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Sparse Array Design for Dual-Function Radar-Communications System
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Abstract— The problem of sparse array design for dual-
function radar-communications is investigated. Our goal is to
design a sparse array which can simultaneously shape desired
beam responses and serve multiple downlink users with the
required signal-to-interference-plus-noise ratio levels. Besides,
we also take into account the limitation of the radiated power
by each antenna. The problem is formulated as a quadratically
constrained quadratic program with a joint-sparsity-promoting
regularization, which is NP-hard. The resulting problem is solved
by the consensus alternating direction method of multipliers,
which enjoys parallel implementation. Numerical simulations
exhibit the effectiveness and superiority of the proposed method
which leads to a more power-efficient solution.

Index Terms— Alternating direction method of multipliers,
dual-funtion radar-communications, sparse array design.

I. INTRODUCTION

DUAL-FUNCTION radar-communications (DFRC) sys-
tems have been recently widely investigated [1], [2],

[3], [4]. They find applications in a wide range of areas,
including vehicular networks, indoor positioning and covert
communications [5], [6]. To achieve accurate sensing and
high throughput, the DFRC systems probably require a large
number of antennas [7], [8], [9], [10]. In practice, a base
station usually equips with less radio-frequency (RF) chains
than antennas given the hardware cost consideration. For such
a configuration, it raises a question on how to adaptively
switch the available RF chains to the corresponding subset of
antennas [11], [12], [13], which can be interpreted as sparse
array design.

In this work, we consider the sparse array design for
the DFRC system. Similar problems have been studied
in [14], [15], [16], [17], [18], and [19]. The authors
in [14] derived a Cramér-Rao bound for the cooperative
radar-communications system, where they focused on target
parameter estimation. The work [15] developed an antenna

Manuscript received 14 February 2023; accepted 12 March 2023. Date
of publication 15 March 2023; date of current version 10 May 2023. The
work of H. Huang was supported by the Graduate School CE within the
Centre for Computational Engineering at Technische Universität Darmstadt.
The work of Linlong Wu and Bhavani Shankar was supported in part by
FNR CORE SPRINGER under Grant C18/IS/12734677 and in part by ERC
AGNOSTIC under Grant EC/H2020/ERC2016ADG/742648. The associate
editor coordinating the review of this letter and approving it for publication
was T. Mao. (Corresponding author: Linlong Wu.)

Huiping Huang was with the Department of Electrical Engineer-
ing and Information Technology, Technische Universität Darmstadt,
64283 Darmstadt, Germany. He is now with the Department of Electrical
Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
(e-mail: huiping@chalmers.se).

Linlong Wu and Bhavani Shankar are with the Interdisciplinary
Centre for Security, Reliability and Trust (SNT), University of Luxem-
bourg, 4365 Luxembourg City, Luxembourg (e-mail: linlong.wu@uni.lu;
Bhavani.Shankar@uni.lu).

Abdelhak M. Zoubir is with the Department of Electrical Engineering and
Information Technology, Technische Universität Darmstadt, 64283 Darmstadt,
Germany (e-mail: zoubir@spg.tu-darmstadt.de).

Digital Object Identifier 10.1109/LCOMM.2023.3257739

selection strategy by using a learning approach. This method
requires a training process, which might be unavailable in
some practical applications. The authors in [16] introduced a
realistic waveform constraint in the DFRC system, in order to
improve the power efficiency. A surrogate subproblem instead
of the original problem was solved, which might lead to a
highly suboptimal solution. In [17] and [18], several types of
DFRC systems were proposed which implement simultaneous
beamformers associated with single and different sparse arrays
with shared aperture. However, these two works consider a
single-user case, and the corresponding methods cannot be
applicable to the case of multi-users. A weighted ℓ1,q-norm
optimization based approach was developed in [19]. Note that
all the problems considered in [17], [18], and [19] are convex
and were solved by the existing toolbox such as CVX.

Unlike in previous works, we propose a novel system model
for DFRC systems, and formulate the corresponding sparse
array design problem as a quadratically constrained quadratic
program (QCQP) regularized by a joint-sparsity-promoting
term. Besides the control on illumination beampattern and
communication signal-to-interference-plus-noise ratio (SINR),
we also take into account the limitation of the radiated
power by each antenna. We propose an algorithm based
on the consensus alternating direction method of multipliers
(ADMM) to solve the resulting problem. Note that at each
ADMM iteration, the primary variable has a closed-form
solution, and the auxiliary variables can be solved efficiently
in a parallel manner. Simulation results show its superior
performance compared to other examined methods.

