this article, we also consider both the issues of “what
and how to transfer” and “when to transfer” for the design of
powerful KT. Many of the existing methods perform KT on
the USR of individuals from different tasks. That is, all the
individuals from all tasks are encoded to unified search space,
denoted as U, and the dimensionality of U is DU = max{Di},
i = 1, . . . , K. Note that all dimensions of the individuals from
the ith task are normalized to the value in [0, 1] according to
the lower and upper bound of the solution space of the ith task,
denoted as xmini and xmaxi, respectively. When the individual
from the ith task is evaluated, it should be decoded into the
solution space of the ith task, which is Xi ⊆ R

Di. Suppose
that ui is an individual from the ith task in U, then the first Di

dimensions of ui are decoded as the candidate solution xi for
the ith task. That is, xi = xmini +ui(1 : Di)×(xmaxi −xmini).
However, this KT method may lead to negative KT, which
cannot fully realize the benefits of the synergy between similar
tasks. For example, when performing KT from the ith task to
the jth task in U, where Di < Dj, redundant dimensions of the
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individual of the ith task (i.e., the last (Dj − Di) dimensions)
could be transferred to the individual of the jth task. These
redundant dimensions have no effect on calculating the fitness
of the ith task, which can be poorly optimized. Therefore,
transferring these redundant dimensions can lead to negative
KT. To handle the MTOP-DD, a KT method that works on
the original search spaces of the source and target tasks rather
than the unified search space is needed. To enable such a KT
method, the CTM strategy is proposed.

Moreover, it is known that different dimensions of two
tasks often have different levels of importance and similarity.
Most of the existing crossover-based KT methods use uni-
versal crossover probability to transfer knowledge. Therefore,
some low-quality information (e.g., dimensions with a large
gap in the global optima of the two tasks) of the source task
may also be transferred to the target task. This kind of trivial
crossover can severely break the building blocks and lead to
the deterioration of the performance of EMTO algorithms. To
handle this issue, the OT and CDT methods that are aware of
the importance and similarity of dimensions are proposed.

Furthermore, the issue of “when to transfer” should also be
considered to improve the KT in EMTO algorithms. Motivated
by this, a simple and efficient adaptive control mechanism of
the occurrence of the KT is proposed in this article.

D. Orthogonal Experimental Design

OED is a method for the experimental design of multiple
factors with multiple levels. The objective of the OED is to
find the best combination of the levels associated with differ-
ent factors, and the design corresponding to this combination
can lead to the best performance according to the scientific or
engineering requirement. The OED has enjoyed great success
in many engineering applications [54]. The key idea of OED
is to select representative combinations based on orthogonality
and run experiments on these combinations to determine the
possible best combination. Compared to exhaustive methods,
which run all the possible combinations in exponential order,
the OED requires fewer experiments to predict a high-quality
combination. Hence, the OED is an economic and efficient
experimental design method. Basically, the OED method con-
tains two main components: 1) orthogonal array (OA) and
2) factor analysis. Suppose that there are D factors and that
each factor has two available levels in the experiment. Then,
there are a total of 2D possible experimental settings. To use
the OED method, we obtain the OA by the process proposed
in [55]. The OA is a predefined M × D table, denoted by
LM(2D), where M = 2�log2(D+1)�. Each row in the OA repre-
sents a combination of the level of factors, and each element
in the table is denoted as OAi,j, whose value represents the
selected level of factor j for the ith combination. In this two-
level example, each element OAi,j in the table can have a value
of one or two, and each column of the OA contains an equal
number of one or two. Notably, M is much smaller than 2D

when D is sufficiently large. For details of the construction
process of the OA, refer to Section A in the supplementary
material. Then, we conduct experiments on M combinations
according to the OA and obtain the experimental results of

these combinations. After M experiments of combinations are
conducted, we perform the factor analysis to analyze the level
effects of each factor and build the best combination from the
experimental results. Let fi denote the experimental result of
the ith combination and Sjk denote the effect of the kth level
of the jth factor; then, Sjk is calculated as

Sjk =
∑M

i=1 fi × I
(
OAi,j == k

)

∑M
i=1 I

(
OAi,j == k

) (2)

where I(·) is a function that returns 1 if the condition in paren-
theses is satisfied and 0 otherwise. After all the Sjk values are
calculated, we can derive the predictive best combination by
selecting the level k for each factor j that results in the best Sjk.
Taking the minimization optimization problem as an example,
the jth factor of the derived combination is the level k having
the smallest Sjk.

OED has been widely used in the traditional EC area
(e.g., single-task optimization) to improve search performance.
Leung and Wang [56] proposed using OED to help the pop-
ulation initialization and to improve the crossover operator to
enhance the robustness of the EC algorithm. Ho et al. [57]
proposed using OED to find better combinations of the partial
vectors between the two individuals generated by cognitive
learning and social learning, which could deal with high-
dimensional optimization problems. Zhan et al. [55] proposed
an orthogonal learning particle swarm optimization (OLPSO)
algorithm, which used OED to construct a better guiding
exemplar from the global best individual and the personal best
individual to solve the complex single-objective optimization
in a single-task manner and achieved encouraging results.
Later, the orthogonal learning strategy has become a promising
approach for enhancing the global search ability of various EC
algorithms [58], [59]. However, most of the researches adopt
the OED to improve the search performance for single-task
optimization. To the best of our knowledge, no research atten-
tion has been given to using OED to perform cross-task KT in
multitask optimization. Inspired by the success of the OED in
improving single-task optimization performance, we propose
a novel OT method to transfer knowledge between tasks to
benefit the search process.

III. OTMTO

In this section, the multipopulation framework for solving
MTOP-DD is first introduced. Afterward, the CTM strategy
operating on the original search space is introduced, followed
by the details of the OT method. Then, the CDT method that
further exploits the similarity between the global optima of
the tasks is presented. Then, the complete OTMTO algorithm
is given, followed by the time complexity analysis.

A. Multipopulation Framework

Since the proposal of the MFEA that tries to utilize the
implicit parallelism of the EC algorithms to solve the MTOP
with a single population, many studies have followed up
on this work, and many improved versions of MFEA have
been proposed. Despite the rationality of MFEA and its vari-
ants, this single population-based search paradigm still faces
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three limitations. First, the scalability from multitask to many-
task optimization is restricted, as discussed in [34]. When
the number of tasks becomes larger (e.g., more than three),
the MFEA becomes less effective. This is due to that the
MFEA rarely considers the similarity between the source and
target tasks, and some source tasks that differ greatly from the
target task can lead to negative KT on the target task. Second,
the MFEA performs crossover-based KT on the USR of the
individuals between tasks. As mentioned in Section II-A, this
can lead to negative transfer since the crossover-based KT
may transfer irrelevant dimensions of the source task. Third,
the MFEA adopts the implicit KT. That is, the MFEA uses the
same evolutionary search operators for multiple tasks within
a single population. However, different tasks might require
different search operators, and the implicit KT restricts the
flexibility of the EMTO algorithms.

