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On Outage Probabilities With Correlated Locations, Channel, and
Traffic in Wireless Networks

Udo Schilcher and Stavros Toumpis , Member, IEEE

Abstract— In this letter we derive novel expressions for the
joint outage probability at two time slots in a wireless network
under correlated interferer locations, channel gains, and traffic.
The result is given as a function of the lag between the two
slots, the channel coherence time, and the traffic burst length.
Furthermore, we analyze the success probability of a transmission
following a single outage, an important metric when, e.g.,
analyzing retransmission or cooperative relaying protocols.

Index Terms— Joint outage probability, interference dynamics,
stochastic geometry, wireless networks.

I. INTRODUCTION

WHEN evaluating the performance of a wireless net-
work, an important performance metric is the outage

probability [1]. It is often used when assessing the network’s
performance by mathematical expressions rather than by sim-
ulations or experiments.

Outage probabilities are usually derived using tools from
stochastic geometry [1]. A particular strength of this approach
is that it can capture spatiotemporal correlations of inter-
ference [2], thus drawing a comprehensive picture of the
performance of a network. In such an approach, the node
locations are often modeled by Poisson point processes (PPPs),
which is a good compromise between the accuracy of the
model and mathematical simplicity and thus has given rise
to a large number of publications, including results on assess-
ing the performance of cellular networks [3], [4], mmWave
communications [5], wireless ad hoc networks [6], and the
Internet-of-Things (IoT) [7], [8]. Many of these works take
into account the interference correlation that is caused by
the fixed interferers’ locations or, in case of mobility, the
correlation of the interferers’ locations at different times.

However, as we have shown in the past, interference can
have additional sources of correlation besides interferer loca-
tions, namely correlated channel gains (e.g., when fading
has a coherence time that spans several slots) and correlated
traffic [2], [9] (e.g., when it is especially likely that a given
node transmits again after a transmission occurred due to
bursty transmissions or the use of a retransmission protocol).
These correlation sources lead to rather diverse interference
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dynamics. For example, when nodes are immobile, the cor-
relation of interference levels at two different time slots that
is caused by the fixed interferer locations is independent of
the time lag between the two slots. In contrast, the correlation
caused by correlated channel gains and traffic depends on the
time lag [2] between the slots; this has different implications
for protocol design and network parametrization.

Our particular contributions are as follows:
• We derive closed-form expressions for the joint outage

probability in two time slots separated by an arbitrary lag
τ . These expressions, for the first time, quantify jointly
the effects of correlations in the locations, the channel
gains, and the transmission activities of the interferers.

• We also derive closed-form expressions for the joint
and the conditional (following a lost packet) success
probabilities under the same conditions.

• Having these closed-form expressions available, for the
first time we quantify the manner in which the outage,
joint success, and conditional success probabilities across
two slots depend on the time separation of these slots,
when there is no node mobility. Previous models did not
capture this dependence.

• We present several numerical results that quantify the
impact of the aforementioned correlations on outage.

• We provide guidelines for designing and configuring net-
working protocols, such as retransmission and scheduling
schemes, cooperative relaying protocols, etc.

• We illustrate similarities between interference correlation
and joint outage probabilities, which validates using the
correlation as an indicator of network performance.

II. SYSTEM MODEL

We consider a wireless network with nodes distributed
according to a PPP Φ ⊆ R2 with intensity λ. By applying
Slivnyak’s theorem, we assume, with no loss of generality,
that the receiver under consideration r, the so-called typical
receiver, is located at the origin o. An illustration of the setup
is provided in Fig. 1.

