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Abstract—Although supervised deep learning has revolutionized
speech and audio processing, it has necessitated the building of
specialist models for individual tasks and application scenarios.
It is likewise difficult to apply this to dialects and languages for
which only limited labeled data is available. Self-supervised rep-
resentation learning methods promise a single universal model
that would benefit a wide variety of tasks and domains. Such
methods have shown success in natural language processing and
computer vision domains, achieving new levels of performance
while reducing the number of labels required for many downstream
scenarios. Speech representation learning is experiencing similar
progress in three main categories: generative, contrastive, and
predictive methods. Other approaches rely on multi-modal data
for pre-training, mixing text or visual data streams with speech.
Although self-supervised speech representation is still a nascent
research area, it is closely related to acoustic word embedding
and learning with zero lexical resources, both of which have seen
active research for many years. This review presents approaches for
self-supervised speech representation learning and their connection
to other research areas. Since many current methods focus solely
on automatic speech recognition as a downstream task, we review

Manuscript received 12 April 2022; revised 4 August 2022; accepted 24
August 2022. Date of publication 15 September 2022; date of current version 14
October2022. The work of Jakob D. Havtorn was supported in part by Innovation
Fund Denmark through Industrial Ph.D. Programme under Grant 0153-00167B.
The work of Lasse Borgholt was supported in part by Innovation Fund Denmark
thorugh Industrial Ph.D. Programme under Grant 8053-00184B. The guest editor
coordinating the review of this manuscript and approving it for publication was
Prof. Xiao-Ping Zhang. (Abdelrahman Mohamed, Hung-yi Lee, Lasse Borgholt,
and Jakob D. Havtorn contributed equally to this work.) (Corresponding author:
Hung-yi Lee.)

Abdelrahman Mohamed and Shang-Wen Li are with the Meta, Menlo Park,
CA 94025 USA (e-mail: abdo@fb.com; shangwel @fb.com).

Hung-yi Lee is with the Department of Electrical Engineering and Department
of Computer Science Information Engineering, National Taiwan University,
Taipei 10617, Taiwan (e-mail: hungyilee @ntu.edu.tw).

Lasse Borgholt is with the Corti Al and Department of Computer Science,
University of Copenhagen, 1165 Kgbenhavn, Denmark (e-mail: Ib@corti.ai).

Jakob D. Havtorn and Lars Maalge are with the Corti Al and Department of
Applied Mathematics and Computer Science, Technical University of Denmark,
2800 Kgs. Lyngby, Denmark (e-mail: jdha@dtu.dk; Im@corti.ai).

Joakim Edin is with the Corti Al, Technical University of Denmark, 2800
Kgs. Lyngby, Denmark (e-mail: je@corti.ai).

Christian Igel is with the Department of Computer Science, University of
Copenhagen, 1165 Kgbenhavn, Denmark (e-mail: igel@di.ku.dk).

Katrin Kirchhoff is with the AWS Al Labs, Amazon, Seattle 98121 USA
(e-mail: katrinki @amazon.com).

Karen Livescu is with the Toyota Technological Institute at Chicago, Chicago,
IL 60615 USA (e-mail: klivescu@ttic.edu).

Tara N. Sainath is with the Google, Inc., New York, NY 1011 USA (e-mail:
tsainath@google.com).

Shinji Watanabe is with the Language Technologies Institute, Carnegie Mel-
lon University, Pittsburgh, PA 15213 USA (e-mail: shinjiw @ieee.org).

Digital Object Identifier 10.1109/JSTSP.2022.3207050

, and Shinji Watanabe

, Senior Member, IEEE

recent efforts on benchmarking learned representations to extend
the application beyond speech recognition.

Index Terms—Self-supervised learning, speech representations.

I. INTRODUCTION

VER the past decade, deep learning approaches have
O revolutionized speech processing through a giant leap in
performance, enabling various real-world applications. Super-
vised learning of deep neural networks has been the cornerstone
of this transformation, offering impressive gains for scenarios
richinlabeled data[1], [2], [3]. Paradoxically, this heavy reliance
on supervised learning has restricted progress in languages
and domains that do not attract the same level of labeling
investment.

To overcome the need for labeled data, researchers have ex-
plored approaches that use unpaired audio-only data to open up
new industrial speech use-cases and low-resource languages [4],
[5], [6]. Inspired by how children learn their first language
through listening and interacting with family and surroundings,
scientists seek to use raw waveforms and spectral signals to
learn speech representations that capture low-level acoustic
events, lexical knowledge, all the way to syntactic and semantic
information. These learned representations are then used for
target downstream applications requiring a minimal number
of labeled data [7], [8], [9]. Formally, representation learning
refers to algorithms for extracting latent features that capture
the underlying explanatory factors for the observed input [9].

Representation learning approaches are generally considered
examples of unsupervised learning, which refers to the family
of machine learning methods that discover naturally occurring
patterns in training samples for which there are no pre-assigned
labels or scores [10]. The term “unsupervised” is used to dis-
tinguish this family of methods from “supervised” approaches,
which assign a label to each training sample, and “‘semi-
supervised” approaches, which utilize a small number of training
samples with labels to guide learning using a larger volume
of unlabeled samples. Examples of unsupervised learning tech-
niques include k-means clustering [11], mixture models [12],
autoencoders [13], and non-negative matrix factorization [14].
Self-supervised learning (SSL) is a fast-growing subcategory
of unsupervised learning approaches, which are techniques that
utilize information extracted from the input data itself as the
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Fig. 1. Framework for using self-supervised representation learning in down-
stream applications.

label to learn representations useful for downstream tasks. For
example, unsupervised k-means clustering doesn’t adhere to this
definition of self-supervision since it iteratively minimizes the
within-cluster variance during learning. In this review, we focus
on self-supervised learning approaches.

Fig. 1 outlines self-supervised representation learning in re-
lation to downstream applications. There are two stages in this
framework. In the first stage, we use SSL to pre-train a repre-
sentation model, also called an upstream model or a foundation
model. In the second stage, downstream tasks use either the
learned representation from the frozen model, or fine-tune the
entire pre-trained model in a supervised phase [15]. Automatic
speech recognition (ASR) and speaker identification (SID) are
examples of downstream applications in Fig. 1.

It is considered desirable for learned speech representations
to be disentangled, invariant, and hierarchical. Since spoken
utterances contain much richer information than the correspond-
ing text transcriptions—e.g., speaker identity, style, emotion,
surrounding noise, and communication channel noise—it is
important to learn representations that disentangle these factors
of variation. Furthermore, invariance of the learned features to
changes in background noise and in the communication channel
ensures stability with respect to downstream application scenar-
ios. Learning feature hierarchies at the acoustic, lexical, and se-
mantic levels supports applications with different requirements.
For instance, whereas a speaker identification task benefits from
a low-level acoustic representation, a speech translation task
requires a more semantic representation of the input utterance.

Due to the popularity of SSL, reviews have been published
about the technology in general [16], [17], [18] as well as its
application to natural language processing (NLP) [19], [20],
[21], [22] and computer vision (CV) [23]. Recently, a brief
overview with a general focus on speech representation learning
was published [24]. However, none of these overviews focus
exclusively on SSL for speech processing. Since the speech
signal differs greatly from image and text inputs, many the-
ories and technologies have been developed to address the
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unique challenges of speech. One review addresses speech
representation learning based on deep learning models [25],
but does not address recent developments in self-supervised
learning. This motivates this overview of speech SSL.

The structure of this paper is arranged as follows. Section II
briefly reviews the history of speech representation learning,
and Section III reviews current speech SSL models. Section IV
surveys SSL datasets and benchmarks, and discusses and com-
pares results from different works. Section V analyzes success-
ful SSL approaches and offers insights into the importance of
technological innovations. Section VI-B reviews zero-resource
downstream tasks that utilize SSL. Finally, Section VII summa-
rizes the paper and suggests future research directions.

II. HISTORICAL CONTEXT OF REPRESENTATION LEARNING

In this section we present the historical background of the
current surge in self-supervised representation learning meth-
ods in the context of two previous waves of research work in
the 1990 s and 2000 s. The discussed approaches go beyond
speech to describe the overall landscape of machine learning
development during the past few decades.

A. Clustering and Mixture Models

Initial research in learning latent speech and audio rep-
resentations involved simple models in which the training
data likelihood was optimized directly or via the expectation—
maximization (EM) algorithm.

Early work used simple clustering methods. For example, in
work such as [26], [27], word patterns were clustered semi-
automatically using techniques such as k-means, after which
isolated words were recognized by finding the training cluster
closest to the test data.

Through time, modeling techniques improved such that sub-
word units were represented by Gaussian mixture models
(GMMs) [28], which facilitated the modeling of more variability
in the input data. GMMs were first built for context-independent
phonemes; state-clustering algorithms [29] then resulted in
GMMs for context-dependent phonemes. Each latent compo-
nent of these mixture models acted as a template of a prototypical
speech frame, making it difficult to handle large volumes of
data with diverse characteristics. Furthermore, dynamical mod-
els like hidden Markov models (HMMs) [30] allowed for the
processing of continuous speech rather than just isolated word
recognition. These generative GMM and HMM models were
trained by maximizing the likelihood of data given the model,
which could be accomplished in either an unsupervised or a
supervised manner.

Another line of research focused on extracting speech fea-
tures from generative models. The main objective here was to
render the knowledge learned by generative models accessible to
discriminative downstream classifiers, or to map variable-length
sequences to fixed-length representations. Feature vectors were
derived from the parameters of trained GMM models. In the case
of Fisher vectors, the features were the normalized gradients of
the log-likelihood with respect to the model parameters (mixture
weights, means, and variances) of the Gaussian mixtures. An
extension of this approach (likelihood ratio score space) used
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the derivative of the log-likelihood ratio of two models, e.g., a
background model and a foreground model. Examples of their
use in speech processing include speech recognition [31], [32]
and speaker recognition [33]. Subsequent techniques in speaker
and language verification [34], [35] similarly extracted param-
eters (concatenated means) from trained background GMMs as
representations that were then combined with low-rank projec-
tions of speaker/session- or language-specific vectors.

