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Abstract— We consider the problem of max-min fairness for
uplink cell-free massive multiple-input multiple-output (MIMO)
subject to per-user power constraints. The standard framework
for solving the considered problem is to separately solve two
subproblems: the receiver filter coefficient design and the power
control problem. While the former has a closed-form solution,
the latter has been solved using either second-order methods
of high computational complexity or a first-order method that
provides an approximate solution. To deal with these drawbacks
of the existing methods, we propose a mirror prox based method
for the power control problem by equivalently reformulating
it as a convex-concave problem and applying the mirror prox
algorithm to find a saddle point. The simulation results establish
the optimality of the proposed solution and demonstrate that
it is more efficient than the known methods. We also conclude
that for large-scale cell-free massive MIMO, joint optimization of
linear receive combining and power control provides significantly
better user fairness than the power control only scheme in which
receiver coefficients are fixed to unity.

Index Terms— Cell-free massive MIMO, max-min fairness,
power-control, mirror prox method.

I. INTRODUCTION

THE recently evolved form of the massive multiple-input
multiple-output (MIMO) for the beyond fifth generation

(5G) networks is cell-free massive MIMO [1], in which one or
several central processing units (CPUs) control a large number
of low-cost and low-power access points (APs) to serve a large
number of users. The APs and users are distributed in a large
coverage area. Owing to the high array gain, multiplexing gain,
and macro-diversity gain, cell-free massive MIMO offers many
advantages such as high energy efficiency, uniform quality of
service, and flexible and cost-effective deployment [2].

To achieve the above benefits, suitable power allocation
algorithms need to be employed to control the near/far
effect. Since the numbers of APs and users are large, the
resulting power control problems consist of many variables.
Thus, simple and low-complexity solutions to power control
optimization problems for cell-free massive MIMO are of
particular interest. In [1], the problem of maximization of
the minimum uplink rate (a.k.a. max-min fairness) for single-
antenna APs and single-antenna users was solved using a
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bisection algorithm in combination with linear programming
(LP), where maximum-ratio combining (MRC) was considered
at each AP for signal detection. In [3], Bashar et al. solved
this max-min fairness problem by alternatively solving two
subproblems: (i) the receiver coefficient design which is in
fact a generalized eigenvalue problem (EVP), and (ii) the
power control problem which was solved using geometric
programming (GP). A similar alternating optimization (AO)-
based scheme was used in [4] to solve a mixed quality of
service (QoS) problem including the max-min fairness for a
set of users and a fixed QoS for the remaining users. Again,
the power control subproblem was solved using GP. In [5],
Mai et al. employed the zero-forcing (ZF) technique to detect
symbols from multi-antenna users where the power control
problem was solved using the bisection algorithm. A common
feature of all aforementioned studies is the use of LP or
(more complex) GP by means of off-the-shelf convex solvers,
and thus are suitable for small-scale scenarios. In particular,
a low complexity first-order accelerated projected gradient
(APG) algorithm was applied to the max-min fairness problem
following Nesterov’s smoothing technique [6] in both down-
link [7], [8] and uplink [9] channels. However, this method
can only produce an approximate solution whose accuracy is
inversely proportional to the number of users, and hence, is not
suitable for very large numbers of users. This clearly calls for
novel solutions to the power control problem, which are more
computationally efficient than LP or GP methods and more
accurate than the APG method.

In this letter, we consider the max-min fairness problem sub-
ject to the power constraint at each user. We utilize the MRC
technique to detect users’ signals using the channel estimates.
Similar to the known approaches, we also split the considered
problem into two subproblems which are alternately solved.
In particular, for the power control subproblem, we propose a
mirror prox (MP)-based algorithm. To achieve this, we first
reformulate the nonconvex power control problem into an
equivalent convex-concave program and then propose an MP
method [10] to find a saddle point. The proposed method only
requires the first order information of the objective, and thus,
is shown to be much faster than the LP-based and GP-based
methods. Moreover, it outperforms other existing first-order
methods in terms of achievable rate performance.