Time is slotted and in each slot any idle node starts a new
traffic burst of length d slots with probability p̄. Therefore,
in each slot on average a fraction p of all nodes start a new
transmission and overall a fraction pd ≤ 1 of the nodes are
transmitting, while a fraction 1 − pd are idle, where p and p̄
are connected by the equation p̄ = p

1−p(d−1) .
All nodes transmit with unit power. The wireless channel is

subject to distance-dependent path loss and Rayleigh fading.
Hence, the reception power at time t from a node x ∈ Φ is
ℓx hx(t), where ℓx = ∥x∥−α with α > 2 is the path gain
and the fading gain hx(t) is exponentially distributed with
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Fig. 1. Illustration of the network setup during a slot: The receiver r located
at the center is aiming to receive data from a sender s. This reception is
disturbed by several orange interferers x ∈ Φ. The gray nodes are idle during
that slot.

mean E [hx(t)] = 1. We assume block fading, in which the
channel state stays constant over c slots and then changes
to an independent value. All concurrent transmissions except
the desired one cause interference. The interference power at
time t is the sum of all powers of interfering transmissions
arriving at r, i.e.,

∑
x∈Φ ℓxhx(t)γx(t). Here, γx(t) = 1 if x

transmits at time t and γx(t) = 0 otherwise. Thus, γx(t) is a
Bernoulli random variable with mean E [γx(t)] = pd, which is
the probability that x transmits at time t. The typical receiver
r is aiming to receive transmissions from a sender s ̸∈ Φ at
distance ∥s∥. For simpler notation, r, s, and any x ∈ Φ denote
both the node and its location. The reception is successful
if the signal-to-interference ratio SIRt at time t is above a
threshold θ, i.e.,

SIRt =
ℓshs(t)∑

x∈Φ ℓxhx(t)γx(t)
> θ ; (1)

otherwise r is in outage. We define the events Si = {SIRti
>

θ} and Oi = {SIRti
≤ θ} at time slot ti. Finally,

we define δ = 2
α , θs = θ

ℓs
, p11 = E [γx(t1)γx(t2)],

p10 = E [γx(t1)(1− γx(t2))], p01 = E [(1− γx(t1))γx(t2)],
and p00 = E [(1− γx(t1))(1− γx(t2))].

III. JOINT OUTAGE PROBABILITIES

A. Sending Probabilities

We start by deriving expressions for the probability that a
given interferer is transmitting in the considered slots.

Lemma 1: The probability that an interferer x transmits in
both slots t1 and t2 with t2−t1 = τ > 0 is (see [2], Lemma 1)

E [γx(t1)γx(t2)]
= max

(
0, p(d− τ)

)
+ p

min(τ−1,d−1)∑
i=0

min(τ−i,d)∑
j=1

⌊ g
d ⌋∑

k=0

(
g − kd+k

k

)
p̄k+1(1− p̄)g−kd,

(2)

where g = τ − i− j.
Proof: An interferer x transmits in both t1 and t2 in

two different events: Either a single message spans both
slots, or two separate messages overlap with the slots. Let
P
[
γI

x(t1, t2)
]

denote the probability of the first event. This
probability vanishes for τ ≥ d. For τ < d, we have
P
[
γI

x(t1, t2)
]

= p(d − τ), since there are d − τ slots before
t1 in which a message can start that overlaps with t2, each with
probability p. Next, let P

[
γII

x (t1, t2)
]

denote the probability of
the second event. The message overlapping with t1 can start

the earliest at d − 1 slots before t1 and the latest at t1 or d
slots before t2, whichever comes first, as otherwise it would
overlap with t2. Let i denote the number of slots this message
extends after t1. Then, the message overlapping with t2 can
start the earliest at t1 + i + 1, but not before t2 − d + 1. Let
j − 1 denote the number of slots that this message extends
before t2. Then, we have i = 0, . . . ,min(τ − 1, d − 1) and
j = 1, . . . ,min(τ − i, d).

The number of slots between the two messages in t1 and
t2 is g = τ − i− j. If g < d, these slots are idle. Otherwise,
there could be k ≤ ⌊ g

d⌋ messages in-between, where ⌊·⌋ is the
floor operator. The number of idle slots is then e = g − dk.
The probability for given i, j, k is

(
g−kd+k

k

)
p̄k+1(1− p̄)g−kd.

