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On the Capacity of Opportunistic Time-Sharing Downlink With a
Reconfigurable Intelligent Surface
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Abstract— We provide accurate approximations of the sum-
rate capacity of an opportunistic time-sharing downlink, when a
reconfigurable intelligent surface (RIS) assists the transmission
from a single-antenna base station (BS) to single-antenna user
equipments (UEs). We consider the fading effects of both the
direct (i.e., BS-to-UEs) and reflection (i.e, BS-to-RIS-to-UEs)
links, by developing two approximations: the former one is based
on hardening of the reflection channel for large values of the
number of meta-atoms; the latter one relies on the distribution
of the sum of Nakagami variates and does not require channel
hardening. Our derivations show the dependence of the sum-rate
capacity as a function of both the number of users and the
number of meta-atoms, as well as to establish a comparison with
a downlink without an RIS. Numerical results corroborate the
accuracy and validity of the mathematical analysis.

Index Terms— Downlink transmission, opportunistic time shar-
ing, reconfigurable intelligent surface (RIS).

I. INTRODUCTION

IN THIS letter, we consider a downlink channel in which
a reconfigurable intelligent surface (RIS) is employed

to assist the transmission from a single-antenna transmitter
towards K ≫ 1 single-antenna user equipments (UEs).
An RIS is a metasurface composed of sub-wavelength meta-
atoms, whose reflection coefficients can be designed via
software in order to suitably manipulate the impinging
signal [1]. Relying on the feasibility of engineering the
meta-atoms, the wireless propagation environment might be
programmed by optimizing on-the-fly the reflecting properties
of an RIS to achieve different network-wide aims [2].

When the base station (BS) can track the composite chan-
nels of the UEs, opportunistic time sharing is a simple
and effective transmission technique, which allows the BS
to use time-division multiplexing and transmit to the best
user. Such a scheduling strategy has been shown to achieve
the sum-rate capacity (maximum throughput) of the single-
antenna downlink channel [3]. A relevant question to ask is
the following: How large of a performance boost does RIS-
aided opportunistic time-sharing downlink provide over its
conventional (i.e, without RIS) counterpart in terms of sum-
rate? The scaling law of the sum-rate capacity of a Gaussian
downlink with many users K using opportunistic time sharing
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has been deeply studied without an RIS [4]. A similar study
for an RIS-aided downlink with a large number of users K
and meta-atoms Q has not been carried out yet.

We focus on the sum-rate capacity achievable using oppor-
tunistic time sharing in RIS-aided downlinks. We develop an
approximation of the sum-rate capacity by invoking hardening
of the reflection channel in the large Q limit, which allows to
readily unveil the scaling laws as a function of K and Q.
Furthermore, we provide a very accurate approximation of the
sum-rate capacity without invoking channel hardening, which
is based on the sum of Nakagami variates. We also investigate
the interplay between the gain offered by the RIS and the
selection diversity among the UEs.

II. SIGNAL MODEL AND PRELIMINARIES

As in [5], the downlink transmission among the BS and
K UEs is assisted by a digitally programmable RIS working
in reflection mode, which is made of Q = Qx × Qy meta-
atoms that can be independently and dynamically controlled
by digital logic devices [1]. The meta-atoms are positioned
along a rectangular grid having Qx and Qy elements on the x
and y axes, respectively, with constant inter-element spacing
dRIS. The channel between the BS and the RIS is assumed to
be characterized by a dominant line-of-sight component, which
is modeled as g = σg aRIS, with pathloss σ2

g and signature

aRIS ≜
[
1, ej 2π

λ0
dRISux , . . . , ej 2π

λ0
(Qx−1)dRISux

]T

⊗
[
1, ej 2π

λ0
dRISuy , . . . , ej 2π

λ0
(Qy−1)dRISuy

]T
∈ CQ

where λ0 = c/f0 is the wavelength, c is the speed of the
light in the medium, θRIS ∈ [0, 2π) and ϕRIS ∈ [−π/2, π/2)
identify the azimuth and elevation angles, respectively, the
corresponding directional cosines are ux ≜ sin θRIS cos ϕRIS
and uy ≜ sin θRIS sin ϕRIS, and ⊗ is the Kronecker product.

