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Noise Learning-Based Denoising Autoencoder
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Abstract— This letter introduces a new denoiser that modifies
the structure of denoising autoencoder (DAE), namely noise
learning based DAE (nlDAE). The proposed nlDAE learns the
noise of the input data. Then, the denoising is performed by
subtracting the regenerated noise from the noisy input. Hence,
nlDAE is more effective than DAE when the noise is simpler to
regenerate than the original data. To validate the performance of
nlDAE, we provide three case studies: signal restoration, symbol
demodulation, and precise localization. Numerical results suggest
that nlDAE requires smaller latent space dimension and smaller
training dataset compared to DAE.

Index Terms— Machine learning, noise learning based denois-
ing autoencoder, signal restoration, symbol demodulation, precise
localization.

I. INTRODUCTION

MACHINE learning (ML) has recently received much
attention as a key enabler for future wireless commu-

nications [1]–[3]. While the major research effort has been
put to deep neural networks, there are enormous number of
Internet of Things (IoT) devices that are severely constrained
on the computational power and memory size. Therefore,
the implementation of efficient ML algorithms is an important
challenge for IoT devices, as they are energy and memory lim-
ited. Denoising autoencoder (DAE) is a promising technique
to improve the performance of IoT applications by denoising
the observed data that consists of the original data and the
noise [4]. DAE is a neural network model for the construction
of the learned representations robust to an addition of noise
to the input samples [5], [6]. The representative feature of
DAE is that the dimension of the latent space is smaller than
the size of the input vector. It means that the neural network
model is capable of encoding and decoding through a smaller
dimension where the data can be represented.

The main contribution of this letter is to improve the
efficiency and performance of DAE with a modification of
its structure. Consider a noisy observation Y which consists
of the original data X and the noise N , i.e., Y = X + N .
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From the information theoretical perspective, DAE attempts to
minimize the expected reconstruction error by maximizing a
lower bound on mutual information I(X ; Y ). In other words,
Y should capture the information of X as much as possible
although Y is a function of the noisy input. Additionally,
from the manifold learning perspective, DAE can be seen as
a way to find a manifold where Y represents the data into a
low dimensional latent space corresponding to X . However,
we often face the problem that the stochastic feature of X to
be restored is too complex to regenerate or represent. This is
called the curse of dimensionality, i.e., the dimension of latent
space for X is still too high in many cases.

What can we do if N is simpler to regenerate than X? It will
be more effective to learn N and subtract it from Y instead of
learning X directly. In this light, we propose a new denoising
framework, named as noise learning based DAE (nlDAE). The
main advantage of nlDAE is that it can maximize the efficiency
of the ML approach (e.g., the required dimension of the latent
space or size of training dataset) for capability-constrained
devices, e.g., IoT, where N is typically easier to regenerate
than X owing to their stochastic characteristics. To verify the
advantage of nlDAE over the conventional DAE, we provide
three practical applications as case studies: signal restoration,
symbol demodulation, and precise localization.

The following notations will be used throughout this letter.
• Ber, Exp,U ,N , CN : the Bernoulli, exponential, uniform,

normal, and complex normal distributions, respectively.
• x,n,y ∈ RP : the realization vectors of random variables

X, N, Y , respectively, whose dimensions are P .
• P �(< P ): the dimension of the latent space.
• W ∈ RP �×P ,W� ∈ RP×P �

: the weight matrices for
encoding and decoding, respectively.

• b ∈ RP �
,b� ∈ RP : the bias vectors for encoding and

decoding, respectively.
• S: the sigmoid function, acting as an activation function

for neural networks, i.e., S(a) = 1
1+e−a , and S(a) =

(S(a[1]), · · · ,S(a[P ]))T where a ∈ RP is an arbitrary
input vector.

• fθ: the encoding function where the parameter θ is
{W,b}, i.e., fθ(y) = S(Wy + b).

• gθ�: the decoding function where the parameter θ� is
{W�,b�}, i.e., gθ�(fθ(y)) = S(W�fθ(y) + b�).

