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Abstract— In this letter, the truncated redundancy
averaging (TRA) method for structured covariance matrix
estimation and its spatially asymptotic behavior for massive
MIMO are studied. The TRA method can be applied to the
antenna arrays exhibiting correlation redundancy, including
linear and non-linear arrays. Resorting to Khinchin’s statement
on the law of large numbers for correlated random variables,
it is derived that, for a uniform array, if its physical size is a
strictly increasing linear or sub-linear function of the number
of antenna elements, the convergence of the TRA estimate to
the true covariance matrix occurs within one single channel
realization. We also derive and demonstrate that lower spatial
correlation leads to increased estimation performance.

Index Terms— Asymptotic behavior, structured covariance
matrix estimation, spatial correlation, massive MIMO.

I. INTRODUCTION

SPATIAL covariance matrix estimation is instrumental to
the functioning of a host of massive MIMO methods.

Antenna correlation can be desirable as it provides structure in
signal statistics which can, in turn, be used to mitigate multi-
user interference or pilot contamination in massive MIMO
systems [1], [2]. More generally, the spatial covariance matrix
can be used in DoA estimation [3], channel estimation and
feedback [4], [5], user scheduling [6], and precoding [7].
Hence, the efficiency of a spatial covariance matrix estimation
method can play an important role in improving the perfor-
mance of massive MIMO techniques.

Consider n sample vectors {xi}n
i=1 from a distribution

of p-dimensional random vector x. The sample covariance
matrix (SCM) method R̂ = 1

nΣn
i=1xixT

i is a classic estimation
method. When x is zero-mean multivariate normal distributed
(MVN) and no structure information on the true covariance
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matrix R = E(xxT ) is known a priori, the SCM method
results in the maximum likelihood (ML) estimate. When the
n samples are independent or linearly correlated Gaussian
vectors, n = O(p) is sufficient to estimate the covariance
matrix accurately [8], where O(·) is the big-O notation. When
x is not MNV or the structure of the covariance matrix R
is known a priori, the SCM estimate is no longer the ML
estimate.

In the literature, covariance matrix estimators for random
vector distributions other than MVN are investigated, includ-
ing robust covariance estimators whose performances are
robust to various random vector distributions, e.g., in [9]–[11]
and the references therein; the study of covariance matrix
estimators for structured covariance matrices with structure
information a priori mainly focuses on Toeplitz or block-
Toeplitz for linear arrays, e.g., in [12]–[15] and the references
therein.

In practical MIMO systems, considering physical limitation
and various coverage objectives, non-linear arrays such as
planar arrays are widely deployed. The structures of their spa-
tial covariance matrices might not be either Toeplitz or block
Toeplitz. In the case of regular antenna arrays, an interesting
property arises from the fact that the distance between a pair
of antenna elements is subject to shift-invariance. This means
that several distinct pairs of antenna elements will exhibit
the same inter-element spacing. This in turn yields some
redundancy in the correlation coefficients found across the
covariance matrix, which we term as correlation redundancy
below, bestowing some useful structure of the matrix itself.
Redundancy averaging (RA) is an element-wise covariance
matrix estimation approach to exploit the above correlation
redundancy [12]. In the RA method, the samples of the
correlation coefficients relating to the antenna pairs separated
by the same distance are averaged across. The RA method
can be applied to various array configurations, including linear
and non-linear arrays, and is robust to various random vector
distributions.

Intuitively, large antenna arrays in context of massive
MIMO systems give the extra benefit that they can pro-
vide large correlation redundancy for enhancing covariance
matrix estimation. This motivates us to investigate the spatially
asymptotic behavior of the RA method with the number of
antenna elements. Under the intuition that zeroing small cor-
relation coefficients has small enough impact on the accuracy
of a covariance matrix estimate, we modify the conventional
RA method described in [12] into the truncated redundancy
averaging (TRA) method. In the TRA method, if a pair
of antenna elements are orthogonally cross-polarized or the
distance between them is equal to or greater than δ0,
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e.g., δ0 = 4λ with the wavelength of λ, their related correlation
coefficient is zeroed in the covariance matrix estimate.