Note that the power k + 1 is because of the probabil-
ity that k messages start in-between, times the probability
that the message of t2 starts. Summing over these indices
gives

P
[
γII

x (t1, t2)
]

= p

min(τ−1,d−1)∑
i=0

min(τ−i,d)∑
j=1

⌊ g
d ⌋∑

k=0

(
g − kd + k

k

)
· p̄k+1(1− p̄)g−kd . (3)

The binomial coefficient in the previous expression accounts
for the number of sequences of messages and idle
slots between the two messages in t1 and t2. Adding
P
[
γI

x(t1, t2)
]
+ P

[
γII

x (t1, t2)
]

yields the result.
Lemma 2: The probability that an interferer x transmits in

exactly one of the slots t1 and t2 with t2 − t1 = τ is

E [γx(t1)(1− γx(t2))]
= E [(1− γx(t1))γx(t2)]

= p

min(τ−1,d−1)∑
i=0

⌊ g
d ⌋∑

k=0

(
g − kd + k

k

)
p̄k (1− p̄)g−kd+1 , (4)

where g = τ − i− 1.
Proof: The proof is similar to the one of Lemma 1, except

that x must not send in t2.
The probability that an interferer x is not transmitting in

any of the two slots is then E [(1− γx(t1))(1− γx(t2))] =
1− 2 E [γx(t1)(1− γx(t2))]− E [γx(t1)γx(t2)].

B. Success Probabilities

The well known success probability in a single slot is [1]:

P [S1] = exp
(
−λpdδπ2θδ

s csc(πδ)
)

. (5)

Due to block fading, for the sender and each of the interfer-
ers there are two options: either the channel states hx(t1) and
hx(t2) are equal, or they are independent. These cases lead to
different joint success probabilities.

1) Channel of Sender is Independent: We assume that the
channel of the sender, i.e., hs(t1), hs(t2) are independent and
identically distributed (i.i.d.).

Lemma 3 (Success for hx(t1) = hx(t2)): The joint success
probability if hx(t1) = hx(t2) for all x, but the coefficients
hs(t1), hs(t2) of the sender are i.i.d., is

P [S1S2] = exp
(
−λδπ2θδ

s csc(πδ)
(
2 p10 + 2δ p11

))
. (6)
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Proof: The joint success probability is

P [S1S2]

= P
[

ℓshs(t1)∑
x∈Φ ℓxhx(t1)γx(t1)

>θ,
ℓshs(t2)∑

x∈Φ ℓxhx(t2)γx(t2)
>θ

]
(a)
= EΦ,hx,γx

[
exp

(
−θs

∑
x∈Φ

ℓxhx

(
γx(t1) + γx(t2)

))]

= EΦ

[∏
x∈Φ

Ehx,γx

[
exp

(
−θsℓxhx

(
γx(t1) + γx(t2)

))]]

= EΦ

[∏
x∈Φ

(
p00 +

2p10

1 + u
+

p11

1 + 2u

)]
(b)
= exp

(
−λ

∫
R2

1−
(

p00 +
2p10

1 + u
+

p11

1 + 2u

)
dx

)
, (7)

where u = θsℓx. In (a) we define hx = hx(t1) = hx(t2)
and apply the complementary cumulative distribution function
of the exponentially distributed hs(·). In (b) we apply the
probability generating functional of Φ. Substituting p00 = 1−
2 p10 + p11 and solving the integral yields the result.

Lemma 4 (Success for independent hx(t1), hx(t2)): The
joint outage probability if hx(t1), hx(t2) are i.i.d. for all x is

P [S1S2] = exp
(
−λδπ2θδ

s csc(πδ)
(
2 p10 + (1 + δ) p11

))
.

(8)

Proof: Along the lines of the proof to Lemma 3, we have

P [S1S2]

=exp
(
−λ

∫
R2

1−
(

p00 +
2p10

1 + u
+

p11

(1 + u)2

)
dx

)
, (9)

where u = θsℓx. The difference to Lemma 3 is in the
denominator of the last fraction. Solving yields the result.