Therefore, we adopt the multipopulation framework instead
of the single-population framework to address the MTOP-DD
in this article. Specifically, we maintain a population for each
task. During the evolutionary process, each population evolves
independently on each task. One of the most salient features
of the multipopulation framework is the allowance of the use
of multiple evolutionary operators [60], [61]. That is, we can
use different EC algorithms or optimization tools to solve
different tasks in different populations while performing KT
between/among them. Since different tasks might require dif-
ferent search mechanisms and different intensities of KT from
other tasks, the multipopulation framework for solving MTOP-
DD is more flexible and general in use. In this article, we
implement the multipopulation framework sequentially. That
is, in every generation, after the population of one task fin-
ishes the evolutionary process, the KT process is carried out.
Note that another advantage of the multipopulation framework
is that it allows for parallel computing implementation.

Although some multipopulation-based EMTO algorithms
have been studied in the literature, our proposed OTMTO
algorithm is different from these algorithms in two aspects.
First, the OTMTO algorithm is flexible because it not only can
handle MTOP with the same dimensionality but also can han-
dle MTOP-DD well. Second, the OTMTO algorithm achieves
more effective KT between tasks by both considering the
importance and similarity of different dimensions.

B. CTM Strategy

In this section, we consider how to map the global best indi-
vidual of the jth task (i.e., the source task), denoted as xgb,j,
from its search space [0, 1]Dj to obtain the mapped global best
individual named xmgb,j that is suitable for the ith task (i.e., the
target task) in the search space [0, 1]Di . The concept of the KT
in optimization originates from the KT in the transfer learning
area [7], [27]. In transfer learning, the goal is to improve the
learning performance of one task by transferring knowledge
from the other task to alleviate the burden of expensive data
labeling. The KT in the transfer learning area has enjoyed
great success. One of the key issues in transfer learning is
domain knowledge alignment, which reduces the bias of the
data distribution in the common knowledge space (e.g., latent

feature space) and matches data from different domains cor-
rectly. Following the idea of domain knowledge alignment,
we propose to formulate the CTM process as an optimization
problem that aims to minimize the gap between the hypothe-
ses of the target task i and the source task j, denoted as Ht and
Hs. A hypothesis H (i.e., H : X→Y) is a mapping from search
space X to objective space Y. In the following, the optimization
model in the CTM strategy is introduced in Section III-B1).
Then, the design principle of hypothesis alignment and the
connection of the optimization model to machine learning are
explained and revealed in Section III-B2).

1) Optimization Model: We denote the population for the
ith task (i.e., target task) as popi and the kth individual in
popi as popk,i, and the sizes of all populations are the same
which are denoted as ps. Similarly, the kth individual for the
jth task is popk,j. First, the individuals of two populations are,
respectively, sorted from best to worst. We denote the number
of best individuals of the two populations selected to construct
the mapping as nb. Then, an nb-dimensional temporary feature
vector tvecj of the jth task is defined, and the kth (1 ≤ k ≤ nb)

dimension of tvecj is the distance between xgb,j and the kth
best individual in popj (i.e., popk,j) as

tveck,j = ∥∥xgb, j − popk,j

∥∥
2
. (3)

Similarly, the nb-dimensional feature vector for the ith task,
denoted as fveci, is also defined, and the kth (1≤k≤nb) dimen-
sion of fveci is the distance between xmap and the kth best
individual in popi (i.e., popk, i) as

fveck,i = ∥∥xmap − popk,i

∥∥
2 (4)

where xmap is a candidate solution vector to be optimized
to approach xmgb,j. Then, we perform a scale transformation
between two populations to obtain the feature vector for the
jth task, denoted as fvecj as

fvecj = tvecj × radi/radj (5)

where radi and radj are the search radii of popi and popj,
respectively. Specifically, radi is calculated as

radi = 1

ps

ps∑

k=1

∥∥popk,i − ctri
∥∥

2 (6)

where ctri denotes the arithmetic mean center of the popi.
The calculation of radj is similar to that of radi. Then, the
optimization model is formulated as

xmgb,j = argmin
xmap∈[0,1]Di

∥∥fvecj − fveci

∥∥
2
. (7)

Once fvecj is calculated, fvecj is fixed through the
optimization process. In contrast, fveci is calculated accord-
ing to the candidate solution xmap. Note that (5) approximates
the scale of the distance metric of the search space [0, 1]Dj

to the search space [0, 1]Di . In this optimization problem, we
directly find a mapped individual xmgb,j in the original search
space of the ith task by considering the information of the
jth task. Hence, the CTM process can be viewed as extract-
ing the knowledge from the source task. If nb equals 1, the
best-mapped individual xmgb,j for this optimization problem
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Fig. 1. Example of the internal fitness calculation for solution xmap (nb = 3).

is xgb,i, which leads to a zero value of ‖fvecj − fveci‖2. To
bring in diversity and provide xmgb,j with better dimensions
for the OT process, we set nb = 5. The fitness of a candidate
solution xmap to be minimized is named internal fitness and
is calculated as

InternalFitness
(
xmap

) =
nb∑

k=1

(
fveck,j − fveck,i

)2
. (8)

An example of the internal fitness calculation process, where
the jth task is a 3-dimensional (3-D) optimization problem and
the ith task is a 2-dimensional (2-D) optimization problem, is
shown in Fig. 1. In this example (nb = 3), to calculate the
fitness of a candidate mapped individual xmap on the right-
hand side of Fig. 1, the best nb individuals of the ith task (i.e.,
target task) and the jth task (i.e., source task) are first selected.
Then, fvecj is calculated according to (3) and (5) while fveci
is calculated according to (4). Finally, InternalFitness(xmap)
is calculated according to (8).