All the other relevant links are modeled as narrowband
frequency-flat channels. Specifically, for k ∈ {1, 2, . . . ,K},
hk ∼ CN (0, σ2

hk
) models the low-pass equivalent channel

response from the BS to UE k, whereas fk ∼ CN (0Q, σ2
fk

IQ)
represents the low-pass equivalent channel response from the
RIS to the k-th UE. The parameters σ2

hk
and σ2

fk
are the

large-scale geometric path losses of the links seen by the k-th
UE with respect to the BS and the RIS, respectively.

We customarily assume that each UE uses standard timing
synchronization with respect to its direct link. After matched
filtering and sampling at the baud rate, the discrete-time
baseband signal received at the k-th user reads as

rk = c∗k

(
K∑

u=1

√
Pu su

)
+ vk
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where the overall channel gain seen by the k-th UE is ck ≜
hk + gH Γ∗ fk ∈ C, for k ∈ {1, 2, . . . ,K}, with the q-
th diagonal entry of Γ ≜ diag (γ1, γ2, . . . , γQ) representing
the reflection coefficient of the q-th meta-atom, su being the
information-bearing symbol intended for the u-th user with
corresponding transmit power Pu, and vk ∼ CN (0, 1) is the
noise sample at the output of the matched filter, with vk1

statistically independent of vk2 , for k1 ̸= k2. The transmit-
ted symbols s1, s2, . . . , sK are independent and identically
distributed (i.i.d.) complex circular zero-mean unit-variance
random variables (RVs). The couple (hk, fk) is independent
of both vk and sk, ∀k ∈ {1, 2, . . . ,K}.

The sum-rate capacity (in bits/s/Hz) is defined as follows

Csum = max
P1, P2, . . . ,PK
γ1, γ2, . . . , γQ

K∑
k=1

log2

(
1 +

Pk |ck|2

|ck|2
∑

u̸=k Pu + 1

)

subject to the transmit power constraint
∑K

k=1 Pk ≤ PTX,
with PTX > 0 being the (fixed) maximum allowed transmit
power, and the global passivity constraint ∥γ∥2 ≤ Q at the
RIS [6], with γ ≜ [γ1, γ2, . . . , γQ]H ∈ CQ. For a lossless RIS,
the latter constraint yields ∥γ∥2 = Q.1

Given the reflection vector γ, the sum-rate capacity is equal
to the largest single-user capacity in the system [3], that is,
the resource allocation policy is the opportunistic time-sharing
strategy: Pk = PTX if k = kmax, Pk = 0 otherwise, with
kmax ≜ arg maxk∈{1,2,...,K} |ck|2. Recalling the expression
of ck, the corresponding sum-rate capacity boils down to

Csum = log2 (1 + PTX αopt) (1)

with

αopt ≜ max
k ∈ {1, 2, . . . ,K}

γ ∈ CQ: ∥γ∥2 = Q

|hk|2 + 2ℜ
{
βH

k γ
}

+ γH Bk γ

(2)

where βk ≜ hk diag(f∗k )g ∈ CQ and we have defined the
Hermitian matrix Bk ≜ diag(f∗k )g gH diag(fk) ∈ CQ×Q.
Closed-form solution of (2) is provided by Lemma 1.

Lemma 1: Under the constraint ∥γ∥2 = Q, the cost func-
tion in (2) can be upper bounded for each k as follows

|hk|2+2ℜ
{
βH

k γ
}

+ γH Bk γ ≤
(
|hk|+

√
Q ∥diag(f∗k )g∥

)2

where the equality holds if and only if

γ =
√

Q
hk

|hk|
diag(f∗k )g
∥diag(f∗k )g∥

. (3)

Proof: The proof comes from: (a) ℜ{x} ≤ |x|
∀x ∈ C; (b) the Cauchy-Schwarz inequality

∣∣βH
k γ
∣∣ ≤

∥βk∥ ∥γ∥; (c) the Rayleigh-Ritz theorem and observing that
the maximum eigenvalue of the rank-one matrix Bk is
∥diag(f∗k )g∥2.