Corollary 1: We assume a block fading channel with block
length c for all interferers, and t2 − t1 = τ . Furthermore, let
the channel states of the sender hs(t1), hs(t2) be i.i.d. In the
case τ < c, we have

P [S1S2]

= exp
(
− λδπ2θδ

s csc(πδ)(
c−τ

c

(
2 p10 + 2δ p11

)
+

τ

c

(
2 p10+(1 + δ) p11

)))
. (10)

For τ ≥ c the channels of all interferers become independent
and the result of Lemma 4 applies.

Proof: For block fading with length c, the expected
fraction of interferers having an independent channel in the
two slots is τ

c for τ < c and 1 otherwise. The other interferers
keep the same channel. Hence, the set of interferers having
a dependent / independent channel form two independent
PPPs [10]. We combine them using a weighted sum of the
expressions within the exponential function in Lemmata 3
and 4 yielding the result.

2) Channel of Sender is Constant:
Lemma 5 (Success for hx(t1) = hx(t2)): The joint success

probability if hx(t1) = hx(t2) for all x and hs(t1) = hs(t2)
is lower bounded by

P [S1S2] ≥ exp
(
−λδπ2θδ

s csc(πδ)
(
2 p10 + p11

))
. (11)

Proof: Along the lines of the proof to Lemma 3, we have

P [S1S2]

= P
[

ℓshs(t1)∑
x∈Φ ℓxhx(t1)γx(t1)

>θ,
ℓshs(t2)∑

x∈Φ ℓxhx(t2)γx(t2)
>θ

]
= E

[
exp

(
−θs max

(∑
x∈Φ

ℓxhxγx(t1),
∑
x∈Φ

ℓxhxγx(t2)

))]

≥ E

[
exp

(
−θs

∑
x∈Φ

ℓxhx max
(
γx(t1), γx(t2)

))]

= exp
(
−λ

∫
R2

1−
(

p00 +
2p10 + p11

1 + u

)
dx

)
, (12)

where u = θsℓx. Solving the integral yields the result.
Lemma 6 (Success for independent h1, h2): The joint suc-

cess probability in time slots t1 and t2 if hx(t1), hx(t2) are
independently exponentially distributed for all interferers and
hs(t1) = hs(t2) is lower bounded by

P [S1S2] ≥ exp
(
−λδπ2θδ

s csc(πδ)
(
2 p10 + (2− 2−δ) p11

))
.

(13)

Proof: Along the lines of the proof to Lemma 5, we have

P [S1S2]

≥ E

[
exp

(
−θs

∑
x∈Φ

ℓx max
(
hx(t1)γx(t1), hx(t2)γx(t2)

))]

= exp
(
−λ

∫
R2

1−
(

p00 +
2p10

1 + u
+

2p11

2 + 3u + u2

)
dx

)
,

(14)

where u = θsℓx. Solving the integral yields the result.
Corollary 2: We assume a block fading channel with block

length c for all interferers and t2 − t1 = τ . Furthermore, let
the channel of the sender be constant, i.e., hs(t1) = hs(t2).
In the case τ < c, we have the lower bound

P [S1S2]

≥ Pbound [S1S2] = exp
(
− πλ δπθδ

s csc(πδ)(
c− τ

c

(
2 p10 + p11

)
+

τ

c

(
2 p10 + (2− 2−δ) p11

)))
.

(15)

For τ ≥ c the channels of all interferers become independent
and the result of Lemma 6 applies.

Proof: The proof goes along the lines of the proof of
Corollary 1, but applying Lemmata 5 and 6.