Notations: Bold lower and upper case letters represent
vectors and matrices. CN (0,K) denotes the multivariate cir-
cularly symmetric complex Gaussian random distribution with
zero mean and co-variance matrix K. XT and XH stand
for the transpose and Hermitian of X, respectively. Notation
ei denotes the i-th column of the identity matrix. ∇f(x)
represents the gradient of f(x). �·� denotes the Euclidean
or �2-norm and | · | is the absolute value of the argument.
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PC(x) denotes the projection of x onto the convex set C, i.e.
PC(x) = arg min

z∈C

∥∥x− z
∥∥.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a cell-free massive MIMO uplink scenario where
L single-antenna users are served by M APs with K antennas
per AP. All APs and users are randomly distributed in a
coverage area. The APs are connected to a CPU via high-
capacity dedicated links. We denote by ζml the large-scale
fading coefficient between the l-th user and the m-th AP,
and h̃ml ∼ CN (0, IK) is the vector of the small-scale fading
coefficient for all antennas at the m-th AP. The channel vector
between the l-th user and the m-th AP is modeled as

hml = ζ
1/2
ml h̃ml. (1)

The length (in symbols) of the uplink training is denoted
by τp. Let ηp be the transmit power of each pilot sym-
bol and φl be the pilot sequence of unit norm transmitted
from user l to the APs. Let ĥml be the minimum mean
square error (MMSE) channel estimate of hml. Then ĥml ∼
CN (0, gmlIK), where [1]

gml � ηpτpζ
2
ml

ηpτp

∑L
i=1 ζmi

∣∣φH
i φl

∣∣2 + 1
. (2)

To formulate the problem of interest, we define p =
[p1, . . . , pL] as the vector of power control coefficients,
q = [q1;q2; . . . ;qL] as the receiver coefficient where ql =
[q1l; q2l; . . . ; qMl] associates with the l-th user, and p̄ as the
maximum transmit power at each individual user. With this
setup, an achievable signal-to-interference plus noise ratio
(SINR) is given by [1]

γl(p,q) =
qH

l

(
gllgH

llpl

)
ql

qH
l

(∑L
i�=l gligH

lipi + 1
K

∑L
i=1 Ḡlipi + 1

K G̃l

)
ql

.

(3)

In (3), Ḡli ∈ R
M×M
+ and G̃l ∈ R

M×M
+ are diagonal matrices

with [Ḡli]m,m = gmlζmi and [G̃l]m,m = gml, respectively,
and

gli �
∣∣φH

l φi

∣∣ [
g1l

ζ1i

ζ1l
; g2l

ζ2i

ζ2l
; . . . ; gMl

ζMi

ζMl

]
. (4)

Note that the achievable rate of the l-th user is given by

Rl(p,q) = log2 (1 + γl(p,q)) . (5)

Similar to [3], we consider the problem of maximization of
the minimum rate, which is mathematically stated as

maximize
q,p

min
1≤l≤L

γl(p,q)

subject to �ql� = 1, l = 1, . . . , L,

0 ≤ p ≤ p̄. (P1)
First, we note that (P1) is nonconvex, and thus, finding a
globally optimal solution is difficult and not practically useful.
The standard framework for solving (P1) which is adopted in
previous studies such as [1], [3], and [4] is based on AO. In this
way, two subproblems arise: the receiver coefficient design
and the power control problem. Specifically, the receiver
coefficient design is obtained by fixing the power allocation
p, which admits a closed-form solution given by [3] and [4]

q∗
l =

√
plW−1

l gll∥∥√plW−1
l gll

∥∥ , l = 1, 2, . . . , L, (6)

where Wl =
∑L

i�=l gligH
lipi + 1

K

∑L
i=1 Ḡlipi + 1

K G̃l. After
updating the receiver coefficients for all users, we need to find
the power coefficients, leading to the following power control
problem:

maximize
0≤p≤p̄

min
1≤l≤L

γl(p) (P2)

To solve (P2), existing methods [1], [3], [4] involve second
order methods, i.e., GP or LP, which require very high
complexity, and thus, is not suitable for large-scale cell-free
massive MIMO. To overcome the complexity issue, a first-
order algorithm was introduced in [9] but it cannot yield a
solution of high accuracy for a large number of users. In the
next section, we propose a more efficient method for solving
(7) based on the MP framework.

