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Abstract— We consider a physical layer-based secret-key-
agreement (SKA) scenario where Alice and Bob aim at extracting
a common bit sequence, which should remain secret to Eve,
by quantizing a random number obtained from measurements
of their communication channel. We propose an asymmetric
advantage distillation protocol where i) Alice quantizes her
measurement and sends partial information on it over an
authenticated public side channel, and ii) Bob (and Eve) quantizes
his measurement by exploiting the partial information. The
partial information on the position of the measurement in the
quantization interval allows Bob to obtain a quantized value
closer to that of Alice. Such strategies are shown to increase the
lower bound of the secret key rate.

Index Terms— Advantage distillation, secret-key-agreement,
physical layer security.

I. INTRODUCTION

SECRET-KEY-AGREEMENT (SKA) is a security mecha-
nism by which two users, namely Alice and Bob, agree

on a common key while keeping it secret from any third
malicious user, namely Eve. The secret key can then be used
for other security services, e.g., symmetric key encryption or
authentication.

Initially proposed by Maurer [1], Ahlswede, and Csiszar [2],
physical-layer-based SKA schemes are information-theoretic
secure, and their security is based on the physical properties
of the channel itself. A source-model SKA procedure involves
four steps [3]: channel probing, where Alice and Bob transmit
in turn probing signals and all agents (including Eve) collect
the channel measurements later used to extract the key; advan-
tage distillation, by which each agent extracts a bit sequence
from his/her measurement; information reconciliation, where
Alice and Bob exchange information with the aim of reducing
the disagreement among the bit sequences; finally, privacy
amplification, where Alice and Bob extract from the bit
sequences the secret key, typically by using universal hashing
(for further details see surveys [4] and [5]).

In this letter, we focus on the advantage distillation step.
Following the definition of [3], the basic approach requires
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quantizing the measurement obtained from channel probing.
A channel quantization scheme for multiple-input multiple-
output channels is proposed in [6], [7], and [8]. In particular,
in the strategy of [6] Alice transmits a quantization correction
to Bob, the observations have a (known) Gaussian distribution,
and the quantizer thresholds are set to provide equiproba-
ble bit sequences (with maximum entropy). However, Eve’s
observations are assumed to be independent of those of Bob.
We consider here instead a more realistic scenario, where the
observations’ distribution is not known a priori, and Eve’s
observations are statistically correlated to those of both Alice
and Bob.

In [9] a bi-directional advantage distillation is proposed.
However, that work focuses only on the last part of advan-
tage distillation, rather than the quantization step. Moreover,
we consider a scenario where the agents have limited commu-
nication capabilities, therefore it may not be feasible to exploit
such a two-way scheme.

Observing that points falling close to the margins of quan-
tization intervals are often responsible for quantization mis-
matches between Alice and Bob bit sequences after advantage
distillation, in [10] the quantization intervals are separated by
guard bands (GBs) and samples falling in these regions are dis-
carded. This approach increases the probability of agreement,
at the expense of fewer extracted bits. A related approach is
also proposed in [11], where the quantizer thresholds are set to
assure that each sequence is equiprobable, maximizing the out-
put entropy. An advantage distillation strategy for frequency
division duplexing systems has been proposed in [12], where a
non-linear transform remaps the measurements to make them
uniformly distributed. Next, a uniform quantizer extracts the
bit sequence with the aim of maximizing the output entropy.
In both works, legitimates’ and Eve’s channels are considered
to be uncorrelated, thus she has no information about the actual
bit sequence obtained by Alice and Bob, making the SKA
design trivial.

Recently, a technique to extract bits from electrocardiogram
signals for wireless body area network has been proposed
in [13]. The quantizer thresholds are optimized to maximize
both the entropy and the matching rate of the extracted bits.
Still, even in this case, no information is leaked to Eve during
the channel probing step.