• M : the size of training dataset.
• L: the size of test dataset.

II. METHOD OF NLDAE

In the traditional estimation problem of signal processing,
N is treated as an obstacle to the reconstruction of X .
Therefore, most of the studies have focused on restoring X
as much as possible, which can be expressed as a function of
X and N . Along with this philosophy, ML-based denoising
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Fig. 1. An illustration of the concept of nlDAE.

techniques, e.g., DAE, have also been developed in various
signal processing fields with the aim of maximizing the ability
to restore X from Y . Unlike the conventional approaches,
we hypothesize that, if N has a simpler statistical characteristic
than X , it will be better to subtract from Y after restoring N .

We first look into the mechanism of DAE to build neural
networks. Recall that DAE attempts to regenerate the original
data x from the noisy observation y via training the neural
network. Thus, the parameters of a DAE model can be
optimized by minimizing the average reconstruction error in
the training phase as follows:

θ∗, θ
�∗ = argmin

θ,θ�

1
M

M∑
i=1

L(
x(i), gθ�(fθ(y(i)))

)
, (1)

where L is a loss function such as squared error between two
inputs. Then, the j-th regenerated data x̃(j) from y(j) in the
test phase can be obtained as follows for all j ∈ {1, · · · , L}:

x̃(j) = gθ�∗(fθ∗(y(j))). (2)

It is noteworthy that, if there are two different neural
networks which attempt to regenerate the original data and the
noise from the noisy input, the linear summation of these two
regenerated data would be different from the input. This means
that either x or n is more effectively regenerated from y.
Therefore, we can hypothesize that learning N , instead of X ,
from Y can be beneficial in some cases even if the objective
is still to reconstruct X . This constitutes the fundamental idea
of nlDAE.

The training and test phases of nlDAE are depicted in Fig. 1.
The parameters of nlDAE model can be optimized as follows
for all i ∈ {1, · · · , M}:

θ∗nl, θ
�∗
nl = arg min

θ,θ�

1
M

M∑
i=1

L(
n(i), gθ�(fθ(y(i)))

)
. (3)

Notice that the only difference from (1) is that x(i) is
replaced by n(i). Let x̃(j)

nl denote the j-th regenerated data
based on nlDAE, which can be represented as follows for all
j ∈ {1, · · · , L}:

x̃(j)
nl = y(j) − gθ

�∗
nl

(fθ∗
nl

(y(j))). (4)

To provide the readers with insights into nlDAE, we exam-
ine two simple examples where the standard deviation

Fig. 2. A simple example of comparison between DAE and nlDAE:
reconstruction error according to σN .

of X is fixed as 1, i.e., σX = 1, and that of N varies.
Y = X + N is comprised as follows:

• Example 1: X ∼ U(0, 2
√

3) and N ∼ N (0, σN ).
• Example 2: X ∼ Exp(1) and N ∼ N (0, σN ).

Fig. 2 describes the performance comparison between DAE
and nlDAE in terms of mean squared error (MSE) for the two
examples.1 Here, we set P = 12, P � = 9, M = 10000, and
L = 5000. It is observed that nlDAE is superior to DAE when
σN is smaller than σX in Fig. 2. The gap between nlDAE and
DAE widens with lower σX . This implies that the standard
deviation is an important factor when we select the denoiser
between DAE and nlDAE.

These examples show the consideration of whether X or
N is easier to be regenerated, which is highly related to
differential entropy of each random variable, H(X) and
H(N) [7]. The differential entropy is normally an increasing
function over the standard deviation of the corresponding
random variable, e.g., H(N) = log(σN

√
2πe). Naturally, it is

efficient to reconstruct a random variable with a small amount
of information, and the standard deviation can be a good
indicator.