B. Stacked Neural Models

More recently, representation learning has seen a shift of
focus towards neural models, which, compared to GMMs and
HMMs, offer distributed representations with more capacity to
model diverse input signals into efficient latent binary codes.
Examples of early techniques include restricted Boltzmann ma-
chines (RBM) [15], denoising autoencoders [36], noise con-
trastive estimation (NCE) [37], sparse coding [38], [39], [40],
and energy-based methods [41]. Many of these techniques have
also been applied to CV and NLP problems, which provided
inspiration for their application to speech.

Higher-capacity neural models were achieved by stacking
several neural network layers to build progressively higher-level
concept representations. However, these deeper networks also
increased the training complexities. For example, approximate
training methods such as contrastive divergence [42] were a
practical technique to streamline RBM training. Furthermore,
deep networks had non-convex objective functions, which often
resulted in long training times compared to GMMs, which are
trained using full batches instead of mini-batch learning.

C. Learning Through Pretext Task Optimization

A more recent trend is learning networks that map the input
to desired representations by solving a pretext task. Such studies
have several characteristics: (1) All layers are trained end-to-end
to optimize a single pretext task instead of relying on layer-wise
pre-training (2) Past stacked networks typically had only a few
layers, but very deep networks with more than ten layers are
now common. (3) It is common to evaluate a representation
model on a wide range of tasks. For example, in NLP, a repre-
sentation model is usually assessed on GLUE, which comprises
nine tasks [43], whereas in speech, a representation model can
be evaluated on SUPERB, which comprises ten tasks [44], as
described in detail in Section I'V-E.

The cornerstone of this third wave is the design of a pretext
task, which allows the model to efficiently leverage knowledge
from unlabeled data. The pretext task should be challenging
enough for the model to learn high-level abstract representations
and not be so easy as to encourage the exploitation of low-level
shortcuts. Early breakthroughs included end-to-end learning of
deep neural architectures via pretext tasks for restoring the true
color of black-and-white images [45], joint learning of latent rep-
resentations and their cluster assignments [46], and the predic-
tion of the relative positions of image patches [47]. Other popular
approaches include variational autoencoders (VAEs) [48], [49].
While typical autoencoders learn data representations using
unsupervised objectives by reconstructing the input after passing
it through an information bottleneck, VAEs estimate a neural
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model of a probability density function (pdf) that approximates
the unknown “true” distribution of the observed data, for which
we only have access to independently identically distributed (iid)
samples. It is also important to mention dynamical VAEs [50],
which is an extension of VAE for sequential data such as speech.

In the SSL context, a pretext task related to autoencoding is
to generate an object from its partial information. Such tasks are
widely used in NLP, for example, using the previous tokens in
a sentence to predict the next token such as in ELMo [51], the
GPT series [52], and Megatron [53], or predicting the masked
tokens in a sentence such as with the bidirectional encoder
representations from Transformers (BERT) series [54], [55].
Another common pretext task in the third wave is contrastive
learning [56], in which a model learns to identify a target instance
from a set of negative samples. This approach has become
especially popular in the CV context [57], [58], [59], [60]. In
this survey, we will mainly focus on techniques for pretext task
optimization for speech processing, and discuss these techniques
in detail in Section III.

D. Other Related Work

A closely related area of research that is not covered in
this review is semi-supervised pre-training methods such as
pseudo-labeling (that is, self-training). Pseudo-labeling (PL)
relies on a supervised teacher model to label a large volume
of speech-only data, which is then used to augment the initial
labeled data to train a student model [4], [5], [6], [61]. PL has
been successful and widely adopted in the speech community
since the 1990 s. Other proposed variations of PL include
augmenting speech-only data with noise to improve robustness,
iterating over the PL process to improve teacher labeling quality,
and training student models with more parameters than their
original teachers to capture the complexities in vastly larger
speech-only data [62], [63], [64]. Both SSL and PL leverage
unlabeled speech-only data. One distinguishing factor in PL is
the utilization of supervised data for a specific task during model
pre-training, which limits the model’s focus to a single (or at best
a few) downstream tasks. SSL, in turn, is an attempt to learn
task-agnostic representations to benefit a wide range of tasks.

Transfer learning (TL) is another closely related area of re-
search for pre-training speech models. TL transfers knowledge
captured by models trained on one task to different but related
tasks [65]. The past few decades have seen active research on TL
and its extension to multitask learning for more general represen-
tations. Multilingual and cross-lingual supervised models have
proven superior in low-resource speech recognition tasks [66].
SSL can be regarded as a type of TL because knowledge learned
from pre-training is used for different downstream tasks. This
survey paper focuses on SSL, and not all TL technologies for
speech. One survey indeed addresses TL for speech process-
ing [67] but does not include current SSL technologies for
speech.

III. SPEECH REPRESENTATION LEARNING PARADIGMS

Due to the characteristics of speech, SSL pretext tasks devel-
oped for CV and NLP may not directly apply to speech. Below
we summarize the characteristics of speech as compared to CV
and NLP.
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are categorized as generative, contrastive, or predictive. In addition, some models are characterized as embedding models or multi-modal models, although most
learn frame-level representations from speech only. Some models use a mixture of generative and contrastive tasks. For instance, PASE and PASE+ use a multi-task
setup, but find that generative tasks are the most important for downstream task performance [69].

® Speechisasequence. Unlike CV, in which animage usually
has a fixed size representation, it is natural to represent a
speech utterance as a variable-length sequence. Therefore,
pretext tasks developed for CV cannot generally be directly
applied to speech.

® Speech is a long sequence without segment boundaries.
Both text and speech can be represented as sequences.
From this viewpoint, it is natural to apply learning ap-
proaches developed for text directly to speech. In NLP,
morpheme-like tokens are widely used as sequence units in
pre-training. The standard BERT takes 512 morpheme-like
tokens as input, usually covering a paragraph including sev-
eral sentences. However, speech signals consist of sound
pressure measurements with thousands of samples per sec-
ond, resulting in sequences much longer than those for text.
Even spectral representations which reduce the sequence
length can have hundreds of frames per second. Processing
such sequences with typical neural network architectures
like Transformers can result in problems with running time
and memory requirements. One could gather consecutive
frames to form shorter segments, but unlike text, there is
no obvious segmentation for unlabeled speech.

® Speech is continuous. In NLP, it is common to use a pretext
task that models a categorical distribution of masked or
future inputs. Since text is easily broken down into in-
dividual tokens such as words, subwords, or characters,
it is straightforward to define a finite vocabulary for such
tasks. However, this idea does not apply to speech modeling
because speech signals are continuous; in this sense there
is no such thing as a speech vocabulary.

® Speech processing tasks are diverse. Building general-
izable self-supervised representation models for diverse
speech processing tasks is challenging. Speech contains
rich, hierarchical information, and different speech tasks
may require mutually orthogonal information. For ex-
ample, speech recognition requires a model that extracts
content information but ignores speaker information; in
contrast, speaker recognition requires a model that ex-
tracts speaker information but removes content informa-
tion. Therefore, it is challenging to define a self-supervised

model whose representations are suitable for both speech
recognition and speaker recognition. Analogous consider-
ations apply within CV and NLP.

In the sections below, we group modern SSL pretext tasks
designed for speech into three main categories: generative ap-
proaches, contrastive approaches and predictive approaches.
Fig. 2 shows a timeline of the models covered in these sections
with each model colored according to our categorization. Table I
summarizes model pretext tasks along within the categories.

A. Notation

To efficiently describe the different approaches, we use a
simple notation. Models are assumed to consist of functions
f() and g¢(-), where f(-) denotes the representation model
to be used after pre-training and ¢(-) is an auxiliary module
needed only to support the pretext task. For instance, in a classic
autoencoder, f(-) would denote the encoder and g(-) the decoder.
For more complex models, these functions might consist of
several components indicated by sub-indices f1(-)... fn (). As
we will see, many self-supervised models use masking, which
replaces some parts of the input or a hidden representation by
zeros or a learned vector. We use m(-) to denote a function that
applies such masking to its input. Similar to g(-), this function
is only used during pre-training.

Given an acoustic input X = {x1,zs,...,z7}, f(-) outputs
arepresentation H = {hq, ha, ..., hr}. The input X may be ei-
ther the raw waveform samples or a sequence of spectral feature
vectors. Both are viable options in practice. For simplicity, we
do not distinguish between the two in our notation.

While f(-) always takes an acoustic input, the input to g(+) can
be either the acoustic signal or another learned representation.
Most importantly, g(-) produces an output that is used for the
pretext task but is not used by f(-) to produce the representation
H.Hence, g(-) can be discarded after pre-training. Finally, f ()
commonly downsamples the temporal dimension, but again, this
is not crucial to understand the models, so consider only a single
temporal scale t € {1,..., T} for notational convenience.