In this letter, we propose a novel advantage distillation
strategy for a source-model SKA, where Alice and Bob obtain
each a random number and optimize their quantizers to obtain
bit sequences providing the highest secret key rate (through a
lower bound). We consider the case wherein Eve is observing
a channel correlated to that of Alice and Bob, and Eve also
overhears any public discussion between Alice and Bob. Then,
they coordinate the quantization of the observed feature with
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Fig. 1. Scheme of a channel probing procedure.

a discussion over a public authenticated channel. In particular,
Alice quantizes her measurement and sends the position of the
measurement in the quantization interval over an authenticated
public side channel. In turn, Bob (and Eve) quantizes his
measurement by exploiting the partial information. We denote
the proposed advantage distillation technique as advantage
distillation with quantization correction (ADQC). We show
that such a strategy allows the extraction of more secret bits
from the channel measurements. Finally, with respect to the
existing literature, we show that a careful design of the quan-
tizers used during advantage distillation and the transmission
of quantization error correction over a public channel allows
Alice and Bob to obtain a secret key, even in those harsh
scenarios where Eve is close to one of the other agents.

The rest of the letter is organized as follows. Section II intro-
duces the system model. Section III describes the step of the
proposed advantage distillation protocol. Section IV presents
the numerical results. Section V draws the conclusions.

II. SYSTEM MODEL

We consider a scenario where Alice and Bob aim at agreeing
on a common bit sequence, which has to remain secret from
Eve, using a source model SKA procedure [3]. First, they
probe their channel, as shown in Fig. 1: Alice and Bob
alternatively send pilot signals through the connecting wireless
channel to enable their partner to estimate the channel, so that
Alice obtains the estimated channel hBA and Bob obtains
estimated channel hAB.

We assume Alice and Bob have already agreed on a feature
selection and extraction function such that Alice extracts x
from hBA, while Bob extracts y from hAB. We focus on
the scalar case where x and y are real numbers, although
the SKA will operate on sequences of x and y, thus using
longer observation sequences. We remark that, in general, the
channels are only partially reciprocal, therefore x and y will
be strongly correlated but not identical.

Eve is modeled as a passive attacker. Assuming that pilot
signals and feature extraction procedures are publicly known,
from the pilot exchange, Eve estimates channels hAE and hBE,
from Alice and Bob, respectively. Eve uses an extraction func-
tion to obtain her estimate z of channel feature x. However,
since Eve is not in the same position as neither Alice nor Bob,
z will differ from both x and y. In particular, thanks to the
(partial) channel reciprocity, we have that x and y are more
similar (i.e., higher mutual information) than z and x (or y).

Still, if Eve is not too far from Alice or Bob, there exists a
non-negligible correlation between z and both x and y.

We assume that the statistics of x, y, and z are not known in
close form, but a dataset of measurements (x, y, z) is available
to Alice, Bob, and Eve, used for the design of the SKA
procedure.

An authenticated public side channel is also available,
over which Alice and Bob can exchange information, while
Eve overhears any communication. Channel coding is used
on this side channel, allowing Bob to detect and correct,
with arbitrarily small error probability, any error of publicly
exchanged information.

Note that since the side channel is public, data transmitted
on it will not be confidential to Alice and Bob. Moreover,
we consider a rate limitation on this channel.

III. ADVANTAGE DISTILLATION WITH
QUANTIZATION CORRECTION

We now describe the ADQC technique. Let us introduce the
binary space S = {0, 1}b containing M = 2b different binary
sequences, each of b bits. Alice and Bob aim at drawing two
sequences, sA ∈ S and sB ∈ S , by processing the observed
channel features x and y, respectively.

The problem of associating a real number (in this case, the
feature measurement) to a binary sequence can be seen as a
quantization problem that partitions the set of real numbers
into M intervals so that the m-th interval is associated with
the sequence sm ∈ S. A quantizer q provides a (real) number,
x̃ = q(x), and each of the M outputs is mapped to a binary
sequence s.

First, note that the quantizers used by Alice, Bob, and Eve
are chosen before the actual key agreement protocol, as will
be detailed later. Moreover, we consider a worst-case scenario
where all quantizers are publicly known. However, both the
secrecy and the randomness of the scheme still lie in the
extracted channel measurements.

