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Abstract— Distributed learning on edge devices has attracted
increased attention with the advent of federated learning (FL).
Notably, edge devices often have limited battery and heteroge-
neous energy availability, while multiple rounds are required in
FL for convergence, intensifying the need for energy efficiency.
Energy depletion may hinder the training process and the
efficient utilization of the trained model. To solve these problems,
this letter considers the integration of energy harvesting (EH)
devices into a FL network with multi-channel ALOHA, while
proposing a method to ensure both low energy outage probability
and successful execution of future tasks. Numerical results
demonstrate the effectiveness of this method, particularly in
critical setups where the average energy income fails to cover the
iteration cost. The method outperforms a norm based solution
in terms of convergence time and battery level.

Index Terms— Energy harvesting, federated learning, multi-
channel ALOHA, user sampling.

I. INTRODUCTION

FEDERATED learning (FL) has emerged as a promi-
nent research topic within the wireless communication

community, gaining significant attention in recent years [1].
In FL, edge devices collaboratively train a global model by
only sharing local model updates, which provides a higher
protection against the exposure of sensitive data, such as
surveillance camera images, geolocation data, and health infor-
mation. However, such collaborative training requires multiple
communication rounds, raising spectral and energy efficiency
concerns [1]. The latter is particularly important for edge
devices, given their inherent energy limitations.

The sixth generation (6G) of wireless systems targets
10-100 times more energy efficiency than 5G, which is critical
for supporting massive Internet of Things (IoT) networks [2].
Such demanding vision requires a meticulous design of the
communication system, where medium access control (MAC)
mechanisms play a major role. Grant-free random access
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protocols, such as slotted ALOHA (SA) with multiple chan-
nels, are suitable candidates for massive IoT applications,
since control signaling is much reduced. Moreover, energy
availability must be considered to support self-sustainable
networks, in which energy neutrality [3], balancing availability
and expenditure of energy resources, is essential.

Existing literature on FL indirectly addresses spectral and
energy efficiency by optimizing the convergence time, leverag-
ing informative updates from users [4], [5] or the relationship
between local and global models [6], reducing the required
number of iterations. These approaches often overlook the
initial battery levels of different devices, which can result in
energy depletion during the training process and hinder the
overall progress. Even if the training process is not impeded,
the remaining energy may be insufficient for the execution of
future tasks and the utilization of the trained model.

This letter considers the use of EH devices, which eliminate
the need for frequent battery replacement [7], while also allow
energy neutrality. Prior works in [8] and [9] considered some
sort of energy income for FL networks. In [8], a wireless-
powered FL system is considered and the tradeoff between
model convergence and the transmission power of the access
point is derived. The authors in [9] consider EH devices
with multiple base stations (BS) and propose a user selection
algorithm to minimize the training loss. However, [8], [9]
overlook the residual energy in the devices at the end of
the training process and the energy imbalances among users,
which are considered in this letter. Moreover, they do not
consider a random access protocol and massive IoT settings.
We present a novel energy-aware user sampling technique for a
FL network under a multichannel SA protocol. The proposed
method enables users to make informed decisions regarding
their participation in an iteration, controlling the computation
cost. Numerical results corroborate the effectiveness of our
method. In critical energy income setups, lower error and
higher energy availability can be achieved compared to [4],
which solely considers the informativeness of updates. We can
achieve an error 46.72% smaller, while maintaining 37% more
energy in a network of 100 devices, while the performance gap
increases with the number of deployed devices.

II. SYSTEM MODEL

Consider a wireless network comprising K users, indexed
as k ∈ K = {1, 2, . . . ,K}, a BS, and M orthogonal channels.
Each user has a dataset Dk = {xk,yk} associated with its
respective local model. Here, xk is the unlabeled sample
vector, with size L × 1, and yk is the ground truth vector
for supervised learning. The common goal of every device is
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Fig. 1. Users begin the iteration by harvesting energy. Then, a user may
engage by computing its local model update gk(t). A user can either transmit
or withhold its update. Transmissions occur through one of M channels using
SA. If more than one user access the same channel, there is a collision.