We use @ = {q1,¢2,...,qr} to denote representations that
are quantized via codebook learning. Alternatively, discrete
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TABLE I
A SUMMARY OF THE APPROACHES IN THE THREE CATEGORIES OF SELF-SUPERVISED LEARNING. COLUMN (A) LISTS THE NAMES OF THE MODELS AND RELATED
REFERENCES, COLUMN (B) DEFINES THE MODEL INPUT, COLUMN (C) DEFINES ANY CORRUPTION OF THE INPUT OR HIDDEN REPRESENTATION, AND COLUMN (D)
DEFINES THE TARGET OF THE PRETEXT TASK; THE PRETEXT TASK ITSELF IS DESCRIBED BY THE OVERALL MODEL CATEGORY AND THE MAIN TEXT.
X ={z1,x2,...,x7} IS THE INPUT SEQUENCE IN WHICH z; CAN BE AN ACOUSTIC FEATURE VECTOR (E.G., MFCC, FILTERBANK, OR SPECTROGRAM
FEATURES) OR A WAVEFORM SAMPLE. X [t1:t2]) REPRESENTS {Zey,Te 415 o ) X—[tlztz] REPRESENTS X IN WHICH THE SEGMENT

X[t1 to] = {Z¢y, @t 41, -, Tty } IS MASKED. zg REPRESENTS THE %-TH DIMENSION OF ;. IF x4 IS A FRAME IN A SPECTROGRAM, THEN THE ¢-TH DIMENSION

CORRESPONDS TO A SPECIFIC FREQUENCY BIN. X ~[/:/+3] REFERS TO A SPECTROGRAM X WHICH IS MASKED ALONG THE FREQUENCY AXIS FROM THE f-TH
TO (f + j)-TH BIN. WE INDICATE RANDOM TEMPORAL PERMUTATION OF A SEQUENCE BY INDEXING IT WITH THE SET P; £ PERMUTE([0, t]), WHERE
PERMUTE(-) RETURNS A PERMUTATION OF THE GIVEN LIST. WE INDICATE DATA AUGMENTATION (E.G., REVERBERATION) BY THE FUNCTION AUGMENT(-)

Model (a) ‘ Input (b) ‘ Corruption (c) ‘ Target (d)

GENERATIVE MODELS

Audio Word2vec [118], VQ-VAE [75] X

Speech2Vec [114], Audio2Vec [116] - skip-gram KX(to,t1]:X[ta,ts]

Speech2Vec [114], Audio2Vec [116] - cbow X [t1,t2]

| |

| |

| |
PASE [69], PASE+ [113]! \ X - \ Different modalities of X
APC [92], [98] \ X1, - \ Tife, c>1
Speech-XLNet [109] \ Xp, \ Tipe
DeCoAR [99] | Xpe—1) Xeprgr,m) | - \ X(t,t+4]
Mockingjay [100]. Audio ALBERT [119], DeCoAR 2.0 [110] | X_jt01k] \ Xtt44]
TERA [106], BMR [103] ‘ :[[f,’tﬁjl ‘ <
pMPC [105] | X_(te48] X[t,444 is a phoneme) | Xt 441
MPE [102] \ X | Z_pern | A
NPC [107] \ X | Z_pern | X

CONTRASTIVE MODELS

Unspeech [120] ‘ X[ty to] ‘ - ‘ K(to,t1]:X[ta,ts]

CPC [56], wav2vec [121], Modified CPC [122] \ X4 \ - \ Ziye,c> 1

Bidirectional CPC [123] | Xpgor X | - \ Zife OF 2p—c, > 1

vg-wav2vec [124] \ Xp, \ - \ Gite,c>1

wav2vec 2.0 [125], wav2vec-C [126]> \ X | Z_pern | Qlt,t44]

w2v-BERT [127] \ X | Z_pern | Qpt,t4%) and Cly gy 1)
| |

Speech SimCLR [128]3 AUGMENT (X)) and AUGMENT2(X) AUGMENT2(Z) and AUGMENT1(Z)

PREDICTIVE MODELS

Discrete BERT [124], [129] 4 \ C_lt,01k] \ Clo,t+4]
HuBERT [130]%, WavLM [131]° \ X | Z_perny | Clt,t4k]
data2vec [132] | X | 2w | SO
BEST-RQ [133]7 \ X_jt01k) \ Cle,t+4]

Subscripts indicate different augmentations. Z represents a localized latent representation sequence of X. Z"Wis Z at the /-th layer of the model used to compute it. /7 is
the contextualized sequence / obtained from an exponential moving average (EMA) of the model undergoing training with no masking applied. Q represents a sequence
of quantized learned representations, and C is a sequence of discrete cluster IDs. For contrastive models, we specify only positive targets.

'PASE uses multiple pretext tasks, but the authors find that reconstruction is most important.

2wav2vec-C adds reconstruction loss to wav2vec 2.0.

3Speech SimCLR targets the latent representation of an augmented version of X using a differently augmented X, and vice-versa.

“Discrete BERT obtains codes C from vg-wav2vec.

SHuBERT is trained first using cluster IDs of the MFCCs as target and subsequently clusters IDs of the model representations from the last iteration.

®WavLM simulates noisy/overlapped speech as inputs.

"BEST-RQ obtains codes C by quantizing acoustic features using a random projection quantizer.
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representations may take the form of one-hot vectors, or
the equivalent integer IDs, which we denote by C =
{c1, ¢, ..., cr}. We use acircumflex to denote that, for instance,
2 1s an approximation of x;. Finally, we often use a subscript
when defining a loss, £;, to imply that the total loss is computed
as a sum over %, unless otherwise stated.

For some models, we will refer to H as a contextualized
representation which means that each h; is a function of some,
linguistically speaking, long sub-sequence of X spanning at
least several phonemes. Usually, h; depends on the entire input
X or all previous timesteps X|; . In contrast, a localized
representation is one that only depends on a short part of the
input X(;_, ;4.), where u > 0. The distinction between contex-
tualized and localized may become fuzzy if u is large, however,
this is rarely the case.

After pre-training, the representation model f(-) can be fine-
tuned for a downstream task directly or used to extract features
which are fed to another model, as visualized in Fig. 1. It is
not uncommon to use the output representation H, but often
representations from hidden layers of f(-) are better suited [68].

B. Generative Approaches

1) Motivation: Inthis category, the pretext task is to generate,
or reconstruct, the input data based on some limited view. This
includes predicting future inputs from past inputs, masked from
unmasked, or the original from some other corrupted view.
“Generative” as used in this paper hence refers to models that
target the original input in their pretext task. Note that this differs
from generative models, which learn distributions that allow to
sample new data.

2) Approaches:

a) Autoencoding: Since their introduction in the mid-
1990s [13], autoencoders (AEs) have played an essential role
in learning distributed latent representations of sensory data. As
described above, AEs consist of an encoder and decoder; the
pretext task is to reconstruct the given input. The most com-
mon type of AE places an information bottleneck on the latent
representation by simply having fewer hidden units available
than input features. This forces the model to discard low-level
details and disccourages the learning of trivial solutions. Other
models add regularization to the latent space to further improve
the quality of the learned representations. For instance, denois-
ing autoencoders (DAEs) learn latent representations by recon-
structing from input corrupted by noise [36]. The Variational
Autoencoder (VAE) is a probabilistic version of the AE which
defines the latent representation via a posterior distribution over
stochastic latent variables [48], [49]. VAEs have been applied
to speech in numerous works [70], [71], [72], [73], [74]. The
vector-quantized variational autoencoder (VQ-VAE) is another
model in this category [75]; it extends the original VAE [48]
with a novel parameterization of the posterior distribution for
discrete latent representations. The VQ-VAE has been instru-
mental in generative speech modelling and recent work on gen-
erative spoken language modeling has successfully combined
the idea of a discrete latent space with self-supervised learning
[76], [77], [78].
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Specifically, in the VQ-VAE, the continuous representation
vector h, at the output of the encoder is quantized by mapping
it to a codebook vector, which is then used as the input to the
decoder. This operation is non-differentiable and the gradients of
the loss with respect to the encoder parameters must be obtained
by approximation. In the VQ-VAE this is done using the straight-
through estimator [79], i.e., the gradients with respect to the
encoder output are taken to be equal to those with respect to
the decoder input (i.e., the quatization step is ignored). Given
a learned codebook A € R¥*P where K is the codebook size
and D is the dimensionality of each codebook vector ag, the
quantized representation ¢; of h, is obtained as

q: = ay, where k = argmin ||h; — a;l|, . (1)
J

The decoder g(+) is an autoregressive model that takes q[1,4) s
input to generate z; [80]. Codebook learning is facilitated by a
two-term auxiliary loss similar to classical vector quantization
dictionary learning [81], [82]. Gradients for the codebook vec-
tors are given solely by a term that moves codebook vectors ay
closer to the non-quantized vectors h;. A so-called commitment
term is added to ensure that non-quantized vectors do not grow
unboundedly by enforcing the encoder to keep them close to a
codebook vector. This commitment term is optimized only by
the encoder. The total VQ-VAE loss for a single timestep is

L; =log p(xt|qp1,g) + MSE (sg [h] , A)

encoder+decoder codebook

+ a MSE (ht,sg[4]) , (2)

encoder

where log p(x¢|qp1 +7) is a reconstruction likelihood term usually
using a categorical distribution, sg[x] = z is the so-called stop-
gradient operator which acts as the identity function during the
forward pass but is assumed to have partial derivatives all equal
to zero during the backward pass, « is a scalar hyperparameter,
and we define MSE(hy, A) = 225 S0 S50 (hei — aki)?.
The loss for a full sequence is the sum or mean over all £;.

These learned discrete representations have been shown
to capture high-level speech information closely related to
phonemes, and are useful for applications such as speaker con-
version [83]. Vector quantization is not exclusive to VQ-VAE but
has seen widespread application within SSL for regularization
purposes and to define targets for the pretext task. We will cover
these applications below.