III. PROPOSED SOLUTION FOR POWER

CONTROL PROBLEM

A. Equivalent Convex-Concave Reformulation of (7)

The proposed method is developed based on an equivalent
convex-concave reformulation of (P2). To this end, it is easy
to see that we can equivalently rewrite (P2) as

minimize
p

max
1≤l≤L

γ−1
l (p), (7)

where
γ−1

l (p) = p−1
l

(∑L
i�=l alipi +

∑L
i=1 blipi + cl

)
, (8)

where ali = qH
l glig

H
liql

qH
l gllgH

llql

, bki = (1/K)qH
l Ḡliql

qH
l gllgH

llql

, and ck =
(1/K)qH

l G̃lql

qH
l gllgH

llql

. We remark that γ−1
l (p) is non-convex but

can be converted to a single convex form as for geometric
programming by making a change of variables θi = log pi

[3], [4]. In this letter, we propose the change of variables
θi = log ωpi or pi = 1

ω eθi and reformulate (8) as

fl(θ) � γ−1
l = ωe−θl

(∑L

i�=l

ali

ω
eθi +

∑L

i=1

bli

ω
eθi + cl

)
=

∑L

i�=l
alie

(ei−el)
Tθ +

∑L

i=1
blie

(ei−el)
Tθ

+ c̄le
−eT

l θ, (9)

where c̄l = clω and θ = [θ1; θ2; . . . ; θL]. Now (7) is
equivalent to

minimize
θ∈Θ

[
f(θ) � max

1≤l≤L
fl(θ)

]
(P3),

where Θ � {θ|θ ≤ θ̄} and θ̄ = log(ωp̄). Note that fl(θ) is
convex and so is (P3). In the context of projected gradient
methods, the introduction of ω effectively scales the gradient
of fl(θ). We shall numerically demonstrate that a proper value
of ω can speed up the convergence of the proposed algorithm
as shown in the next section.

Although (P3) is convex, solving it efficiently is still
challenging since its objective is nonsmooth due to the max
operator. A solution to deal with the nonsmoothness of (P3)
is to adopt a smoothing technique as done in [9] but such a
method can only produce an approximate solution. To derive
an efficient solution, we recall the following equality

max
1≤l≤L

fl(θ) = max
λ∈Δ

∑L

l=1
λlfl(θ), (10)

where λ = [λ1; λ2; . . . , λL] ∈ R
L and Δ �{

λ | 1Tλ = 1; λ ≥ 0
}

is the standard simplex. Thus, (P3) can
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be equivalently rewritten as

minimize
θ∈Θ

maximize
λ∈Δ

φ(θ, λ), (P4)

where φ(θ, λ) =
∑L

l=1 λlfl(θ). Note that φ(θ, λ) is convex
w.r.t θ for a given λ and concave (in fact linear) w.r.t λ for a
given θ.

B. Proposed Mirror Prox Algorithm for Solving (P4)

It is now clear that we can find a saddle point of (P4)
to solve the power control problem, which indeed motivates
the application of the MP algorithm in this letter. To explain
the idea of the MP algorithm, let z = (θ, λ) and F(z) =
[∇θφ(θ, λ),−∇λφ(θ, λ)] which is a monotone operator asso-
ciated with (P4), i.e.,

〈
F(z) − F(z′), z − z′

〉 ≥ 0. The
idea of the MP algorithm is to find a point z∗ such that〈
F(z), z − z∗

〉 ≥ 0, which is indeed a saddle point of (P4).
The proposed method is a special case of the MP algorithm
with the Euclidean setup. The motivation is that the Euclidean
projections onto Θ and Δ can be done in closed-form. Under
the Euclidean setup, the distance between z = (θ, λ) and
z′ = (θ′, λ′), denoted by D(z, z′), is defined as

D(z, z′) =
1
2

∥∥θ − θ′∥∥2 +
1
2

∥∥λ− λ′∥∥2
. (11)

Note that D(z, z′) is the sum of individual Euclidean
distances.

The step-by-step description of the proposed method for
solving (P4) is as follows. Let zn = (θn, λn) be the n-th
iterate. To obtain the next iterate, we perform the following
two proximal mappings

ẑn = argmin
z∈Θ×Δ

〈
μnF

(
zn

)
, z

〉
+ D(zn, z), (12a)

zn+1 = argmin
z∈Θ×Δ

〈
μnF

(
ẑn

)
, z

〉
+ D(zn, z), (12b)

where μn > 0 is a step size which needs to be chosen properly
to guarantee the convergence. We remark that the two steps
above are similar to a classical gradient-type method since the
vector field F(z) acts as a descent direction. From the current
iterate zn, we first move along the gradient of individual
variables to obtain an intermediate point ẑn =

(
θ̂

n
, λ̂

n)
as

shown in (12a). The main difference and in fact the novel
idea of the MP algorithm are as follows. To obtain the next
iterate from zn, we do not use the gradients at zn. Instead,
zn+1 is obtained using the gradient at the intermediate point
ẑn as given in (12b).