It is worth mentioning that the sparse array beamforming
can be incorporated into the framework of hybrid beamform-
ing, via decomposing the sparse array beamformer into the
baseband beamformer with a particular selection preference
and the RF beamformer. Therefore, it can further improve the
power efficiency within the hybrid beamforming.

The remainder of the letter is organized as follows. The
system model is established in Section II. The proposed
algorithm is presented in Section III. Simulation results are
shown in Section IV, while Section V concludes the letter.

Notations: Throughout this letter, bold-faced lower-case
(upper-case) letters denote vectors (matrices). Superscripts ·T,
·H, ·∗, ·−1 denote transpose, Hermitian transpose, conjugate,
and inverse, respectively. E{·} denotes the expectation
operator. |·| and ∠· are the modulus and phase, respectively,
both in an element-wise manner. C and R are the sets
of complex and real numbers, respectively, and ȷ =√
−1. ∥·∥0, ∥·∥1, and ∥·∥2 are ℓ0-quasi-norm, ℓ1-norm, and

ℓ2-norm, respectively. ⊗ denotes the Kronecker product. ⊘ is
the element-wise division operator. IN and OM×N are the
N ×N identity matrix and M ×N zero matrix, respectively.
1 and 0 are the all-ones and all-zeros vector of appropriate
size, respectively.
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Fig. 1. Illustration of a DFRC system.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a DFRC system, as indicated in Fig. 1. The
transmitter, consisting of N antennas, emits M signals, each
to a single user. The weight vector wm ∈ CN is designed to
transfer the data symbol, sm(t), to user m, ∀m = 1, 2, . . . ,M .
All the M transmitted signals are also received by a target.
The total transmitted signal can then be formulated as

x(t) =
M∑

m=1

wmsm(t), (1)

where t is the time index. We assume that the data symbols,
sm(t) ∀m = 1, 2, . . . ,M , are mutually uncorrelated, and each
sm(t) is zero-mean, spatially white with unit variance, i.e.,

E{|sm(t)|2} = 1, ∀m = 1, 2, . . . ,M, (2a)
E{|si(t)s∗j (t)|} = 0, ∀i, j = 1, 2, . . . ,M, and i ̸= j. (2b)

For the radar system, we wish to focus the transmit energy
on a certain angular region, say B, in order to have a higher
probability of detecting the target(s) lying therein. To this end,
we expect that the array response within B is not less than a
preset threshold, while the response outside B (denoted as B̄)
is not higher than a small threshold. Mathematically,

E
{
xH(t)a(θi)aH(θi)x(t)

}
≥ ϵp, ∀θi ∈ B, (3a)

E
{
xH(t)a(θj)aH(θj)x(t)

}
≤ ϵs, ∀θj ∈ B̄, (3b)

where a(θ) denotes the steering vector of θ, ϵp and ϵs are two
preset thresholds corresponding to the mainlobe and sidelobe,
respectively. Substituting (1) and (2) into (3), we have

M∑
m=1

wH
ma(θi)aH(θi)wm ≥ ϵp, ∀θi ∈ B, (4a)

M∑
m=1

wH
ma(θj)aH(θj)wm ≤ ϵs, ∀θj ∈ B̄. (4b)

For the downlink communication systems, the received data
by the m-th user is given as

ym(t) = hH
mwmsm(t)︸ ︷︷ ︸

communication signal

+
M∑

j=1,j ̸=m

hH
mwjsj(t)︸ ︷︷ ︸

interference signals

+ nm(t)︸ ︷︷ ︸
noise

,

(5)

where nm(t) is the additive white Gaussian noise with mean
zero and known variance σ2

m, ∀m = 1, 2, . . . ,M . Besides,
hm ∈ CN denotes the channel state information (CSI) vector,
which models the propagation loss and phase shift of the

frequency-flat quasi-static channel from the transmitter to the
m-th user. The CSI, {hm}m, is assumed to be perfectly
available at the transmitter. The maximum power radiated by
each antenna n is given by Pn. Therefore, we have [7]

M∑
m=1

wH
mEnwm ≤ Pn, ∀n = 1, 2, . . . , N, (6)

where En is the N×N all-zero matrix except the n-th diagonal
entry being 1. The received SINR of user m is defined below,
and a certain minimum SINR needs to be guaranteed, i.e.,

