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Full-Duplex Enabled Integrating Communication and Computation: Joint
Beamforming and Power Optimization With Imperfect CSI

Hualiang Luo , Quanzhong Li , Qi Zhang , and Yiqing Li

Abstract— This letter investigates a full-duplex enabled net-
work that integrates communication and over-the-air computa-
tion (AirComp), where the base station (BS) performs uplink
process for AirComp and downlink process for communication
over the same time-frequency resources. Consider the case of
imperfect channel state information, we formulate a stochastic
sum rate maximization problem such that the mean square error
of AirComp should be less than a given threshold and each node’s
power budget is limited. To solve the stochastic optimization
problem, we propose a fast stochastic algorithm which jointly
optimizes the beamforming at the BS and the power factors
of sensors, and the solution of each optimization variable has
a closed or semi-closed form. The numerical results show the
effectiveness of the proposed algorithm.

Index Terms— Over-the-air computation (AirComp), full-
duplex communication, stochastic optimization, robust resource
allocation, beamforming.

I. INTRODUCTION

WITH the explosive growth in the number of IoT
devices [1], the communication overhead between

mobile devices and the base station (BS) that collects the data
becomes dominant. However, the extensive data transmission
among the BS and sensors may exacerbate a severe com-
munication bottleneck. It is important to develop an efficient
scheme to aggregate the massive distributed data, and over-
the-air computation (AirComp) is a promising technology
that utilizes the signal-superposition property of a multiple
access channel for efficient functional data aggregation (such
as arithmetic mean, weighted sum, geometric mean, Euclidean
norm, polynomial, and other nomographic functions) [2], [3].

Although the AirComp technology has such advantages,
it cannot completely replace the traditional information
communication. Besides, the available spectrum resource is
limited, and it is predictable that the spectrum competition
between the existing wireless network and the AirComp
network will tend to intensify. To alleviate this competition,
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researchers intended to integrate both technologies. The
authors in [3] studied a wireless network with AirComp in
the uplink and broadcast in the downlink. In [4], a super-
position coded transmit signal was constructed to realize the
functionalities of target sensing, intelligent computing, and
information communication over the same spectrum. Besides,
the authors in [5] proposed two network frameworks that
utilize dual-function radar communication to achieve target
sensing and AirComp. In [6], the authors developed a frame-
work that integrated AirComp and wireless power transfer in
time division manner.

In addition, full-duplex is also a common technology
for integrating dual function over the same time-frequency
resources, such as integrating wireless power transfer and
mobile edge computing [7], integrating target sensing and
communication [8], integrating device-to-device communica-
tion and wireless power transfer [9], and integrating AirComp
and artificial noise transfer [10].

Based on the above observations and motivated by the great
success of full-duplex technology in wireless communications,
we aim to leverage full-duplex technology for the integra-
tion of multiple different devices engaged in over-the-air
computation or communication within a network sharing the
same time-frequency resources. To the best of our knowledge,
there is no investigation on the full-duplex enabled integrating
AirComp and communication. In this letter, we consider that
in a wireless network, a multi-antenna full-duplex BS serves
as a fusion center for L single-antenna sensors and a base
station for downlink communication of K users.

The main contributions of this letter are summarized as
follows:

• We consider a full-duplex enabled wireless network that
integrates AirComp and communication, where a multi-
antenna full-duplex BS simultaneously operates AirComp
for sensors and communication for users, over the same
time-frequency resources. Table I provides a comparison
of the proposed scheme with the typical works.

• In the case of imperfect channel state information (CSI),
we construct a stochastic sum rate maximization prob-
lem subject to an mean-squared error (MSE) threshold
of sensors’ data aggregation and the power budget of
each node. To solve the stochastic optimization prob-
lem, we propose a fast stochastic algorithm combining
alternating optimization and consensus alternating direc-
tion method of multipliers (consensus-ADMM). In the
proposed algorithm, a new surrogate function has been
constructed to avoid semidefinite relaxation (SDR) to
achieve lower computation complexity, and the closed (or
semi-closed) form solution of each optimization variable
has been derived.
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TABLE I
THE COMPARISON OF THE PROPOSED SCHEME WITH THE TYPICAL WORKS

• Numerical results demonstrate the superiority of our
proposed algorithm compared to the existing scheme,
in terms of sum rate and computation complexity.

