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Analyzing the Latency of Sparse Flows in the FQ-CoDel
Queue Management Algorithm

Toke Høiland-Jørgensen , Member, IEEE

Abstract— The FQ-CoDel queue management algorithm was
recently published as an IETF RFC. It achieves low latency espe-
cially for low-volume (or sparse) traffic flows competing with bulk
flows. However, the exact conditions for when a particular flow
are considered to be sparse has not been well-explored. In this
work, we analyze the performance characteristics of the sparse
flow optimization of FQ-CoDel, formulating the constraints that
flows must satisfy to be considered sparse in a given scenario.
We also formulate expressions for the expected queuing latency
for sparse flows. Then, using a numerical example, we show that
for a given link and a given type of sparse flows (VoIP traffic),
the number of sparse flows that a given bottleneck can service
with low sparse flow latency is only dependent on the number of
backlogged bulk flows at the bottleneck. Furthermore, as long as
the maximum number of sparse flows is not exceeded, all sparse
flows can expect a very low queuingqueuing latency through the
bottleneck.

Index Terms— FQ-CoDel, queuing latency, bufferbloat.

I. INTRODUCTION

THE FQ-CoDel queue management algorithm, which was
recently published as an IETF RFC [1], is a hybrid

AQM and packet scheduling algorithm that has been shown
to be an excellent remedy for the bufferbloat problem of
excessive queuing on a congested link [2]. In particular,
FQ-CoDel achieves very low latency for low-volume traffic
competing with the bulk flows causing the congestion. This
is due to the sparse flow optimization employed in the flow
scheduler.

However, while FQ-CoDel has been shown to achieve very
low latency for such sparse flows, the exact conditions for
when a particular flow is considered to be sparse has not been
well-explored, as noted in the RFC [1, Sec. 1.3].

The contribution of this work is an analysis of what exactly
constitutes a sparse flow in FQ-CoDel. We achieve this by
formulating analytical expressions for the constraints flows
must satisfy to be treated as sparse by the FQ-CoDel sched-
uler, and supplement with a numeric example and simulation
for a typical example of real-world traffic (real-time VoIP
traffic).

The rest of this letter is structured as follows: Section II
first summarises related work and Section III explains how the
sparse flow optimization in FQ-CoDel works. Section IV then
presents our analytical framework and results and Section V
shows the real-world examples. Finally, Section VI concludes.
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II. RELATED WORK

While several studies have measured the performance of
FQ-CoDel (e.g., [2]–[4]), none deal specifically with the sparse
flow optimization, and none offer any analytical expressions
for the performance of the algorithm. However, similar algo-
rithms have been subject to analysis, as summarised below.

FQ-CoDel is based on the deficit round-robin (DRR) sched-
uler [5]. The authors of DRR propose an extension called
DRR+ where “latency-sensitive flows” are given priority as
long as such a flow never sends more than x bytes every
time period T , which can be said to be an a priori analytical
expression for the constraints of a sparse flow. This mechanism
is expanded upon in the DRR++ [6] algorithm, which adds an
extension to the mechanism to better deal with bursty latency-
sensitive flows. The scheduling of DRR++, in particular,
is identical to that of FQ-CoDel, except that DRR++ requires
flows to be explicitly classified as latency-sensitive (without
specifying any mechanism to do so), whereas FQ-CoDel
applies the same scheduling to all flows, which means that
latency-sensitive flows are only classified implicitly. However,
since the authors of DRR++ assume an a priori classifica-
tion of latency-sensitive flows, there is no analysis of their
constraints.

The implicit classification mechanism of FQ-CoDel is sim-
ilar to that used by the Shortest Queue First (SQF) queuing
scheme [7], which works by simply de queuing packets from
the shortest queue available at the time of dequeue. This gives
implicit priority to flows that do not build a queue, such as
voice flows and low-bandwidth video streams. However, since
SQF does not use a round-robin scheduler, it gives no service
guarantees to the backlogged bulk flows. The authors provide
both analytical and experimental evaluations of the algorithm
performance characteristics in [8].

The Quick Fair queuing (QFQ) algorithm [9] is an
O(1) scheduling algorithm that implements fairness queuing
between flows in a way that approximates a fluid model of
the flows with high accuracy. The letter provides an extensive
analysis of its performance characteristics.