1Throughout this letter, the squared error and the scaled conjugate gradient
are applied as the loss function and the optimization method, respectively.
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III. CASE STUDIES

To validate the advantage of nlDAE over the conventional
DAE in practical problems, we provide three applications for
IoT devices in the following subsections. We assume that the
noise follows Bernoulli and normal distributions, respectively,
in the first two cases, which are the most common noise mod-
eling. The third case deals with noise that follows a distribution
expressed as a mixture of various random variables. For all
the studied use cases, we select the DAE as the conventional
denoiser as a baseline for performance comparison. We present
the case studies in the first three subsections. Then, we discuss
the experimental results in Sec. III-D.

A. Case Study I: Signal Restoration

In this use case, the objective is to recover the original signal
from the noisy signal which is modeled by the corruptions over
samples.

1) Model: The sampled signal of randomly superposed
sinusoids, e.g., the recorded acoustic wave, is the summation
of samples of k damped sinusoidal waves which can be
represented as follows:

x =
{ k∑

l=1

Vle
−γlnΔt cos(2πflnΔt)

}P−1

n=0
, (5)

where Vl, γl, and fl are the peak amplitude, the damping
factor, and the frequency of the l-th signal, respectively. Here,
the time interval for sampling, Δt, is set to satisfy the Nyquist
theorem, i.e., 1

2Δt > max{f1, · · · , fk}. To consider the
corruption of x, let us assume that the probability of corruption
for each sample follows the Bernoulli distribution Ber(pcor),
which indicates the corruption with the probability pcor.
In addition, let b ∈ {0, 1}P denote the realization of Ber(pcor)
over P samples. Naturally, the corrupted signal, y ∈ RP , can
be represented as follows:

y = x + Cb, (6)

where C is a constant representing the sample corruption.
2) Application of nlDAE: Based on (6), the denoised signal

x̃(j)
nl can be represented by

x̃(j)
nl = x(j) + Cb(j) − gθ

�∗
nl

(fθ∗
nl

(x(j) + Cb(j)), (7)

where

θ∗nl, θ
�∗
nl = arg min

θ,θ�

1
M

M∑
i=1

L(
Cb(i), gθ�(fθ(x(i) + Cb(i)))

)
.

3) Experimental Parameters: We evaluate the performance
of the proposed nlDAE in terms of the MSE of restoration. For
the experiment, the magnitude of noise C is set to 1 for sim-
plicity. In addition, Vl, γl, and fl follow N (0, 1), U(0, 103),
and U(0, 10 kHz), respectively, for all l. The sampling time
interval Δt is set to 0.5 × 10−4 second, and the number of
samples P is 12. We set P � = 9, pcor = 0.9, and M = 10000
unless otherwise specified.

B. Case Study II: Symbol Demodulation

Here, the objective is to improve the symbol demodulation
quality through denoising the received signal that consists of
channel, symbols, and additive noise.

1) Model: Consider an orthogonal frequency-division mul-
tiplexing (OFDM) system with P subcarriers where the sub-
carrier spacing is expressed by Δf . Let d ∈ C

P be a sequence
in frequency domain. d[n] is the n-th element of d and denotes
the symbol transmitted over the n-th subcarrier. In addition,
let K denote the pilot spacing for channel estimation. Further-
more, the channel impulse response (CIR) can be modeled by
the sum of Dirac-delta functions as follows:

h(t, τ) =
Lp−1∑
l=0

αlδ(t − τl), (8)

where αl, τl, and Lp are the complex channel gain, the excess
delay of l-th path, and the number of multipaths, respec-
tively. Let x ∈ CP denote the discrete signal obtained by
P -point fast Fourier transform (FFT) after the sampling of the
signal experiencing the channel at the receiver, which can be
represented as follows:

x = d � h = {d[n]
Lp−1∑
l=0

αle
−j2πnΔfτl}P−1

n=0 , (9)

where � denotes the operator of the Hadamard product. Here,
h ∈ CP is the channel frequency response (CFR), which is
the P -point FFT of h(t, τ). In addition, let n ∈ C

P denote the
realization of the random variable N ∼ CN (0, σN ). Finally,
y(= d � h + n) is the noisy observed signal.