The Gumbel softmax [84] is another frequently used approach
for obtaining a discrete representation space, and has also been
used for AEs [85]. In addition to the approaches discussed
above, several other works on speech representation learning
take inspiration from the AE framework [86], [87], [88], [89],
[90], [91].

b) Autoregressive prediction: Autoregressive predictive
coding (APC) [92], [93] takes inspiration from the classic Linear
Predictive Coding (LPC) approach for speech feature extrac-
tion [94] and autoregressive language models (LM) for text,
where the model learns to predict future information from past.
A function f(-) reads the input sequence X[, ; and outputs a



MOHAMED et al.: SELF-SUPERVISED SPEECH REPRESENTATION LEARNING: A REVIEW

representation sequence M 4. The auxiliary module g(-) is a
linear projection layer which takes the last vector of Hy 4 as
input to approximate x;4.., where ¢ > 1. Thus, c indicates how
many timesteps the model predicts ahead. The modules f () and
g(+) are jointly learned to minimize the L; loss between 2.
and its approximation Z;.. APC is formulated as

Hyg = f(X1.0), 3)
Tpye = g(ht)a 4
Ly = ||§3t+c - L10t4—c||1~ )

In text-based autoregressive LMs, c is set to 1 to enable au-
toregressive generation. However, due to the smoothness of
the speech signal, neighboring acoustic features are usually
similar. Depending on the downstream task, we are often in-
terested in learning so-called slow features that typically span
multiple input frames [95]. Even the smallest linguistic units
of speech—phonemes—span 0.07 seconds on average in the
English TIMIT dataset [96], whereas spectrogram frames x; are
typically computed at 0.01 s intervals. Thus, simply predicting
the next frame constitutes a trivial pretext task for APC; the
original work finds that ¢ = 3 performs well. In [97], the APC
objective is extended to multi-target training. The new objective
generates both past and future frames conditioned on previous
context. In VQ-APC [98], quantization is used with the APC
objective, which imposes an information bottleneck serving as
a regularizer.

A drawback of APC is that it encodes information only from
previous timesteps and not the entire input. DeCoAR [99] com-
bines the bidirectionality of the popular NLP model ELMo [51]
and the reconstruction objective of APC to alleviate this issue
and allow encoding information from the entire input. It uses a
forward LSTM f1(-) to encode X|; ;) and a backward LSTM
fa(+) to encode Xy 1), where k > 1:

Hpy g = f1(X1.g)s (6)
Hiyp oy = Fo(Xjprw 1), (7
X[H—l,t-ﬁ-k—l] = g(he, iy ) (8)

The input feature vector used in the downstream tasks is the
concatenation of h; and hj.

c¢) Masked Reconstruction: Masked reconstruction is
largely inspired by the masked language model (MLM) task
from BERT [54]. During BERT pre-training, some tokens in
the input sentences are masked by randomly replacing them
by a learned masking token or another input token. The model
learns to reconstruct the masked tokens from the non-masked
tokens. Recent work has explored similar pretext tasks for speech
representation learning. Similar to the DeCoAR model described
above, this allows a model to learn contextualized representa-
tions that encode information from the entire input. While we
here focus on the models that reconstruct the masked input, it is
important to note that masking has also been used extensively
for contrastive (Section III-C) and predictive (Section III-D)
models.
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From a high-level perspective, the training phase of models
using masked reconstruction can be formulated as

H = f(m(X)), ©)
&t = g(he), (10)
Ly = ||C%t*fﬂt||1~ (11)

The exact masking policy defined by m(-) differs from model
to model and will be discussed further below. The function
f () is typically a Transformer encoder [100], [101], [102], but
recurrent neural networks have also been used [103]. In general,
the Transformer encoder architecture has been adopted widely
by self-supervised models for speech within all three surveyed
categories. The function g(-) is usually a linear projection or a
multilayer perceptron (MLP). Finally, the loss £; is commonly
computed only for masked timesteps in order to discourage the
model from learning an identity mapping.

The masking policies used in NLP can be adapted to speech by
considering a speech segment equivalent to a token in a sentence;
indeed, the masking strategy of BERT has also been used for
speech pre-training [ 100]. In the standard BERT masking policy,
each token is masked independently at random. However, for
speech, masking a single sample or spectrogram frame results
in a largely trivial reconstruction task since, as discussed in
paragraph III-B2b, the smoothness of audio signals may en-
courage the model to learn to simply interpolate neighboring
frames. Therefore it is common to mask chunks of consecutive
frames [100], [104].

We can bring the pretext task closer to the NLP equivalent
by using a masking policy where the masked regions of the
input correspond to linguistic units. Instead of just masking a
fixed number of consecutive frames, pMPC [105] selects masked
speech frames according to the phonetic segmentation in an
utterance. However, in order to obtain this segmentation, some
labeled data is of course needed.

Whereas most studies use masking along the temporal dimen-
sion of the input, speech can also be masked along the frequency
dimension when spectral input features are used [103], [106].
Frequency masking has been shown to improve representations
used for speaker classification [106].

Some studies explore alternatives to masking the input di-
rectly. In non-autoregressive predictive coding (NPC) [107],
time masking is introduced through masked convolution blocks.
Taking inspiration from XLNet [108], it has also been suggested
that the input be reconstructed from a shuffled version [109] to
address the discrepancy between pre-training and fine-tuning of
masking-based approaches.

Regularization methods can further improve on masked re-
construction approaches. DeCoAR 2.0 [110] uses vector quan-
tization, which is shown to improve the learned representations.
Furthermore, two dropout regularization methods—attention
dropout and layer dropout—are introduced with the TERA
model [106], [111]. Both methods are variations on the original
dropout method [112].

d) More Generative Approaches: Other than the autore-
gressive and masked reconstruction tasks discussed above, var-
ious studies have explored the reconstruction of other targets
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derived from the input. PASE and PASE+ [69], [113] use mul-
tiple targets, including the waveform, log power spectrum, mel
cepstral coefficients (MFCCs), and prosody features. Models
that learn acoustic embeddings of small speech segments have
targeted future and past spectrogram segments [114], [115],
[116], phase information [117], and the temporal gap between
two segments [115], [116].

3) Challenges: Although successful NLP models like BERT
and GPT are based on generative pretext tasks, the progress have
not been translated directly to the speech domain. A speech
signal encodes more information than text, such as speaker
identity and prosodic features, which makes it harder to generate.
However, in order to generate all details of the input, the model
must encode all information in the speech signal. Hence, a model
that learns to perfectly reconstruct its input may not necessarily
have learned to isolate the features of interest and will encode
redundant information for a given downstream task.

There are many choices involved in designing a generative
pretext task. For instance, masking strategy and the choice
of input and target representation (e.g., waveform samples or
spectral features). These choices influence what the model learns
through the pretext task. However, there is little research on the
relationship between task design and the information encoded
in the learned representations.

C. Contrastive Approaches

1) Motivation: As discussed above, speech contains many
entangled features. Thus, learning to reconstruct the raw speech
signal might not be the best way to discover contextualized latent
factors of variations. Contrastive models learn representations
by distinguishing a target sample (positive) from distractor
samples (negatives) given an anchor representation. The pretext
task is to maximize latent space similarity between the anchor
and positive samples while minimizing the similarity between
the anchor and negative samples. This approach has been used
extensively in the general ML community [134].

2) Approaches:

a) CPC: Contrastive Predictive Coding (CPC) [56] is a
prominent example of a contrastive model. CPC uses a convolu-
tional module f; (+) to produce localized representations z; with
a recurrent module fo(-) on top that outputs a contextualized
representation ;. An anchor representation 2 j, is obtained via
a linear projection g (+) of h;. The positives and negatives are
sampled from the localized representation Z. Hence, at a single
timestep ¢, CPC forms multiple anchor representations 2, j, for
k€ {1,..., K} and associates with each one a single positive
sample at the corresponding timestep, z;x, k steps in the future:

2zt = [1(Xj—u,ttu))s (12)
Hp gy = f2(Zp0), (13)
Zike = gr(he). (14)

Each z; only encodes information from a limited receptive field,
while fo(+) is limited to condition each h; on previous timesteps
Z[1,1)- Without these restrictions, the model could collapse to a
trivial solution. g is a unique transformation per offset k (e.g.,
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a linear projection). The loss function measures the similarity
between the anchor representation 2, ; and the positive 2
normalized by the total similarity to the positive and negatives.
The approach is similar to previous work on Noise-Contrastive
Estimation (NCE) [135]. Minimizing the loss corresponds to
maximizing a lower bound on the mutual information between
hy and z;y; (and in turn oy g—y.¢+k4+) and is hence called
InfoNCE:

exp(’ézkzﬂrk) ) (15)

Lip=—1 —_—
o o <ZieI eXP(":“tT,kZi)

Here, Z is arandom subset of NV indices which includes the target
index t + k and N — 1 negative samples drawn from a proposal
distribution, e.g., auniform distribution over {1, . .., T'}. Includ-
ing the target index in Z ensures that the loss is a proper categori-
cal cross-entropy and that minimizing it has the previously stated
relation to mutual information maximization. This corresponds
to sampling negatives from the same sequence and has been
shown to give good performance for phoneme classification [56].
The loss is indexed by & to show that CPC targets multiple offsets
using different projection layers gy (-). The authors find K = 12
to work well for phoneme classification.

The wav2vec model [121] extends the CPC approach and uses
fully convolutional parameterizations for the modules f;(-) and
f2(+) with receptive fields of 30 ms and 210 ms, respectively.
While the CPC loss solves a 1-of-N classification task per (¢, k),
either assigning the anchor to the positive class or (wrongly) to
one of the N — 1 negative classes, the wav2vec loss considers
a sequence of N independent binary classifications. That is,
the anchor is compared independently to the positive and each
negative, and the loss is computed as a sum of the associated
log-probabilities,

Ly = —log (0 (":'tT,th-x-k)) + Zlog(l — U(étTkzl)) (16)
i€

Here, o(z) =1/(1+exp(—x)) is the sigmoid function,
a(2£ wZt+k) 1s the probability of the anchor being the positive
sample and o (], z;) is the probability of the anchor being
the negative sample. Evidently and contrary to CPC, 7 must
not include the target index ¢ + & as this would cancel out the
positive term.

b) wav2vec 2.0: The wav2vec 2.0 model combines con-
trastive learning with masking. As the CPC model, it uses the
InfoNCE loss [56] to maximize the similarity between a contex-
tualized representation and a localized representation. However,
instead of using the z; directly as positive and negatives, it uses
a quantization module g(-) to obtain a discrete representation.
This has the practical implication that one can avoid sampling
negatives from the same category as the positive. The model
takes as input a waveform and uses a convolutional module f1 (-)
followed by a Transformer encoder f2(-). Masking is applied to
the output of the convolutional module:

it = fl(X[tfu,thu])a (17)
H = fa(m(Z)), (18)
qt = g(2t)- (19)
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The quantization module g(-) uses a Gumbel softmax [84] with
a straight-through estimator. Since the quality of the learned
representations is contingent on the quality of the quantization,
wav2vec 2.0 combines two techniques to learn high-quality
codebooks. First, wav2vec 2.0 concatenates quantized repre-
sentations from multiple codebooks at each timestep, so-called
Product Quantization (PQ) [136]. Also, the primary training loss
described below is augmented with an auxiliary term designed
to encourage equal use of all codebook entries.

