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Abstract— It has been long established that crowds generated
by social events (e.g., sports matches, parades, fairs…) produce
a high impact on cellular network service. However, to estimate
such an impact, it is necessary to use data sources classically
outside the mobile operator control. In this way, and following
a social-aware approach, the forecasting mechanisms should be
able to combine both social and network information to obtain
reliable predictions. To this end, the present work develops
a complete system for its use in the prediction of cellular
metrics (e.g., connections, throughput…). The performance of the
proposed solution is evaluated in a real cellular network, showing
the capabilities of the approach to provide accurate forecasting.

Index Terms— Cellular communications, self-organizing net-
works, social events, network intelligence, forecasting.

I. INTRODUCTION

NEW and increasingly demanding applications are taking
the management of 5G networks to new heights of

complexity. Particularly when there are large concentrations of
users (sports matches, concerts, parades, etc.), whether planned
as social events or spontaneously set, it becomes challenging
for the cellular network operators to maintain the quality of the
service and attend to all possible issues. Unexpected crowds
of users commonly cause network overloads and, thus, degra-
dations in the network service. In this context, the automation
of cellular network management proposed under the paradigm
of the Self Organizing Networks (SON) becomes growingly
relevant. Hence, the availability of SON mechanisms for self-
healing and self-optimization makes them a critical element
for current and next-generation cellular networks to maximize
the utilization of the available resources and meet demand
requirements.

Classic approaches to manage performance degradations in
cellular networks have been typically based purely on cellular
metrics such as alarms, counters, KPIs (Key-Performance
Indicators), user traces, etc. It has been only recently that
other sources of information, such as application-specific
indicators [1] and context variables(e.g. the users’ location [2])
have been considered as key input drivers for the operation,
administration and management (OAM) tasks of the cellular
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network. Regarding location as context information, in [3],
Li et al. proposed a fog-based latency forecasting system for
Internet of Things networks, helping to minimize the delay
in those scenarios. Moreover, in [4], Li et al. presented a
virtualization enabled fog computing framework, where data
is computed in near nodes, and, reducing load and costs in
cellular networks.

On the other hand, although the impact of crowds in
the network is very high, the identification of the social
events causing them, if present, is typically not automated
and reactive in nature [5]. Forecasting mechanisms able to
predict the impact of these events into the cellular metrics are
deemed indispensable to support proactive resource allocation
and optimization mechanisms able to avoid or compensate
their expected impact in the network.

This makes necessary to incorporate the social dimension
(inherent to the service demand) into the analysis of network
performance. In this sense, in recent years, a few works have
proposed the use of this social context in the field of prediction
with various management applications, leading to what can be
defined as “social-aware” systems.

In this area of social-awareness, most works have focused on
reactive mechanisms. In this way, in [6], Trinh et al. proposed
a framework to detect anomalies using an LSTM (Long Short-
Term Memory) neural network model that associate abnormal
values in the network metrics to social events. Furthermore,
the authors in [7] proposed another anomaly detection system
based on the prediction error when traffic is higher compared
to its normal behavior. Similar techniques have been proposed
where information from Social networks (i.e., Twitter) is
combined with historical cellular data to detect coverage holes,
estimate user demand, or to plan new base stations [8], [9].
However, the proposed techniques are typically associated
with a specific metric and lack the ability to predict future
metric values. Also, Twitter-based geolocated information is
scarce and alone will typically not be enough for social
events characterization, making necessary the use of other
information sources.

Beyond specific mechanisms, social-awareness has been
also the focus of wider management frameworks. In [5],
Fortes et al. developed a system to associate past anomalies to
previous social events, allowing to identify its root cause. Nev-
ertheless, the proposed approach does not provide techniques
for the forecasting of future anomalies. Furthermore, in [10],
Pintér et al. proposed a framework that allows to understand
mobility patterns during large social events using logs obtained
from the LTE (Long Term Evolution) network. Nevertheless,
such model relied exclusively on previously captured measure-
ments and highlighted the difficulty of using online social data.
Accordingly, the work in [11] surveyed the role that context
information plays towards network optimization through the
knowledge of the future and predictions, providing a summary
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of the most promising techniques in the field. Nevertheless,
long-term predictions that could be applicable regardless of
the chosen metric are not identified, rather each cellular metric
is individually studied.

Finally, a recent survey [12] identified the need for auto-
matic data-driven and proactive network optimization systems,
i.e., with the network capacity to predict and act in advance.
Here the use of social data has been linked with caching
decisions, only suggesting as future work the aggregation of
social data to the cellular metrics and the application of multi-
layer neural networks.