Now, we aim to obtain an advantage distillation process
such that sA is as close as possible to sB without revealing
information to Eve. We can write Bob’s measurements as
Alice’s measurements corrupted by an error ϵ, i.e.,

y = x + ϵ. (1)

Let qA(x) be the quantized value at Alice, and let η =
x−qA(x) be the quantization error at Alice. Then, from (1)
we have

y = qA(x) + η + ϵ. (2)

In general, note that η and ϵ are statistically dependent.
However, ignoring this dependency, we have that y is turned
away from the quantization value qA(x) by both errors η
and ϵ. Thus, to improve the advantage distillation procedure,
in ADQC Alice communicates over the public channel the
value of the quantization error η so that Bob computes

y′ = y − η = qA(x) + ϵ, (3)

and quantizes y′ with his quantizer qB(·) to obtain the bit
sequence sB. Note that, even with this adjustment, we have
y′ ̸= qA(x), due to the error ϵ.
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If Alice uses B bits to feedback η over the public channel,
we must quantize η. To this end, each quantization interval is
split into K = 2B sub-intervals of equal length, and (a binary
representation) of the index of the sub-interval in which η
is falling is transmitted over the public channel. Then, Alice
transmits

ξ =
⌈
η

K

L(A)(x)

⌉
∈ [1, K] , (4)

where L(A)(x) is the length of the quantization interval of x.
Upon reception of ξ, Bob computes

η′ =
L(B)(y)

K

(
ξ − 1

2

)
, (5)

where L(B)(y) is the length of quantization interval of y. Then
Bob uses η′ instead of η in (3) to quantize y′ with qB(·).

Eve applies the same procedure of Bob, by computing its
own correction factor η′′ and applying it to its measurement
z before quantizing it with qE(·) to obtain sequence sE.
However, there will be a higher probability that z′ = z − η′′

falls in another interval than x, thus the correction factor won’t
provide the same benefit on the sequence extraction of Bob.
Moreover, since ξ is a normalized version of η with respect
to LA(x), it does not reveal any information on the interval
of the quantized value qA(x).

A. Quantizer Design

We are now left with the design of the Alice, Bob, and Eve
quantizers, i.e., qA, qB, and qE, respectively.

Note that a quantizer q with M quantization intervals is
fully defined by the position of M + 1 thresholds, T =
{Ti, i = 0, . . . ,M}, where the saturation values T0 = Tmin

and TM = Tmax are set to match a predefined saturation
probability.1 Let TA, TB, and TE be sets of thresholds used
for the three quantizers. The design metric is the lower bound
on the secret-key capacity for the source model [1], [3, Ch. 4],
i.e.,

C low
sk (TA, TB, TE)=I(sA; sB)−min {I(sA; sE), I(sB; sE)} ,

(6)

where I(v1; v2) is the mutual information between the bit
sequences v1 and v2. Alice and Bob aim at designing the
quantizers qA and qB to increase C low

sk , i.e., by increasing the
agreement between Alice’s and Bob’s extracted bit sequences,
while limiting the amount of information revealed to Eve. Eve
in turn aims at minimizing C low

sk (TA, TB, TE) with a proper
choice of her quantizer qE.

The quantizers are then designed using the following
iterative procedure. Starting from uniform quantizers on a
predefined range, at each iteration Eve optimizes her quantizer

T̂E = arg min
TE

C low
sk (TA, TB, TE) , (7)

with TA and TB fixed. Next, Alice and Bob optimize their own

[T̂A, T̂B] = arg max
TA,TB

C low
sk (TA, TB, T̂E) . (8)

1Samples eventually falling outside the region [Tmin, Tmax] are remapped
to the closest interval.

We remark that, since C low
sk ≤ I(sA, sB) ≤ H(sA) (or

H(sB)), i.e., the entropy of sA (or sB), we are also implicitly
taking into account also the actual bit-sequence output dis-
tribution when maximizing (8), thus avoiding quantizers that
lead to a low bit-sequence entropy.