1Another option for a lossless RIS consists of imposing the Q local
passivity constraints |γq | = 1, ∀q ∈ {1, 2, . . . , Q} [5]. However, in this case,
optimization of the reflection response is a non-convex NP-hard problem. The
best known methods that develop a solution for this problem are iterative and
do not provide a closed-form solution.

Physically, solution (3) implies that the RIS may introduce
local power amplifications (i.e., |γq| > 1) or local power losses
(i.e., |γq| < 1) for some meta-atoms, while ensuring that the
total reradiated power by the lossless RIS is equal to the total
incident power (see [6] for implementation details).

III. THEORETICAL PERFORMANCE ANALYSIS

By applying channel coding across channel coherence inter-
vals (i.e., over an “ergodic” interval of channel variation with
time), the average sum-rate capacity [3] is given by

Csum ≜ E[Csum] =
∫ +∞

0

log2 (1 + PTX α) fαopt(α) dα (4)

where fαopt(α) is the probability density function (pdf) of the
RV αopt, which, by virtue of Lemma 1, can be explicitly writ-
ten as αopt = maxk∈{1,2,...,K}

(
|hk|+

√
Q ∥diag(f∗k )g∥

)2
.

Under the opportunistic time-sharing strategy, there is just one
user transmitting at any time and, thus, we can resort to the
encoding and decoding procedures for the code designed for
a point-to-point channel [3].

We consider the case in which the users approximately
experience the same large-scale geometric path loss, i.e., the
parameters σ2

hk
and σ2

fk
do not depend on k, i.e., σ2

hk
≡ σ2

h and
σ2

fk
≡ σ2

f , ∀k ∈ {1, 2, . . . ,K}, which will be referred to as
the case of homogeneous users.2 In this case, the RV αopt is
the maximum of K i.i.d. RVs and its pdf is computed as

fαopt(α) = K fXk
(α) [FXk

(α)]K−1 (5)

where fXk
(α) and FXk

(α) denote the pdf and the cumulative
distribution function (cdf) of the RV Xk ≜ Z2

k , with Zk ≜
Z

(1)
k + Z

(2)
k , Z

(1)
k ≜ |hk|, and Z

(2)
k ≜ σg

√
Q ∥fk∥. The

distributions of Z
(1)
k and Z

(2)
k are discussed in Appendix A.

Trying to work with (5) for evaluating (4) is numerically
difficult even for small values of K. Hence, we apply extreme
value theory [7] to calculate the distribution of αopt when K
is sufficiently large. Relying on the limit laws for maxima [7],
provided that the cdf of Xk is a von Mises function,3 as K →
∞, the RV αopt convergences in distribution [8] to the Gumbel

distribution limK→∞ Fαopt(α) = e−e
−α−bK

aK , where Fαopt(α) is
the cdf of αopt, whereas

bK ≜ F−1
Xk

(
1− 1

K

)
and aK ≜

1
K fXk

(bK)
. (6)

Replacing fαopt(α) with the Gumbel pdf, eq. (4) reads as

Csum ≍
1

aK

∫ +∞

0

log2 (1 + PTX α) e
−α−bK

aK e−e
−α−bK

aK dα

(7)

with x ≍ y indicating that limK→+∞ x/y = 1.4

2From a physical viewpoint, this happens when the users form a cluster,
wherein the distances between the different UEs are negligible with respect
to the distance between the transmitter and the RIS.

3It fulfills [9] limα→+∞

[
1−FXk

(α)

f2
Xk

(α)

]
d
dα

fXk
(α) = −1.