II. SYSTEM MODEL

Considering a network consisting of a full-duplex BS
equipped with Nb transmit antennas and Nb receive antennas,
L sensors equipped with single-antenna, and K wireless
users equipped with single-antenna. The BS aggregates the
sensing signals received from all sensors and simultaneously
transmits the communication signals to the users. Denote
sl as the pre-processing data of the l-th sensor and xk as
the BS transmits the communication signal to the k-th user,
where sl and xk are assumed to be circularly symmetric
complex Gaussian with zero mean and covariance E[sls

†
l ] =

E[xkx†k] = 1, E[sls
†
l′ ] = E[xkx†k′ ] = 0, l = 1, . . . , L, k =

1, . . . ,K, l ̸= l′, k ̸= k′ [3].
Denote the channel from the l-th sensor to the BS as gl ∈

CNb×1, the channel from the BS to the k-th user as hk ∈
CNb×1, and the effective self-interference channel of the BS
as J ∈ CNb×Nb . Consider the uncertainties of the CSI and
model them as [12]

gl = ḡl + ∆gl, hk = h̄k + ∆hk, J =
√

α(J̄ + ∆J),
(1a)

∆gl = Θ
1
2
g,lg̃l, ∆hk = Θ

1
2
h,kh̃k, ∆J = Θ

1
2
J J̃Ψ

1
2
J , (1b)

where ḡl, h̄k and J̄ are the estimated CSI, ∆gl, ∆hk and ∆J
are the channel estimation errors, g̃l, h̃k and J̃ are independent
and identically distributed (i.i.d.) Gaussian random variables
with zero mean and unit variance, the row covariance matrices
for the channel estimation errors are denoted by Θg,l, Θh,k

and ΘJ while ΨJ represents the column covariance matrix
of ∆J, and α models the effect of passive loop-interference
suppression such as antenna isolation [10].

Thus, the received signals at the BS and the k-th user can
be expressed as

yb =
∑L

l=1 glalsl + J
∑K

k=1 wkxk + nb, (2)

yk = h†k
∑K

k′=1 wk′xk′ + nk, (3)

where al ∈ C is the power factor of the l-th sensor, wk ∈
CNb×1 is the BS beamforming vector for the k-th user, nb ∈
CN (0, σ2I) and nk ∈ CN (0, σ2

k) are the noise at the BS and
the k-th user, respectively.

By multiplying an aggregation vector u ∈ CNb×1, the signal
recovered by the BS is given by

ŝ = u†yb. (4)

Considering the sum operation as the aggregation func-
tion, i.e., s =

∑L
l=1sl [3], [4]. To quantify the AirComp

performance, the MSE is used to measure the distortion of
the data aggregation result. Define w =

[
wT

1 , . . . ,wT
K

]T
,

a = [a1, . . . , aK ]T , and the MSE at the BS is given as follow

MSE(u,a,w) = ∥s− ŝ∥2 =
∑L

l=1

∥∥u†glal − 1
∥∥2

+
∑K

k=1

∥∥u†Jwk

∥∥2 + σ2 ∥u∥2 . (5)

The signal-to-interference-to-noise ratio (SINR) is com-
monly employed to evaluate the quality of service of
communication. The interference for the k-th user comes from
the intra-system interference due to signals transmitted to other
users and the inter-system interference from sensors. When the
number of sensors is large and the sensors are far from the
users, the interference caused by the sensors to the k-th user
approaches to be Gaussian [11]. Thus, the SINR at k-th user
can be expressed as

γk =
w†

khkh
†
kwk∑K

k′=1,k′ ̸=k w†
k′hkh

†
kwk′ + σ2

k

, (6)

where σ2
k contains the noise and the interference caused by

the sensors at k-th user. Incidentally, if the BS is far from
sensors or users, one may consider employing relay [9] or
reconfigurable intelligent surface [13], [14] for assistance.

Based on (6), the sum rate of users can be expressed as∑K
k=1 log (1 + γk). Specifically, we consider the following

stochastic sum rate maximization problem

max
u,a,w

E
[∑K

k=1 log (1 + γk)
]

(7a)

s.t. E [MSE(u,a,w)] ≤ ξ, (7b)

∥w∥2 ≤ PBS, (7c)

|al|2 ≤ Pl, l = 1, . . . , L, (7d)

where constraint (7b) ensures that the MSE at the BS remains
below a given threshold ξ, constraints (7c) and (7d) limit the
transmission power of the BS and sensors, PBS and Pl are the
power budget of BS and the l-th sensor, respectively.

III. PROPOSED ALGORITHM

In this section, we propose a fast stochastic algorithm to
solve the stochastic optimization problem (7). Due to the
coupling optimization variables in problem (7), we optimize
the variables alternatively [13], [14].