SINRm ≜

∣∣hH
mwm

∣∣2∑
j ̸=m |hH

mwj |2 + σ2
m

≥ γm, ∀m = 1, . . . ,M,

(7)

where
∑

j ̸=m is short notation for
∑M

j=1,j ̸=m.
Now we consider the scenario where only K ≤ N

RF chains are available, and thus only K antennas can be
simultaneously utilized in the DFRC system. Therefore, wm,
∀m, are sparse, and moreover, they share the same sparsity
pattern. To fulfill this requirement, we need:

∥w̃∥0 ≤ K, (8)

where w̃ ≜ [w̃1, w̃2, . . . , w̃N ]T with its component defined as
w̃n ≜ ∥[w1(n),w2(n), . . . ,wM (n)]∥2 ∀n = 1, 2, . . . , N , and
wm(n) being the n-th entry of vector wm, ∀m = 1, 2, . . . ,M .

The quality of service (QoS) problem aims at minimizing
the total transmit power (TxPower), with several constraints
described above. To this end, the QoS problem is given as

min
{wm}

TxPower ≜
M∑

m=1

∥wm∥22 (9a)

s.t. 4), (6), (7), and (8). (9b)

By replacing the non-convex ℓ0-quasi-norm in (8) with the ℓ1-
norm, and incorporating it into Problem (9) as a regularization
term, we have

min
{wm}

M∑
m=1

∥wm∥22 + η∥w̃∥1 s.t. (4), (6), and (7), (10)

where η is a parameter controlling the sparsity of the solution.

III. PROPOSED METHOD

The difficulties of solving Problem (10) are twofold. First,
the discorporated sparsity has a joint structure among all
wm [20], which is different from the classical sparsity
and consequently, the existing solutions cannot be directly
extended. Second, the constraints (4a) and (7) are nonconvex.

In what follows, we first deal with the joint-sparsity
structure of the solution by reformulating the problem, and
then, we develop an algorithm based on the consensus ADMM.

A. Problem Reformulation

First of all, we define a long column vector w ∈ CMN

as w ≜ [wT
1 ,wT

2 , . . . ,wT
M ]T and define M matrices Φm ∈

RN×MN as Φm ≜ [ON×(m−1)N , IN ,ON×(M−m)N ]. Then,
Problem (10) can be reformulated as

min
w
∥w∥22 + η∥w∥2,1 (11a)
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s.t. wHAθi
w ≥ ϵp, ∀θi ∈ B, (11b)

wHAθj
w ≤ ϵs, ∀θj ∈ B̄, (11c)

wHBnw ≤ Pn, ∀n = 1, 2, . . . , N, (11d)
wHCmw

wHCm̄w + σ2
m

≥ γm, ∀m = 1, 2, . . . ,M, (11e)

where we define Aθi ≜
∑M

m=1 ΦH
ma(θi)aH(θi)Φm,

Aθj
≜

∑M
m=1 ΦH

ma(θj)aH(θj)Φm, Bn ≜
∑M

m=1 ΦH
mEnΦm,

Cm ≜ ΦH
mhmhH

mΦm, Cm̄ ≜
∑

j ̸=m ΦH
j hmhH

mΦj , and
we have utilized

∑M
m=1 ∥wm∥22 = ∥w∥22, wm = Φmw,

and ∥w∥2,1 ≜
∑N

n=1

√∑M
m=1 |wm(n)|2. Further, since the

denominators, wHCm̄w + σ2
m, are always positive, (11e) can

be written as

wHDmw ≥ γmσ2
m, ∀m = 1, 2, . . . ,M, (12)

where Dm ≜ Cm − γmCm̄, ∀m = 1, 2, . . . ,M . We observe
that (11b), (11c), (11d), and (12) take the form: wHFw ≤ f .
Therefore, Problem (11) can be reformulated as

min
w
∥w∥22 + η∥w∥2,1 (13a)

s.t. wHFlw ≤ fl, ∀l = 1, 2, . . . , L, (13b)

where the subscript ·l is used to indicate the l-th constraint
in Problem (11), and L is the total number of constraints.
It is worth noting that Fl corresponding to −Aθi

is
negative semidefinite, and Fl corresponding to −Dm could be
indefinite. Therefore, in general, Problem (13) is non-convex
and thus NP-hard [21]. To solve this problem, we propose an
algorithm based on the consensus ADMM, which is capable
of handling all the constraints in parallel.