4By using the Maclaurin series of the exponential function, the integral (7)
can be rewritten as an absolutely convergent series, which can be approxi-
mately evaluated by using a finite number of terms [9, Appendix C].
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The pdf or cdf of Xk must be derived to evaluate Csum by
using either (4)-(5) or (7). To approximate the distribution of
Xk, we distinguish two cases: in Subsection III-A, we assume
that the reflection channel from the RIS to each UE hardens for
sufficiently large values of Q; in Subsection III-B, we derive
a more general approximation that does not require hardening
of the reflection channel. In Subsection III-C, we derive the
average receive signal-to-noise ratio (SNR) of the user selected
for scheduling, which allows us to discuss the impact of the
parameters K and Q on system performance.

A. Approximation 1: Hardening of the Reflection Channel

The k-th reflection channel hardens [10] if Z
(2)
k /E[Z(2)

k ]
converges in probability to 1, as Q → +∞, for
each k ∈ {1, 2, . . . ,K}. Based on the Markov inequal-
ity [13], a sufficient condition for the hardening of Z

(2)
k is

VAR[Z(2)
k ]/E2[Z(2)

k ] → 0, as Q → +∞. By virtue of (14)
and (15), one gets VAR[Z(2)

k ]/E2[Z(2)
k ] ≈ 1/(4 Q) for very

large Q. Therefore, as Q → +∞, the pdf of Z
(2)
k can

be approximated by the following Dirac delta distribution
f

Z
(2)
k

(α) ≈ δ
(
α− E[Z(2)

k ]
)

, with the mean of Z
(2)
k given

by (14). Accordingly, relying on the results of the transforma-
tions of RVs [11], the pdf of Xk is approximated by

fXk
(α)≈

√
α− E[Z(2)

k ]
σ2

h

√
α

e
− (√α−E[Z(2)

k
])2

σ2
h , for α > E[Z(2)

k ] .

After algebraic manipulations, the cdf of Xk is correspond-
ingly approximated:

FXk
(α) ≈ 1− e

− (√α−E[Z(2)
k

])2

σ2
h , for α > E[Z(2)

k ] . (8)

For any value of K, the above distributions can be sub-
stituted in (5) in order to obtain an approximation of the
pdf of αopt, which is involved in the calculus of the average
sum-rate capacity (4). On the other hand, since the distribu-
tion (8) is a von Mises function, one can resort to (7) for
sufficiently large values of K, where (6) ends up to

bK≈
[
σf σg Q + σh

√
ln(K)

]2
and aK≈σ2

h +
σf σg σh Q√

ln(K)
.

(9)

B. Approximation 2: Sum of Nakagami Variates

The RV Zk is the sum of the two independent and non-
identically distributed (i.n.i.d.) Nakagami RVs Z

(1)
k and Z

(2)
k .

Therefore, the pdf of Zk is the convolution of the pdfs of
Z

(1)
k and Z

(2)
k , which does not admit a closed-form expression.

Following [12], we propose to approximate the pdf fZk
(α) of

Zk by the pdf fẐk
(α) of the RV Ẑk ≜

√
[Ẑ(1)

k ]2 + [Ẑ(2)
k ]2,

where Ẑ
(1)
k and Ẑ

(2)
k are i.i.d. Nakagami RVs with shape

parameter m̂ and scale parameter Ω̂, which are determined
such that fẐk

(α) be an accurate approximation of fZk
(α).