Alice, Bob, and Eve set the quantizers q̂A, q̂B, and q̂E, from
the new thresholds T̂A, T̂B, and T̂E. The optimizations are
performed via numerical methods, e.g., by using the genetic
algorithm, as neither (7) nor (8) are convex, therefore the
solutions obtained are, in general, only locally optimal. Thus,
the procedure is repeated either until convergence is reached
or a maximum number of iterations has been performed.

Finally, notice that maximizations (7) and (8) require the
evaluation of the mutual information, thus the output bit
sequence distributions which, in turn, depends on the input
measurements’ distributions that is not known a priori, thus
algorithms relying instead on a single-sample metric (e.g., the
Euclidean distance in the Linde-Buzo’Gray algorithm), are not
suitable for this problem.

B. Advantage Distillation Vs Information Reconciliation With
Limited-Rate Public Channel

When the public channel has no rate limitations, a large
number of bits, B describing the quantization error can be
used to improve the agreement between the bit sequences
extracted by Alice and Bob. We consider now a scenario
where the side-channel rate is limited. The same channel
is used for both advantage distillation (to share the error
correction) and information reconciliation. Hence, we must
allocate the number of bits to be used for both processes, in a
trade-off between the quality of the advantage distillation and
information reconciliation phases.

For ADQC, B bits are transmitted for each quantized
sample. On the other hand, for information reconciliation,
we consider the linear error-correcting code (k, n)-based strat-
egy proposed in [14], where the extracted sequence sA(x) of
n > k bits obtained from advantage distillation is considered
a corrupted codeword of the linear code and, during recon-
ciliation, Bob shares n − k redundancy bits over the public
channel. Then, Alice and Bob use the redundancy bits to
correct their sequences. Thus, the number of bits shared on
the public channel for each bit of the extracted bit sequence
sA(x) is β ≜ B/b, with β = 0 when no information is shared
during advantage distillation, in what we will denote as no
error correction (NEC) technique.

Now, thanks to Shannon’s theorem on channel capacity
(with input sB and output sA), for n → ∞ and assuming
perfect coding, Alice and Bob will recover the same codeword
with high probability when the following relation is satisfied

k

n
≥ I(sA; sB)

b
= CAB. (9)

In the following, we will consider the value of k that satisfies
(9) at the equality.

We introduce now the cost function γ representing the ratio
between the numbers of bits shared on the side channel for
the ADQC and the NEC techniques. For the same number
of measurements (thus for the same n), the ADQC and
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NEC techniques generate k(ADQC) and k(NEC) secret-key bits,
respectively. Then, γ is computed as

γ ≜
n− k(ADQC) + βn

n− k(NEC)
=

1 + β − C
(ADQC)
AB

1− C
(NEC)
AB

, (10)

where C
(ADQC)
AB and C

(NEC)
AB are the (scaled) mutual infor-

mation between Alice and Bob bit sequences for the ADQC
and NEC techniques, respectively. This relation will be used
in Section IV to evaluate the efficiency of the ADQC in the
limited-rate public channel.

IV. NUMERICAL RESULTS

In this Section, we report the performance of the ADQC
technique and compare it with both the NEC and the GB
technique [10]. We considered NEC with both uniform and
optimized quantizers, where the thresholds are chosen to
maximize the output entropy [12].

Vector v = [x y z]T of Alice’s, Bob’s, and Eve’s mea-
surements is a jointly Gaussian vector having zero-mean and
covariance

Σ = E[vvT] =

 1 ρAB 0.8
ρAB 1 0.8
0.8 0.8 1

 , (11)

where we fixed the correlation between legitimates and Eve
features to ρAE = ρBE = 0.8. Next, we let ρAB varying
in the interval ρAB ∈ [0.8, 1]. The saturation thresholds are
set at Tmax = −Tmin = 6, yielding a saturation probability
Psat ≤ 2 · 10−9.

We considered B = 1 and 2 bit of quantization error
correction. For both ADQC and NEC techniques, quantizers
are either optimized as described in the previous section
or uniform, with M − 1 thresholds, placed uniformly in
[−Tmin, Tmax]. For the GB technique, the quantizer is uniform
and guard bands are set to 0.85, to maximize the secret key
capacity lower bound.