Considering the above, a shortage of developments on cellu-
lar metrics forecasting making use of social data is identified.
Going beyond previous approaches, the main contributions of
this letter include the definition of a novel framework for the
prediction of cellular network metrics in a generalized manner,
using both social and cellular data. For this, the use of social
events’ start dates alongside cellular data is proposed. To allow
this, a novel approach of stacked nonlinear autoregressive
exogenous models (NARX) is adopted, being specifically
defined in order to allow the use of the social event information
to improve the metrics forecasting. Moreover, the methodology
for its hyperparameters estimation, training, and forecasting
application is established, testing it based on real cellular data.

In this way, this letter is organized as follows.
Section II presents the main algorithms used for forecasting.
In Section III, the novel system constructed in order to
support these mechanisms is presented, including a detailed
description of its functions and variables. Then, in Section IV,
the predictions provided by the system are evaluated using
data from a real cellular network and compared to a non-
social based approach. Finally, Section V summarizes the main
conclusions.

II. NARX NEURAL PREDICTION

To predict future metrics, a NARX model is proposed.
NARX models use the past samples of the metric, y[n], and
the current and future values of an exogenous input, x[n],
to calculate future estimated values y′[n] of y[n] [13].

To implement this model, a multilayer perceptron (MLP),
a type of feedforward neural network approach, is pro-
posed [14]. This is expressed in Equation (1):

y′[n]=Ψ(y[n − 1] . . . y[n−ny], x[n−1] . . . x[n − nx], b[n]),
(1)

where Ψ is the function of the model where ny and nx

are the number of past samples of the variables x[n] and
y[n], respectively, taken as inputs. b[n] represents bias values,
a constant added to shift the output of a neuron without varying
the weights of the inputs.

Following a similar approach to the one described (for
general applications) in [15], in the proposed system, a number
k of these predictor models are stacked in order to increase the
robustness and reliability of the predictions by combining their
output using the median value of the predictions. Therefore,
if a predictor fails, the resulting forecast is still correct, thanks
to other predictors.

The structure of this model is shown Figure 1 where two
configurations are defined: the first one is in open-loop and

Fig. 1. Proposed MLP structure.

Fig. 2. Hyperparameters median correlation.

it is the one used for training. Once trained, the closed-loop
architecture is used for the prediction.

In order to define the optimal values for the hidden layer
size and the number of delayed inputs, a hyperparameters
selection module is defined. This estimates these parameters
of the network by testing all possible combinations of these
two parameters within a certain value range. This process is
presented in Figure 2 for the dl_user_throughput metric to be
used as input and further described in the evaluation section.
The median of the correlation between the predictions and the
real values of the metric is calculated for 100 experiments for
each of the possible combinations of hidden layer size and
number of delayed inputs. From this, the pair of hyperpara-
meters with the highest median correlation is selected, in this
case a hidden layer size of 10 and 6 delayed inputs.

The performance of the provided forecast will be also
related to the dependency of each of the metrics in respect to
the number of users and their demand. Hence, SAFe provides
an indication of the expected quality of the forecasts for each
metric based on the correlation results obtained for the training
set during the hyperparameters selection process.

III. PROPOSED SYSTEM

With the proposed NARX forecasting model and social
data as a key elements, a Social-Aware Forecasting framework
for cellular network metrics (SAFe) is proposed. SAFe goes
beyond previous social acquisition system, such as the one
proposed in [5] by adding a complete set of functionalities
aiming to provide the necessary inputs for the forecasting
mechanisms. As shown in Figure 3, SAFe functionalities are
going to be described in detail in the next subsections.

A. Social-Aware OAM Support Block
This module is based on the system defined in [5] and it is

charge of providing the social data required by the framework.
As shown in Figure 3, it includes a set of multiple steps.
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Fig. 3. High-level diagram of the social-aware forecasting system.

Firstly, the acquisition of social information block gathers
social data (mainly event start date, venue location coordinates,
type) from calendar sources (e.g. databases, events aggrega-
tors). This information is filtered and ranked (block B) by the
relevance of the events eliminating those where the available
information is not complete or go outside of the geographical
area under analysis [5].

From this, block C, network association estimates the set
of venues (e.g. stadiums, concert halls, parks…) and events
that could likely have impacted each cell. This is estimated
by selecting for each cell those events that are closer and in
the proper bearing to the center of its radiation pattern. This is
directly calculated based on the known geographical position
of the sites and the azimuth of their sectors. Additional filtering
can be performed by correlating past cell metric values with
events from a specific venue or area [5], discarding events
from low-impacting venues and keeping those of high impact
(e.g. restaurant events would not generate a high impact in
the network while those coming from a stadium will typically
do). This information is then provided as an output by block
D in order to feed the posterior modules of the SAFe system.

B. Exogenous Input Generation
Once the events associated with degradations have been

identified, and the venues where those took place have been
selected, the exogenous input, x[n], for the NARX model (as
presented in Equation (1)) is generated. This is created to
encompass in a time-series manner the information about the
start of each event that can impact the cell under analysis,
in order to be able to associate events to the metric being
predicted. To do so, x[n] generation is defined by a binary
signal encompassing the time instant when an event starts
(valued as ′1′) or not (′0′). Since the events can be known
in advance, this exogenous input will contain past values as
well as future values.