The choice of m̂ and Ω̂ is discussed in Appendix B.
At this point, we would like to point out that the main

advantage of using fẐk
(α) in lieu of fZk

(α) stems from

the fact that the square of Ẑk is the sum of two i.i.d.
gamma RVs [13]. Indeed, the square of a Nakagami RV with
shape parameter m̂ and scale parameter Ω̂ turns out to be a
gamma RV with shape parameter m̂ and scale parameter Ω̂/m̂.
Moreover, the sum of the two i.i.d. gamma RVs [Ẑ(1)

k ]2 and
[Ẑ(2)

k ]2 is a gamma RV, too, with shape parameter 2 m̂ and
scale parameter Ω̂/m̂. Thus, we can conclude that the pdf of
the RV X̂k ≜ Ẑ2

k is given by (see, e.g., [13])

fX̂k
(α) =

(
m̂

Ω̂

)2 m̂
α2 m̂−1

Γ(2 m̂)
e−

m̂

Ω̂
α , for α > 0 (10)

whose cdf reads as FX̂k
(α) = P

(
m̂ α

Ω̂
, 2 m̂

)
,5 where

P (x, a) ≜ 1
Γ(a)

∫ x

0
ta−1 e−t dt is the (regularized) lower

incomplete gamma function and Γ(a) is defined in
Appendix A.

According to (6), the constant bK is the solution of
P
(

m̂ bK

Ω̂
, 2 m̂

)
= 1− 1

K , which is given by

bK ≈ Ω̂
m̂

P−1

(
1− 1

K
, 2 m̂

)
(11)

where P−1(y, a) is the inverse of the lower incomplete gamma
function for y ∈ [0, 1], i.e., P−1(P (x, a), a) = x. Substitut-
ing (11) in (6) and replacing fXk

(bK) with fX̂k
(bK), one has

aK ≈ Ω̂
m̂

Γ(2 m̂)

K
[
P−1

(
1− 1

K , 2 m̂
)]2 m̂−1

e−P−1(1− 1
K ,2 m̂)

.

(12)

C. Average Receive SNR

The asymptotic Gumbel distribution allows one to statis-
tically characterize the receive SNR of the user selected for
scheduling, which is defined as ρsum ≜ PTX αopt. The average
receive SNR ρsum ≜ E[ρsum] = PTX E[αopt] can be derived
from the mean of the Gumbel distribution, thus yielding

ρsum = PTX (bK + C aK) (13)

with C ≈ 0.5772 being the Euler-Mascheroni constant.
In a downlink without an RIS, the RV Xk = [Z(1)

k ]2 =
|hk|2 is exponentially distributed with mean σ2

h. In this case,
it follows from (6) that bK = σ2

h ln(K) and aK = σ2
h.

From (13), the average receive SNR in an RIS-unaided oppor-
tunistic time-sharing downlink is

ρ w/o RIS
sum = PTX σ2

h [C + ln(K)] ⇒ lim
K→+∞

ρ w/o RIS
sum

ln(K)
= PTX σ2

h

which benefits by a factor of ln(K) asymptotically for large
K (so-called multiuser diversity effect), and C

w/o RIS
sum increases

double logarithmically in K [4].
For a RIS-aided downlink, let us first consider the case when

K → +∞ and the reflection channel hardens. In this situation,
using (9), the average receive SNR in (13) is approximated as

ρsum≈ρ w/o RIS
sum +PTX

[
σ2

f σ2
g Q2 + σf σg σh

2 ln(K) + C√
ln(K)

Q

]
5It can be verified that F

X̂k
(α) is a von Mises function, too.
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which shows that, compared to the RIS-unaided down-
link, the SNR gain provided by the presence of the RIS
depends on the relationship between K and Q. Indeed, if Q
approaches infinity at the same rate as K, i.e., Q = χ K,
where χ ̸= 0 is a constant independent of K, it results
that limK,Q→+∞ ρsum/Q2 = PTX σ2

f σ2
g , i.e., the average

receive SNR scales like Q2 as K and Q grow to infin-
ity. In this case, the downlink performance is dominated
by the reflection channel and the reflection process of the
RIS becomes predominant with respect to multiuser diver-
sity effects. On the other hand, if Q approaches +∞
as Q = χ

√
ln(K), one has limK,Q→+∞ ρsum/ln(K) =

PTX
[
(σf σg χ + σh)2 + C σf σg σh χ

]
. In this case, the

sum-rate capacity also depends on the direct channel and the
effect of the RIS becomes negligible when σf σg χ ≪ σh, thus
approaching the performance of the RIS-unaided downlink.