In wav2vec 2.0, anchors are taken to be /; at masked timesteps
only, the positive sample is chosen as the quantized vector, g, at
the same timestep, and negatives are sampled from other masked
timesteps. The loss is

exp(Se(he, qt)) ) (20)

Ly =—1
TR (ziez exp(Se (e 47))

where S¢(-) is the cosine similarity and Z contains the target in-
dex t and negative indices sampled from other masked timesteps.

The wav2vec 2.0 approach was the first to reach single-digit
word error rate (WER) on LibriSpeech using only the low-
resource Libri-light subsets for fine-tuning a pre-trained model
(see Section IV-B). It has subsequently inspired many follow-up
studies. The wav2vec-C [126] approach extends wav2vec 2.0
with a consistency term in the loss that aims to reconstruct
the input features from the learned quantized representations,
similar to VQ-VAE [137].

3) Challenges: Although representations learned using con-
trastive approaches have proved effective across a wide range
of downstream applications, they face many challenges when
applied to speech data. One challenging aspect is that the strategy
used to define positive and negative samples can also indirectly
impose invariances on the learned representations. For example,
sampling negatives exclusively from the same utterance as the
positive biases the features towards speaker invariance, which
may or may not be desired for downstream applications. Another
standing challenge is that since speech input does not have
explicit segmentation of acoustic units, the negative and positive
samples do not represent a whole unit of language but rather
partial or multiple units, depending on the span covered by each
sample. Finally, since speech input is smooth and lacks natural
segmentation, it can be difficult to define a contrastive sampling
strategy that is guaranteed to provide samples that always relate
to the anchor as truly positives and negatives in a sound way.

D. Predictive Approaches

1) Motivation: Similar to the contrastive approaches dis-
cussed above, predictive approaches are defined by using a
learned target for the pretext task. However, unlike the con-
trastive approaches, they do not employ a contrastive loss and
instead use a loss function such as squared error and cross-
entropy. Whereas a contrastive loss discourages the model from
learning a trivial solution by the use of negative samples, this
must be circumvented differently for predictive methods. For
this reason, predictive methods compute the targets outside
the model’s computational graph; usually with a completely
separate model. Thus, the predictive setup is somewhat akin
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to teacher-student training. The first predictive approaches were
motivated by the success of BERT-like methods in NLP [54] as
well as the DeepCluster method in CV [138].

2) Approaches:

a) Discrete BERT: Applying BERT-type training directly
to speech input is not possible due to its continuous nature. The
Discrete BERT approach [129] uses a pre-trained vg-wav2vec
model to derive a discrete vocabulary [124]. The vq-wav2vec
model is similar to wav2vec mentioned in Paragraph III-C2a but
uses quantization to learn discrete representations. Specifically,
discrete units ¢, are first extracted with the vq-wav2vec model
f1(+) and then used as inputs and targets in a standard BERT
model f5(-) with a softmax normalized output layer g(-),

ce = fi (X[tfu,tJru])v (21)
H = f2(m(C)), (22)
& =g(h). (23)

Similar to BERT, the model can then be trained with a categorical
cross-entropy loss,

L=> —logp(c | X),
teM

(24)

where M is the set of all masked timesteps. During training,
only the BERT model’s parameters are updated, while the vq-
wav2vec model parameters are frozen. Discrete BERT was the
first model to demonstrate the effectiveness of self-supervised
speech representation learning by achieving a WER of 25% on
the standard test-other subset using a 10-minute fine-tuning set,
setting the direction for many approaches to follow.

b) HuBERT: Rather than relying on an advanced represen-
tation learning model for discretizing continuous inputs, as Dis-
crete BERT, the Hidden Unit BERT (HuBERT) approach [130]
uses quantized MFCC features as targets learned with classic
k-means. Thus, to compute the targets, the k-means model ¢; (-)
assigns a cluster center to each timestep. Different from Discrete
BERT, HuBERT takes the raw waveform as input, rather than
discrete units. This helps to prevent loss of any relevant infor-
mation due to input quantization. HuBERT uses an architecture
similar to that of wav2vec 2.0, with a convolutional module
f1(+) and a Transformer encoder fa(-), as well as a softmax
normalized output layer go(-):

et = g1 (X[t—w,t+uw]); (25)
= f1(Xj—u,t4u))s (26)

= f2(m(2)), (27

¢ = ga(he), (28)

where w defines the window size used to compute the MFCCs.
The categorical cross-entropy loss is computed on both masked,
L., and unmasked, £,,, timesteps:

Loy =Y —logp(e: | X), (29)
teM
L=BLy+ (1—B)Ly. (30)
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Again, M is the set of all masked timesteps, [ is a scalar
hyperparameter and L, is computed as L,,, but summing over
t ¢ M.

Intuitively, the HuBERT model is forced to learn both an
acoustic and a language model. First, the model needs to learn
a meaningful continuous latent representation for unmasked
timesteps which are mapped to discrete units, similar to a
classical frame-based acoustic modeling problem. Second, sim-
ilar to other masked pre-training approaches, the model needs
to capture long-range temporal dependencies to make correct
predictions for masked timesteps.

One crucial insight motivating this work is the importance
of consistency of the targets which enables the model to focus
on modeling the sequential structure of the input. Importantly
though, for HuBERT, pre-training is a two-step procedure. The
first iteration is described above. Once completed, a second
iteration of pre-training follows. Here, representations from a
hidden layer of the model from the first iteration are clustered
with k-means to obtain new targets c;.

For HuBERT, only two iterations are needed to match or
outperform the previous state-of-the-art results for low-resource
speech recognition. And combining the HuBERT approach with
the wav2vec 2.0 approach, the w2v-BERT model has managed
to improve results even further [127].

c¢) WavLM: WavLM emphasizes spoken content modeling
and speaker identity preservation [131]. It is largely identical to
HuBERT, but introduces two useful extensions.

First, it extends the Transformer self-attention mechanism
with a so-called gated relative position bias. The bias is added
prior to the softmax normalization of the attention weights.
For the attention weight at 7, 7, the bias is computed based on
the input to the Transformer layer at the current time step %
and also incorporates a relative positional embedding for i — j.
The authors find that this extension improves performance on
phoneme and speech recognition tasks.

Second, it uses an utterance mixing strategy where signals
from different speakers are combined to augment the training
data. Specifically, random subsequences from other examples in
the same batch are scaled and added to each input example. Only
the targets corresponding to the original example are predicted
during pre-training. Thus, the model learns to filter out the added
overlapping speech.

Most SSL methods are trained on data where each example
only contains speech from a single person; therefore, they can
perform subpar on multispeaker tasks like speaker separation
and diarization.

The WavLM model achieved substantial improvements on
the speech separation, speaker verification and speaker di-
arization tasks in the SUPERB benchmark, while also per-
forming well on many other tasks compared to HuBERT and
wav2vec 2.0.

d) data2vec: Motivated by the success of using an ex-
ponential moving average (EMA) teacher for self-supervised
visual representations [139], [140], the data2vec model [132]
computes targets Y using an EMA of its own parameters. The
targets are constructed by averaging hidden representations of
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the top k layers of the EMA teacher network applied to unmasked
inputs. Here, we denote this jointly as fo(-).

The data2vec model was proposed for different data modali-
ties, but for audio it uses an architecture similar to wav2vec 2.0
and HuBERT with a convolutional module f; (-), a Transformer
f2(+) and masking applied to the Transformer input.

2t = fl (X[tfu,tﬁLu])a (31)
H = fa(m(Z2)), (32)
Y = f2(2). (33)

The teacher network fo(-) is a copy of the Transformer of
the student network but with the parameters at training step ¢,
Oreacher,i» given by an EMA of the student parameters over all
previous training steps.

0 . esludenno 1=0
teacher,i —

o BB
79student,i + (1 - ’Y)Gleacher,i—l 1>0

where Ogugent,i are the parameters of the student network at
training step ¢, updated via gradient descent, and -y is the EMA
decay rate.

The data2vec model uses a regression loss between target
and prediction. Specifically, to reduce sensitivity to outliers and
prevent exploding gradients, it uses the smoothed L4 loss [141],

%(yt —he)? /0, ye —hel <

Ly = 35
' {|yt — hy| — %n, otherwise (35)

where the hyperparameter 7 controls the transition from a
squared loss to an L1 loss.

The data2vec approach was shown to work well for repre-
sentation learning with either speech, images or text data. It is
the first approach to achieve competitive results when trained on
any one of the three modalities.

3) Challenges: The iterative nature of pre-training for the
HuBERT and wavLM could present a practical inconvenience
when working with large volumes of data. Another challenge
for these models centers around the quality of the initial vocab-
ulary generated from MFCC features. The data2vec approach
improves over other predictive models by allowing the targets to
improve continuously via the EMA teacher network; however,
student-teacher approaches inflate the existing computational
challenges of very large models and may necessitate the use of
methods that decrease instantaneous memory utilization such as
mixed precision training, model parallelism and model shard-
ing [142].

