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Abstract— The Simultaneously Transmitting and Reflecting
Reconfigurable Intelligent Surface (STAR-RIS) technology is an
innovative approach that aims to enhance the performance of
sixth-generation (6G) wireless networks. This study focuses on
a multi-STAR-RIS and full-duplex (FD) communication system
aimed at providing ultra-reliable low-latency communication
(URLLC) services. To maximize the total uplink (UL) and
downlink (DL) rates, beamforming and combining vectors at the
base station (BS), the transmit power of UL users, the amplitude
attenuations, and phase shifts of the STAR-RISs are jointly
optimized. These optimizations take into account the maximum
transmit power constraints of the BS and UL users, as well as
the quality of service requirements of UL and DL users. Given
the non-convex nature of the optimization problem, this study
proposes a novel deep reinforcement learning algorithm called
Meta DDPG, which combines meta-learning and deep deter-
ministic policy gradient. Numerical results demonstrate that a
multi-STAR-RIS assisted system can obtain a higher system total
rate compared to the conventional multi-RIS assisted system.

Index Terms— Simultaneously transmitting and reflecting
reconfigurable intelligent surface (STAR-RIS), full-duplex (FD),
Meta DDPG, system total rate (STR).

I. INTRODUCTION

IT IS anticipated that sixth-generation (6G) networks will
offer a range of applications, such as intelligent trans-

portation, virtual/augmented reality, and meta-universe, among
others. These applications necessitate communication with
ultra-reliable (≥ 1 − 10−5) and low-latency (≤ 1ms)
capabilities. To meet these requirements, ultra-reliable and
low-latency communication (URLLC) has been recognized as
a foundational service in 5G and 6G networks [1]. Recently,
a cost-effective technology called simultaneously transmitting
and reflecting reconfigurable intelligent surface (STAR-RIS)
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has emerged to enhance the reliability, coverage, and capacity
of 6G networks [2]. STAR-RIS accomplishes this by simulta-
neously transmitting and reflecting incident signals from the
base station (BS) [2]. The received signal is divided into
two components: one is reflected, and the other is trans-
mitted [2]. In contrast, full-duplex (FD) communication is a
promising technology to enhance spectrum efficiency, allowing
the BS to simultaneously receive and transmit signals at each
time-frequency resource block. By combining the capabilities
of STAR-RIS and FD, 6G networks will be able to provide
reliable and low-latency communication for URLLC users.

The existing related works can be categorized into i)
studying the effect of STAR-RIS on FD communication per-
formance [3], [4], [5], [6], [7], [8], [9] and ii) examining
the effect of STAR-RIS on the performance of wireless
communication [10], [11], [12]. The authors of [3] proposed
an optimization-based approach to maximize the total rate by
optimizing both the amplitudes and phase shifts of the STAR-
RIS. In [4], a framework based on alternating optimization was
proposed to optimize the power and passive beamforming of
the STAR-RIS in a FD STAR-RIS system, with the objective
of minimizing total transmit power while satisfying a mini-
mum rate requirement for users. Furthermore, [5] investigated
the maximization of energy efficiency by jointly optimizing
the transmit power of the BS and the uplink (UL) user, along
with the passive beamforming at the STAR-RIS. Moreover,
[6] evaluated the system performance by deriving the prob-
ability density function (PDF) of the signal-to-interference
plus noise ratio (SINR) for both UL and downlink (DL)
channels. Based on this PDF, closed-form expressions for the
outage probability and achievable throughput of the UL and
DL channels were obtained. Additionally, [7] analyzed the
performance of a STAR-RIS aided FD system considering
finite block length transmission. Reference [8] studied the
performance of STAR-RIS assisted D2D communication sys-
tems considering optimal and uncertain phase shift alignments.
The impact of STAR-RIS on FD communication systems was
investigated in [9], where an iterative alternating approach
was proposed to optimize beamforming, combining vectors,
UL user power, and STAR-RIS phase shifts to maximize the
weighted sum-rate. The effectiveness of STAR-RIS in non-
orthogonal multiple access (NOMA) supported systems was
investigated in [10] and [11]. Specifically, in [10], a deep
reinforcement learning (DRL) based algorithm was introduced
to optimize the design of beamforming vectors at the BS and
coefficient matrices at the STAR-RIS, aiming to maximize
energy efficiency. Furthermore, in [11], a DRL approach
was proposed to jointly enhance passive beamforming and
power allocation, with the objective of maximizing the average
throughput of BSs. Moreover, the authors of [12] presented a
DRL technique to jointly optimize the beamforming power for
users and the phase shift values of the STAR-RIS.
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Fig. 1. A multi-RIS assisted multi-user FD system.