Since the optimization problem can be complex when nb>1,
we use DE/best/1, which is a DE variant with fast conver-
gence ability. The reason for the using DE/best/1 algorithm
is that we aim to locate the optimal or near-optimal solu-
tion as fast as possible. Suppose that the population size for
the internal optimization process is denoted as inps. Then,
we use the best inps individuals from the popi as the initial
internal population, denoted as inpop, instead of uniform ran-
dom initialization in the whole search space. This is because
the individuals in popi tend to have better internal fitness com-
pared to the uniformly sampled ones in the search space.
As a result, the search efficiency is enhanced. The termina-
tion condition is when the number of internal FE, denoted
as INFE, is larger than the predefined maximum number of
FE, denoted as maxINFE. After the termination condition
is met, we output the individual with the best internal fit-
ness as xmgb,j. The details of the CTM process are shown in
Algorithm 1.

2) Explanation for the CTM Mechanism: Recall that the
distance-weighted k-nearest neighbor (kNN) [62] is a canon-
ical algorithm for the classification problem. The learned
classifier H on the data is a hypothesis. The predicted label ỹ
for a solution vector x is

ỹ = H(x) =
∑

xi∈N(x)

wiyi (9)

wi = dist(xi, x)
∑

xi∈N(x) dist(xi, x)
(10)

Algorithm 1: CTM Strategy
Input: Task i (i.e., target task), Task j (i.e., source task),

nb, popi, popj, xgb,j
Output: xmgb,j
Parameter: INFE = 0, maxINFE = 500, inps = 50
Note: xmgb,j ∈ [0, 1]Di and xgb,j ∈ [0, 1]Dj

1 Begin
2 Initialize the population inpop as the inps best

individuals in popi;
3 While INFE < maxINFE
4 Evolve the population for one generation by

using DE/best/1 with the internal fitness function
of Eq. (8);

5 End While
6 Find the best individual xmap with the best internal

fitness in the population inpop and output it as xmgb,j;
7 End

where dist(·, ·) is the distance metric of two vectors, N(x) is a
set containing k nearest neighbors of x according to a distance
metric, and yi (i ∈ {1, . . . , k}) is the label of xi. Note that
N(x) ⊂ X, where X is the whole training dataset.

In the proposed optimization model, the predicted label ỹ
is the predicted rank of the solution x in the population of a
task. Note that there are two learned hypotheses Hs and Ht,
and two training datasets Xs and Xt for the source and the
target tasks, respectively. The two hypotheses aim to correctly
predict the rank of solution x on their corresponding tasks
based on the training data Xs and Xt from the two populations.
Then, minimizing the difference in fvecj and fveci in (8), which
belong to the source task j and the target task i, respectively,
can reduce the difference in weights of the rank prediction
processes [i.e., Hs(xgb,j) and Ht(xmgb,j)] of the two solutions
in (9). In this way, our proposed optimization model in CTM
can be regarded as minimizing the gap between the learned
Hs(x) and Ht(x). The aligned hypotheses are special cases of
kNN when nb = k and Xs contains the best nb solutions in
the populations of the source task while Xt contains the best
nb solutions in the populations of the target task. Thus, by
implicitly aligning the hypothesis of the two tasks, the cross-
task knowledge from the source task can be transferred to help
the search process of the target task.

C. OT Method

The occurrence of the CTM and OT process from the jth
task to the ith task is controlled by a probability parame-
ter, denoted as pOT,i,j. Specifically, if the uniformly generated
random number within [0,1] is less than pOT,i,j, the CTM is
carried out and the OT process is performed. Moreover, the
parameter pOT,i,j is adaptively adjusted according to the ben-
efit brought by the OT process. To achieve KT between tasks,
we perform the OT method based on the original search space
rather than the unified search space. Moreover, to address the
difference in the search range of the decision variables (i.e.,
dimensions) and enable KT, we normalize the dimensions of
the candidate solutions to [0,1] according to the lower and
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upper bounds of the original search space. During evolution,
all the individuals of the ith task and the jth task are encoded
into the search space [0, 1]Di and [0, 1]Dj , respectively. Suppose
that we are going to transfer knowledge from the jth task
to the ith task, where i �= j and 1 ≤ i, j ≤ K. The global
best individual of the jth task is selected as transferred knowl-
edge and denoted as xgb,j, which belongs to the normalized
search spaces [0, 1]Dj . We first execute the CTM process to
map xgb,j of the jth task from the search space [0, 1]Dj to
obtain the mapped individual xmgb,j that belongs to the search
space [0, 1]Di of the target task. Note that Di is not necessarily
equal to Dj. Afterward, OED is performed on xmgb,j and a ran-
domly selected individual from popi, denoted as xrk,i, where
rk ∈ {1, . . . , ps}. Since xmgb,j is constructed according to the
information from the jth task, it can be viewed as cross-task
knowledge.

When performing OED on the two individuals xrk,i and
xmgb,j, a better OT solution, denoted as xOT , is generated to
guide the evolution of the target task i. Specifically, the OED
method aim to obtain a high-quality solution between two
Di-dimensional individuals by discovering the best combina-
tion of their dimensions. Therefore, the OED method works
on a two-level Di-factor experimental design problem. First,
we build an OA LM(2Di) by the process introduced in [55].
Second, M individuals are constructed by selecting the corre-
sponding value from xrk,i or xmgb,j according to the OA. That
is, for the experimental individual xm (1 ≤ m ≤ M), the
kth dimension of xm will be the kth dimension of xgb,i if
OAm,k = 1 or will be the kth dimension of xmgb,j if OAm,k = 2.
Third, M experimental individuals are evaluated on the ith
task, and the best one is denoted as xb. Then, we perform the
factor analysis process and derive a predictive best individ-
ual xp. After the evaluation of xp, the better individual of xb
and xp is set as xOT . Finally, the xOT will be compared with
the xrk,i. If xOT is better than xrk,i, xOT will replace xrk,i in
popi. The reward of this OT process, denoted as rOT , is set
to 1. Otherwise, rOT is set to 0. Inspired by the reinforce-
ment learning technique that uses the accumulated discounted
reward to learn for an optimal behavior policy [63], we design
a parameter update mechanism for pOT,i,j as

pOT,i,j = 0.95 × pOT,i,j + 0.05 × rOT . (11)

In this way, we can adaptively control the intensity of
KT. When the OT method brings in a better transferred indi-
vidual xOT , the pOT,i,j will be increased, and the OT process
will be encouraged. In contrast, the pOT,i,j will be reduced if
the OT process cannot offer any benefits. The complete process
of the OT method is shown in Algorithm 2.