C. Conditional and Outage Probabilities

The outage probability for both slots t1 and t2 is

P [O1O2] = 1− P [S1]− P [S2] + P [S1S2] . (16)

The probability that the packet is successfully received at
t2 given that it is lost at t1 is

P [S2 | O1] =
P [O1S2]
1− P [S1]

, (17)
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Fig. 2. The joint outage probability of slots t1, t2 (16) for different d is
shown versus the sending probability pd. The upper group of lines is a lower
bound for equal channel of the sender (hs(t1) = hs(t2)) as in Corollary 2,
while the lower group of lines is the exact probability for i.i.d. channel of the
sender as in Corollary 1. Parameters are τ = 10, λ = 0.01, c = 10, α = 3,
and θs = 1.

where P [S1] is given in (5). The numerator is calculated by

P [O1S2] = P [S2]− P [S1S2] , (18)

where P [S1S2] is given in Corollary 1 in case of independent
channels hs(t1), hs(t2) of the sender s.

In the case of hs(t1) = hs(t2), we can bound the
conditional probability by applying Corollary 2, yielding

P [O1S2] ≤ P [S2]− Pbound [S1S2] . (19)

IV. NUMERICAL RESULTS

Fig. 2 shows P [O1O2] using (16). The sending probability
is normalized to pd, which is proportional to the expected
interference power as on average a fraction pd of the nodes
are transmitting. As expected, a higher pd implies a higher
outage probability. In the domain d ≤ τ (the blue curves
d = 1, 8, 10), we have a decrease of the outage probability
with increasing d, while in the domain d > τ this trend is
inverted, such that the lowest outage probability occurs for
d = τ + 1. Moreover, the blue traces (d ≤ τ ) are below the
black traces (d > τ ) for small pd, while for pd → 1 the blue
traces increase and partly cross the black traces. At pd = 1,
the trace d = 1 reaches a higher outage probability than all
d > τ . This effect can be explained by a qualitative transition
of interference correlation on p when d exceeds τ [2]. Overall,
d = τ shows the smallest outage probability over the whole
plot. Furthermore, we compare the cases of independent and
identically distributed (i.i.d.) and equal (hx(t1) = hx(t2))
channel states of the sender. The outage probability is lower for
i.i.d. channel states since when assuming there was an outage
at t1, with an independent channel there is a higher chance that
at t2 there is success. Note that the traces of hx(t1) = hx(t2)
are closer together than in the i.i.d. case due to the log-scale.

Fig. 3 investigates the relationship between the lag τ , the
interference correlation ρ(τ) (from [2], Case (2, 2, 2)), and
the outage probability P [O1O2]. This figure reveals several
interesting insights: Firstly, the observation from Fig. 2 that
outage is minimized for τ = d is confirmed. Secondly, the
overall trend of the outage probability reflects the trend of the
interference correlation. In particular, the correlation also has
a minimum at τ = d. Furthermore, the bend of the correlation
at τ = c is also seen in the outage traces. This emphasizes the
importance of the knowledge about interference correlation,

Fig. 3. P [O1O2] (Corollary 1) for different interferer densities λ, and the
corresponding interference correlation [2] are shown versus τ . Parameters are
p = 0.001, c = 4, d = 15, α = 3, and θs = 1.

Fig. 4. P [S1S2] (Corollaries 1 and 2) for constant (blue lines) and i.i.d.
(black lines) channel of the sender and τ = 1, 5 versus different sending
probabilities p. The red line indicates the baseline scenario of independent
interference. Parameters are λ = 1, c = 5, d = 10, α = 3, and θs = 1.

such as results in [2], [9], [11], and [12]. Thirdly, from a
system design perspective, it is optimal when τ is chosen to be
larger than the (expected) traffic burst length. In that way, the
probability that both transmissions are in outage is improved.

In Fig. 4 we compare the joint success probability P [S1S2]
for constant and i.i.d. sender channel gains. The traces of the
constant channel (blue curves) are lower bounds, while the
i.i.d. traces (black curves) are exact. There is a significant
difference between the two cases for a given τ , where the
constant channel gives a higher success probability. The real
gap might be even higher as we apply a lower bound for the
constant channel. The difference reduces for higher τ , which
seems natural. For analyzing a real network, it makes sense
to apply the result of a constant channel for τ ≤ c, and the
result of an i.i.d. channel for τ > c, based on the assumption
that the channel of the sender and of the interferers c have
the same coherence time. Considering these results from a
network performance perspective, we can expect a jump of
the success probability around τ = c. Hence, it is better to
time transmissions of a given sender within a delay below c
slots after a successful transmission to exploit the favorable
conditions before they change to independent values.