Finally, a comprehensive analysis of the number of active
flows in a fairness queuing system is provided in [10]. This
does not treat queuing latency, nor does it distinguish between
types of traffic, such as sparse or bulk flows.

III. THE SPARSE FLOW OPTIMIZATION

The FQ-CoDel sparse flow optimization works as follows:
When a packet arrives at the router, it is hashed on its

transport layer 5-tuple (source and destination IP, IP protocol
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number and source and destination ports). The result of the
hash, modulo the number of configured queues, is the queue
number of that packet, and the packet is enqueued to that
queue. If this queue is already active, no further action is taken.
However, if the queue is not already active, it is made active
by being added to the end of the list of new queues.

When de queuing a packet, FQ-CoDel first finds a queue
to dequeue from. This is done by first looking at the list
of new queues, which gives priority to queues that recently
transitioned from inactive to active. If the list of new queues
is empty, a queue is selected from the list of old queues (which
is every queue that is not a new queue). Having selected
the appropriate queue (either new or old), that queue gets to
dequeue packets at most totalling quantum bytes (which is
configurable, but defaults to one MTU), and afterwards the
queue is moved to the end of the list of old queues. When a
queue becomes empty, it is removed (and so transitions to the
inactive state) as long as it has transitioned through the list of
old queues at least once.

Since empty queues return to the inactive state, it is possible
for a flow to have all its packets trigger the re-activation of
the queue when they arrive at the router, which will give the
flow effective priority for its entire duration. In the following,
we explore what it takes for a flow to achieve this.

IV. ANALYTICAL FRAMEWORK

Consider an FQ-CoDel instance managing a bottleneck with
transmission rate R bytes per second, with N backlogged
flows sharing the bottleneck (and so each achieving a rate of
R/N bytes per second). We do not concern ourselves with the
performance of the N flows, and we assume no hash collisions
occur. We furthermore assume all flows transmit packets of
equal size L bytes and that the FQ-CoDel quantum Q = L.

A. One Sparse Flow

Consider a sparse flow S transmitting packets of size
LS ≤ L bytes. What is the maximum transmission rate
that permits this flow to be prioritised by the sparse flow
mechanism? We first assume that the packets of S are equally
spaced with inter-arrival time IS seconds.

When a packet from flow S arrives at the bottleneck,
it will have to wait for the packet currently being serviced
to complete transmission. After this, the queue of flow S will
be activated as a new queue (i.e., get priority) and be serviced
immediately. Once the packet has been transmitted, the queue
will be moved to the end of the list of old queues, and if it
is still empty after the scheduler has cycled through all the
backlogged flows, it will be removed.

This means that to get treated as sparse, the next packet
from S has to arrive after the queue has been removed from
the scheduler. I.e., after the transmission of the previous packet
in S, plus the bulk packet being serviced on arrival, and one
additional packet from each backlogged flow. This translates
to the following constraints on S:

IS >
L(N + 1) + LS

R
⇒ RS <

R
L

LS
(N + 1) + 1

(1)

Where RS is the rate of flow S.

Next, we consider what happens if the packets of S are
not equally spaced (i.e., that IS varies between subsequent
packets), but still obeys the rate restriction in (1). There are
two cases to consider: The case where the packets of S are sent
in bursts of several back-to-back packets with longer spaces
between them, and the case where the inter-arrival time simply
varies so that, say, every other packet pair obeys (1) and every
other pair does not.

In the case of bursts we assume that the bursts themselves
are equally spaced over the lifetime of the flow. If the total
burst size is less than the quantum size (i.e., Q >= nLS for
bursts of n packets), all packets in the burst will be dequeued
at the same time, and we can simply consider the behaviour
equivalent to the case where the flow consists of single equally
spaced packets of size nLS. If the burst is larger than the
quantum size, the first Q bytes of each burst will be dequeued
immediately, while the rest will be queued until the next round
of the scheduler.1

For the non-burst case, we consider the packets p1, . . . , pn

of flow S with inter-arrival times i1, . . . , in−1 since the
previous packet. By assumption, the average inter-arrival time
is IS and obeys (1). This means that inter-arrival times will
alternate between being less than or more than IS . I.e., every
sequence of consecutive packet arrivals with inter-arrival times
i−0 , . . . , i−j < IS will be followed by a sequence of packet
arrivals with inter-arrival times i+0 , . . . , i+k > IS (otherwise
(1) wouldn’t hold). We label the i’th sequence of packets with
inter-arrival times < IS as I−i , and the (ordered) set of all
such sequences as I−. Similarly, the j’th sequence of packets
with inter-arrival times >= IS are labelled I+

j , with the set
of all such sequences given as I+. We furthermore impose a
regularity constraint on the flow:

∀I−i ∈ I− :
I−i + I+

i

2
≥ IS (2)

where I−i is the average value of ik ∈ I−i . I.e., (2) states that
every sequence of packets with inter-arrival times smaller than
IS must be followed by a sequence of packets with inter-arrival
times larger than IS , such that the average inter-arrival time
satisfies (1) when looking only at those two sub-sequences.