B. Proposed Algorithm

Firstly, we formulate Problem (13) by introducing L
auxiliary variables {vl ∈ CMN}Ll=1, and settle the original
variable w and the auxiliary variables {vl}l in a separable
fashion, as

min
w,{vl}

∥w∥22 +
η

L

L∑
i=1

∥vl∥2,1 (14a)

s.t. vH
l Flvl ≤ fl, vl = w, ∀l = 1, 2, . . . , L. (14b)

Next, we form the scaled-form augmented Lagrangian
function related to the above problem, as: L(w, {vl}, {ul}) =
∥w∥22+

η
L

∑L
l=1 ∥vl∥2,1+ ρ

2

∑L
l=1

(
∥vl −w + ul∥22 − ∥ul∥22

)
,

where ρ > 0 stands for the augmented Lagrangian parameter,
and ul is the scaled dual variable corresponding to the equality
constraint vl = w in Problem (14).

Finally, the consensus ADMM updating equations can be
written down as

w← arg min
w
∥w∥22 +

ρ

2

L∑
l=1

∥vl −w + ul∥22, (15a)

vl ←

{
arg min

vl

η

L
∥vl∥2,1 +

ρ

2
∥vl −w + ul∥22

s.t. vH
l Flvl ≤ fl,

(15b)

ul ← ul + vl −w. (15c)

In what follows, we show how to solve w and vl from (15a)
and (15b), respectively. We start by solving w from (15a). It is
straightforward to see that, by calculating the derivative of the
objective function of (15a) with respect to (w.r.t.) w and setting
it to 0, we obtain the solution to (15a) as

ŵ =
ρ

2 + ρL

L∑
l=1

(vl + ul). (16)

On the other hand, to solve vl from (15b), we firstly consider
the unconstrained minimization problem:

min
vl

f(vl) ≜
η

L
∥vl∥2,1 +

ρ

2
∥vl −w + ul∥22. (17)

The derivative of f(vl) w.r.t. vl is calculated as

∇vl
f(vl) =

[ η

L
(IM ⊗G) + ρIMN

]
vl − ρ(w − ul),

where G ∈ RN×N is a diagonal matrix with diagonal being

1⊘


√√√√ M∑

m=1

|vl(1 + (m− 1)N)|2,

. . . ,

√√√√ M∑
m=1

|vl(N + (m− 1)N)|2

T

.

By setting the derivative to 0, we obtain[ η

L
(IM ⊗G) + ρIMN

]
vl = ρ(w − ul). (18)

Since
[

η
L (IM ⊗G) + ρIMN

]
is real-valued, ∠vl =

∠(w − ul). Thus, we only need to calculate the modulus of
vl, using [ η

L
(IM ⊗G) + ρIMN

]
|vl| = ρ|w − ul|. (19)

By exploring the structure of IM ⊗G, we observe that there
are N blocks each containing M equal entries. Extracting the
rows of the equal entries yields(

η

L∥vl(n)∥2
+ ρ

)
|vl(n)| = ρ|cl(n)|, (20)

∀n = 1, 2, . . . , N , where vl(n) ≜ [vl(n),vl(n + N),
. . . ,vl(n + (M − 1)N)]T ∈ CM , and cl(n) ∈ CM contains
the corresponding entries of (w − ul). From (20), we have

|vl(n)| =
ρL∥vl(n)∥2

η + ρL∥vl(n)∥2
|cl(n)|. (21)

Performing the element-wise square operation, we have

|vl(n)|2 =
ρ2L2∥vl(n)∥22

η2 + ρ2L2∥vl(n)∥22 + 2ηρL∥vl(n)∥2
|cl(n)|2.

(22)

Hence, we further have

∥vl(n)∥22 = 1T|vl(n)|2 (23a)

=
ρ2L2∥vl(n)∥22

η2 + ρ2L2∥vl(n)∥22 + 2ηρL∥vl(n)∥2
1T|cl(n)|2.