D. CDT Method

To further exploit the similarity between tasks and obtain
knowledge for solving different tasks, we propose the CDT
method, which allows different dimensional knowledge from
one task to transfer to another task. The occurrence of the
CDT process is adaptively controlled by a probability param-
eter pCDT,i,j the same as the OT process. In the CDT process,
from the jth task to the ith task, we calculate the mean and the

Algorithm 2: OT Method
Input: Task i (i.e., target task), Task j (i.e., source task),

Di, popi, xmgb,j
Output: rOT , popi
Note: xrk,i, xmgb,j ∈ [0, 1]Di

1 Begin
2 Generate OA as LM(2Di);
3 Randomly select one individual xrk,i from popi;
4 Make up M solutions by selecting the corresponding

value from xrk,i or xmgb,j according to the OA;
5 Evaluate each solution on ith task and record the best

solution xb;
6 Use factor analysis to derive a predictive solution xp

from the above M fitness;
7 Evaluate the fitness of xp on ith task;
8 Compare xb and xp, select the better one as the xOT;
9 If xOT is better than xrk,i, xOT replaces xrk,i and set

rOT = 1, else set rOT = 0;
10 End

standard deviation of every dimension of popj and popi. The
arithmetical mean center and the standard deviation of the dth
dimension of popi are denoted as ctri,d and stdi,d, respectively.
Herein, we use a Gaussian distribution to describe the distribu-
tion of the dimension d as N (ctri,d, stdi,d). Then, we construct
the transferred individual, denoted as xCDT, one dimension by
one dimension. For the dth (1 ≤ d ≤ Di) dimension of xCDT,
the CDT method will transfer the knowledge from a similar
dimension in the jth task (i.e., the source task). To do this, we
first calculate the similarity simk of the kth dimension of the
jth task to the dth dimension of the ith task as

simk = 1

KL
(N (

ctri,d, stdi,d
)||N (

ctrj,k, stdj,k
)) + ε

(12)

where KL(A||B) refers to the Kullback–Leibler
divergence [64] of two (i.e., A and B) Gaussian distributions
and infinitesimal ε = 1e-6 is used to avoid dividing by zero.
Then, a Dj-dimensional probability vector prs is created for
roulette selection. The kth (1 ≤ k ≤ Dj) dimension of prs is
calculated as

prs,k = simk
∑Dj

k=1 simk

. (13)

Then, a dimension sd in the jth task will be selected in a
roulette scheme according to the probability prs. Afterward,
the dth dimension of the xCDT is randomly generated based
on the Gaussian distribution N (ctrj,sd, stdj,sd). In this way, the
CDT method can perform the information transfer crossing
the similar dimensions between the source task and the target
task for positive KT. After all the dimensions of xCDT are
built, xCDT is evaluated on the ith task (i.e., the target task)
and compared with a randomly selected individual xrk,i from
popi. If xCDT is better than xrk,i, xCDT will replace xrk,i in popi.
The reward of this CDT process denoted as rCDT is set to 1.
Otherwise, rCDT is set to 0. Finally, similar to the update of
pOT,i,j, the parameter pCDT,i,j will be updated by the feedback
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Algorithm 3: CDT Method
Input: Task i (i.e., target task), Task j (i.e., source task),

Di, Dj, popi, popj
Output: rCDT , popi

1 Begin
2 Calculate ctri, stdi of popi and ctrj, stdj of popj;
3 For d in {1, . . . , Di}
4 Calculate the probability vector prs according to

Eq. (12) and Eq. (13);
5 Select a dimension sd from {1, . . . , Dj} according

to the probability vector prs in a roulette selection
scheme;

6 Sample xCDT,d = N (ctrj,sd, stdj,sd);
7 End For
8 Evaluate xCDT and compare it with a randomly

selected individual xrk,i from popi;
9 If xCDT is better than xrk,i, xCDT replaces xrk,i and

set rCDT = 1, else set rCDT = 0;
10 End

of the transfer as

pCDT,i,j = 0.95 × pCDT,i,j + 0.05 × rCDT. (14)

The complete process of the CDT method is shown in
Algorithm 3. Unlike the existing methods, we adopt a roulette
selection to select the dimension of the source task that has
a similar distribution to the current dimension of the target
task. In this way, the CDT method can exploit the similarity
between the global optima of the tasks.

E. Complete Algorithm

This section describes the complete procedure of the
OTMTO algorithm. The details of the complete algorithm
are shown in Algorithm 4. First, we initialize the popula-
tion that is uniformly sampled from the normalized search
space of every task. Then, the populations of the tasks undergo
the evolutionary process one by one. Herein, we use the
DE/rand/1 algorithm as the problem solver for all tasks. After
evolving all the individuals in the population, we perform
the CTM strategy and the OT method to transfer knowledge
between the source task and the target task which are shown
in lines 7–11. Note that rand shown in lines 7 and 12 refers
to a randomly generated number within [0,1]. When perform-
ing KT from other source tasks, we adopt the simple strategy
that randomly chooses one task as the source task, which is
shown in line 6 in Algorithm 4. Next, we perform the CDT
method which is shown in lines 12–15. A generation is finished
when all populations have finished the evolutionary process,
the CTM process, the OT process, and the CDT process. The
OTMTO algorithm iterates until the maximum number of FE
denoted as maxFE is reached. Note that the extra FE caused
by the OT method should also be counted and updated, which
is shown in line 9 in Algorithm 4. Since different tasks might
have DDs, we set maxFE = 1000 × ∑

Di.

Algorithm 4: OTMTO
Input: Task 1, Task 2, . . ., Task K
Output: {xgb,1, xgb,2 . . . , xgb,K}
Parameter: pOT,i,j = pCDT,i,j = 0.5 (i, j ∈ {1, . . . , K}),

FE = 0, maxFE = 1000 × �Di

1 Begin
2 Randomly initialize the population for each task;
3 While FE < maxFE
4 For i in {1, . . . , K}
5 Evolve popi by DE/rand/1 and update FE;
6 Randomly select a source task j(j �= i) in