To the best of our knowledge, this letter is the first work
integrating FD communication and STAR-RIS to provide
URLLC service. In this letter, the problem of system total rate
(STR) maximization is formally stated, where beamforming
and combining vectors at the BS, the transmit power of
UL users, the amplitude attenuations, and phase shifts of
the STAR-RISs are jointly optimized. The stated problem
is a continuous non-convex problem. To achieve an optimal
solution, computationally-intensive exhaustive search methods
can be employed. Also, the iterative optimization-based meth-
ods to obtain sub-optimal solutions have high computation
complexity and may be far from the optimum. To address
this challenge, DRL methods have recently gained significant
attention. Among DRL approaches, the deep deterministic pol-
icy gradient (DDPG) is particularly well-suited for addressing
continuous problems. However, conventional DRL methods
may not be suitably applicable to 6G because they are learned
over a single task in a specific environment, whereas 6G will
be highly dynamic. To tackle this issue, meta-learning can
be combined with DRL methods [13]. Meta-learning offers
advantages such as enhanced convergence, improved perfor-
mance, and robustness to environmental changes. Thus, in this
letter, we develop a meta-learning based DDPG (Meta DDPG)
method, which is a combination of DDPG and meta-learning.

II. SYSTEM MODEL AND ASSUMPTIONS

We consider a multi-STAR-RIS assisted FD network to
provide URLLC service to K DL and L UL users. As shown in
Fig. 1, the considered network consists of a single FD BS with
N antennas which can receive and transmit simultaneously.
Also, there are R STAR-RISs aiding the BS in providing
URLLC service. Each DL and UL user is equipped with a
single antenna, and the qth STAR-RIS has Mq elements to
simultaneously transmit and reflect signals. It is assumed that
the coverage of the BS is divided into two distinct areas:
the transmission area (TA) and the reflection area (RA). The
STAR-RIS elements manipulate incident signals by partition-
ing them into two components. The first component, the
reflected signal, is intelligently redirected towards the reflec-
tion area. Meanwhile, the second component, the transmitted
signal, is dispatched to the transmission area. This partitioning
process is achieved by adjusting the electric and magnetic
currents of the STAR-RIS elements, utilizing transmission
and reflection coefficients. Such a configuration facilitates the
independent regulation of both the transmitted and reflected
signals, thereby significantly boosting the system’s overall
performance and coverage. All DL and UL users are uniformly
distributed in TA and RA. Accordingly, it is assumed that there
are Kt and Kr DL users respectively in TA and RA. Likewise,

Lt UL users are placed in TA, and Lr UL users are placed
in RA. For the sake of simplicity, we define set B = {t, r} to
represent the subscripts of transmission or reflection areas.