When K grows to infinity and hardening of the reflection
channel does not hold, we resort to (10) for approximating
the distribution of Xk. In this case, the average receive SNR
can be obtained by substituting (11) and (12) in (13), whose
dependence on K and Q will be shown numerically in the
forthcoming Section IV.

IV. NUMERICAL PERFORMANCE ANALYSIS

We consider a 2-D Cartesian system, wherein the BS and the
RIS are located at (0, 0) and (10, 0) (in meters), respectively,
whereas the users form a circular cluster centered in (40,−10)
(in meters). The inter-element spacing is fixed to dRIS = λ0/4,
whereas the azimuth and elevation angles at the RIS are
uniformly distributed in [0, 2π) and [−π/2, π/2), respectively.
All the other channel links are independently generated by
assuming a carrier frequency f0 = 25 GHz, with variance
σ2

α = Gα d−η
α λ2

0/(4π)2, for α ∈ {g, h}, where Gα = 25 dBi
for the RIS and Gα = 5 dBi for the UEs, while dα represents
the distance of the link and η = 1.6 is the path loss exponent.
The variance σ2

f of the channel link between the RIS and the
UEs is derived from the ratio ϱ ≜ (σ2

f σ2
g)/σ2

h, which assumes
the values in {0,±5,±10} dB. The effective isotropic radiated
power of the BS is set to 33 dBm and the noise power at the
UEs is equal to −100 dBm.

In Fig. 1, we report the difference ∆Csum ≜ Csum −C
w/o RIS
sum

between the average sum-rate capacity of the RIS-aided and
RIS-unaided downlinks, as a function of the number of users
K for different values of ϱ. The rates Csum and C

w/o RIS
sum are

numerically obtained by averaging (1) over 1000 independent
Monte Carlo runs, by setting Q = 30 for the RIS-aided
downlink and Q = 0 for the RIS-unaided one, respectively.
The corresponding analytical curves (7) are plotted by using
the parameters (11) and (12) (Approximation 2). Besides
corroborating the noticeable accuracy of the proposed approx-
imation, which does not require hardening of the reflection
channel, it is seen from Fig. 1 that ∆Csum decreases with K.
This behavior is due to the fact that the increase in K of Csum
is partially hidden by the larger SNR gain due to reflection
process of the RIS, while C

w/o RIS
sum scales like ln(ln(K)).

Fig. 2 and 3 depict the performance of the RIS-aided
downlink as a function of the number of meta-atoms Q for

Fig. 1. ∆Csum versus K (Approximation 2 for the analytical curves).

Fig. 2. Csum versus Q (K = 10, Approximation 1 for the analytical curves).

Fig. 3. Csum versus Q (K = 10, Approximation 2 for the analytical curves).

different values of ϱ, with K = 10. In this case, C
w/o RIS
sum =

25.26 bits/s/Hz. In Fig. 2, the rate Csum is compared with the
analytical curve (7) by using the parameters (9) (Approxima-
tion 1), whereas (11) and (12) (Approximation 2) are used
in Fig. 3. Results confirm the precision of Approximation 2
and show that the approximation based on the hardening
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of the reflection channel (Approximation 1) is inaccurate
for small values of Q, especially when the reflection chan-
nel is stronger than the direct one. From the comparison
among Figs. 1, 2, and 3, it can be inferred that, as predicted,
the sum-rate capacity increases much faster with respect
to Q than K.

V. CONCLUSION

We derived two approximations of the sum-rate capacity
of an opportunistic time-sharing downlink with an RIS. The
approximation based on the hardening of the reflection channel
allows to show the asymptotic scaling laws in terms of
the number of users K and the number of meta-atoms Q.
A more accurate approximation was derived by approximating
the overall channel seen by each user as a gamma RV.
Both multiuser diversity and reflection process of the RIS
provide increased channel magnitudes. However, the SNR
gain increases faster with respect to Q than K and, thus,
the multiuser diversity effect becomes negligible even for
moderate values of Q. Herein, we have considered single-
antenna BS and receivers. An interesting research subject
consists of extending the proposed framework to the case of
multi-antenna terminals.