{1, . . . , K};
7 If rand < pOT,i,j

8 Perform CTM strategy between ith task
and jth task to obtain xmgb,j;
//Algorithm 1

9 Perform OT method between ith task and
jth task to obtain rOT and update FE;
//Algorithm 2

10 Update pOT,i,j with rOT by Eq. (11);
11 End If
12 If rand < pCDT,i,j

13 Perform CDT method between ith task
and jth task to obtain rCDT and update
FE; //Algorithm 3

14 Update pCDT,i,j with rCDT by Eq. (14);
15 End If
16 End For
17 End While
18 End

F. Time Complexity Analysis

The computational cost of OTMTO in a generation comes
from DE for the optimization of the ith task (i = 1, . . . , K),
the INFE caused by an internal DE in the CTM strategy, and
the extra FE caused by the OT method and the CDT method.
The computational cost of the population reproduction process
in DE is ignored since it is small. Since the computational cost
of an internal fitness calculation mainly comes from the square
calculation shown in (4) and (8), the computational cost of the
CTM strategy for the ith task is O(maxINFE · (nb · D + nb)),
where D = max({D1, . . . , DK}). Furthermore, the extra FE
caused by the OT method are O(2�log2(D+1)�) and the extra
FE caused by the CDT method is O(1) for the ith task. In
summary, the worst-case computational cost (i.e., INFE) of
the CTM strategy with K tasks in OTMTO is O(K ·maxINFE ·
(nb · D + nb)). The time complexity of the CTM strategy can
be reduced by reducing maxINFE and nb. The experimental
study in Section IV-D shows that the performance of OTMTO
does not change significantly with different settings of max-
INFE and nb. Moreover, the occurrence of the CTM strategy
is adaptively controlled by pOT according to the reward of the
transfer. The extra FE caused by the OT and the CDT methods
are O(K · (2�log2(D+1)� + 1)). It can be seen that the extra FE
grows linearly with the increase of the dimensionality D when
D is small (e.g., D < 200). When the extra FE caused by the
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OT method has become large, the performance of OTMTO
may be worse. How to improve the scalability of OTMTO
to high-dimensional problems and many-task problems is a
future research direction.

IV. EXPERIMENTAL STUDIES

Experimental tests on the MTOP-DD benchmark are carried
out in this section to validate the effectiveness and efficiency of
the proposed OTMTO algorithm. The performance of OTMTO
will be compared with other existing baseline and state-of-the-
art EMTO algorithms in the literature.

A. Experimental Setting

1) CEC17 Benchmark: To verify the performance of the
proposed OTMTO algorithm, we first run a numerical experi-
ment on the CEC17 multitasking benchmark problems, which
are widely adopted in benchmarking EMTO algorithms. The
CEC17 benchmark includes nine MTOPs, and each problem
contains two single-objective optimization tasks. The single-
objective optimization functions include Sphere, Rosenbrock,
Schwefel, rotated Ackley, rotated Griewank, and rotated
Weierstrass. To rotate the function, the solution should be left
multiplied with an orthogonal matrix before the calculation
of the function value. The problems are divided into three
groups, and in each group, the problems are arranged in the
order from lowest to the highest similarity between the two
tasks. As introduced in [65], to calculate the intertask similar-
ity, 1e6 points are sampled in the unified search space U, and
the ith solution ui is decoded into x1,i and x2,j, corresponding
to the original search space of tasks 1 and task 2, respectively.
Let rank(x1,i) and rank(x2,i) denote the ranks of the ith solu-
tion with respect to tasks 1 and 2. Then, the similarity denoted
as sim, measured as Spearman’s rank correlation coefficient,
is calculated as

sim = cov(rank(x1), rank(x2))

std(rank(x1))std(rank(x2))
. (15)

In particular, the first group includes three MTOPs with
complete intersections. That is, the optimal solutions of the
two tasks are the same in the unified search space. The sec-
ond group includes three MTOPs with partial intersections in
which only a part of the dimensions in the optimal solutions
of the two tasks are the same. The third group contains three
MTOPs with no intersection in which all dimensions are dif-
ferent in the optimal solutions of the two tasks. Note that most
of the problems except problem 6 in the CEC17 benchmark
have the same dimensionality for the two tasks. For detailed
characteristics of these problems, refer to [65].

2) Proposed MTOP-DD Benchmark: Since the existing
benchmark cannot satisfy the demand for testing the
performance of the EMTO algorithm on MTOP-DD, we pro-
pose a benchmark test suite tailored to MTOP-DD, which is
highly configurable. Following the design of CEC17, we con-
sider two kinds of similarity between tasks, i.e., the global
optima similarity and the function landscape similarity. Let
x∗

gb,i and x∗
gb,j be the global optima of the ith task and jth task,

respectively. To measure the relative global optima similarity,

TABLE I
FUNCTIONS USED AND SIMILARITY BETWEEN TASKS FOR THE

PROPOSED MTOP-DD BENCHMARK PROBLEMS WITH

D1 = 30 AND D2 = 40

we denote the number of the same dimensions in x∗
gb,i and

x∗
gb,j as nsdi,j. Then, the global optima similarity for the ith

task relative to the jth task denoted as simgo,i,j, is calculated as

simgo,i,j = nsdi,j

Di
. (16)

Since Di may not be equal to Dj, simgo,i,j is not necessar-
ily equal to simgo,j,i. simgo,i,j reflects the potential benefit for
the ith task by transferring the knowledge from the jth task.
For the function landscape similarity, denoted as simfl,i,j, we
measure it by calculating Spearman’s rank correlation coeffi-
cient according to (15) by sampling 1e6 points in the unified
search space, the same way as [65] does. In particular, the
proposed benchmark includes nine two-task optimization prob-
lems, where the problems can have DDs. They can be divided
into three groups similar to the CEC17 benchmark, with dif-
ferent levels of global optima similarity. In each group, the
problems have different fitness landscape similarities. In our
experiment, we use the settings D1, D2 ∈ {20, 30, 40, 50},
which constitutes 4×4×9 = 144 multitask problems with dif-
ferent task dimensionalities and different functions to achieve
a comprehensive comparison. The detailed data of the bench-
mark, including the rotation matrix and the optima bias, can
be found in the supplementary material. The functions used
in the nine problems and the similarities between tasks of the
MTOP-DD with D1 = 30 and D2 = 40 are shown in Table I
as an example.