Given these constraints, packets in I+ will receive the low
latency performance from the sparse flow optimizations, while
packets in I− will arrive while the queue is already being
scheduled, and so will experience higher queuing latency. The
actual queuing latency experienced by packets in I− depends
on the distribution of packets; exploring this is out of scope
for this analysis.

B. Multiple Sparse Flows

If M sparse flows go through the bottleneck, and we assume
that all sparse flows have the same packet inter-arrival time IS ,
this inter-arrival time will have to satisfy:

IS >
L(N + 1) + LSM

R
(3)

1Since we assume that the average rate of the flow obeys (1), the queue has
to be cleared out before the next burst.
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In the worst case scenario, the sparse flows synchronise (so
packets from all flows arrive at the same time). In this case,
the expected queuing latency for all sparse flows will be:

LS(M − 1) + L

2R
(4)

Where the L is due to the bulk flows not being preempted.
However, this worst-case latency is only seen if the sparse

flows synchronise so that their packets arrive at the same
time (and have to queue behind one another). We can express
expected queuing latency of a sparse flow in the average case
by modelling the arrivals of sparse flows as follows.

Since we have bounded the inter-arrival time for each flow
by (3), all flows are by assumption sparse themselves. This
means that when a packet on a given sparse flow arrives at
the bottleneck, it will not queue behind any other packets from
the same flow, but only behind other sparse flows. Since the
sparse flows are served in round-robin order, this becomes
equivalent to a FIFO queue of flows waiting to be serviced
(each of which has a single packet queued), and so we are
really expressing the distribution of flow start times. Assuming
Poisson arrivals for the flows, this system can be expressed as
an M/D/1 queue (as link capacity and packet sizes are fixed).
This will allow us to express an upper bound on the expected
queuing latency of the sparse flows (since the flow arrival
distribution with a fixed number of flows would be a right-
truncated exponential distribution, rather than the exponential
distribution assumed in an M/D/1 setting).

This M/D/1 queuing system has the following values for
arrival rate (λ), service rate (μ) and utilisation (ρ):

λ = M/IS , μ = R/LS, ρ =
MLS

RIS
(5)

From this, we can straight-forwardly express the expected
queuing time ωq as a function of the number of sparse flows,
the packet size and inter-arrival times and the link rate:

ωq =
ρ

2μ(1 − ρ)
=

MLS

RIS

2 R
LS

�
1 − MLS

RIS

�

=
MLS

2 R
LS

(RIS − MLS)
(6)

This is useful for predicting and upper bound the expected
queuing time for any concrete flow type (where these values
are known), as we will see in Section V. Note that in the case
where there are also bulk flows present, we need to add L/2R
to the expected queuing time, to account for the packet that
is being processed when a packet from a sparse flow arrives.

C. Impact on Bulk Flows

Since the sparse flow optimization simply corresponds to
inserting new queues at the head of the round-robin list instead
of at the tail, the steady-state performance impact on bulk
flows is the same as for DRR; i.e., given two flows flow i and
j, for each dequeue opportunity afforded to i, j has at least
one dequeue opportunity. As such, the expected service given
to each flow scales with the total number of bulk and sparse
flows (i.e., it is proportional to N + M ), in the worst case.

TABLE I

VALUES USED IN THE NUMERICAL EXAMPLE

In practice, many sparse flows will have rates significantly
lower than the bulk flows, in which case the DRR scheduler
will divide the spare capacity between the backlogged bulk
flows.