APPENDIX A
DISTRIBUTIONS OF RVS Z

(1)
k AND Z

(2)
k

The distribution of Z
(1)
k does not depend on the number Q

of meta-atoms: it is a Rayleigh-distributed RV or, equivalently,
it can be seen as a Nakagami RV with shape parameter m = 1
and scale parameter Ω = σ2

h [11]. On the other hand, the
distribution of Z

(2)
k strongly depends on Q. Indeed, it can

be readily verified that Z
(2)
k is a Nakagami RV with shape

parameter m = Q and scale parameter Ω = σ2
f σ2

g Q2, whose
mean and variance are given by (see, e.g., [11])

E[Z(2)
k ] = σf σg

√
Q

Γ
(
Q + 1

2

)
Γ(Q)

≈ σf σg Q (14)

VAR[Z(2)
k ] = σ2

f σ2
g Q2

1− 1
Q

[
Γ
(
Q + 1

2

)
Γ(Q)

]2
 ≈

σ2
f σ2

g Q

4

(15)

where Γ(x) ≜
∫ +∞
0

tx−1 e−t dt, with x > 0, is the gamma
function, whereas the approximations come from the Stir-
ling’s series of the quotient Γ

(
Q + 1

2

)
/Γ(Q) [14] for very

large Q.

APPENDIX B
CHOICE OF THE PARAMETERS m̂ AND Ω̂

To obtain an accurate approximation of fZk
(α), we resort

to the moment matching method. Specifically, the parameters
m̂ and Ω̂ are chosen such that to match the second and
fourth moments of Zk and Ẑk, i.e., (i) E[Z2

k ] = E[Ẑ2
k ]

and (ii) E[Z4
k ] = E[Ẑ4

k ]. By observing that E[Ẑ2
k ] =

E[X̂k], with the mean of the gamma distribution (10)
being the ratio between its shape and scale parameters,

i.e., 2 m̂/(Ω̂/m̂) = 2 Ω̂, condition (i) yields Ω̂ = E[Z2
k]

2 =
1
2 E[Xk]. Since E[Ẑ4

k ] = E[X̂2
k ], with the 2-nd moment of the

gamma RV X̂k given [13] by E[X̂2
k ] =

(
Ω̂
m̂

)2
Γ(2 m̂+2)
Γ(2 m̂) =

2 Ω̂2

m̂ (2 m̂ + 1), where we have also used Γ(x + 1) =
x Γ(x), which is in general valid for all complex numbers
x except the non-positive integers, condition (ii) leads to m̂ =
1
2

E2[Xk]
E[X2

k]−E2[Xk]
= 1

2
E2[Xk]

VAR[Xk] . By observing that the moments
of the Rayleigh RV |hk| and the chi-distributed RV ∥fk∥ can
be expressed as (see, e.g., [11]) E[|hk|n] = σn

h Γ
(
1 + n

2

)
and

E[∥fk∥n] = σn
f

Γ(Q+ n
2 )

Γ(Q) , for n ∈ N, it can be shown that the
first two moments of Xk are

E[Xk] = σ2
h + σ2

f σ2
g Q2 + σf σg σh

√
Q π

Γ
(
Q + 1

2

)
Γ(Q)

(16)

E[X2
k ] = 2σ4

h + 3 σf σg σ3
h

√
Q π

Γ
(
Q + 1

2

)
Γ(Q)

+ 6 σ2
f σ2

g σ2
h Q2 + 2 σ3

f σ3
g σh Q

√
Q π

Γ
(
Q + 3

2

)
Γ(Q)

+ σ4
f σ4

g Q3 (Q + 1) (17)

where Γ(3/2) =
√

π/2 and Γ(5/2) = 3
√

π/4 have been used.
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