A. Optimize u and a
Optimize u and a when w is given. Since the optimization

variables u and a only appear in the constraints of problem (7),
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the problem is transformed into an MSE minimization problem
to expand the feasible region of w as much as possible. Thus,
problem (7) is rewritten as

min
u,a

E [MSE(u,a,w)] (8a)

s.t. |al|2 ≤ Pl, l = 1, . . . , L. (8b)

Because the optimization variables u and a are still coupling
in problem (8), we optimize them alternatively.

Before optimizing each variable, we convert the con-
straint (7b) into a more traceable form. As in [12], the MSE
expectation can be expressed as the following equation

E [MSE(u,a,w)] = σ2u†u + L

+
∑L

l=1

(
|al|2u†(Θg,l + ḡlḡ

†
l )u− 2ℜ

{
u†ḡlal

})
+

∑K
k=1 αu†

(
tr(wkw

†
kΨJ)ΘJ + J̄wkw

†
kJ̄
†
)
u. (9)

1) Optimize u When a and w Are Given: Problem (8) is
recast as

min
u

E [MSE(u,a,w)] . (10)

As an unconstrained convex problem, we can obtain a
closed-form solution for problem (10) by setting the first-order
derivative to zero, which is

u =
(∑K

k=1 α(tr(wkw
†
kΨJ)ΘJ + J̄wkw

†
kJ̄
†)

+
∑L

l=1(|al|2(Θg,l + ḡlḡ
†
l )) + σ2I

)−1 (∑L
l=1 ḡlal

)
.

(11)

2) Optimize a When u and w Are Given: Problem (8) is
recast as

min
a

E [MSE(u,a,w)] (12a)

s.t. |al|2 ≤ Pl, l = 1, . . . , L. (12b)

Since the elements in a are not coupled with each other, they
can be solved in parallel. Take the l-th element in a as an
example, and the corresponding optimization problem is

min
al

|al|2u†(Θg,l + ḡlḡ
†
l )u− 2ℜ

{
u†ḡlal

}
(13a)

s.t. |al|2 ≤ Pl. (13b)

Problem (13) is a convex quadratically constrained quadratic
problem (QCQP) with one constraint, and the solution is given
as [15]

al = (u†(Θg,l + ḡlḡ
†
l )u + µl)ḡ

†
l u, (14)

where µl ≥ 0 is the dual variable that can be obtained by
bisection method [15].

Note that problems (10) and (12) are always feasible.
If the optimized MSE is less than the specified threshold ξ,
problem (7) is feasible; otherwise, problem is infeasible with
the currently given w.

B. Optimize w

Optimize w when u and a are given, and problem (7) is
transformed into

max
w

∑K
k=1 E [log (1 + γk)] (15a)

s.t. E [MSE(u,a,w)] ≤ ξ, (15b)

∥w∥2 ≤ PBS. (15c)

Due to the fractions in γk and logarithmic functions in (15a),
it is hard to obtain the closed-form expression of the sum rate
of users. Therefore, we propose a fast stochastic algorithm to
solve problem (15). Different from the constrained stochastic
successive convex approximation (CSSCA) [16] which applies
SDR and solves a series of semidefinite programmings (SDPs),
we construct a new surrogate function which does not rely on
semidefinite relaxation, and only a series of QCQPs need to
be solved in the proposed fast stochastic algorithm. Employing
consensus-ADMM [15] to solve the QCQPs, which has lower
computational complexity than solving SDPs by the interior
point method. In addition, the solution obtained by the pro-
posed algorithm is already rank-one, which also avoids the
performance loss caused by recovering a rank-one solution
from the high-rank solution obtained by solving an SDP.

In (t+1)-th iteration, the surrogate function of the objective
function (15a) is given as follow

g(w;wt) =
∑K

k=1 ((1− ρt) f t
k

+ ρt
(
− log(wt†Ht

u,kw
t + σ2

k)

+ log(wt†Ht
u/kw

t + σ2
k)

)
+ℜ

{
(ρtH̃t

k + (1− ρt)f t
k)†

(
w −wt

)})
+ τ

∥∥w −wt
∥∥2

, (16)

where wt is the solution obtained in t-th iteration, constant
τ > 0, {ρt ∈ (0, 1]}∞t=1 is a decreasing sequence about t,

Ht
u,k = Bdiag(ht

kh
t†
k , . . . ,ht

kh
t†
k︸ ︷︷ ︸

K

), (17a)