D. Impact of Changing the Quantum

We initially assumed that the quantum Q = L, which means
that a bulk flow can dequeue a full packet every time it is
scheduled. If Q > L, every bulk flow is still serviced every
scheduling round, but may dequeue more than one packet.
Whereas, if Q < L, each bulk flow will get a dequeue
opportunity every L/Q scheduling rounds and, conversely,
only QN/L bulk flows will dequeue a packet each round.
In the case where only bulk flows are present, these two effects
cancel each other out. However, in the presence of sparse
flows, the quantum impacts the bounds on sparse flow inter-
arrival time given in (3). Assuming Q >= LS so sparse flows
always dequeue a full packet when they are scheduled, this
becomes:

IS >
Q(N + 1) + LSM

R
(7)

V. REAL-WORLD EXAMPLES

Using (6) and (7) we can compute two useful properties:
The maximum number of sparse flows a given link can sustain
as a function of the number of backlogged bulk flows at the
bottleneck, and the expected queuing time for each such sparse
flow. To do this, we can rewrite (7) as follows, while also
including the case where there are no bulk flows:

Mmax <

⎧
⎪⎪⎨
⎪⎪⎩

ISR

LS
, if N = 0

ISR − Q(N + 1)
LS

, if N > 0
(8)

We also need to assign some values to the variables in the
equations. For our example, we consider a 10 Mbps Ethernet
link where bulk flows transmit full-size (1518 bytes) packets
and the quantum is set to coincide with this full packet size
(as is the default in FQ-CoDel), and the sparse flows consist
of a number of G.711 VoIP flows at the highest (64 Kbps)
data rate, which transmits packets of 218 bytes (160 bytes
payload+RTP, UDP, IP and Ethernet headers) at a fixed 20 ms
interval. These values are summarised in Table I.

With these values, (8) tells us that the maximum number
of VoIP flows the bottleneck can handle while still treating
them as sparse flows, is a linear function of the number of
bulk flows backlogged at the bottleneck. With no bulk flows,
114 sparse flows can be serviced, which correspond to the
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Fig. 1. Expected queuing delay as a function of the number of sparse flows
at the bottleneck.

number of VoIP flows the bottleneck link has capacity for
(each flow transmits at a link-level rate of 87.2 Kbps). With
15 bulk flows backlogged, only three simultaneous VoIP flows
can traverse the bottleneck link as sparse flows, and with more
backlogged flows, the VoIP flows will no longer be treated as
sparse. The number of sparse flows per bulk flow is related to
the ratio between the quantum and the packet size of the VoIP
flows.

Turning to the expected queuing time of the sparse flows
themselves, Figure 1 shows this as a function of the number
of sparse flows. To verify that the model accurately predicts
an upper bound on the queuing latency, we have also cre-
ated a simulation of FQ-CoDel in the Salabim event-driven
simulator.2 The results from the simulation are also included
in the figure.3 Note that the expected queuing time does not
depend on the number of bulk flows, other than to limit the
number of sparse flows that can be supported. In fact, a sparse
flow can experience lower latency when competing against
bulk flows, than when competing against a large number of
other sparse flows. This limiting is illustrated by the two
graphs, where Figure 1a shows the case of no bulk flows and
Figure 1b shows the case of a single bulk flow.

The thing to note here is that the expected queuing latency
is kept very low for all the sparse flows, and that adding bulk
flows does not change this, other than to add a constant to

2http://www.salabim.org
3The bulk flows used in the simulation are fixed rate UDP flows. Further

details of the simulation runs are omitted here due to space constrains, but
are available (along with the full simulation source code) in [11].

the queuing time corresponding to the packet being processed
when a sparse flow packet arrives. In fact, as Figure 1b shows,
the expected queuing latency even for the maximum number
of sparse flows that the link can handle, is less than two
milliseconds with one or more bulk flows limiting the number
of sparse flows. So as long as an operator is using (8) to
calculate the max number of sparse flows the link can support,
she can be confident that the sparse flows themselves will
achieve very low queuing latency at the bottleneck.

VI. CONCLUSION

We have analyzed the performance characteristics of the
sparse flow optimization of FQ-CoDel. This analysis shows
the constraints that flows must satisfy to be considered sparse
in a given scenario, which is dependent on the number of flows
(both bulk and sparse) and the link rate. We also formulate
expressions for the expected queuing latency for sparse flows.

Using a numerical example, we also show that for a given
link and a given type of sparse flows (VoIP traffic), the number
of sparse flows that a given bottleneck can service with the
low sparse flow latency is only dependent on the number of
backlogged bulk flows at the bottleneck. And that as long as
the maximum number of sparse flows is not exceeded, all
sparse flows can expect a very low queuing latency.
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