Assuming xDL =
∑
∀b∈B

∑Kb

kb=1 wkb
skb

is the transmitted
signal from BS to DL users, where skb

∼ CN (0, 1) indicates
the i.i.d. information symbol for the kth DL user and wkb

∈
CN×1 is the corresponding beamforming vector at the BS.
In addition, we assume that xUL

lb
= √

ρlbqlb , ∀b ∈ B is the
signal of lbth UL user, in which qlb ∼ CN (0, 1) denotes
i.i.d information symbol and ρlb is the transmit power of
the lbth UL user. The received signal of kbth DL user is
expressed as

yDL
kb

=(hH
kb

+
∑R

q=1
h̃

H

kb,qΘqHq)wkb
skb

+(hH
kb

+
R∑

q=1

h̃H
kb,qΘqHq)

×
∑K

i=1,i̸=kb

wisi +
∑Lb

lb=1
(flb,kb

+
∑R

q=1
h̃H

kb,qΘqg̃lb,q)xUL
lb

+
∑L

o∈B\{b},lo=Lo+1
(flo,kb

+
∑R

q=1
h̃H

kb,qΘqg̃lo,q)xUL
lo +nDL

kb
,

(1)
in which, the first term denotes user kb’s desired signal, the
second term is multi-user interference, the third term stands
for UL users’ interference, and in the forth term, nDL

kb
∼

CN
(
0, σ2

DL

)
is additive white Gaussian noise (AWGN).

In addition, hkb
∈ CN×1 denotes the channel vector between

BS and kbth DL user, and h̃kb,q ∈ CMq×1 represents the
channel vector between kbth DL user and qth RIS. Moreover,
Hq ∈ CMq×N is the channel matrix between BS and qth RIS,
flb,kb

∈ C indicates the channel between the lbth UL user
and kbth DL user, and g̃lb,q ∈ CM×1 denotes the channel
vector between the lbth UL user and qth RIS. Furthermore,
Θq stands for the coefficient matrix of the qth RIS defining
as Θq = Θb

q if DL/UL user is at the TA (b=t) or RA (b=r),

where Θb
q = diag{ηb

q,1e
jϑb

q,1 , ηb
q,2e

jϑb
q,2 , · · · , ηb

q,Mq
e
jϑb

q,Mq } is
the coefficient matrix with ηb

q,i ∈ [0, 1]. Also, the received
signal vector at the BS can be modeled as follows:

yUL=
∑
∀b∈B

Lb∑
lb=1

(glb +
R∑

q=1

HH
q Θb

qg̃lb,q)xUL
lb

+HSIxDL
l +nUL,

(2)
where the first term is direct and reflected signals, the second
term denotes residual self-interference, and nUL in the third
term is AWGN vector at the BS. Also, glb is the channel vector
between lbth UL and BS. The residual self-interference matrix,
denoted as HSI, is indeterminate at the BS. Each element of
HSI follows an i.i.d complex zero-mean Gaussian distribution,
with a variance of σ2

HSI .

Let γDL
kb

=
|h̄H

kb
wkb

|22
IDL

kb

denotes the SINR of kbth DL

user, in which h̄H
kb

∆= hH
kb

+
∑R

q=1 h̃H
kb,qΘ

b
qHq , IDL

kb
=∑K

i=1,i̸=kb
|h̄H

kb
wi|22 +

∑Lb

lb=1 | f̄lb,kb
|2 ρlb +

∑Lo

lo∈B\{b}=1 |
f̄lo,kb

|2 ρlo +σ2
DL and f̄lb,kb

∆= flb,kb
+

∑R
q=1 h̃H

kb,qΘ
b
qg̃lb,q .

The achievable rate of the kbth DL user (∀b ∈ B) can be
obtained from finite blocklength capacity formula as:

RDL
kb

= W [log2(1 + γDL
kb

)−

√
V DL

kb

L Q−1(ζ) log2 e], (3)
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where W is the frequency bandwidth, Q−1(ζ) is the inverse of
Gaussian Q-function, L is the blocklength in symbols, V DL

kb
=

1 − (1 + γDL
kb

)−2 is the channel dispersion, and ζ = 10−5 is
a predefined threshold of decoding error probability to assure
the reliability of URLLC users.

If ulb ∈ CN×1 represents the combining vector at the BS,
the data symbol of lbth UL user is recovered as q̂lb = uH

lb
yUL.