to minimize a global loss function F (w) as

min
w

1
K

K∑
k=1

fk(w), (1)

where fk(w) = ℓ(w,xk,yk) is the local loss function for the
k-th user and w is the global model. In FL, the problem in (1)
is tackled by distributively minimizing fk(w) over iterations,
which yields a local model update gk(t) = ∇fk(w(t)) for the
stochastic gradient descendent method. To ensure collaborative
learning, each user transmits gk(t) to the BS, which employs
an aggregation function to update the global model. Here,
we consider FedAvg [10], thus, the global model is updated
as

w(t+ 1) = w(t)− µ
∑
k∈K

dkgk(t), (2)

where µ > 0 is the learning rate and dk = |Dk|/
∑K

k′=1 |Dk′ |.
Then, the BS broadcasts w(t+ 1) for all users.

From (2), we can observe that the size of the learning step
is directly affected by the norm of the local update ||gk(t)||,
which quantifies how informative the update is. In [4], the
authors present a method to adaptly decide the transmission
probability of users based on the local update norm given by

ptx,k(t) = max(min(e ln ||gk(t)|| − λ (t), 1), 0). (3)

In this context, λ (t) serves as a feedback signal that ensures
an efficient utilization of the M orthogonal channels in a
multichannel SA setup.1 The value of λ (t) is determined by

λ (t) = λ (t− 1) + µ1(K̂ −M), (4)

where µ1 is a step size and K̂ ≤ K is the number of
transmissions that occurred at the previous iteration.

Note that this method does not consider the, potentially
limited, energy availability at the devices. For instance, an EH
user could repeatedly transmit and drain its battery in the
process, rendering the execution of future tasks impossible.
To mitigate this, we introduce a sleep probability and consider
an strategy depicted in Fig. 1 and based on the following steps.

1) Energy Harvesting: At the start of an iteration, each
device harvests ζk(t) Joules of energy and stores in
the battery if its capacity allows, being ζk(t) a random
variable with a predefined distribution.

1As discussed in [11], transmission errors (or collisions) may compromise
the FL performance. However, following [4], the considered network maxi-
mizes the utilization of the available resources.

2) Engagement: Each user decides whether to engage in
the iteration with a sleep probability

ps,k(t) = 1− αBk(t)
Bmax

, (5)

where α is a constant, Bk(t) is the current battery level,
and Bmax is the battery capacity, which is the same for
all devices. We propose this sleep probability to equalize
the battery charge of all devices over time. The awaken
users receive the global model w(t) from the BS and
compute their local model updates gk(t).

3) Informative Multi-Channel SA: Users transmit gk(t)
with a probability given by (3). Transmissions occur
through a randomly chosen channel among M channels.
A transmission is only successful if there is no collision.

4) Global Model Updates: Following (2) the BS aggre-
gates the local updates and broadcasts w(t + 1) and
λ (t+ 1), which are assumed to be collision-free.

Following this procedure, the battery evolution model is

Bk(t) = Bk(t− 1) + min(ζk(t), Bmax −Bk(t− 1))
− δe,k(t)(Ecmp

k + Erx
k )− δtx,k(t)Etx

k , (6)

where δe,k(t) and δtx,k(t) are indicator functions representing
user engagement and transmission, respectively. They are
equal to 1 when the corresponding event occurs and 0 oth-
erwise. Additionally, Ecmp

k , Erx
k , and Etx

k are the computation,
reception, and transmission energy costs, respectively, whose
models are presented in Section III. Moreover, it is crucial to
choose a precise value for α in step 2) to ensure the proper
functioning of the network, which is discussed in Section IV.