In this letter, our main contributions are as follows:

• We modify the conventional RA method into the TRA
method for complexity reduction.

• Resorting to Khinchin’s statement on the law of large
numbers (LLN) for correlated random variables [16],
we establish that, for a uniform array, if its physical size
is a strictly increasing linear or sublinear function of the
number of antenna elements, the convergence of the TRA
estimate to the true covariance matrix occurs within one
single channel realization;

• Based on the inequality in Khinchin’s statement, we show
that lower spatial correlation leads to increased estimation
performance of the TRA method;

• Our theoretical results are demonstrated by numerical
results with Jake’s one-ring model [17].

The rest of this letter is organized as follows. In Section II,
system assumptions for spatial covariance matrix estimation
are presented. In Section III, the procedure of antenna pair
grouping in the TRA method is described. In Section IV, the
spatially asymptotic behavior of the TRA method is analyzed
theoretically. In Section V, numerical results demonstrate the
spatially asymptotic convergence of the TRA method and
the impact of spatial correlation under certain conditions.
Section VI contains our conclusion and discussion.

II. SYSTEM ASSUMPTIONS

Consider a MIMO system comprising a base station (BS)
equipped with an M -antenna array and K mobile sta-
tions (MS) with Nk antennas each, M > Nk, k = 1, . . .K .
Denote the uplink channel matrix at the BS for MS k by a
M ×Nk matrix Hk, Hk = [h1,k, . . . ,hNk,k] where hn,k’s are
M -length column vectors, n = 1, . . . , Nk. Assume hn,k’s are
identically distributed zero-mean random vectors. The uplink
receiving covariance matrix at the BS for MS k is

R̃k =E

(
HkH

†
k

)
=

Nk∑
n=1

E

(
hn,kh

†
n,k

)
= NkE

(
h1,kh

†
1,k

)
,

(1)

where † denotes the Hermitian transpose. Eq.(1) shows that it
can be sufficient to estimate the uplink receiving covariance
matrix R̃k at the BS for MS k with the channel coefficients
relating to one of the multiple antennas at MS k; that is, for
acquiring the estimate of R̃k, it is required to at least estimate
the covariance matrix Rk = E

(
h1,kh

†
1,k

)
. In the rest of this

letter, for simplicity, h1,k is denoted by hk.

III. TRUNCATED REDUNDANCY AVERAGING

In the proposed TRA method for the spatial covariance
matrix estimation at the BS, considering MS k in isolation,
far-spaced or orthogonally cross-polarized antenna pairs are
not taken much attention as their related small correlation
coefficients are treated as zeros, and the rest antenna pairs will
be grouped into Q antenna pair groups, P1, . . . ,PQ, relating
to Q distinct non-zero correlation coefficients ρ1,k, . . . , ρQ,k.

The antenna pair grouping procedure can be processed as
follows:

1) When a pair of antenna elements are orthogonally
cross-polarized, or the distance between them is equal
to or greater than δ0, e.g., δ0 = 4λ with λ the wave-
length, they are approximated as uncorrelated, and the
related correlation coefficient is treated as zero. Note
that empirically, when the distance between a pair of
antenna elements is equal to or greater than 4λ, they are
approximated as uncorrelated.

2) Compare the inter-element distances for the rest antenna
pairs and figure out the number of antenna pair groups Q
which denotes the number of distinct values of distances
d1, d2, . . . , dQ with d1 < d2 < . . . < dQ < δ0.

3) The antenna pair group Pq is

Pq = {(i, j)|dij = dq} , q = 1, . . . , Q, (2)

where (i, j) denotes the antenna pair composed of
antenna elements i and j and dij is the distance between
antenna elements i and j.

After antenna pair grouping, the Q distinct values of non-
zero correlation coefficients ρ1,k, . . . , ρQ,k can be estimated
by

ρ̂q,k =
1

LMq

L∑
l=1

∑
(i,j)∈Pq

ĥi,k(l)ĥ∗
j,k(l), i < j (3)

where ρ̂q,k is the estimate of ρq,k, L is the number of channel
realizations, Mq is the number of antenna pairs in Pq , and ĥi,k

and ĥj,k(l) are the estimates of channel coefficients hi,k(l)
and hj,k(l) respectively. hi,k(l) and hj,k(l) are the i-th and
j-th channel coefficients in the sample vector of hk at the
l-th channel realization, relating to the i-th and j-th antenna
elements at the BS.