E. Learning From Multi-Modal Data

1) Motivation: Multiple modalities are useful in many set-
tings, where each modality provides information that is comple-
mentary to other modalities. Multi-modal work includes super-
vised settings, such as audio-visual ASR [143], [144] and person
identification [145] which have been studied for decades. In this
section, we focus only on unsupervised representation learning
from multi-modal data.
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One of the motivations for learning from multiple modalities
is that it can reduce the effect of noise, since noise in different
modalities is likely to be largely independent or uncorrelated. In
addition, learning from speech data with accompanying signals
such as images or video can help learn representations that en-
code more semantic information. Such “grounding” signals can
contain supplementary information that can be used by models
to infer the content of the speech. Human language learning
provides a proof of concept for this, as it is believed that infants
benefit from the visual modality when learning language [146].
Early computational models of multi-modal language learning
were motivated by (and tried to emulate) human learning of
language in the context of the visual surroundings [147].

2) Approaches: We define two broad classes of approaches
in this area. Specifically, depending on what type of multi-modal
data is involved we refer to “intrinsic” or “extrinsic” modalities.

Intrinsic modalities are modalities produced directly by
the speech source. Examples of intrinsic modalities (besides
the speech audio) include images or video of the speaker’s
face [148], [149], lip-movement [150], articulatory flesh point
measurements [151], [152], or simultaneous magnetic resonance
imaging (MRI) scans [153]. Typically, learning from multiple
intrinsic modalities is done so as to improve robustness to
noise, since acoustic noise is likely to be uncorrelated with
the other modality(ies). This type of representation learning is
often referred to as “multi-view learning” because the multiple
intrinsic modalities can be seen as multiple views of the same
content. Some typical approaches in this category include

e Multi-view autoencoders and variations [154], [155],

® Multi-modal deep Boltzmann machines [156],

e (Canonical correlation analysis (CCA) [157] and its non-
linear extensions [158], [159], [160], [161], [162], [163],
[164], [165], [166],

e Multi-view contrastive losses [167], [168],

e More recently, audio-visual extensions of masked pre-
diction methods [150], [169], specifically Audio-Visual
HuBERT (AV-HuBERT) [150].

Extrinsic modalities are modalities that are not produced
by the same source but still provide context for each other.
A typical example is an image and its spoken caption: The
image tells us what the speech is likely describing, so a rep-
resentation model that takes both modalities into account will
hopefully encode more of the meaning of the speech than a
single-modality model. There has recently been a surge of
datasets collected for this purpose, usually consisting of images
and spoken captions, the audio and image frames in a video,
or video clips with their spoken descriptions. A recent review
of datasets, as well as methods, in this category is provided by
Chrupata [170].

Typical approaches involve learning a neural representation
model for each modality, with a multi-modal contrastive loss
that encourages paired examples in the two modalities to have
similar representations while unpaired examples remain dif-
ferent [171], [172], [173], [174], [175], [176]. Other choices
include training with a masked margin softmax loss [177], [178]
or a masked prediction loss [179]. Such models are typically

1189

evaluated on cross-modal retrieval, although some work has
also used the models for other downstream tasks such as the
ZeroSpeech and SUPERB benchmark tasks [180]. Analyses of
such models have found that, despite the very high-level learning
objective of matching speech with a corresponding image (or
other contextual modality), such models often learn multiple
levels of linguistic representations from the shallowest to the
deepest model layers [181], [182], [183]. They are also able
to learn word-like units [184], [185], [186] and can be used
for cross-lingual retrieval, by considering the visual signal as
an “interlingua” [187], [188], [189]. In some settings, even in
the presence of some amount of textual supervision (i.e., the
speech is transcribed), visual grounding still helps learn a better
representation for retrieval [190].

There has also been growing interest in learning joint
speech and text representations using paired and unpaired data.
The SLAM approach [191] is an example where speech and
text are first represented using two separate pre-trained en-
coders followed by a multi-modal encoder to build the joint
representations. The entire model is trained using a multi-
task loss including two supervised and two self-supervised
tasks.

3) Challenges: One of the challenges of using multi-modal
approaches is that the multi-modal data they rely on is of-
ten in shorter supply than single-modality data. In addition,
multi-modal data is typically drawn from specific domains, for
example domains involving descriptions of visual scenes. It is
not clear how well the learned speech representations apply
to other speech domains that are not necessarily describing or
situated in a visual scene, and this question requires further
study.

F. Acoustic Word Embeddings

Most of the representation learning techniques discussed in
the preceding sections are aimed at learning frame-level rep-
resentations. For some purposes, however, it may be useful to
explicitly represent longer spans of speech audio of arbitrary
duration, such as phone, word, or phrase-level segments. For
example, searching within a corpus of recorded speech for
segments that match a given (written or spoken) query can be
seen as finding segments whose representations are most similar
to that of the query [118], [192], [193], [194]; word embeddings
can be defined by pooling representations of instances of a
given word [114]; unsupervised segmentation and spoken term
discovery can be seen as a problem of detecting and clustering
segments [195], [196]; and even ASR can be viewed as the prob-
lem of matching written word representations to representations
of audio spans [91], [197], [198].

Several lines of work have begun to address the problem of
learning representations of spans of speech, especially word
segments, typically referred to as acoustic word embeddings.
Early work on unsupervised acoustic word embeddings defined
them as vectors of distances from the target segment to a
number of pre-defined “template” segments [199]. Later work
used variants of neural autoencoders [118], [200], [201], [202].
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TABLE II
SUMMARY OF DATASETS USED IN PRE-TRAINING (DENOTED AS PT) OR EVALUATING (DENOTED AS EV) SSL TECHNIQUES IN THE LITERATURE. THE LANGUAGES
AND SIZES OF THE DATASETS ARE PROVIDED IN COLUMNS 3 AND 4. COLUMN 5 LISTS THE TASKS EACH DATASET IS USED TO EVALUATE

Dataset Purpose Lang. Size [hours] Task License

LibriLight (LL) PT EN 60k - MIT License

AudioSet PT Multi 2.5k - CC BY 4.0

AVSpeech PT Multi 3.1k - CC BY 4.0

Fisher PT EN 2k/1k [104] - Linguistic Data Consortium (LDC)

Alexa-10k PT EN 10k - Not released

Didi Callcenter PT ZH 10k - Not released

Didi Dictation PT ZH 10k - Not released

LibriSpeech (LS) PT/EV EN 960 ASR/PR/PC/SID ~ CC BY 4.0

Wall Street Journal (WSJ) PT/EV EN 81 ASR/PR/PC/SID Linguistic Data Consortium (LDC)

Common Voice (CV-dataset) PT/EV Multi 11k/7k [218]/430 [123] ASR/PR/PC CCco

Multilingual LS (MLS) PT/EV Multi 50k ASR CC BY 4.0

VoxPopuli (VP) PT/EV Multi 400k [218]/24k [131], [219]  ASR CCo

BABEL (BBL) PT/EV Multi 1k ASR IARPA Babel Agreement

GigaSpeech PT/EV EN 40k/10k [131], [219] ASR Apache-2.0 License

TED-LIUM 3 (TED3) PT/EV EN 450 ASR CC BY-NC-ND 3.0

TED-LIUM 2 (TED2) PT/EV EN 118 ASR CC BY-NC-ND 3.0

Switchboard (SWB) PT/EV EN 260 ASR Linguistic Data Consortium (LDC)

TIMIT PT/EV EN 4 ASR/PR/PC Linguistic Data Consortium (LDC)

VoxLingual07 PT/EV Multi 6.6k LID CC BY 4.0

Open Mandarin PT/EV  ZH 1.5k ASR Eﬁgﬁlﬁ%’;‘; éfﬁsggf;f(tggse v20,

HKUST PT/EV ZH 168/200 ASR Linguistic Data Consortium (LDC)

AISHELL-1 PT/EV ZH 178 ASR Apache License v.2.0

Hub5’00 EV EN 13 ASR Linguistic Data Consortium (LDC)

DIRHA EV EN 11 ASR See link for details®

CHIiME-5 EV EN 50 ASR See link for details’

Alexa-eval EV EN 1k ASR Not released

INTERFACE EV Multi 16 Sentiment No information

MOSEI EV EN 65 Sentiment See link for details™

VCTK EV EN 44 SID/ASV CC BY 4.0

VoxCelebl EV Multi 352 SID/ASV CC BY 4.0

Fluent Speech Commands (FSC) ~ EV EN 14.7 IC CC BY-NC-ND 4.0

QUESST 2014 (QUESST) EV Multi 23 QbE No information

LS En-Fr EV En-Fr 236 ST CC BY 4.0

CoVoST-2 EV Multi 2.9k ST CCo

ALFFA EV Multi 5.2-18.3 ASR-multi MIT License

OpenSLR-multi EV Multi  4.4-265.9 ASR-multi gg gzz;‘é_i%[fdiiiﬁﬁﬁ;ﬁﬁ%g‘{ 49,
CC BY 4.0 (MUSAN, Speech Commands, NSynth, Bird Audio

AED datasets EV - - AED Detection), CCO (Spoken Language Identification),

Non-Commercial (TUT)

Abbreviations: EN: English; MULTI: Multilingual; ZH: Chinese; FR: French; ASR: Automatic speech recognition; PR: Phoneme Recognition; PC: Phoneme classification;

SID: Speaker identification; ASV: Automatic speaker verification; SENTIMENT: Sentiment analysis; ST: Speech translation; QBE: Query by example or spoken term detection;
IC: Intent classification; AED: Audio event detection; and LID: Language identification. We distinguish PR from PC based on whether the inference is made at the phone level
sequentially or the frame level separately. SID and ASV both evaluate model capability in encoding speaker information; SID classifies one utterance into a pre-defined set of speaker
labels, whereas ASV infers whether a given pair of utterances was uttered by the same speaker.