Our goal is to minimize the symbol error rate (SER) over
d by maximizing the quality of denoising y. We assume the
method of channel estimation is fixed as the cubic interpola-
tion [8] to focus on the performance of denoising the received
signal.

2) Application of nlDAE: To consider the complex-valued
data, we separate it into real and imaginary parts. � and �
denote the operators capturing real and imaginary parts of an
input, respectively. Thus, x̃(j)

nl is the regenerated d(j) � h(j)

by denoising y(j), which can be represented by

x̃(j)
nl = �(y(j)) − gθ

�∗
nl,R

(fθ∗
nl,R

(�(y(j))))

+i(�(y(j)) − gθ
�∗
nl,I

(fθ∗
nl,I

(�(y(j))))), (10)

where

θ∗nl,R, θ
�∗
nl,R = arg min

θ,θ�

1
M

M∑
i=1

L(�(n(i)), gθ�(fθ(�(y(i))))
)
,

θ∗nl,I , θ
�∗
nl,I = arg min

θ,θ�

1
M

M∑
i=1

L(�(n(i)), gθ�(fθ(�(y(i))))
)
.

Finally, the receiver estimates h with the predetermined
pilot symbols, i.e., d[nK + 1] where n = 0, 1, · · · ,
and demodulates d based on the estimate of h and the
regenerated x̃nl.
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Fig. 3. Case study I (signal restoration): MSE according to (a) the dimension of latent space; (b) the size of training dataset; (c) pcor; and (d) the depth of
neural networks.

3) Experimental Parameters: The performance of the pro-
posed nlDAE is evaluated when L = 5000. For the simulation
parameters, we set 4 QAM, P = 12, Δf = 15 kHz, Lp = 4,
and K = 3. We further assume that α ∼ CN (0, 1) and
τ ∼ U(0, 10−6). Furthermore, P � = 9, SNR= 5 dB, and
M = 10000 unless otherwise specified. We also provide the
result of non-ML (i.e., only cubic interpolation).

C. Case Study III: Precise Localization

The objective of this case study is to improve the localiza-
tion quality through denoising the measured distance which is
represented by the quantized value of the mixture of the true
distance and error factors.

1) Model: Consider a 2-D localization where P reference
nodes and a single target node are randomly distributed.
We estimate the position of the target node with the knowledge
of the locations of P reference nodes. Let x ∈ RP denote the
vector of true distances from P reference nodes to the target
node when X denotes the distance between two random points
in a 2-D space. We consider three types of random variables
for the noise added to the true distance as follows:

• NN : ranging error dependent on signal quality.
• NU : ranging error due to clock asynchronization.
• NB: non line-of-sight (NLoS) event.

We assume that NN , NU , NB follow the normal, uniform, and
Bernoulli distributions, respectively. Hence, we can define the
random variable for the noise N as follows:

N = NN + NU + RNLoSNB, (11)

where RNLoS is the distance bias in the event of NLoS. Note
that N does not follow any known probability distribution
because it is a convolution of three different distributions.
Besides, we assume that the distance is measured by time of
arrival (ToA). Thus, we define the quantization function QB

to represent the measured distance with the resolution of B,
e.g., Q10(23) = 20. In addition, the localization method based
on multi-dimensional scaling (MDS) is utilized to estimate the
position of the target node [9].

2) Application of nlDAE: In this case study, we consider
the discrete values quantized by the function QB . Here, x̃(j)

nl

can be represented as follows:

x̃(j)
nl = QB(y(j)) − gθ

�∗
nl,R

(fθ∗
nl,R

(QB(y(j)))), (12)

where

θ∗nl,R, θ
�∗
nl,R = arg min

θ,θ�

1
M

×
M∑
i=1

L(QB(n(i)), gθ�(fθ(QB(y(i))))
)
.

Thus, x̃nl is utilized for the estimation of the target node
position in nlDAE-assisted MDS-based localization.