IV. SPATIALLY ASYMPTOTIC BEHAVIOR OF TRA

When the antenna elements are correlated, for the antenna
pairs in the same group, the antenna elements in different
antenna pairs can be correlated, and thus the samples of the
related correlation coefficients can be correlated. Considering
the correlation between the correlation samples, the widely
known LLN for i.i.d. random variables cannot be directly
applied to studying the spatially asymptotic behavior of the
TRA method.

In the following Lemma 1, the Khinchin’s statement on LLN
proposed in [16] for correlated random variables is introduced,
based on which the spatially asymptotic behavior of the TRA
method is studied.

Lemma 1: Let x1, x2, . . . , xn, . . . be a sequence of random
variables. Denoting by rij the correlation coefficient between
xi and xj and putting

ak = E(xk),

Bn =
n∑

k=1

E|xk − ak|2,

Cn =
n−1∑
k=0

sup
|i−j|=k

|rij |, (4)
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if

BnCn = O(n2−δ) (5)

for some δ > 0, the strong LLN is

1
n

n∑
k=1

(xk − ak) → 0, n → ∞, (6)

and, for any real number A > 0,

P

{∣∣∣∣∣
n∑

i=1

(xk+i − ak+i)

∣∣∣∣∣ > A

}
<

2
A2

(Bk+n − Bk)Cn. (7)

A. Spatially Asymptotic Convergence

In the following, in the light of Lemma 1, we investigate the
spatially asymptotic convergence of a TRA covariance matrix
estimate with the number of antenna elements for a uniform
array. Note that the uniform array can be a uniform linear array
(ULA) or a uniform non-linear array, e.g., a uniform planar
array (UPA).

Assume that, TRA is used to estimate the receiving covari-
ance matrix at the BS with a uniform array composed of
co-polarized antenna elements for UE k, and Q antenna pair
groups are established with Mq antenna pairs each.

For an antenna pair set Pq , let

xn = hin,q,kh∗
jn,q,k − ρq,k, n = 1, . . . , Mq (8)

where the antenna pair (in,q, jn,q) is the n-th member in Pq.
Since

E(hin,q ,kh∗
jn,q,k) = ρq,k, (9)

we have that xn’s expectations are equal to zero, i.e.,

E(ς1) = E(ς2) = . . . = E(ςMq ) = 0. (10)

Let

BMq =
Mq∑
n=1

E|xn|2 (11)

and

CMq =
Mq−1∑
p=0

βp (12)

with

βp = sup
|l−m|=p

|E(xlxm
∗)|. (13)

Let bl,m,q denote the shortest distance between any antenna
element in the antenna pair l and any antenna element in the
antenna pair m, where the antenna pairs l and m are the l-th
and m-th antenna pairs in the antenna pair group Pq. When
bl,m,q ≥ δ0 with δ0 an empirical value for approximating two
antenna elements as uncorrelated, e.g., δ0 = 4λ with λ the
wavelength, xl and xm can be approximated as uncorrelated,
i.e., E(xlxm

∗) ≈ 0.
Without the loss of generality, the antenna pairs in Pq can

be numbered to satisfy that βp > 0 for p ≤ Nq − 1 and

βp ≈ 0 for p ≥ Nq if there is βp ≈ 0, where Nq ∈ Z
+ and

1 ≤ Nq ≤ Mq. Then we have that

Nq min{βp > 0} ≤ CMq ≤ Nqβ0 (14)

Considering xn’s are zero-mean identically distributed,
we have that

BMq = Mqσ
2
q,k (15)

where σ2
q,k is the variance of xn.