Fig. 2 shows the Alice quantizer’s thresholds TA obtained
using the ADQC for ρAB ∈ [0.8, 1] and ρAE = ρBE = 0.8.
We also report the Gaussian PDF of the channel measurements
(in gray), which does not depends on ρAB. Interestingly, for
high values of correlation ρAB it is more convenient for Alice
and Bob to decrease the length of the interval in the middle,
enlarging instead the external ones. Each region corresponds to
one sm, associated to one of the M bit possible bit sequences
in SA.

Fig. 3 shows C low
sk for the considered SKA techniques

when extracting b = 3bit per sample. We remark that the
GB technique discards samples falling on the guard bands,
reducing the observation rate (and in general the secret key
rate). The best performance is in fact achieved by ADQC
with optimized quantizers, thus, sharing information during the
advantage distillation is advantageous. In particular, optimiz-
ing the quantizers and using ADQC yields on average a 60%
improvement of the secrecy capacity, more than doubling it for
low correlation values, i.e., when ρAB ≈ ρAE = ρBE = 0.8.
We remark that this last scenario, actually models the case
where the channel measured by the attacker is almost equal to

Fig. 2. Optimal Alice thresholds TA using ADQC, as function of ρAB and
for ρAE = 0.8, b = 3bit, and B = 1bit. The saturation values set to
Tmax = −Tmin = 6. The Gaussian PDF of the channel measurements is
reported in filled gray.

Fig. 3. Lower-bound of the secret-key capacity for b = 3bit, ρAB ∈ [0.8, 1]
and ρAE = ρBE = 0.8, achieved when Alice, Bob, Eve use uniform
quantizers, the GB method, and the ADQC with no quantization error
correction transmission, B = 2 and 3 bit.

TABLE I
LOWER BOUND OF THE SECRET-KEY CAPACITY ACHIEVED WITH ADQC,

FOR ρAB ∈ [0.8, 1], ρAE = ρBE = 0.8, B = 2bit,
AND b = 2, 3, AND 4 bit

that of the legitimate user, a situation occurring, e.g., when the
attacker is close to one of the users. Note that even the NEC
technique with optimized quantizers yields a higher C low

sk with
respect to both [10] and NEC with uniform quantizers.

Table I shows the performance of the ADQC with B = 2bit
used for quantization error correction and for b = 2, 3, and
4 bit extracted bits per measurement. Increasing the number
of bits extracted from the channel yields a higher C low

sk , even
sharing just B = 2bit of error correction.

We now consider the case of limited side-channel rate,
described in Section III-B, focusing on the NEC and ADQC
techniques, both with optimized quantizers. Fig. 4 shows γ as
a function of the correlation ρAB, with b = 2, 3, or 4 bit,
and B = 1 or 2 bit. We first note that for B = 1 bit
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Fig. 4. Cost γ vs correlation ρAB with ρAE = ρBE = 0.8, for scenarios
B = 1bit (dashed lines) and B = 2bit (solid lines), with b = 2, 3, and
4bit.

(thus a very limited side-channel overhead due to quantization
error correction) the number of bits exchanged on the side
channel is very close for both ADQC and NEC schemes (i.e.,
γ ≈ 1). Indeed, for high values of ρAB the ADQC technique
requires even fewer bits than NEC (for b = 3 and 4 bit) since
the extracted bit sequences are more similar and information
reconciliation is less demanding. Instead, when we consider
B = 2 bit, we note that the data rate of the side channel
increases by a factor of 3 (for highly correlated channels) to
obtain however a higher secrecy capacity as from Fig. 3.

V. CONCLUSION

We have proposed an advantage distillation technique for
physical layer-based SKA, where Alice transmits via a pub-
licly authenticated channel a correction that is exploited by
Bob and eventually, by Eve to correct their measurements.
Numerical results show that both the quantizer optimization
and the correction transmission allow Alice and Bob to achieve
a higher lower bound of the secret key capacity, even when
Eve optimizes her quantizers as well. Additionally, we showed

that the lower bound of the secrecy key rate per bit shared on
the public channel is higher when correction is used, revealing
an efficient use of the public channel by this technique.
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