(23b)

The above equation leads to

ρ2L2∥vl(n)∥22 + 2ηρL∥vl(n)∥2 + η2 − ρ2L21T|cl(n)|2 = 0,

(24)



HUANG et al.: SPARSE ARRAY DESIGN FOR DUAL-FUNCTION RADAR-COMMUNICATIONS SYSTEM 1415

the left-hand side of which is a simple quadratic function w.r.t.
∥vl(n)∥2, and its unique1 root is given as

∥vl(n)∥2 =
ρL

√
1T|cl(n)|2 − η

ρL
. (25)

Then, by substituting (25) into (21), we obtain

|vl(n)| =
ρL

√
1T|cl(n)|2 − η

ρL
√

1T|cl(n)|2
|cl(n)|. (26)

In (26), we define |vl(n)| = 0 if |cl(n)| = 0. The solution for
(18), referred to as v̄l, is finally obtained by combining vl(n)

(which can be calculated as |vl(n)|eȷ∠vl(n) ). Then, the solution
to (15b), denoted by v̂l, is found via the following theorem.

Theorem: If ρ satisfies ρ
2 ≫

η
L , then v̂l can be solved via:

v̂l ← arg min
vl

∥vl − v̄l∥22 s.t. vH
l Flvl ≤ fl. (27)

Proof: See Appendix A. □
Remark 1: Note that η is related to the sparsity of the

solution of Problem (10), and L is the total number of
constraints in Problem (13). Both of them are known for a
specific problem. Hence, it is easy to choose a ρ such that
ρ
2 ≫

η
L .

Remark 2: If v̄l satisfies the constraint of (27), i.e.,
v̄H

l Flv̄l ≤ fl, it is easy to have v̂l = v̄l. Otherwise, notice
that Problem (27) is a QCQP with one constraint, which can
be solved optimally despite that Fl may be indefinite [21].

So far, we have presented how to solve w and vl from
(15a) and (15b), respectively. Note that {vl}Ll=1 and {ul}Ll=1

can be calculated in parallel. The complete consensus ADMM
for solving Problem (13) is summarized in Algorithm 1,
in which kmax is used to terminate the iteration, and the
superscript ·(k) denotes the corresponding variable at the k-th
iteration.

In
Parallel

In
Parallel

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
algorithm compared with the feasible point pursuit successive
convex approximation (FPP-SCA) method [22]. FPP-SCA was
proposed for general QCQP and it is adapted to our problem.
Note that unlike our solution, no closed-form solution of FPP-
SCA is given. Two metrics are adopted: the TxPower defined
in (9a) and the radar-side mainlobe-to-sidelobe response ratio

(MSRR) defined as MSRR =
∑

θi∈B
∑M

m=1|wH
ma(θi)|2∑

θj∈B̄
∑M

m=1|wH
ma(θj)|2

.

We first consider a transmit system with a uniform linear
array of N = 10 antennas and K = 8 or 10 RF chains. There
are M = 2 users located at −45◦ and 45◦. The mainlobe
and sidelobe are B = [−5◦, 5◦] and B̄ = [−90◦,−60◦] ∪
[−30◦,−20◦] ∪ [20◦, 30◦] ∪ [60◦, 90◦]. The thresholds for the
mainlobe and sidelobe response are ϵp = 10 and ϵs = 0.5. The
maximum power radiated by each antenna is Pn = 40 dBm,
∀n, the same as [7]. The noise variance is set to σ2

m = 1, ∀m.
The threshold for the received SINR is γm = 10 dB, ∀m.
The number of constraints in Problem (13) is L = 38, the

1Note that the quadratic function in (24) has two roots, one positive and one
negative. In our case, the negative one is omitted, since its root ∥vl(n)∥2 ≥ 0.

Algorithm 1 Consensus ADMM for Solving Problem (13)
Input: η, ρ, kmax, Fl ∈ CMN×MN , fl, ∀l = 1, 2, . . . , L
Output: ŵ ∈ CMN

Initialize: v̂
(0)
l ← v(init)

l , û
(0)
l ← u(init)

l , k ← 0

1: while k < kmax do

2: ŵ(k+1) ← ρ
2+ρL

L∑
l=1

(
v̂

(k)
l + û

(k)
l

)
3: for each l = 1, 2, . . . , L do
4: cl ← ŵ(k+1) − û

(k)
l

5: ∠v̄
(k+1)
l ← ∠cl

6: for each n = 1, 2, . . . , N do
7: |v̄(k+1)

l(n) | ←
ρL
√

1T|cl(n)|2−η

ρL
√

1T|cl(n)|2
|cl(n)|

8: v̄
(k+1)

l(n) ← |v̄(k+1)

l(n) |e
ȷ∠v̄

(k+1)
l(n)