III. ENERGY CONSUMPTION MODELS

A. Local-Computation Model
The computation complexity of a machine learning

algorithm can be measured by the number of required floating
point operations (FLOPs). Let W denote the number of FLOPs
per data sample for a given model. The total number of FLOPs
for the k-th user to perform one local update is

Gk = W |Dk|. (7)

Let fclk,k be the processor clock frequency (in cycles/s) of the
k-th user and Ck be the number of FLOPs it processes within
one cycle. Then, the time required for one local update is

tk =
Gk

Ckfclk,k
, ∀k ∈ K. (8)

Moreover, for a CMOS circuit, the central processing unit
(CPU) power is often modeled by its most predominant part:
the dynamic power [12], which is proportional to the square
of the supply voltage and to the operating clock frequency.
Moreover, for a low voltage supply, as in our case, the
frequency scales approximately linear with the voltage [12].
Therefore, the CPU power consumption can be written as [8]

P cmp
k = ψkf

3
clk,k ∀k ∈ K, (9)

where ψ is the effective capacitance and depends on the chip
architecture. Based on (8) and (9), the energy consumption of
the computation phase for the k-th user is given by

Ecmp
k = tkP

cmp
k = ψk

Gk

Ck
f2

clk,k. (10)
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B. Transceiver Model

The energy consumed by the edge devices’ transceivers is

Ecomms
k = Etx

k + Erx
k + Esleep

k , (11)

where Etx
k (Erx

k ) is the energy required to transmit (receive)
a local (global) update while Esleep

k is the consumed energy

during the inactive time. Since Esleep
k is much smaller than Etx

k

and Erx
k , we neglect its impact in the following.

Considering the transmission of local updates with a radi-
ated power P tx

k , the power consumed by the edge transceivers
is can be modeled as [13]

P total
k =

P tx
k

η
+ Pcirc, (12)

where η is the drain efficiency of the power amplifier (PA),
and Pcirc is a fixed power consumption that comprises all other
transceiver circuits except the PA. Then, the energy required
to transmit a local update is

Etx
k =

P total
k

Rtx
b

Nk, (13)

where Nk is the local update size in bits, and Rtx
b is the bit

rate in the uplink. Meanwhile, the energy consumed when
receiving the global updates is modeled by

Erx
k =

P rx
k

Rrx
b

N, (14)

where N is the global update size in bits, Rrx
b is the bit rate

in the downlink, and P rx
k is the receive power consumption,

which includes Pcirc. Thus, P rx
k is slightly greater than Pcirc,

but usually smaller than P total
k .

IV. SLEEP PROBABILITY TUNING

To ensure that a device saves enough energy for future tasks
while still participating in the model training, we propose a
precise selection of parameter α based on the EH process and
the desired battery level at the end of the training. Notice that
the expected battery level with respect to k and assuming equal
costs for all devices can be obtained from (6) as

E[Bk(t)] = E[Bk(t− 1)] + E[min(ζk(t), Bmax −Bk(t− 1))]
− E[δe,k(t)](Ecmp + Erx)− E[δtx,k(t)]Etx

= E[Bk(t− 1)] + E[min(ζk(t), Bmax −Bk(t− 1))]

− α
E[Bk(t)]
Bmax

(Ecmp + Erx)− ptx,k(t)Etx, (15)

where E[δe,k(t)] = 1 − ps,k(t) and E[δtx,k(t)] = ptx,k(t).
We also consider the expectation of the battery level in ps,k,
since we aim to stabilize the average battery level to a fixed
threshold ξ > 0 over time. Therefore, as t tends to infinity,
E[Bk(t)] converges to ξ. Using this in (15) leads to

α =
(
Eh − ptx,k(t)Etx) Bmax

ξ(Ecmp + Erx)
, (16)

where Eh = E[min(ζk(t), Bmax − Bk(t − 1))] is the average
harvested energy. Note that the proposed solution requires
knowledge of ζk(t) and Bk(t − 1) distributions. Although it
is reasonable to assume that a device has such knowledge,

mathematical tractability of the battery level is challenging.
Since the required battery knowledge pertains to a previous
time than the energy income, the distributions of these two
variables are independent. This allows us to rearrange the
expectations and state the average harvested energy as

Eh = E[min(ζk(t), Bmax −Bk(t− 1))]
= Eζ [EB [min(ζk(t), Bmax −Bk(t− 1))]]
(a)

≥ Eζ [min(ζk(t), Bmax − E[Bk(t− 1)])]
(b)= E[min(ζk(t), Bmax − ξ)]
= E[ζk(t) | ζk(t) ≤ Bmax − ξ]Pr{ζk(t) ≤ Bmax − ξ}

+ (Bmax − ξ)Pr{ζk(t) > Bmax − ξ}. (17)

Since the minimum function is convex, we employed Jensen’s
inequality in step (a) and from step (b) onward we consider
t→∞, thus E[Bk(t− 1)] = ξ.