In Fig. 5 we plot the conditional probability P [S2 | O1]
versus p and τ . The conditional probability is always below
the unconditional probability P [S2], which indicates a positive
correlation between the two slots. This correlation, and in
turn the gap to the red line, varies with both p and τ . The
correlation increases with p, which is a well known result [1],
[9]. However, the correlation has a more intricate relation with
τ : for τ < d, the correlation decreases with increasing τ ,
leading to an increase in the conditional success probabilities
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Fig. 5. The conditional success probability of slot t2 given an outage in slot
t1 of (17) for i.i.d. channel of the sender and different values of the lag τ
versus the sending probability p. Black lines are for τ < d, while the blue
lines are for τ ≥ d. The red line indicates the unconditional probability P [S2]
for reference. Parameters are λ = 0.01, c = 1, d = 9, α = 3, and θs = 1.

Fig. 6. The conditional success probability of slots t1, t2 (17) for different
time lags τ is shown versus the traffic burst length d. Parameters are λ = 0.01,
pd = 0.1, α = 3, and θs = 1.

with τ . However, once reaching τ = d, the contribution of
the traffic to interference correlation almost vanishes, and the
main cause of the correlation becomes the interferer locations.
Further increasing τ leads to decreasing P [S2 | O1]. From a
systems perspective we can conclude that after an outage it is
best to send the next packet after τ = d. Furthermore, it can be
observed that for rather high p the impact of τ decreases and
vanishes close to pd = 1, where all nodes send all the time.
This is also the point of the highest interference correlation.

In Fig. 6, we plot the conditional success probability
P [S2 | O1] versus d and τ . The success probability is almost
constant at a high value for d ≤ τ . For higher d the
probability sharply drops to unfavorable values. This can be
explained in terms of interference correlation: From Fig. 3
we see that for τ < d the correlation is much higher than
for τ > d, where the traffic no longer contributes much.
Hence, if d > τ , the high correlation makes a success
following an outage less likely. For increasing τ , the dropping
point is at higher d, which renders a higher τ better in
terms of outage. However, it has to be considered that the
higher τ increases the delay for message delivery and reduces
throughput due to the longer gaps between consecutive trans-
missions, which forms a tradeoff. In practical applications,
these gaps could still be used to transmit packets to different
receivers, ideally located far away from the current destination.
Again the success probability is maximized for the case
d = τ .

V. CONCLUSION AND FUTURE WORK

In this letter, we derived closed-form expressions of the joint
success, conditional success, and outage probabilities of two
transmissions separated by a given time lag. We considered,
for the first time, all three sources of interference correlation,
i.e., interferer locations, correlated interferer channels, and
correlated interferer traffic. We provided expressions for both
equal and i.i.d. channels of the intended sender. Further-
more, we presented numerical studies of the expressions to
highlight the difference with respect to the uncorrelated case
as well as to the case when only interferer locations are
a source of correlation. Finally, we drew conclusions that
allow network designers to configure the network in a manner
that takes into account the underlying conditions, such as
how long is the optimal time lag between two consecutive
transmissions.

Future work should explore three directions: Firstly, our
results should be extended to an n-dimensional outage proba-
bility. Such a result is required, e.g., to analyze a scenario in
which bursty traffic occurs, or where many retransmissions are
required for a successful data delivery. Secondly, the results
should be exploited to analyze and improve various protocols
such as cooperative relaying. Thirdly, we could investigate
how the senders can exploit channel state information (CSI)
or an interference predictor to reduce outage by adjusting the
timing / scheduling of their transmissions.
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