3) Compared Algorithms: The KT is the key component of
the EMTO algorithms. An effective KT method can improve
the search performance on multiple tasks compared to single-
task optimization algorithms. Therefore, to validate the advan-
tage brought by the proposed KT method, the OTMTO is com-
pared with the single-objective evolutionary algorithm (SOEA)
proposed in [65], which is a single-task optimization algo-
rithm. Note that the EC algorithm used in SOEA is DE/rand/1,
which is the same as the DE used in the OTMTO algorithm to
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TABLE II
EXPERIMENTAL RESULTS ON THE CEC17 BENCHMARK PROBLEMS

TABLE III
EXPERIMENTAL RESULTS ON THE PROPOSED MTOP-DD BENCHMARK PROBLEMS WITH D1 = 30 AND D2 = 40

reflect the effects of the proposed KT methods. The compared
SOEA using DE is denoted as SODE. To make a comprehen-
sive comparison with OTMTO, we also implement multiple
EMTO algorithms. First, MFEA [22] is regarded as the base-
line EMTO algorithm. MFEA is an EMTO algorithm based
on the USR and uses implicit KT. Next, multiple state-of-the-
art EMTO algorithms are implemented and compared with
the OTMTO algorithm. MFEA2 [33] is the improved ver-
sion of MFEA using an online parameter estimation strategy.
The EMTO algorithm with explicit autoencoder (EMTEA)
proposed in [28] is the compared EMTO algorithm which also
uses multipopulation framework and DE/rand/1 as the base
solver. Since EMTEA and OTMTO use different mapping
methods to facilitate the KT between tasks with heteroge-
neous search space, the comparison can show the advantage
of the proposed CTM strategy and KT methods. Furthermore,
the MTGA [25] is a simple and efficient multipopulation-
based EMTO algorithm. To enable a fair comparison, all the
parameter settings of the compared algorithms are the same
as those in their original papers. For the OTMTO algorithm,
the experimental settings are as follows.

1) Maximum FEs: maxFE = 1000 × ∑
Di.

2) EC Algorithm for Each Task: DE/rand/1, ps = 100,
F = 0.5, Cr = 0.6, mutation scheme = rand/1,
crossover scheme = binary crossover, and selection
scheme = elitism selection.

3) Initial KT Probability: pOT,i,j = pCDT,i,j = 0.5, i �= j,
and i, j∈{1, 2}.

4) EC Algorithm for the CTM Process: DE/best/1,
nb = 5, inps = 50, F = 0.5, Cr = 0.9, muta-
tion scheme = best/1, crossover scheme = binary
crossover, selection scheme = elitism selection, and
maxINFE = 500.

4) Performance Measure: All algorithms terminate and
output the historical best fitness for the two tasks after the
maximum FE is reached in a single run. To reduce the bias

brought by randomness, all algorithms run 20 times indepen-
dently, each time with a different random seed. The mean
values of the best fitness obtained by the EMTO algorithms
over 20 independent runs are used for comparisons. The
Wilcoxon rank-sum test at the significance level of 0.05 is
carried out on the experimental results. Furthermore, to quan-
titatively evaluate the performances of the EMTO algorithms,
the performance metric in the CEC17 [65] is also used to
analyze the experimental results.

B. Results and Comparison

The experimental results of the OTMTO algorithm and
the compared EMTO algorithms on the CEC17 multitask
optimization benchmark problems are shown in Table II. There
are nine two-task optimization problems in total, which add
up to 18 tasks. Note that most of the problems in CEC17 are
MTOPs with the same dimensionalities except problem 6.
The listed results are the mean values over 20 independent
runs. Moreover, the symbols “+”, “=”, and “−” indicate that
the OTMTO algorithm is significantly better than, equal to,
or significantly worse than the compared EMTO algorithms,
respectively. The last row of the table summarizes the total
number of obtained “+”, “=”, and “−” when comparing
the OTMTO algorithm with the compared EMTO algorithms.
First, we observe that OTMTO surpasses the single-task SODE
on almost all tasks, which shows that the proposed EMTO
algorithm gives a positive KT. That is, transferring knowledge
from other tasks can improve the search performance com-
pared to the manner that optimizes the tasks independently.
Moreover, it can be seen that the OTMTO algorithm signif-
icantly outperforms the baseline EMTO algorithm MFEA on
16 tasks while performing significantly worse than MFEA on
only one task. In addition, the OTMTO algorithm outperforms
MFEA2 on 15 tasks. These results show that the OTMTO
algorithm offers great advantages over MFEA and MFEA2,
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Fig. 2. Convergence curves of the competing EMTO algorithms and the
curves of the KT probabilities between the two tasks (i.e., pOT and pCDT )
of OTMTO on the tested problems. (a) Problem 1 of the CEC17 bench-
mark. (b) Problem 5 of the CEC17 benchmark. (c) Problem 2 of the proposed
MTOP-DD benchmark. (d) Problem 7 of the proposed MTOP-DD benchmark.

indicating that the proposed OT method can significantly
improve KT quality. Since the OTMTO algorithm is not the
first to adopt the multipopulation framework, it is compared
to the MTGA and EMTEA algorithms, which also adopt the
multipopulation framework. The comparative results show that
the OTMTO algorithm outperforms the EMTEA algorithm on
most of the tasks. This indicates the advantage of the CTM
strategy and the OT method in performing positive KT com-
pared to the denoising autoencoder. Furthermore, the OTMTO
algorithm is compared to the state-of-the-art EMTO algorithm
MTGA. The results show that OTMTO significantly outper-
forms MTGA on 12 tasks and is worse than MTGA on only
1 task. Hence, OTMTO is generally better than MTGA on the
CEC17 benchmark problems.

Next, we conduct experiments on the proposed MTOP-
DD benchmark that contains 144 multitask problems with
different task dimensionalities. Especially, the results on the
nine proposed benchmark problems with D1 = 30 and
D2 = 40 (i.e., the problems in Table I) are shown in
Table III. The results on the benchmark problems with other
different dimensionality combinations are all presented in
Table S.I to Table S.XV in the supplementary material.
Moreover, the comparative results of comparing the OTMTO
algorithm with other algorithms using the Wilcoxon rank-
sum test on the nine proposed benchmark problems with D1,
D2 ∈ {20, 30, 40, 50} (i.e., totally 4 × 4 = 16 combinations)
are summarized shown in Table S.XVI in the supplementary
material.

As can be observed from Table III, the OTMTO algorithm
can achieve positive KT on most of the MTOP-DDs compared
to the single-task algorithm SODE. Next, the OTMTO algo-
rithm significantly outperforms MFEA, MFEA2, EMTEA, and
MTGA on most of the tasks. This shows great improvement
brought by the CTM strategy and the OT method. Note that
we can observe that the EMTEA perform even worse than
the single-task algorithm SODE on some tasks, such as the
task 2 of problem 3, which indicates the negative KT. This
shows that the existing EMTO algorithms are not well suited
for the MTOP-DD and further validates the contribution of
this article. The effectiveness of the OTMTO algorithm is also
confirmed on the MTOP-DDs with different settings of D1
and D2. From Table S.XVI in the supplementary material,
we can see that the OTMTO algorithm outperforms the com-
pared algorithms on most of the problems. This shows that the
OTMTO algorithm is an effective EMTO algorithm for han-
dling MTOP-DD. Moreover, the quantitative analysis [65] is
provided in Section C in the supplementary material. The con-
clusion in the analysis is that the OTMTO algorithm achieves
the overall best performance among all the EMTO algorithms.