The SINR for the lbth UL user (∀b ∈ B) can be expressed

as γUL
lb

=
ρlb
|uH

lb
ḡlb
|22

IUL
lb

, in which IUL
lb

=
∑L

i ̸=lb i=1 ρi|uH
lb
ḡi|22 +

σ2
HSI∥ulb∥22

∑K
k=1∥wk∥22 + σ2

UL∥ulb∥22, where ḡlb
∆= glb +∑R

q=1 HH
q Θqglb,q . Thus, the achievable transmission rates of

the lbth UL user are obtained from

RUL
lb

= W [log2(1 + γUL
lb

)−

√
V UL

lb

L Q−1(ζ) log2 e], (4)

where V UL
lb

= 1− (1 + γUL
lb

)−2 is the channel dispersion.
Based on the obtained achievable rates for DL and UL users,

respectively, from (3) and (4), the STR value is calculated as:

STR=
∑

∀b∈B

[
α

∑Kb

kb=1
RDL

kb
+ (1− α)

∑Lb

lb=1
RUL

lb

]
, (5)

in which 0 ≤ α ≤ 1 is a weighted factor reflecting the
importance of total rate in DL and UL.

III. PROBLEM FORMULATION

Latency and reliability are the two main requirements of
URLLC services. As previously mentioned, the decoding
error probability (ζ) in rate functions (3) and (4) assures the
reliability of URLLC users. Moreover, the latency within the
radio access network can be determined by the ratio of the

packet size and data rate, denoted as T
UL/DL
u =

Du

R
UL/DL
u

,

in which Du represents the packet size (in bits) for user u ∈
{1, · · · , Kb}∪{1, · · · , Lb}. Consequently, the minimization of
the latency problem can be reformulated as the maximization
of the total rate problem as:

P1 : max
wkb

,ulb
,ρlb

,Θq

∑
∀b∈B

[
α

∑Kb

kb=1
RDL

kb
+(1− α)

∑Lb

lb=1
RUL

lb

]
s.t. C1 : TDL

kb
≤ T̂ DL

kb
,∀b ∈ B,∀kb ∈ {1, · · · , Kb},

C2 : TUL
lb

≤ T̂ UL
lb

,∀b ∈ B,∀lb ∈ {1, · · · , Lb},

C3 :
∑K

k=1
∥wk∥22 ≤ P max

BS

C4 : ρl ≤ Pmax
l ,∀l ∈ {1, 2, . . . , L}

C5 : 0 ≤ ϑq,i ≤ 2π,∀q ∈ {1, . . . , R}, i ∈ {1, . . . ,Mq},
(6)

where T̂ DL
kb

and T̂ UL
lb

are the maximum tolerable latency of kbth
DL user and lbth UL user. Therefore, constraint C1 ensures
that the DL user kb fulfills the maximum latency requirement,
while constraint C2 guarantees that the UL user lb also meets
the maximum latency requirement. Additionally, C3 and C4
impose limitations on the maximum transmit power at the BS
and the lth UL user, denoted as Pmax

BS and Pmax
l , respectively.

Finally, C5 imposes a constraint on phase shift value, which
must fall within the range of 0 to 360 degrees.

The optimization problem P1 is non-convex and generally
challenging to solve optimally. Hence, we adopt a Meta DDPG
algorithm to efficiently solve this problem.

IV. META DDPG ALGORITHM

In this section, we propose a Meta DDPG algorithm
that combines conventional DDPG with meta-learning tech-
niques. This integration utilizes the power of meta-learning
to facilitate rapid adaptation of the learning model to new
environments [13]. The problem P1 can be formulated as a
Markov decision process represented by (S,A, T , R, λ). Here,
S represents the set of states, A denotes the available action
set for the agent at each state, T represents the probability
transition from the current state s to the next state s′, R is the
reward used to evaluate the performance of the current state,
and λ is a discount factor in the range of (0, 1] that balances the
weight of immediate and future rewards. To address problem
P1, we consider the communication system as an environment
where the decision variables of problem P1 are determined
by the agent. The model components are formally defined as
follows:

State space: The state is considered as

S=
[{
{hkb

, h̃kb,q,Hq, flb,kb
, g̃lb,q},∀kb,∀lb,∀q

}
, STR

]
. (7)

Action space: At each time step t, given st, the agent selects
action

at =
[
{wk}K

k=1, {ul}L
l=1, {ρl}L

l=1, {νq,i}
R,Mq

q=1,i=1

]
. (8)

Reward: As previously noted, P1 is a constrained optimiza-
tion problem. To enforce compliance with these constraints,
we define the immediate reward as follows:

rt=

{
STR, if constraints C1, C2 and C3 are satisfied,

0, otherwise,
(9)

in which STR is calculated by (5) and 0 is a penalty value to
avoid selection of actions that do not satisfy constraints C1–
C3. It is worth noting that the selected actions by Meta DDPG
are values between 0 and 1. Consequently, constraints C4 and
C5 are fulfilled by calculating the product of the selected
actions and their corresponding maximum permissible values.

To procure a suitable learning model, DDPG employs two
neural networks, specifically the actor and critic networks.
In particular, at each state s, the policy µ is estimated by
the critic network. By utilizing this policy, the actor network
chooses action a. Additionally, target actor and target critic
networks are incorporated to ensure the stability of DDPG.

Let us represent the parameters of critic, target critic, actor,
and target actor networks by θQ, θ̄Q, θµ, and θ̄µ. In DDPG,
considering policy µ, an action-state function is defined as

QQ
µ (s, a; θQ) = Eµ{Rt|st = s, at = a}, (10)

in which Rt =
∑∞

t=0 λtrt is the expected cumulative reward.
To learn the parameters of the critic network, the following

loss function is minimized:
L(θQ) = E[

(
Y −QQ(s, a; θQ)

)2
], (11)

where Y = R + λQ̄Q(s′, µ′(s′; θµ′); θ̄Q)(1 − d), in which
d defines the terminal step. Specifically, if the agent reaches
the terminal step at each episode, d = 1 and otherwise d =
0. On the other hand, the parameters of the actor network
are updated in such a way that the following loss function is
minimized:

J(θµ) = −E
[
Qµ(s, a) | s = st, a = µθ(st; θ̄µ)

]
. (12)
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If ε ≪ 1 , the parameters of target critic and target actor
networks are updated, respectively, as follows:

θ̄Q
t+1 → εθQ

t + (1− ε)θ̄Q
t and θ̄µ

t+1 → εθµ
t + (1− ε)θ̄µ

t .

(13)
The conventional DDPG approach exhibits limitations in

swiftly adapting to novel and dynamic environments. To effec-
tively address this concern, the integration of DRL algorithms
with meta-learning enables rapid adjustment of the learning
model to dynamic environments. As a result, we propose the
Meta DDPG algorithm as a solution to problem P1. In what
follows, we explain the Meta DDPG method in more detail.

Inspired by the meta-learning approach in [13] and [14],
we define a bi-level optimization problem as follows:

ω = arg min
ω

Fmeta(θ∗µ)

s.t. θ∗µ = arg min
θµ

(J(θµ) + Fnew(θµ, ω)) . (14)

On the outer level, the optimization of meta-knowledge ω is
achieved by minimizing the meta-loss function, defined as
Fmeta(θ∗µ) = tanh (J(θµ

new)− J(θµ
old)). This optimization

process of the meta-knowledge ω leads to an acceleration of
the actor learning progress [14]. Furthermore, on the inner
level, the actor parameters are updated using a new loss
function, J(θµ) + Fnew(θµ, ω) instead of solely relying on
J(θµ) in (12). The additional term in the loss function is
defined as Fnew(θµ, ω) = E

[
ω

(
log

(
1 + eµθ(s;θµ)

))]
. The

actor parameters updated using DDPG are denoted as θµ
old and

are obtained through θµ
old = θµ − lractor∇θµJ(θµ). The actor

parameters resulting from Meta DDPG are obtained by further
updating θµ

old using θµ
new = θµ

old − lractor∇θµFnew(θµ, ω).
These extra steps contribute to the superior performance and
convergence of Meta DDPG compared to conventional DDPG.
The Meta DDPG method is summarized in Algorithm 1.