From (14) and (15), the upper bound of BMqCMq is

BMq CMq ≤ NqMqβ0σ
2
q,k, (16)

and the lower bound of BMq CMq is

BMqCMq ≥ NqMqσ
2
q,k min{βp > 0}. (17)

For a uniform array, if its size is a strictly increasing
linear or sublinear function of M , Mq increases with M and
Nq = o(Mq) where o(·) is the little-o notation. In terms
of (16),

BMq CMq = O(M2−δ
q ), (18)

with some δ > 0, which in terms of (5) in Lemma 1 is the
sufficient condition for

ρ̂q,k − ρq,k → 0, Mq → ∞, (19)

with

ρ̂q,k =
1

Mq

Mq−1∑
n=0

hin,q,kh∗
jn,q,k. (20)

On the other side, if the size of a uniform array is fixed
while M grows, Mq increases with M and Nq ∼ Mq. In terms
of (17),

BMqCMq = O(M2+δ′
q ), (21)

with some δ′ ≥ 0, which is not a sufficient condition in terms
of (5) in Lemma 1.

Additionally, it is seen that, for a uniform array, if its size is
a strictly increasing linear or sub-linear function of the number
of antenna elements M , the number of antenna pair groups Q
approaches a constant as M increases.

Therefore, for a uniform array, if its size is a strictly increas-
ing linear or sublinear function of M , under the assumption of
ideal channel coefficient estimation, the spatially asymptotic
convergence of the TRA estimate to the true covariance matrix
occurs within one single channel realization, i.e.,

R̂k → Rk, M → ∞. (22)

B. Impact of Spatial Correlation Level

In the following, in the light of the inequality (7) in
Lemma 1, we investigate the impact of the spatial correlation
level on the performance of the TRA method.

From the derivation in Section IV-A and (7) in Lemma 1,
we have that, for any real number A > 0,

P (γq,k)=P
{∣∣∣Mqγq,k−hi1,q,kh∗

j1,q ,k

∣∣∣ > A
}

<
2σ2

q,k

A2
CMq ,

(23)
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Fig. 1. An M -antenna uniform planar array (UPA).

Fig. 2. The one-ring model.

with

γq,k = ρ̂q,k − ρq,k. (24)

We can see that when the correlation level |E(xlxm
∗)|

decreases, CMq decreases and thus, the upper bound of
P (γq,k) in (23) decreases.

Since the above conclusion can be applied to any Mq,
hin,q,k and ρq,k, we deduce that the squared error |γq,k|2
decreases with the spatial correlation level.

Therefore, for a uniform array, if its size is a strictly
increasing linear or sublinear function, the mean squared
error of a TRA covariance matrix estimate 	R̂− R	2

F/M2

decreases as spatial correlation decreases; that is, the TRA
method performs better with lower spatial correlation. Note
that 	 · 	F denotes the Frobenius norm of a matrix.

V. NUMERICAL EVALUATION

In our simulation, we assume that an M -antenna uniform
planar array (UPA), as shown in Fig. 1, is installed at the
BS with M an even number, and a single-antenna MS on
the boresight of the UPA is in the center of a scatter ring
composed of unlimited scatters. The UPA is composed of
two rows of antenna elements with M/2 antenna elements
in each row. The spacing between the two rows is λ/2. The
antenna spacing between the antenna elements in the same
row is denoted by d0.

The one-ring model in [17], as shown in Fig. 2, is used
to generate the true spatial covariance matrix R, whose
correlation coefficients are generated as

rij = J0

(
2π

λ
Δdij

)
, (25)

where dij is the distance between antennas i and j, Δ is the
angle spread determined by the radius of the scatter ring and
the distance between the BS and the MS, and J0(·) is the
zeroth order Bessel function.

With the true covariance matrix R, the l-th channel realiza-
tion can be represented by

h(l) = R
1
2 hw(l), l = 1, . . . , L (26)

Fig. 3. Average MSE vs the number of antenna elements. L = 1, Δ = 15◦.

where L is the number of channel realizations, hw(l) is a
M -length column vector whose entries are zero-mean unit-
variance i.i.d. complex Gaussian distributed random variables
CN (0, 1) and R

1
2 is the matrix squared root of R,

R = R
1
2 R

1
2
H
. (27)

In our simulation, the performance metric is the average
mean squared error (MSE) between the true spatial covariance
matrix R and the covariance matrix estimate R̂ in terms of
the Frobenius norm,