To further show the advantage of OTMTO in search effi-
ciency, the convergence curves of the competing EMTO
algorithms on several tested problems are plotted in Fig. 2.
It can be observed that the OTMTO can obtain good solutions
faster along the search process compared to the state-of-the-art
EMTO algorithms. Moreover, the changing transfer probabili-
ties (i.e., pOT and pCDT ) of the OT and CDT methods along the
search process are also shown in Fig. 2. It can be observed that
the pCDT tends to increase in the early stage and decrease in
the late stage of the optimization process. This indicates that
the CDT method is useful in the early stage to help locate
promising region fast by transferring useful dimensions. Note
that the general trend of pOT is increasing in Fig. 2. This indi-
cates that the CTM strategy together with the OT method can
always provide positive transfer no matter whether the two
tasks of the test problem are with heterogeneous fitness land-
scapes (e.g., problem 5 of the CEC17 benchmark) or with DDs
(e.g., problem 2 of the proposed MTOP-DD benchmark).

Moreover, to testify the scalability of the OTMTO algo-
rithm, we carry out experiments on the three-task optimization
problems. The detailed problem settings and the results are
given in Table S.XIX in the supplementary material. The
results show that our OTMTO algorithm significantly outper-
forms the SODE algorithm and MFEA.

C. Effects of the Components

In this section, we investigate the effects of the components
in the OTMTO algorithm, which are the CTM strategy, the
OT method, and the CDT method.

To validate the effectiveness of the CTM strategy, we
formulate multiple OTMTO variants that perform CTM by
single-layer linearized autoencoder, kernelized autoencoder,
and affine transformation, denoted as OTMTO-LA, OTMTO-
KA, and OTMTO-AT, respectively. These variants differ from
the OTMTO algorithm only in the mapping scheme that maps
xgb,j to xmgb,j. Specifically, for OTMTO-LA, the mapping
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TABLE IV
EXPERIMENTAL RESULTS OF THE OTMTO ALGORITHM AND ITS VARIANTS FOR TESTING THE EFFECTIVENESS OF THE CTM STRATEGY ON THE

PROPOSED MTOP-DD BENCHMARK PROBLEMS WITH D1 = 30 AND D2 = 40

TABLE V
EXPERIMENTAL RESULTS OF THE OTMTO ALGORITHM AND ITS VARIANTS FOR TESTING THE EFFECTIVENESS OF THE OT AND CDT METHODS ON

THE PROPOSED MTOP-DD BENCHMARK PROBLEMS WITH D1 = 30 AND D2 = 40

between tasks is implemented by left multiplying by a trans-
formed matrix calculated in the same way as EMTEA. For
OTMTO-KA, the mapping is achieved by learning a nonlin-
ear polynomial kernel as [29]. For OTMTO-AT, the mapping
is based on an affine transformation as [66]. Note that when
the two tasks have different dimensionality, we pad zeros to
the solutions of the task with lower dimensionality to satisfy
the same dimensionality condition for these mapping meth-
ods. Moreover, an OTMTO variant named OTMTO-ITS1 that
performs intratask sampling rather than CTM is formulated
to investigate the effectiveness of the CTM strategy. That is,
the OTMTO-ITS1 is without CTM and the CTM process is
replaced by sampling an individual from the Gaussian distri-
bution of the population of the target task, while the other
processes including the OED and CDT process remain the
same as the OTMTO algorithm.

To validate the effectiveness of the OT method, we also
formulate two OTMTO variants that perform simulated binary
crossover (SBX) and uniform binary crossover (UBX) to trans-
fer knowledge. They are named OTMTO-SBX and OTMTO-
UBX, respectively. In particular, the crossover operation is
performed on the mapped individual xmgb,j obtained from the
jth task by the CTM strategy and xrk,i for M + 1 times (i.e.,
same extra FEs) to obtain the best transferred individual sim-
ilar to the OT method does. Other components, such as CTM
and CDT remain unchanged in these variants.

To validate the effectiveness of the CDT method, an
OTMTO variant named OTMTO-ITS2 that performs intratask
sampling rather than CDT is formulated. In OTMTO-ITS2, the
CDT process is replaced by sampling an individual from the
Gaussian distribution of the population of the target task and
the rest processes, including the CTM and OED processes
remain the same as the OTMTO algorithm. Moreover, an

OTMTO variant named OTMTO-w/o-CDT where the CDT
process is removed is formulated.

The results of the average final fitness and Wilcoxon rank
sum test over 20 independent runs are shown in Tables IV
and V. From Table IV, we observe that the OTMTO algorithm
generally outperforms the OTMTO variants using other map-
ping methods like the OTMTO-LA, OTMTO-KA, OTMTO-
AT, and OTMTO-ITS1. These results show that the proposed
CTM strategy can obtain better transferred individuals for
the OT process. From Table V, the OTMTO algorithm per-
forms better than OTMTO-SBX and OTMTO-UBX, which
validates the effectiveness of the OT method. Moreover, the
OTMTO algorithm performs better than OTMTO-ITS2 and
OTMTO-w/o-CDT, which validates the effectiveness of the
CDT method.

D. Parameter Sensitivity

In this section, we investigate the sensitivity of the param-
eter setting in the CTM strategy including nb and maxINFE.
In particular, nb controls the quantity of information (num-
ber of top individuals) used to reconstruct the individual in
the mapped search space, and maxINFE controls the num-
ber of internal FE for solving the CTM optimization problem.
We run experiments on problems 1, 4, and 7 of the proposed
MTOP-DD benchmark in Table I. The parameter settings of
OTMTO are nb ∈ {2, 3, 7, 10, 15} and maxINFE ∈ {100, 1000,
2500, 5000}. The experimental results of the average final fit-
ness over 20 independent runs are shown in the form of a
heatmap in Fig. 3. It can be seen that on problem 1 with high
simgo,1,2, the OTMTO algorithm tends to obtain better results
with a higher nb. When the tasks of the problem have medium
or low simgo,1,2 (i.e., problems 4 and 7), the performance of



WU et al.: OT FOR MULTITASK OPTIMIZATION 197

(a) (b) (c)

Fig. 3. Heatmap of performance of the OTMTO algorithm with different parameter settings of nb and maxINFE on the proposed MTOP-DD benchmark
with D1 = 30, D2 = 40. (a) Tasks 1 and 2 in problem 1. (b) Tasks 1 and 2 in problem 4. (c) Tasks 1 and 2 in problem 7.

the OTMTO algorithm deteriorates as nb increases. It seems
that the parameter setting of nb is related to the similarity
of the global optima of the MTOP-DD. For the parameter
maxINFE, it can be observed that the OTMTO tends to obtain
better results with higher maxINFE (e.g., 5000) compared with
the lower maxINFE (e.g., 100) in general. This is because with
more INFE we can solve the CTM optimization problem better
and then obtain a mapped individual with higher quality. Since
the internal optimization process requires extra computational
cost, we use the setting of a relatively small maxINFE = 500,
which includes only ten internal generations for solving the
CTM optimization.