V. SIMULATION RESULTS

To evaluate the performance of the proposed Meta DDPG
method, we set Kt = 1, Kr = 2, Lt = 2, Lr = 1,
and Mq = 20. Additionally, the BS is equipped with N =
4 antennas and positioned at coordinates (0, 0), while two
RISs are located at (−100m, 0) and (100m, 0). Let x denote
the distance between the transmitter and the receiver, and α̃
represent the path-loss exponent. The large-scale path-loss can
be expressed as PL = −35.6 − 10α̃ log10(x) in dB, where
α̃ = 3.75. We assume that the small-scale fading in the direct
channels between the BS, UL and DL users follow Rayleigh
fading, while the channels between RISs, UL and DL users
exhibit Rician fading. If η = 4 denotes the Rician factor,
the small-scale channel with Rician fading, Hq is defined as
follows:

Hq =
√

η
η+1H

LOS
q +

√
1

η+1H
NOLS
q , (15)

where HLOS
q is the deterministic line of sight (LOS) fading

component, and HNOLS
q is the non-LOS fading component,

which follows a Rayleigh distribution [15].
To generate the following figures, we set P max

BS = 3.5W,
α = 0.5, Pmax

l = 1W, and T̂ DL
kb

= T̂ UL
kb

= 1ms, unless
stated otherwise. Additionally, we compare the performance
of Meta DDPG, where training and testing data are consid-
ered distinct, with various baseline approaches: Baseline 1:
conventional DDPG with different training and testing data,

Algorithm 1 The Proposed Meta DDPG Algorithm

1 Input: Available action set, maximum number of episodes
E, maximum number of time steps Tmax, and Nupdate.

2 Output: {wk}Kk=1, {ul}Ll=1, {ρl}Ll=1, {νq,i}R,Mq

q=1,i=1.
3 Initialize replay buffer D
4 Initialize the critic QQ(s, a; θQ) and actor µ(s; θµ)
5 Initialize the target critic Q̄Q(s, a; θ̄Q) and the target actor

µ̄(s; θ̄µ) with parameters of θ̄Q ← θQ and θ̄µ ← θµ

6 for each episode = 1, · · · , E
7 Setup the environment to get the initial state s, set

t← 1
8 Repeat
9 t← t + 1, using exploration vs. exploitation,

at = ({wk}Kk=1, {ul}Ll=1, {ρl}Ll=1, {νq,i}R,Mq

q=1,i=1)
10 Executing action at on the network and receiving

reward rt, the network transits from state s to s′

11 Transition experience (s, a, s′, r, d) is stored in D
12 for each gradient descent step to solve problem (14)
13 Sample a mini batch (sn, an, s′n, rn) from D.
14 θQ ← θQ − lrcritic∇θQL(θQ)
15 θµ

old ← θµ − lractor∇θµJ(θµ)
16 θµ

new ←
θµ
old − lractor∇θµ (J(θµ) + Fnew(θµ, ω))

17 Sample a mini batch (si, ai, s
′
i, ri) from D.

18 θµ ← θµ
new

19 ω ← ω − lrmeta∇ω (tanh (J(θµ
new)− J(θµ

old)))
20 if mod (t, Nupdate) = 0:
21 θ̄Q

t+1 ← εθQ
t + (1− ε)θ̄Q

t ,
22 θ̄µ

t+1 ← εθµ
t + (1− ε)θ̄µ

t

23 Until t > Tmax or d = 1

Fig. 2. Convergence of meta DDPG and baselines.