C. Automatic Windowing
In order to apply the NARX model, raw cellular data, y[n],

is typically not applicable as anomalies associated with social
events might overlap with each other, for example, when two
successive events occurs within few hours. To overcome this
a windowing algorithm is defined in order to separate metrics
into different segments associated with an increase and a
posterior decrease on demand-related values as they could be
associated with an event, as it can be observed in Figure 4.
This process consists of dividing the data into segments that
keep a pattern formed by an initial increase followed by a
decrease in its values associated with user demand. These

Fig. 4. Example of raw metric data.

segments can be reordered, obtaining a new time series and,
therefore, allowing to experiment with different scenarios
using the same dataset. To delimit these event segments,
the proposed segmentation is based on the zero crosses (ZCs)
of the derivative function of the metric. However, there are
periods in which too many ZCs would appear, even if no
significant change in the metric y[n] has taken place. To avoid
this issue, a smoothed “envelope” of the metric is obtained
from the Hilbert transform. Based on the ZCs of the derivative
of this transform, the segments are calculated. Figure 4 shows
this process where the filtered Hilbert envelope is shown for
an example metric (the number of active connections).

In order to classify if each of these segments are anomalous
and probably affected by an event, the range of metric values
considered as normal (without the presence of an event) is
established by low (thlow) and high (thhigh) thresholds. Such
values, in turn, are calculated from the mean (μ) and variance
(σ) as follows: thlow = μ(y)−Tol∗σ(y) and thhigh = μ(y)+
Tol ∗σ(y). In this context, the tolerance (Tol) establishes the
severity level of the threshold. This is calculated automatically
by the expression: Tol =

√
2ln(|y|), being |y| the number of

samples of the metric in a segment.
Lastly, the dataset is divided into as many subsets as

anomaly segments. The event anomalies are separated by
introducing non-anomalous segments between them. Figure 5
shows an example of the resulting separated metric from the
portions obtained from the original data. The different reorders
of these segments allow for the posterior cross-validation of
the forecasting mechanisms.

IV. EVALUATION

The evaluation of SAFe has been carried out using data from
a real LTE network. Here, the focus is on two key example
cells in the same area described in [5]. Firstly, Cell_A is a
cell directly covering a big stadium affected by several social
events. Secondly, Cell_B is located near the stadium entrance
surroundings. The dataset contains 238 hourly samples from
Cell_A and 571 from Cell_B. For these, prediction accuracy
has been tested up to 24 steps (hours) ahead, using a system
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Fig. 5. Example of metric data divided in folds.

Fig. 6. Correlation coefficients and delays obtained.

with 3 redundant predictors and performing 100 experiments
for each metric.

Since forecasts may be time-shifted with respect to the real
values, Mean Absolute Error (MSE) or Root Mean Squared
Error (RMSE) are measures that would give very high error
levels even for small-time differences with similar values.
It has to be considered that small shifts in the start of the
events will not highly impact management tasks dedicated to
compensate their effects, being more relevant that the predicted
maximum metric values and temporal profile are close to the
real ones.

Considering this, the cross-correlation between the esti-
mated and the predicted values is applied as the key figure of
merit of the proposed framework. As a complement to this,
the maximum values of the correlation and the delay between
both are calculated. Also, to improve the display of the
results, correlation is presented as a normalized coefficient.
In Figure 6 the results for Cell_A and Cell_B are plotted
for two key metrics: num_rrc_connections (i.e. number of
user connections) and dl_user_throughput (i.e. user download
speed). In order to prove the advantage of the proposed
method against traditional approaches, a nonlinear autoregres-
sive model (NAR), which corresponds to the proposed model
without exogenous input, is used as a baseline to compare the
NARX results.

It can be observed that the median value of NARX correla-
tion between real metrics and predictions for all the calculated
“steps ahead” values and both cells is above 0.8, providing
an accurate prediction, even in the long-term. Nevertheless,
the graph shows a higher correlation degree for the cell directly

covering the stadium. Regarding the delay, there is almost
no difference between metrics, achieving the proposed NARX
system low median delay values (below 5 hours).

V. CONCLUSION

This work has proposed a completely novel framework to
improve the prediction of any relevant network metric that
incorporates the relationship between social events and crowd
gatherings and their impact on the cellular network. Results
based on real cellular network data have proved the effective-
ness of the method. From the analysis of the predictions made
for the different metrics, it is possible to conclude the high
accuracy of the system to generate forecasts using only social
information and data from past events, even in the long-term.

Future works will use such predictions as inputs for SON
mechanisms in order to improve network performance. More-
over, the application of the proposed scheme in the context of
SARS-CoV-2 and general pandemic scenarios (where crowds
and mobility are restricted) will be further analyzed.
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