Ht
u/k = Ht

u,k − Bdiag(0Nb(k−1),ht
kh

t†
k ,0Nb(k−1)), (17b)

H̃t
k = −

2Ht
u,kw

t

wt†Ht
u,kwt + σ2

k

+
2Ht

u/kw
t

wt†Ht
u/kw

t + σ2
k

, (17c)

Bdiag(A1, . . . ,AK) denotes a block diagonal matrix with
diagonal blocks A1, . . . ,AK , f t

k and f t
k are the approximation

for the objective function and the gradient of the objective
function, and they are updated recursively according to

f t
k =

(
1− ρt

)
f t−1

k + ρt
(
log(wt†Ht

u/kw
t + σ2

k)

− log(wt†Ht
u,kw

t + σ2
k)

)
, (18a)

f t
k =

(
1− ρt

)
f t−1
k + ρtH̃k. (18b)

Despite not containing slack variables, the surrogate function
g(w;wt) in (16) still conforms to the definition of structured
surrogate function in [16].1

1By choosing the proper sequence
{
ρt
}∞

t=1
and

{
ηt
}∞

t=1
as shown in

Appendix, we can verify that the surrogate function g(w;wt) satisfies the
assumptions 2 and 3 in [16]. Limited by space, the details are omitted.



1686 IEEE COMMUNICATIONS LETTERS, VOL. 28, NO. 7, JULY 2024

Thus, in (t+1)-th iteration, we need to solve the following
QCQP

min
w

g(w;wt) (19a)

s.t. (15b), (15c). (19b)

Applying consensus-ADMM to solve problem (19), we need
to solve the following subproblems iteratively,

ws+1 ← arg min
w

g(w;wt) + β

2∑
i=1

∥xs
i −w + vs

i ∥
2
, (20a)

xs+1
i ← arg min

xi

∥∥xi −ws+1 + vs
i

∥∥2
,

s.t.

{
E [MSE(u,a,xi)] ≤ ξ, if i = 1,

∥xi∥2 ≤ PBS, if i = 2,
(20b)

vs+1
i ← xs+1

i −ws+1 + vs
i , (20c)

where auxiliary variables w = xi, i = 1, 2 are introduced
to reformulate the problem (19) into the consensus form, vi

is the dual variable and β ≥ 0 is the penalty parameter.
Problem (20a) is an unconstraint convex problem, and the
closed form solution is given as

ws+1 =
1

τ + 2β

(
τwt + β

∑2
i=1(x

s
i + vs

i )

+(1− ρt)
∑K

k=1 f t−1
k − ρt

2

∑K
k=1 H̃t

k

)
. (21)

The semi-closed solution of problem (20b) is [15]

xs+1
i =

{
(I + µiJ̃)−1(ws+1 − vs

i ), if i = 1,

(1 + µi)−1(ws+1 − vs
i ), if i = 2,

(22)

where J̃ = Bdiag(J̇, . . . , J̇︸ ︷︷ ︸
K

), J̇ = α(u†ΘJuΨJ + J̄†uu†J̄).

Denote w⋆ as the solution of problem (20), and wt is
updated according to

wt+1 = (1− ηt)wt + ηtw⋆, (23)

where {ηt ∈ (0, 1]}∞t=1 is a decreasing sequence about t.

C. Algorithm, Convergence, and Complexity
The proposed fast stochastic algorithm for solving the

stochastic problem (7) is summarized in Algorithm 1.
Convergence: As the number of the iteration increases,

Algorithm 1 converges. Please see Appendix for details.
Complexity: The computation burden of Algorithm 1 mainly

comes from finding µl and µi by bisection method, which
takes the complexity about O((LTa +K2Tw)N2

BS +N3
BSK3)

[15], where Ta and Tw are the number of times that step 6
and step 17 are executed, respectively.

IV. NUMERICAL RESULTS

In this section, numerical results are conducted to evaluate
the performance of the proposed fast stochastic algorithm in
comparison with the CSSCA algorithm [16]. All channels are
assumed to follow Rayleigh fading channel models, that is, the
channel coefficients are modeled as i.i.d. circularly symmetric
complex Gaussian random variables with zero mean and unit
variance. If not specified, the number of antennas at the BS

Algorithm 1 The Proposed Fast Stochastic Algorithm
1: Initialize a, w, {ρt}∞t=1 and {ηt}∞t=1;
2: repeat
3: n← 0;
4: repeat
5: Update u by (11);
6: Update al by (14), l = 1, . . . , L;
7: n← n + 1;
8: until u and a are convergence;
9: t← 0