Since ptx,k(t) is not known a priori, and to allow deviations
of the energy stored in the battery about ξ, we use E[ptx,k(t)]
in (16) instead of ptx,k(t). According to (4), out of the K
users, M updates per iteration are transmitted on average to
the BS, thus, E[ptx,k(t)] = M/K. Then, with (17) and (16)
we have

α ≥
(

Ek[min(ζk(t), Bmax − ξ)]− M

K
Etx

)
Bmax

ξ(Ecmp + Erx)
.

(18)

At the beginning of the training process, the BS broadcasts
the value of α solved by assuming equality in (18).

A. Mean EH Knowledge

We also consider a simpler variation of the method where
we exploit only the average EH information, i.e., we use
Eh = E[ζk(t)] and E[ptx,k(t)] = M/K in (16), thus

α =
(

E[ζk(t)]− M

K
Etx

)
Bmax

ξ(Ecmp + Erx)
. (19)

The energy mean knowledge (EMK) approach in (19) disre-
gards the impact of the maximum battery capacity, different
from the energy distribution knowledge (EDK) in (18).

V. SIMULATION RESULTS

We analyze the performance of the proposed method com-
pared to the Largest Updates’ Norms (LUN) baseline, where
users transmit the updates with the largest norms according
to [4]. Additionally, to illustrate the necessity of the adaptive
control presented in (3) and (4), we include a baseline method
that assigns a uniform transmission probability ptx,k = M/K
to all users (to distinguish, we use the acronym AC for adaptive
control). We assume a linear regression problem with the
following loss function: fk(w) = 0.5|xT

k w(t) − yk|2 [4],
where xk ∼ N (vk, I), yk = xT

k w, and w ∼ N (0, I). Note
that w(t) are the training weights, while w corresponds to
the true weights. Also, parameter vk ∼ N (0, βk) is utilized
to generate a non-IID dataset, with βk = I indicating the
non-IID degree.
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Fig. 2. (a) Normalized average battery level and (b) average error,
i.e.,

∑
k ||wk(t) −w||/K, as a function of the number of iterations for

ξ = 0.4Bmax, m = 0.2, and K = 100.

Similar to [9], the energy income at each user is modeled
by a compound Poisson stochastic process, i.e., the interarrival
time is modeled by an exponential distribution with rate r and
the amount of energy harvested in each arrival is modeled by
a Poisson process with parameter m/r, thus, Et[ζk(t)] = m.
This model is defined by discrete units of energy. We scale
one unit of energy to the total cost of an iteration in J, i.e.,
Ecomms

k +Ecmp
k . Unless stated otherwise, we set r = 0.02 and

m = 0.2 units of energy. Note that r is the mean of the
exponential distribution, corresponding to an energy arrival
every 50 iterations on average, similar to [14]. Moreover,
we set K = 100, M = 10, L = 10, µ = 0.01, and
µ1 = 0.1 as in [4], while P tx

k = 3.3 dB, P rx
k = 1.9 mW,

η = 0.33, Pcirc = 1.33 mW, which correspond to a BLE
transceiver [15]. Moreover, Rtx

b = Rrx
b = 1 Mbps, W = 4L,

fclk,k = 0.25 GHz, Ck = 20 [16], and the effective capacitance
is ψk = 10−20 [17], while the initial battery level of the
devices is given by a uniform distribution U(0, Bmax), where
Bmax = 10−1 J.

First, we set the desired threshold to ξ = 0.4Bmax and ana-
lyze the average stored energy over iterations in Fig. 2a, which
converges to the threshold when we exploit full knowledge of
the energy income distribution (EDK; EDK-AC) or just its
mean (EMK; EMK-AC). For the LUN approach, the average
stored energy stabilizes near zero, as most users run out of
energy. The network naturally reaches a stable state since all
users, included those that run out of energy, continue to harvest
energy. However, only users with sufficient energy actively
participate in the training. Fig. 2b shows that relying solely
on the energy income source, without energy management,
directly affects the learning process. Indeed, the LUN approach
starts the training well, but soon devices die and are unable to
resume learning until enough energy is harvested. Meanwhile,
with the proposed energy management, devices can participate
more frequently, resulting in a smaller error for EDK-AC and
EMK-AC. Also, the error without the adaptive control is much
higher, since it does not consider the norm of local updates,
a persistent trend throughout the simulations.