8[Online]. Available: https://dirha.fbk.eu/node/107
Q[Online]. Available: https://chimechallenge.github.io/chime6/download. html

1%[Online]. Available: https://github.com/A2Zadeh/CMU-MultimodalSDK/blob/master/LICENSE. txt

These are often evaluated on word discrimination, that is the
task of determining whether two word segments correspond to
the same word or not [203]. This task can be thought of as a
proxy for query-by-example search, since the basic operation in
search is to determine whether a segment in the search database
matches a query segment, and has been used for evaluation
of both frame-level (e.g., [89]) and word-level [199], [204]
representations.

Since most work on acoustic word embeddings preceded
the very recent wave of new self-supervised frame-level rep-
resentations, one question is whether word (or more generally
segment) embeddings could be derived more simply by pooling
self-supervised frame-level representations, as has been done for
text span embeddings by pooling over word embeddings [205],
[206]. Some initial results suggest that at least very simple pool-
ing approaches like downsampling and mean or max pooling are

not successful [202], [207], but more work is needed to reach
conclusive results.

IV. BENCHMARKS FOR SELF-SUPERVISED LEARNING

The previous sections presented various methodologies by
which to learn speech representations from unlabeled cor-
pora. This section surveys the datasets available to learn and
evaluate these representations. We also summarize several stud-
ies and their results to demonstrate the usefulness of the learned
representations for various downstream tasks.

A. Datasets Only for Pre-Training

Table II summarizes datasets used for pre-training SSL tech-
niques in the literature. These datasets are usually large but with
limited or no labels. Libri-light (LL) [208], one of these datasets,
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is derived from audiobooks that are part of the LibriVox! project.
LL contains 60 k hours of spoken English audio tagged with
SNR, speaker ID, and genre descriptions. The speech exam-
ples in Audioset [209], which consists of over 2 M 10-second
YouTube video clips human-annotated with 632 audio events,
have also been used for pre-training. Audioset has 2.5 k hours
of audio of varying quality, different languages, and sometimes
multiple sound sources. AVSpeech [210] is another large-scale
audio-visual dataset used in SSL research, comprising 4.7 k
hours of clips from a wide variety of languages. Each clip con-
tains a visible face and audible sound originating from a single
speaker without interfering background signals. The 3100-hour
audio part of AVSpeech has been used to learn audio-only
representations [123]. The Fisher corpus [211] collects over
2 k hours of conversational telephone speech, 1 k hours of
which is utilized for pre-training [104]. Industrial researchers
have also begun to build large-scale datasets for learning speech
representations. For instance, 10 k hours of real-world far-field
English voice commands for self-supervised pre-training have
been collected at Amazon [126].

In addition to these English and multilingual efforts,
researchers have also collected corpora for pre-training
Chinese speech representations. Didi Dictation and Didi Call-
center [101], [104] are two internal datasets containing respec-
tively 10 k hours of read speech collected from mobile dictation
application and 10 k hours of spontaneous phone calls between
users and customer service staff.

B. Datasets for Both Pre-Training and Evaluation

Several datasets that provide both speech and associated tran-
scripts and speaker labels have also been used to develop SSL
techniques by enabling in-domain pre-training and evaluation.
Such datasets are also listed in Table II. One of the most com-
monly used datasets in this category is LibriSpeech (LS) [212],
a labeled corpus containing 960 hours of read English speech,
which is also derived from an open-source audiobooks project®.
The corpus consists of subsets train-clean-100, train-clean-360,
train-other-500, dev-clean, dev-other, test-clean, and test-other
used for training, development, and testing, respectively. Subsets
tagged with other are more challenging utterances from speak-
ers that yield higher WER as measured with previously built
models. LS is used for unsupervised representation pre-training
by ignoring its labels, and can also be utilized to evaluate the
performance of representation on ASR, phoneme recognition
(PR), phoneme classification (PC), and speaker identification
(SID) tasks. Wall Street Journal (WSJ) [213] is another widely
adopted, labeled corpus for pre-training. Its labels can evaluate
performance for ASR, PR, PC, and SID. The original WSJ
corpus contains 400 hours of English read speech data, and
today its si284 (81 hours), dev93, eval92 subsets are the most-
used partitions for unsupervised training, development, and test,
respectively. The si84 (15 hours) partition is also used for
training.

![Online]. Available: https:/librivox.org/
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The speech community also utilizes multilingual corpora.
These are often large-scale, which facilitates pre-training, but
are also partially labeled for ASR evaluation (PC and PR can
be enabled via phone-level forced alignment). These corpora
include Common Voice (CV) [214], Multilingual LibriSpeech
(MLS) [215], VoxPopuli (VP) [216], and BABEL (BBL) [217].
CV is an open-source, multi-language, growing dataset of voices
containing 11 k hours of audio from 76 languages as of the
date this review was written (Common Voice corpus 7.0).
Researchers usually use part of this for pre-training (e.g.,
7k hours/60 languages in [218] and 430 hours/29 languages
in [123]) or evaluation. MLS derives content from read audio-
books of LibriVox and contains data in eight European languages
for a total of 50 k hours of audio. VP comprises a total of 400k
hours of parliamentary speech from the European parliament in
23 European languages. The entire dataset [218] or a 24k-hour
portion [131], [219] thereof has been used for pre-training. BBL
consists of 1 k hours of conversational telephone speech in 17
African and Asian languages.

Several datasets, including GigaSpeech [220], TED-LIUM 3
(TED3) [221], TED-LIUM 2 (TED2) [222], Switchboard
(SWB) [223], TIMIT [96], and VoxLingualQ7 [224], are labeled
and conventionally used for evaluation, while their audio streams
are also aggregated to build diversified and large-scale corpora
for unsupervised pre-training [109], [123], [218]. GigaSpeech
is a multi-domain English ASR corpus with 33 k hours of audio
collected from audiobooks, podcasts, and YouTube. A subset
of 10 k audio is transcribed. TED2 comes with 118 hours of
English speech extracted from TED conference talks and its
transcription for evaluating ASR. Its recordings are clear but
with some reverberation. TED3 is an extension of TED2 and
comprises 450 hours of talks. SWB is a 260-hour conversational
speech recognition dataset containing two-sided telephone con-
versations. The TIMIT corpus was designed to provide read
speech data and its word and phone-level transcriptions for
acoustic-phonetic studies. It contains recordings in American
English. Compared to the previous corpora labeled for ASR
evaluation, VoxLingualO7 consists of 6.6 k hours of audio
in 107 languages and is annotated for language identification.
Beyond the original purpose of evaluation, these corpora are also
used in pre-training to improve the generalizability of learned
representations.

For the purpose of pre-training and evaluating Mandarin
speech representations, the authors of [101], [104] also compiled
Open Mandarin, an open-source Mandarin dataset of 1.5 k hours
of speech from the Linguistic Data Consortium (LDC) and
OpenSLR.? Open Mandarin consists of the HKUST Mandarin
Telephone Speech Corpus (HKUST, 200 hours of spontaneous
speech, of which 168 hours of audio is used for pre-training;
the development and test sets are excluded.) [225], AISHELL-
1 [226] (178 hours of read speech), aidatatang 200zh (200
hours, read speech) [227], MAGICDATA Mandarin Chinese
Read Speech Corpus (755 hours, read speech) [228], Free
ST Chinese Mandarin Corpus (ST-CMDS, 100 hours, read

2[Online]. Available: https://openslr.org
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speech) [229], and Primewords Chinese Corpus Set 1 (100 hours,
read speech) [230]. Both HKUST and AISHELL-1 are labeled
and are suitable for ASR evaluation.

C. Datasets for Evaluation

Besides the aforementioned datasets, conventional speech
processing benchmarks are also used to evaluate self-supervised
representations. Studies leverage Hub5, DIRHA, and CHiME-5
to measure the efficacy of representations in ASR. The Hub5
evaluation (LDC2002T43 and LDC2002S09, also referred to as
the NIST 2000 Hub5 English evaluation set) contains 40 tran-
scribed English telephone conversations only for testing, where
20 are from conversations collected in SWB studies but not
released with the SWB dataset, and the rest are from CallHome
American English Speech (LDC97S542). DIRHA [231], short for
Distant-speech Interaction for Robust Home Applications, is a
database composed of utterances sampled from WSJ, speech
of keywords and commands, and phonetically-rich sentences.
These utterances are read by U.K. and US English speakers and
recorded with microphone arrays. CHiME-5 [232] is a challenge
that aims to advance robust ASR and presents a dataset of natural
conversational speech collected under a dinner party scenario
with microphone arrays. A team at Amazon Alexa also recorded
and transcribed a corpus of 1k hours of audio for model training
and evaluation [126].

Researchers also evaluate representations for sentiment anal-
ysis with the INTERFACE [233] and MOSEI (CMU Multi-
modal Opinion Sentiment and Emotion Intensity) [234] datasets.
INTERFACE is an emotional speech database for Slovenian,
English, Spanish, and French, and contains six emotions: anger,
sadness, joy, fear, disgust, and surprise, plus neutral. MOSEI is
comprised of sentence-level sentiment annotations of 65 hours
of YouTube videos using emotion categories similar to INTER-
FACE, but replacing joy with happiness.