10: f t
k ← 0, f t

k ← 0, k = 1, . . . ,K;
11: repeat
12: Realize ht

k, k = 1, . . . ,K;
13: Construct g(w;wt), Ht

u,k and Ht
u/k according to

(16) and (17), k = 1, . . . ,K;
14: s← 0;
15: repeat
16: Update ws+1 by (21);
17: Update xs+1

i by (22), i = 1, 2;
18: Update vs+1

i by (20c), i = 1, 2;
19: s← s + 1;
20: until ws is convergence;
21: w⋆ ← ws ;
22: Update f t

k and f t
k according to (18), k = 1, . . . ,K;

23: Update wt+1 according to (23);
24: t← t + 1;
25: until wt is convergence;
26: until u, a and w are convergence.

Fig. 1. The sum rate of users under different numbers of users.

is NBS = 12, the number of users is K = 5, the number
of sensors is L = 20 [4], the MSE threshold is ξ = 2, the
powers of noise are σ2 = 1 and σ2

k = σ2 + 0.1 LPl, the
power budget at the BS and each sensor are PBS/σ2 = 20 dB
and Pl/σ2 = 10 dB [12], respectively, the covariance matrices
ΨJ and ΘJ follow the definition in [12] with estimation error
variance σ2

e = 0.002, passive loop-interference suppression
α = 0.5 [10]. All simulations are performed in MATLAB
R2021b, and the CVX [17] are used to solve the SDPs. The
simulation results are averaged over 100 randomly generated
estimated CSI realizations.

In Fig. 1, we present the sum rate of users versus the
numbers of users. It is observed that the sum rate of users
increases as the number of users increases, and a higher
transmit power budget of the BS leads to a higher sum rate.
The proposed algorithm outperforms the CSSCA algorithm.
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Fig. 2. The sum rate of users under different antenna numbers of the BS.

Fig. 3. The sum rate of users under different channel estimation error
variances.

Additionally, the superiority of the proposed algorithm is more
significant when the power budget at the BS increases.

In Fig. 2, we present the sum rate of users versus
the antenna numbers of the BS. It can be observed that the
sum rate of users increases as the antenna number of the
BS increases. A lower MSE threshold results in a smaller
feasible region, which leads to a lower sum rate. Furthermore,
the proposed algorithm consistently outperforms the CSSCA
algorithm. However, the sum rate of users will not increase
indefinitely with the increase of the number of base station
antennas. Since the noise of users and the interference caused
by sensors do not tend to zero, and the limited transmitting
power of the base station, the SINR of each user is limited.

In Fig. 3, we present the sum rate of users versus the channel
estimation error variance. It can be observed that the sum rate
of users decreases as the channel estimation error variance
increases. The participation of more sensors results in higher
interference power, which in turn diminishes the sum rate
of users. Furthermore, the proposed algorithm achieves better
performance than the CSSCA algorithm.

V. CONCLUSION

This letter investigates a full-duplex network that integrates
communication and AirComp, considering the presence of
imperfect CSI. Based on a new surrogate function, we have
proposed a fast stochastic algorithm that jointly optimizes the
power factor of sensors and the beamforming of BS to maxi-
mize the sum rate of users, and the closed or semi-closed form
solution of each optimization variable has been derived. The
effectiveness of the proposed algorithm has been demonstrated
through numerical results.

APPENDIX
THE CONVERGENCE PROOF OF ALGORITHM 1

The MSE has a lower bound since it is non-negative.
Since the optimized u (or a) in the current iteration is a

feasible point in the next iteration, the value of objective func-
tion (10) (or (12a)) is non-increasing as the iterations process.
Thus, the value of objective function (8a) is convergence.

Similarly, the value of objective function (15a) is non-
decreasing as the iterations process (step 2 in Algorithm 1).
The feasible region of problem (15) is compact and con-
vex (satisfying the Slater condition), and the surrogate
function (16) satisfies the definitions of the structured sur-
rogate function [16]. Therefore, by choosing proper {ρt}∞t=1
and {ηt}∞t=1 satisfy that limt→∞ ρt → 0,

∑∞
t=1 ρt →

∞,
∑∞

t=1 (ρt)2 < ∞, limt→∞
ρt

ηt → 0 , according to the
Theorem 1 in [16], for any feasible initial point w0, {wt}∞t=1
converges to a stationary point of problem (15).

From the above, the value of objective function (7a) is
non-decreasing. Because the feasible region of problem (7)
is finite and the objective function is continuous, Algorithm 1
converges.
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