1) Intuition: To gain further insights into the proposed MP
algorithm, we note that (12a) implies

θ̂ = argmin
θ∈Θ

〈
μ∇θφ(θn, λn), θ

〉
+

1
2
�θ − θn�2

= PΘ

(
θn − μn∇θφ(θn, λn)

)
(13)

and, similarly,

λ̂
n

= PΔ

(
λn + μn∇λφ(θn, λn)

)
. (14)

An important remark is in order. Since φ(θ, λ) is convex
in θ and concave in λ, −∇θφ(θ, λ) and ∇λφ(θ, λ) are
the descent and ascent directions, respectively. In this regard,
the MP algorithm is similar to the gradient descent and
ascent algorithm. That is, the MP algorithm simultaneously
minimizes and maximizes φ(θ, λ) to reach a saddle point.

However, the gradients at the intermediate point
(
θ̂

n
, λ̂

n)
are

used to obtain
(
θn+1, λn+1

)
from

(
θn, λn

)
.

To obtain a convergent algorithm, the step size in each
iteration n needs to satisfy the following condition

δn � μn∇θφ(θ̂
n
, λ̂

n
)(θ̂

n − θn+1)

−μn∇λφ(θ̂
n
, λ̂

n
)(λ̂

n − λn+1)

− 1
2

∥∥θn+1 − θn
∥∥2 − 1

2

∥∥λn+1 − λn
∥∥2 ≤ 0. (15)

Note that the above inequality is true if μn ≤ L−1, where
L is the Lipschitz constant of F(z). In practice, we find μn

by a back tracking line search. In summary, the proposed MP
algorithm for solving (P4) is outlined in Algorithm 1.

Algorithm 1 MP Algorithm for Solving (P4)
1: Initialization: μ0 > 0, ρ ∈ (0, 1)
2: θ1 ← θinitial, λ1 ← λinitial

3: for n = 1, 2, . . . do
4: μn = μn−1/ρ
5: repeat
6: μn ← μn−1 × ρ
7: θ̂

n ← PΘ

(
θn − μn∇θφ(θn, λn)

)
8: λ̂

n ← PΔ

(
λn + μn∇λφ(θn, λn)

)
9: θn+1 ← PΘ

(
θn − μn∇θφ(θ̂

n
, λ̂

n
)
)

10: λn+1 ← PΔ

(
λn + μn∇λφ(θ̂

n
, λ̂

n
)
)

11: until δn ≤ 0
12: end for
13: θ∗ ←

�n
i=1 μiθi

�
n
i=1 μi , λ∗ ←

�n
i=1 μiλi

�
n
i=1 μi

2) Computation of Gradients: To implement Algorithm 1,
we need to calculate ∇θφ(θ, λ) and ∇λφ(θ, λ) which are
given in closed form as

∇θφ(θ, λ) =
∑L

l=1
λl∇θfl(θ)

∇λφ(θ, λ) = [f1(θ); f2(θ); . . . ; fL(θ)], (16)
where, from (9), we have

∇θfl(θ) =
∑L

i�=l
alie

(ei−el)
Tθ

(
ei − el

)
+

∑L

i=1
blie

(ei−el)
Tθ

(
ei − el

)− c̄le
−eT

l θel.

(17)

Remark 1: As mentioned above, the proposed change of
variable θi = log ωpi is equivalent to scaling the gradient of
fl(θ), compared to the standard change of variable θi = log pi.
This scaling effect is reflected by the term c̄l in the above
equation. The main motivation for introducing ω is to balance
the gradients∇θφ(θ, λ) and ∇λφ(θ, λ), which can accelerate
the convergence of Algorithm 1 as numerically illustrated
in the next section.

3) Projections Onto Θ and Δ: It is easy to see that PΘ(x)
admits a closed form solution as follows

PΘ(x) =

{
xk, xk ≤ θ̄

θ̄, xk > θ̄
, k = 1, . . . , L. (18)

Also, the projection onto a standard simplex is given by

PΔ(λ) =
[
λ− β

]
+
, (19)

where β is the solution to the equation∑L

k=1

[
λk − β

]
+

= 1, (20)
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which can be found by bisection. In summary, to solve (P1)
we keep alternately computing (6) and running Algorithm 1
until convergence.