δ2
L = E

(
	R − R̂	2

F

M2

)
. (28)

The Monte Carlo simulation method is used to obtain the
approximation of δ2

L.
For a UPA shown in Fig. 1, its true covariance matrix R

is neither a Toeplitz matrix nor a block-Toeplitz matrix, but
there is correlation redundancy in it. We evaluate the spatially
asymptotic behaviors of the TRA and SCM methods as both
of them can be applied to covariance matrix estimation for
UPAs. We assume that true channel coefficients are used in
covariance matrix estimation; that is, ĥ(l) = h(l).

In the SCM method,

R̂ =
1
L

L∑
l=1

ĥ(l)ĥH(l), (29)

where ĥ(l) is the channel vector estimate at the l-th channel
realization. For acquiring a good covariance matrix estimate
by the SCM method, the number of channel realizations L
has to be quite large, creating large pilot overhead and causes
concerns on time delay and resource efficiency.

In Fig. 3, the asymptotic behaviors of the TRA and SCM
methods are evaluated in three settings within one single
channel realization. The three settings are: 1) d0 is fixed
to 0.5λ while antenna elements grows, that is, the physical
size of UPA is a strictly increasing linear function of M ;
2) d0 = λ log 2(M/2)/(M/2−1), that is, the physical length
of UPA array is λ log2(M/2) which is a strictly increasing
sublinear function of M ; 3) d0 = 4λ/(M/2 − 1), that is,
the physical length of UPA is fixed to 4λ. The Mont Carlo
number is 10,000, and the angle spread is Δ = 15◦.



2598 IEEE COMMUNICATIONS LETTERS, VOL. 25, NO. 8, AUGUST 2021

Fig. 4. Average MSE vs the number of channel realizations. d0 = 0.5λ,
M = 64.

From Fig. 3, it is seen that, within one single channel
realization, the performance of the SCM method is poor
in all three settings and does not improve as M grows.
When the physical length of UPA is a strictly increasing
linear or sublinear function of M , the performance of the TRA
method improves, and the tendency of spatially asymptotic
convergence to the true covariance matrix estimation is shown;
whereas, when the physical length of UPA is fixed, although
the performance of the TRA method is still much better than
the SCM method in the given range of M , the tendency of
spatially asymptotic convergence is not shown.

In Fig. 4, under the assumption that antenna spacing is fixed
to 0.5λ, the performances of the TRA and SCM methods are
evaluated with different angle spreads. As given in Eq. (25),
the Mont Carlo number is 1,000. Angle spread can represent
the spatial correlation level: the wider angle spread means the
lower spatial correlation. Fig. 4 shows that the TRA method
outperforms the SCM method for all spatial correlation levels
and performs better with lower spatial correlation, while the
spatial correlation level does not influence the performance of
SCM much.

VI. CONCLUSION AND DISCUSSION

In this letter, we investigated the spatially asymptotic behav-
ior of the TRA method for structured covariance matrix
estimation. As the samples of correlation coefficients in the
TRA method can be correlated, the widely known LLN for
i.i.d. random variables cannot be directly used to analyze
the asymptotic behavior of the TRA method. Resorting to
Khinchin’s statements on LLN for correlated random vari-
ables. we derived that for a uniform array, if its physical size is
strictly linear or sublinear function of the number of antenna
elements, the spatially asymptotic convergence of the TRA
estimate to the true covariance matrix occurs within one single
channel realization. Moreover, in the light of the inequality of
Khinchin’s statement, we derived that lower spatial correlation
leads to increased estimation performance in terms of average
mean squared error. Finally, we demonstrated our theoretical
analysis results for the TRA method by the simulation on
UPAs with the SCM method as a reference.

Similar to the known claim that the asymptotic orthogonal-
ity helps the simple MRC receiver and conjugate precoding
to improve their performance in massive MIMO systems
[18], our investigation on the asymptotic behavior of the
TRA method shows that the simple TRA method, which can
be applied to various array configurations, can be sufficient
for spatial covariance matrix estimation in massive MIMO
systems within one single channel realization.
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