Fig. 3. (a) Normalized average battery level and (b) average error, i.e.,∑
k ||wk(t) −w||/K, versus the mean energy income for ξ = 0.4Bmax,

t = 1000, and K = 100.

Next we investigate the effect of the mean of the energy
income process on the energy availability when ξ = 0.4Bmax.
Fig. 3a displays the results for t = 1000, revealing that the
EDK, EDK-AC, EMK, and EMK-AC curves stay fairly close
to the threshold. The variation is due to the inequality in (17),
which, similar to the EMK approach, cannot fully incorporate
the battery capacity considerations within this operational
region. As we increase m, the EDK and EDK-AC curves
depart from the EMK and EMK-AC curves, since the battery
capacity limitation is more relevant. Besides, an energy surplus
occurs within the network with respect to the threshold, since
only M devices transmit on average. In Fig. 3b, we plot the
corresponding average error. For a small m, the threshold
is too demanding, resulting in similar errors for all AC
approaches. However, as the energy income increases, the
proposed method with adaptive control outperforms LUN.
As the energy levels continue to rise, the differences between
the AC methods and the LUN approach diminish.

In Fig. 4a we set m = 0.2, ξ = 0.4Bmax, t = 1000,
for varying number of devices. The average battery level
remains relatively unaffected, which is not true for the average
error in Fig. 4b. Here, more users are able to engage in
the learning process when using the proposed approaches.
In contrast, the LUN method shows limited improvement
with the number of users, since it lacks energy awareness,
different from the methods that consider the average network
energy. Thus, many users continue to consume energy by
performing computations without transmitting, leading to rapid
battery depletion. Moreover, since users in methods without
AC have the same transmission probability, i.e., the methods
disregard the informativeness of updates, the same perfor-
mance improvements exhibited by methods with AC cannot
be observed.

Finally, we examine the impact of the energy threshold.
In Fig. 5a it can be observed that the average battery level
follows a nearly linear trend for EDK and EDK-AC, with
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Fig. 4. (a) Normalized average battery level and (b) average error,
i.e.,

∑
k ||wk(t) −w||/K, as a function of the number of users for

ξ = 0.4Bmax, m = 0.2, and t = 1000.

Fig. 5. (a) Normalized average battery level and (b) average error,
i.e.,

∑
k ||wk(t) −w||/K, as a function of the normalized threshold for

m = 0.2, K = 100, and t = 1000.

slight variations due to (17). When the threshold is set to lower
or higher values, where the constraint is either insignificant
or more dominant, the battery level precisely aligns with the
threshold when using EDK and EDK-AC. However, with EMK
and EMK-AC the battery cannot stabilize at the expected level
for higher thresholds. As for the error, in Fig. 5b, it becomes
apparent that an optimal threshold exists, when considering the
AC methods. If the threshold is too low, some devices deplete
their energy and the error increases, while if the threshold is
very demanding, the error rises since devices are often saving
energy, reaching a point where LUN outperforms the proposed
methods. It is worth mentioning that in the exceptional case
where all users must maintain full battery, no training occurs
as (energy-consuming) transmissions are not allowed.

VI. CONCLUSION

We proposed an energy-aware method for FL networks
under the principle of energy neutrality. Our approach

mitigates battery depletion and achieves convergence to a
sustainable energy level, enabling the execution of future
tasks. The method requires distribution knowledge of the
energy income, but relying only on average information was
shown to be sufficient. In critical energy income regions and
reasonable energy thresholds, our method outperforms the
typical norm-based strategy, in terms of convergence time and
battery level. In future works, we aim to include physical layer
modeling and assess the impact of non-orthogonal multiple
access techniques in the power domain and rate allocation
procedures.
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