E. Real-World Application Study

To further investigate the performance of the proposed
OTMTO algorithm, a real-world application study is carried
out. The double pole balancing (DPB) problem is a clas-
sic practical application problem for testing the evolutionary
learning system. In the DPB problem, the objective of a task
is formulated as

max
π

R(τ, π) (17)

where R is the accumulated reward of the controller under the
environment of the task, τ is the parameter of the task, and π

denotes the controller. A double pole controlling task can be
identified by the length of the shorter pole ls while the longer
one is fixed to 1.0 m. Herein, τ is represented by ls. For the
controller π , the input contains six variables including the cart
position, the cart velocity, the two rotation angles of the two
poles, and the two angular velocities of the two poles. The out-
put of the controller is the force applied to the cart. We use
a simple three-layer feedforward neural network as the con-
troller π following the existing work [33]. Note that different
hyperparameter settings, such as the number of hidden neu-
rons nhidden in the neural network lead to different controllers
with different number of parameters (i.e., dimensionality). For
example, nhidden = 8 means that π contains 56 weights to be
learned (i.e., 6 inputs × 8 hidden neurons + 8 hidden neurons
× 1 output = 56). Therefore, the dimensionality of such an
optimization task is 56. In our experiment, we formulate five
tasks as follows.

1) T1 : ls = 0.6, nhidden = 8, and dimensionality = 6 ×
8 + 8 × 1 = 56.

2) T2 : ls = 0.65, nhidden = 8, and dimensionality = 6
× 8 + 8 × 1 = 56.

TABLE VI
SUCCESS RATES OF THE OTMTO AND COMPETING ALGORITHMS OVER

50 INDEPENDENT RUNS ON THE TWO-TASK DPB PROBLEMS

3) T3 : ls = 0.7, nhidden = 8, and dimensionality = 6 ×
8 + 8 × 1 = 56.

4) T4 : ls = 0.6, nhidden = 6, and dimensionality = 6 ×
6 + 6 × 1 = 42.

5) T5 : ls = 0.65, nhidden = 6, and dimensionality = 6 ×
6 + 6 × 1 = 42.

For the FE, a solution in OTMTO and other EMTO algo-
rithms is a neural network controller with its weights, and the
fitness of the solution is the time that the cart maintains stabil-
ity by the controller in simulation process. A task is regarded
to be solved (i.e., the algorithm is successful) if the controller
can be optimized to make the cart maintain stability for more
than 30 min in simulated time. Based on the five formulated
tasks, we set up six multitask DPB problems with different
combinations of the tasks to testify the performance of the
EMTO algorithms. The DPB problem instances are denoted
as DPB1, DPB2, . . . , and DPB6, as shown in Table VI, with
each DPB having two tasks. The EMTO algorithms run on
each DPB instance with 50 independent times. The average
success rates over the 50 independent runs of the EMTO algo-
rithms are reported in Table VI. The best results are marked in
boldface. In most cases, our OTMTO is superior to the SODE
and the EMTEA that both use DE as the base solver, not only
on the problems whose tasks are with the same dimensional-
ities but also on those problems whose tasks are with DDs.
The proposed OTMTO also outperforms the state-of-the-art
MTGA on all problems. The results show the effectiveness of
OTMTO on real-world MTOPs in practical application.

To further investigate the time complexity of the OTMTO
algorithm, the running time that the EMTO algorithms need
to obtain the optimal controller is reported in Table S.XX in
the supplementary material. The results in Table S.XX show
that our OTMTO algorithm offers advantage in running time.
This indicates the proposed methods in the OTMTO algorithm
are effective and efficient.
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TABLE VII
SUCCESS RATES OF THE OTMTO AND SINGLE-TASK ALGORITHM OVER

50 INDEPENDENT RUNS ON THE FIVE-TASK DPB PROBLEMS

Moreover, to testify the scalability of the OTMTO algo-
rithm, we take experiments on a five-task DPB problem that
contains all the five tasks T1, T2, T3, T4, and T5. The results
are given in Table VII. It can be seen that our OTMTO still out-
performs the compared SODE algorithm on four tasks, which
shows the positive transfer brought by the proposed methods.

V. CONCLUSION

In this article, we mainly addressed two issues in the design
of effective EMTO algorithms for MTOPs. First, the existing
KT methods are not well suited to the MTOP-DD, which is
quite common in real-world applications. Second, the tasks
in MTOP may have different degrees of similarity in differ-
ent dimensions, and the existing KT methods based on the
crossover operator with universal probability can cause the
negative transfer. To address the above issues, we proposed
the OTMTO algorithm, which includes the CTM strategy and
the OT method. The CTM strategy is carried out before the OT
method to map the individual from a search space to another
search space with DDs. In this way, the OT method can be
carried out on the individuals under the same search space
to find their best combination of dimensions. We showed that
performing the OED process on the CTM-obtained mapped
individual of the source task and a random selected indi-
vidual of the target task is enough to offer a high-quality
KT. Moreover, another advantage of the OT is that it requires
much fewer FE to find the best combination than the exhaus-
tive search. Furthermore, we proposed the CDT method, which
allows the KT between different dimensions of two tasks to
improve the KT quality. We verified the effectiveness and
efficiency of the proposed OTMTO algorithm on both the
commonly used CEC17 MTOP benchmark and the proposed
MTOP-DD benchmark. To testify the effectiveness of the
proposed OTMTO on a real-world problem, experiments on
the DPB application problem were carried out and the results
showed the superiority of OTMTO. In the future, we will
further study how to improve and extend the OTMTO algo-
rithm to solve many-task optimization problems effectively
and efficiently.
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