Baseline 2: Meta DDPG with identical training and testing
data, Baseline 3: conventional DDPG with identical training
and testing data, and Baseline 4: Meta DDPG with different
training and testing data, taking into account traditional RISs
rather than STAR-RISs. It is important to note that under the
assumption of identical training and testing data, both Meta
DDPG and DDPG algorithms are trained while considering
Rayleigh fading for all direct channels between the BS, UL,
and DL users, and Rician fading for the channels between
RISs, UL, and DL users, as described in equation (15).
Subsequently, during the testing phase, the trained model is
applied to the same scenario. In contrast, when considering
different training and testing data, the Meta DDPG and DDPG
algorithms are testes using a scenario where all direct channels
between the BS, UL, and DL users experience Rician fading.

The convergence and performance of the Meta DDPG
method are compared to those of the baselines in Fig. 2. It can
be observed that Meta DDPG exhibits faster convergence
than conventional DDPG. Moreover, Meta DDPG achieves a
higher STR compared to baselines 1, 3, and 4. Additionally,
Meta DDPG, using different training and testing data, achieves
near performance to baseline 2, demonstrating its generaliza-
tion ability. Furthermore, the STR obtained by Meta DDPG
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Fig. 3. STR vs. number of RISs (σ2
HSI = 10−14).

Fig. 4. UL total rate vs. DL total rate (σ2
HSI = 10−14).

Fig. 5. STR vs. maximum transmit power of BS, Pmax
BS (σ2

HSI = 10−14).

Fig. 6. Impact of self-interference on STR.

surpasses that of conventional DDPG (baseline 1), indicating
its superior generalization ability. This superiority is attributed
to the fact that, in DDPG, actor parameters denoted by θµ

old
are updated solely using the loss function (12). Conversely,
Meta DDPG employs θµ

old to derive the meta loss function
Fmeta(θµ) and subsequently updates the meta-knowledge ω
as expressed in (14). In Meta DDPG, the actor parameters
are updated with minimizing (J(θµ) + Fnew(θµ, ω)) where
Fnew(θµ, ω) is influenced by the meta-knowledge ω.

In Fig. 3, the STR is investigated for different number of
RISs. It can be observed that, with increasing number of RISs,
thanks to the higher number of available phase shifts to choose
from, the STR increases for all Meta DDPG and baselines.
Also, Meta DDPG outperforms baselines 1, 3, and 4 and
obtains a close performance to baseline 1.

Fig. 4 depicts the trade-off between UL and DL total
rates. To generate Fig. 4, the α value has been reduced
from 0.9 to 0.1. As observed from Fig. 4, a reduction in
the α value from 0.9 to 0.1 leads to an increase in the UL
data rate while causing a decrease in the DL data rate. This
is attributed to equation (5), which indicates that as the α
value decreases from 0.9 to 0.1, the significance of the UL
data rate increases while the significance of the DL data
rate diminishes. Furthermore, it is evident that Meta DDPG
outperforms baselines 2 and 3, and achieves performance close
to baseline 1.

In Fig. 5, STR is demonstrated for different values of BS’s
maximum power, Pmax

BS . As can be seen, with the increase of

Pmax
BS , the STR value increases, which is due to the constraint

imposed by C3 in problem P1, wherein with the increase of
Pmax

BS , the BS can transmit with more power to users, which
leads to increased DL data rate.

Fig. 6 shows the impact of self-interference on the STR.
Here, the value of σ2

HSI varies from 10−15 to 10−5. As can
be observed, with increasing the value of σ2

HSI , STR reduces.
The reason is that increasing the value of σ2

HSI decreases the
SINR in the uplink leading to a reduction in the uplink data
rate and subsequently a decrease in the STR.

VI. CONCLUSION

We have studied the STR maximization problem for a FD
communication system assisted by STAR-RIS, where transmit
beamforming vectors for UL users, combining vectors at the
BS, transmit power of UL users, and phase shift matrix of
RISs were jointly optimized. Given the non-convex nature
of the STR maximization problem, a Meta DDPG method
was employed. Simulation results have demonstrated that
Meta DDPG exhibits a better convergence and performance
compared to conventional DDPG.
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