C. Convergence Analysis

We first provide the convergence analysis of Algorithm 1.
Let f∗ be the optimal objective of (P3) and θ̃

n
=(∑N

n=1 μn
)−1 ∑N

n=1 μnθn be the obtained solution after N

iterations. Note that θ̃
n

is the weighted average of the iterates
θn up to iteration N . Then it is shown that f(θ̃

n
) − f∗ ≤

1�
N
n=1 μn

(
Ω +

∑N
n=1 δn

)
, where Ω is a constant that depends

on the distance generating function. By the line search proce-
dure in Algorithm 1, we have that δn ≤ 0 and μn ≥ L−1, and

thus, f(θ̃
n
)− f∗ ≤ ΩL/N . That is, Algorithm 1 can achieve

a O(1/N)-rate of convergence. The proof follows closely the
steps in [11, Proposition 6.1], and thus, is omitted here for
brevity.

D. Complexity Analysis and Comparison

We now present the per-iteration complexity analysis of
Algorithm 1. It is easy to see that L multiplications are
required to compute fl(θn). Therefore, the complexity of
finding the objective is O(L2). Similarly, we can find that
the complexity of ∇fl(θ) is also O(L2). It is clear from (18)
that PΘ(x) has complexity of O(L). For PΔ(λ), by sorting
the elements of λ in the ascending order, the complexity of
the projection onto a simplex from [12, Th. 2.2] is O(L)
complexity in the worst case. In summary, the per-iteration
complexity of the proposed algorithm for solving (P2) is
O(L2). If a bisection search is used with LP as done in [1],
the worst-case per-iteration complexity is O(L3.5)
[13, eq. (8.1.6)]. The complexity of the GP-based methods
in [4] and [3] is O(L4.5) [13, Sec. 6.3.1].

IV. NUMERICAL RESULTS

We evaluate the performance of our proposed method in
terms of the achievable rate and the run time. We randomly
distribute APs and users over a D ×D km2. Channel coeffi-
cients are generated using (1), in which the large-scale fading
coefficient between the m-th AP and the l-th user is modeled
as ζml = PLmlzml, where PLml is the corresponding path
loss, and zml represents the log-normal shadowing between
the m-th AP and the l-th user with mean zero and standard
deviation σsh, respectively. In this letter, we adopt the three-
slope path loss model and model parameters as in [8]. Noise
figure is set to 9 dB. We assume pilot sequences to be pair-
wisely orthogonal to avoid the effect of pilot contamination.
The lengths of the coherence interval and the uplink training
phase are set to τc = 200, τp = 20, respectively. If not
otherwise mentioned, we set ηp = 0.2 W and p̄ = 0.2 W.
The number of antennas at each AP is K = 1.

In Fig. 1, we show the convergence of Algorithm 1. For
each channel realization, we run Algorithm 1 for a fixed q and
plot the average achievable rate over 100 randomly generated
channel realizations. We compare Algorithm 1 with two other
iterative baseline schemes: the gradient descent accent (GDA)
method [14], [15] and the APG method combined with the
smoothing technique [9]. We also benchmark Algorithm 1 with

Fig. 1. Convergence performance of Algorithm 1, GDA, APG averaged over
100 channels. The simulation parameters taken are M = 150, L = 50, and
D = 1.

Fig. 2. Comparison of run-time (in seconds) between Algorithm 1 and the
bisection-based method for L = 40.

the optimal solution obtained by either the bisection method
with LP [1] or the GP in [3] and [4].

We can see that Algorithm 1 based on the MP method
has better objective than GDA and APG. Also, Algorithm 1
takes lesser number of iterations. Thus, GDA and APG [9]
are not suitable for the applications where a fast convergence
rate is required. Note that APG presented in [9] is essentially
an approximate solution. On the other hand, Algorithm 1 is
an exact method and thus can reach the optimal solution
at convergence as clearly seen in Fig. 1. Note that we also
demonstrate the impact of introducing ω when reformulating
(P2) into (P4). As can be observed clearly, a proper value
of ω can indeed speed up the convergence of Algorithm 1
very significantly. By extensive simulation settings, we find
that ω = M yields a good convergence rate for Algorithm 1
overall, which is shown in Fig. 1. Further, we remark that
the proposed algorithm converges within 500 iterations. Also,
the average run-time per iteration is very small, as shown
in Fig. 1.