3) Experimental Parameters: The performance of the pro-
posed nlDAE is evaluated via L = 5000. In this simulation,
12 reference nodes and one target node are uniformly dis-
tributed in a 100 × 100 square. We assume that NN ∼
N (0, 10), NU ∼ U(0, 20), NB ∼ Ber(0.2), and RNLoS = 50.
The distance resolution B is set to 10 for the quantization func-
tion QB . Note that P � = 9, pNLoS = 0.2, and M = 10000
unless otherwise specified. We also provide the result of non-
ML (i.e., only MDS based localization).

D. Analysis of Experimental Results

Fig. 3(a), Fig. 4(a), and Fig. 5(a) show the performance
of the three case studies with respect to P �, respectively.
nlDAE outperforms non-ML and DAE for all ranges of P �.
Particularly with small values of P �, nlDAE continues to
perform well, whereas DAE loses its merit. This means that
nlDAE provides a good denoising performance even with
an extremely small dimension of latent space if the training
dataset is sufficient.

The impact of the size of training dataset is depicted
in Fig. 3(b), Fig. 4(b), and Fig. 5(b). nlDAE starts to out-
perform non-ML with M less than 100. Conversely, DAE
requires about an order higher M to perform better than
non-ML. Furthermore, nlDAE converges faster than DAE, thus
requiring less training data than DAE.

In Fig. 3(c), Fig. 4(c), and Fig. 5(c), the impact of a noise-
related parameter for each case study is illustrated. When the
noise occurs according to a Bernoulli distribution in Fig. 3(c),
the performance of ML algorithms (both nlDAE and DAE)
exhibits a concave behavior. This is because the variance of
Ber(p) is given by p(1− p). Similar phenomenon is observed
in Fig. 5(c) because the Bernoulli event of NLoS constitutes a
part of localization noise. As for non-ML, the performance
worsens as the probability of noise occurrence increases
in both cases. Fig. 4(c) shows that the SER performance
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Fig. 4. Case study II (symbol demodulation): SER according to (a) the dimension of latent space; (b) the size of training dataset; (c) SNR; and (d) the depth
of neural networks.

Fig. 5. Case study III (precise localization): Localization error according to (a) the dimension of latent space; (b) the size of training dataset; (c) pNLoS ;
and (d) the depth of neural networks.

of nlDAE improves rapidly as the SNR increases. In all
experiments, nlDAE gives superior performance than other
schemes.

Thus far, the experiments have been conducted with a single
hidden layer. Fig. 3(d), Fig. 4(d), and Fig. 5(d) show the
effect of the depth of the neural network. The performance
of nlDAE is almost invariant, which suggests that nlDAE is
not sensitive to the number of hidden layers. On the other
hand, the performance of DAE worsens quickly as the depth
increases owing to overfitting in two cases.

In summary, nlDAE outperforms DAE over the whole
experiments. nlDAE is observed to be more efficient for the
underlying use cases than DAE because it requires smaller
latent space and less training data. Furthermore, nlDAE is
more robust to the change of the parameters related to the
design of the neural network, e.g., the network depth.

IV. CONCLUSION AND FUTURE WORK

We introduced a new denoiser framework based on the
neural network, namely nlDAE. This is a modification of DAE
in that it learns the noise instead of the original data. The
fundamental idea of nlDAE is that learning noise can provide
a better performance depending on the stochastic charac-
teristics (e.g., standard deviation) of the original data and
noise. We applied the proposed mechanism to the practical
problems for IoT devices such as signal restoration, symbol
demodulation, and precise localization. The numerical results
support that nlDAE is more efficient than DAE in terms of the
required dimension of the latent space and the size of training

dataset, thus rendering it more suitable for capability-
constrained conditions. Applicability of nlDAE to other
domains, e.g., image inpainting, remains as a future work.
Furthermore, information theoretical criteria of decision mak-
ing for the selection between or a combination of DAE and
nlDAE is an interesting further research.
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