9: end for
10: Construct v̄

(k+1)
l using v̄

(k+1)

l(n) , ∀n
11: if v̄

(k+1)H
l Flv̄

(k+1)
l ≤ fl then v̂

(k+1)
l ← v̄

(k+1)
l

12: else v̂
(k+1)
l ←

{
arg min

vl

∥vl − v̄
(k+1)
l ∥22

s.t. vH
l Flvl ≤ fl

13: end if
14: û

(k+1)
l ← û

(k)
l + v̂

(k+1)
l − ŵ(k+1)

15: end for
16: k ← k + 1
17: end while
18: ŵ← ŵ(k)

Fig. 2. Beampattern comparison.

tuning parameter is2 η = 0.1, and the augmented Lagrangian
parameter is ρ = 50 (ρ/2 ≫ η/L is satisfied). The value of
v(init)

l is given by any feasible point, while u(init)
l = 0 and

kmax = 100. The beampatterns are drawn in Fig. 2, which
indicates that both the proposed and FPP-SCA methods have
beamlobes in the radar mainlobe B and the users directions.
In addition, the proposed method has much higher response
within B than the FPP-SCA method.

Next, we examine the TxPower and MSRR versus the
number of selected sensors, i.e., K. We also consider a strategy
of randomly selecting K sensors. The parameters are the
same as those in the last example. 500 Monte-Carlo trials are
performed. The results are plotted in Fig. 3. It is seen that
our proposed method has the lowest transmit power and the
highest MSRR, among all tested methods.

Finally, we test the TxPower and MSRR versus the number
of users, i.e., M . The number of selected antennas is fixed as
K = 8, and the other parameters are unchanged as in the last

2We do not study the relationship between η and the sparsity of the solution,
because of the space limitation of the letter. Instead, when we obtain ŵ,
we choose K antennas corresponding to the largest (in an ℓ2,1-norm sense)
K components. We have good results when the tuning parameter is η = 0.1.
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Fig. 3. TxPower (left) and MSRR (right) versus K.

Fig. 4. TxPower (left) and MSRR (right) versus M .

example. The results are depicted in Fig. 4, which again show
that our algorithm leads to a more power-efficient solution.

V. CONCLUSION

We studied the problem of sparse array design for
dual-function radar-communications. Our design aimed at
maintaining good control in both mainlobe and sidelobe, and
also to keep the signal-to-interference-plus-noise ratio for the
users larger than a certain level. In addition, we considered the
limitation of the radiated power by each antenna. The problem
was formulated as a quadratically constrained quadratic
program, and solved by the consensus alternating direction
method of multipliers. The proposed algorithm was able to
be implemented in parallel. Simulation results demonstrated
better performance of the proposed algorithm than the other
tested methods.

APPENDIX A
PROOF OF THEOREM

Solving (27) is equal to finding a point in {vl :
vH

l Flvl ≤ fl}, such that it is closest (in an ℓ2-norm sense)
to v̄l. Hence, the theorem equivalently states that the solution
to Problem (15b) is the point closest (in an ℓ2-norm sense) to
v̄l, provided that ρ/2≫ η/L. To show this, we denote ṽl as
the point in {vl : vH

l Flvl ≤ fl}, such that

∥ṽl − v̄l∥2 ≤ ∥vl − v̄l∥2 (28)

holds for any vl ∈ {vl : vH
l Flvl ≤ fl}. Our goal is to show

f(ṽl) ≤ f(vl), for any vl ∈ {vl : vH
l Flvl ≤ fl}.

The Lagrangian parameter ρ is chosen as ρ = Cη/L, where
C is a constant. Then, |g(vl) − f(vl)| → 0 as C → ∞ (i.e.,
ρ/2≫ η/L), where g(vl) ≜ ρ

2∥vl −w + ul∥22. Moreover,

f(vl) = g(vl) =
ρ

2
∥vl − v̄l∥22, (29)

as long as C → ∞. Note that, in the second equality above,
we used the fact that v̄l = w − ul as C →∞.

Suppose that there exists a point v̆l ∈ {vl : vH
l Flvl ≤ fl},

such that f(v̆l) < f(ṽl). Thus, by using (29), we obtain that
ρ
2∥v̆l − v̄l∥22 < ρ

2∥ṽl − v̄l∥22, which contradicts (28). This
implies that f(ṽl) ≤ f(vl) holds for all feasible vl, that is,
ṽl is the solution to Problem (15b). This completes the proof.
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