The main advantage of Algorithm 1 over second-order
methods in [1], [3], and [4] is that each iteration of
Algorithm 1 is very memory efficient and computationally
cheap, and hence, can be executed very fast. To demonstrate
this, we compare the run-time of Algorithm 1 with the bisec-
tion method with LP in [1], both normalized to the run-time
of the GP approach in [4] and [3] for solving (P2)in Fig. 2.
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Fig. 3. CDF of per-user achievable rate for three scenarios: (i) M = 500,
L = 50, D = 1, (ii) M = 2000, L = 100, D = 2, and (iii) M = 2000,
L = 50, D = 2. Solid lines indicate the CDF of the per-user rate using both
power and receiver filtering control, and dashed lines represent the CDF of
the per-user rate using power control only.

This shows the factor at which a particular method is faster
than the GP method with normalized run-time of 1. We run
the codes on a 64-bit Windows operating system with 16 GB
RAM and Intel CORE i7, 3.7 GHz. All iterative methods are
terminated when the difference of the objective for the latest
two iterations is less than 10−4. We observe that solving (P2)
using a bisection search with LP is faster than converting it to a
single GP, which is then solved by a dedicated GP solver. Most
importantly, Algorithm 1 is 40 times faster than the LP method
and approximately 100 times faster than the GP approach as
shown in Fig. 2.

In the next experiment, we investigate cell-free massive
MIMO for large-scale scenarios. Instead of solving a general-
ized eigenvalue problem to find q∗

l as suggested in [3] and [4]
which incurs a complexity of O(M3), we can reduce this
complexity to O(M2) using the method in [9, Appendix]. This
complexity reduction and the low complexity of Algorithm 1
indeed allow us to investigate the performance of uplink large-
scale cell-free massive MIMO, which has never been reported
previously. In particular, we plot the cumulative distribution
function (CDF) of the per-user achievable rate for 100 channel
realizations in Fig. 3. Three large-scale scenarios detailed
in the caption of Fig. 3 are considered. Note that the AP-
density, defined as the number of APs per km2 of area,
is the same for all three scenarios. In particular, we compare
the CDF of the per-user rate where both receiver filtering
and power control are considered (i.e. alternately computing
(6) and running Algorithm 1 until convergence, referred to
as AO in the figure) to that where the power control only
scheme (i.e. Algorithm 1) is adopted in which AP-weighting
coefficients are all set to one.

It can be seen from Fig. 3 that the system performance
improves when the number of APs increases (even the AP-
density is fixed). Let us discuss scenarios (i) and (iii) first.
Although the AP density is the same for both scenarios, the
user-density (defined as the number of users per km2 of area)
for scenario (iii) is much smaller than that for scenario (i), and
hence, users in scenario (iii) suffer less interference than users
in scenario (i) do. Thus, users in scenario (iii) have higher
rates than those in scenario (i). If we increase the number of
users in scenario (iii) from 50 to 100 as in scenario (ii), then
the user-density and thereby inter-user interference increase,

which decreases the per-user rate accordingly. Furthermore,
it is interesting to note that for scenarios (ii) and (iii), con-
sidering both power and receiver filtering control can deliver
more universally good services to the users than the power
control only scheme. However, this comes at the cost of extra
complexity imposed by the computation of the receiver filter
coefficients. Therefore, it is important to consider both the
receiver coefficient design and power control problems for
large-scale scenarios.

V. CONCLUSION

In this letter, we have considered the max-min fairness
problem for uplink cell-free massive MIMO. As in previous
studies, we have decomposed the problem into the receiver
filtering design problem and the power control problem. In par-
ticular, we have proposed a novel power control scheme based
on the MP method. The numerical results have demonstrated
that the proposed method is superior to other existing methods
such as LP-based, GDA-based, and APG-based methods. More
specifically, the proposed method achieves the same objective
as these conventional schemes but in much lesser time. The
proposed scheme has enabled us to investigate the performance
of cell-free massive in large-scale scenarios. We have also
numerically shown that the proposed solution provides better
fairness among the users compared to the power control only
scheme where AP-weighting coefficients are all set to one.
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