In addition, datasets employed to demonstrate the benefit of
SSL representations on various tasks include VCTK [235] and
VoxCelebl [236] for SID/ASV (automatic speaker verification)
tasks, FSC (Fluent Speech Commands) [237] for IC (intent
classification), QUESST (QUESST 2014) [238] for QbE (query
by example), LS En-Fr [239] and CoVoST-2 [240] for ST
(speech translation), and ALFFA and OpenSLR-multi for
multilingual ASR. The VCTK corpus includes speech data
with 109 English speakers of various accents, each reading
out about 400 sentences sampled from newspapers. VoxCelebl
is an audio-visual dataset comprised of short YouTube clips
containing human speech. It consists of 1251 unique speakers
and 352 hours of audio. FSC contains utterances of spoken
English commands that one might use for a smart home or virtual
assistant, and is used to evaluate the performance of a spoken
language understanding system. The QUESST search dataset
comprises spoken documents and queries in 6 languages to mea-
sure the capability of models in spotting spoken keywords from
documents. LS En-Fr is a dataset augmenting existing LS
monolingual utterances with corresponding French translations
to train and evaluate English-French machine translators.
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CoVoST-2 is a multilingual speech translation benchmark
based on CV. It provides data for translating from English
into 15 languages and from 21 languages into English,
and has a total of 2.9 k hours of speech. The ALFFA
project® collects speech of African languages to promote
the development of speech technologies in Africa, and [123]
leverages four African languages collected in the project for
evaluation: Amharic [241], Fongbe [242], Swahili [243], and
Wolof [244]. In the same work [123], the authors further
select 21 phonetically diverse languages from OpenSLR to
evaluate the generalizability of SSL representations across
languages. We denote the collection as OpenSLR-multi
below.

Last, [116] puts together five datasets (MUSAN [245], Bird
Audio Detection [246], Speech Commands [247], Spoken Lan-
guage Identification [248], and TUT Urban Acoustic Scenes
2018 [249]) plus an SID task built with the LS train-clean-100
subset to evaluate the capability of representations on audio
event detection. [117] employs the NSynth dataset [250] on top
of the six for benchmarking. As many of the datasets are built
for research in audio processing, we here provide only a list of
these datasets for reference.

D. Experiment Settings for Evaluating SSL Techniques

A common way to benchmark SSL techniques and show
their efficacy is to fine-tune a pre-trained SSL model for a
supervised downstream task. Depending on the corpora used
in pre-training and fine-tuning, techniques can be benchmarked
in terms of their capability to transfer knowledge across datasets
(i.e., using pre-training corpora that differ from the fine-tuning
ones), their benefit when training with limited labeled examples
(i.e., sampling a subset of labeled examples for fine-tuning), or
their improvement over a fully supervised baseline (i.e., using
the entire training split of downstream datasets for fine-tuning).
Tables IIT and IV summarize experiment settings used in the SSL
literature, including the pre-training corpora, downstream tasks
and datasets, and the amount of fine-tuning labels used, which in-
dicates the targeted benchmarking scenario as discussed above.
Note that there are a variety of ways to fine-tune pre-trained
networks (e.g., fine-tune the entire network, freeze certain layers
during fine-tuning, and add various architectures of prediction
layers to pre-trained networks). We here omit descriptions of
these choices; readers can consult the original publications for
details.

As observed in Tables III and IV, LS and WSIJ are the most
commonly used pre-training corpora. At the same time, we
observe a growing industry investment in pre-training with larger
datasets, e.g., CPC-8 k (8 k hours) for Bidir-CPC [123], LL (60 k
hours) for CPC modified [122], wav2vec 2.0 [125], and Hu-
BERT [130], Alexa internal datasets (10 k hours) for wav2vec-
¢ [126], Didi internal datasets (10 k hours) for MPC [101],
[104], the combination of Gigaspeech, VP-24 k, and LL (94 k
hours in total) for UniSpeech-SAT [219] and WavLM [131],

3[Online]. Available: http:/alffa.imag.fr
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TABLE III
A SUMMARY OF COMMON EXPERIMENT SETTINGS FOR VARIOUS SSL EVALUATIONS (PART 1). NETWORKS ARE USUALLY PRE-TRAINED WITH SSL TECHNIQUES,

AUGMENTED WITH PREDICTION HEADS, AND FINE-TUNED (OR TRAINED) WITH LABELED DATA IN DOWNSTREAM TASKS FOR BENCHMARKING

Pre-training

Dataset

Work 3 Task Transfer Fine-tuning labels used
corpus Training (fine-tuning) Test
PC LS 100 hrs'™ LS 100 hrs'* - 80" hrs
CPC [56] LS 100 hrs - = 5
SID LS 100 hrs' LS 100 hrs - 80" hrs
SID VCTK" VCTK" v 44 hrs
Sentiment ~ INTERFACE'® INTERFACE'® v 3 hrs
PASE [69] LS 50 hrs [251] PR TIMIT' TIMIT® v 4 hrs
ASR DIRHA'"® DIRHA " v 11 hrs
Audio2Vec [116] AudioSet AED 6 AED datasets'” 6 AED datasets'’ v See [116] for details
ASR WSJ si284°! WSJ dev93 v 72 hrs
APC [92], [93] LS 360 hrs ST LS En-Fr'® LS En-Fr'® - 236 hrs
SID WSJ si284% WSJ si284% v 65" hrs
LS 80/960 hrs, ASR WSJ si284 WSJ eval92 v 81 hrs
wav2vec [121] LS 960 hrs
+ WSJ si284 PR TIMIT'? TIMIT" v 4 hr
PhasePredict [117] AudioSet AED 7 AED datasets'” 7 AED datasets'’ v See [117] for details
ASR LS 960 hrs, LS tontothor Atasets 100 ¢1/960/450 hrs
Bidir-CPC [123] LS 960 hrs, TED3'5 %15_0 er, s training
1dil CPC-8k'8 TED3"”, SWB and test
ASR-multi ~ ALFFA'"® ALFFA"S v 4 languages, 5.2-18.3 hrs
ASR-multi  OpenSLR-multi'® OpenSLR-multi' v 21 languages, 4.4-265.9 hrs
PC LS 360 hrs LS test-clean - 0.36'/1.8'%/3.6'9/18'°/45'° /360 hrs
MockingJay [100] LS 360 hrs SID LS 100 hrs? LS 100 hrs? - 90" hrs
Sentiment  MOSEI'"® MOSEI"’ v 65 hrs
. LS 100 hrs PC LS 100 hrs'* LS 100 hrs'* - 80" hrs
CPC modified [122] TS T00 s,
LS 960 hrs, PC CV-dataset"’ CV-dataset” v 1 hrs
LL 60k hrs
ASR WSJ si284 WSJ eval92 v 81 hrs
vg-wav2vec [124] LS 960 hrs s o o
PR TIMIT" TIMIT" v 4 hrs
DeCoAR [99] Lgéloog/%mﬁo/ ASR WSJ si284 WSJ eval92 - 25'/40'°/81 hrs
eCo. T'S.
N LS 100/360/ LS test-clean, .
WSJ si284 ASR 460/960 hrs LS testother - 100/360/460/960 hrs
ASR WSJ si284°! WSJ dev93 v 72 hrs
MT-APC [97] LS 360 hrs .
ST LS En-Fr'® LS En-Fr! - 236 hrs
PR TIMIT" TIMIT" v 4 hrs
PASE+ [113] LS 50 hrs [251] ASR DIRHA" DIRHA'® v 11 hrs
ASR CHIiME-5" CHIiME-5" v 50 hrs
PC LS 100 hrs® LS 100 hrs® - 80" hrs
AALBERT [119] LS 360 hrs . = —
SID LS 360 hrs* LS 360 hrs - 288" hrs

The Pre-training corpus, training (fine-tuning), and test columns list the datasets used in each work, and the task column lists the Tasks performed in the corresponding papers. We follow
the abbreviation introduced in table II. The transfer column indicates whether The ssl technique is evaluated by its capability for transfer learning, i.E., Different datasets are utilized for
pre-training and Fine-tuning. The fine-tuning labels used column summarizes the amount of labeled examples used in downstream fine-tuning.

YTrain/test split made available by [56] on Google drive https://drive.google. com/drive/folders/1 BhJ2umKH3whguxMwifaKtSra0TgAbtfb.

"SUtilizes official training or test split.
"®English utterances used in experiments. The utterances correspond to approximately 3 hours for training, 40 minutes for development, and 30 minutes for testing.
"The 6 AED datasets used in [116] are MUSAN [245], Bird Audio Detection [246], Speech Commands [247], Spoken Language Identification [248], TUT Urban Acoustic
Scenes 2018 [249] plus an SID task built with LS train-clean-100. In addition to the 6 datasets, [117] use the NSynth dataset [250] for evaluation.
1A collection of AudioSet, AVSpeech, CV-dataset, LS,WSJ, TIMIT, Speech Accent Archive (SSA) [253], TED3, and SWB. SSA is a growing annotated corpus of English
speech with various accents. Among the papers studied in this review, SSA is used in [123] only for pre-training, and only 1 h of audio is utilized. Thus, we exclude it
from our discussion in Section I'V.
1A subset of the official training split is sampled, usually to mimic lowresource learning conditions or to quickly evaluate for training and testing on the same split

but disjoint subsets.

Dataset split into training, validation, and test subsets at a ratio of 8:1:1.

2! Dataset split into training and validation subsets at a ratio of 9:1.
2The dataset split into training and test subsets at a ratio of 9:1.

and the combination of VP-400 K, MLS, CV-dataset, VL and
BBL (436 k hours in total) for XLS-R [218]. We expect this
trend to continue with the growth in available computing power.
Most studies focuses on learning representations for English,
whereas Chinese [101], [104] and multilinguality [123], [218]
are also gaining attention. Compared to pre-training, datasets

used for fine-tuning are more diverse and cover downstream
tasks as varied as ASR, PR, PC, SID, AED, Sentiment, ST,
and LID. For benchmarking training scenarios covering full
supervision as well as limited resources, the amount of labeled
examples used for fine-tuning also varies from several minutes
up to 1 k hours. Recent benchmarks such as SUPERB [44] that
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TABLE IV
A SUMMARY OF COMMON EXPERIMENT SETTINGS FOR VARIOUS SSL. EVALUATIONS (PART 2)

_traini Dataset
Work Pre lrcvumng Task atase Transfer Fine-tuning labels used
corpus Training (fine-tuning) Test
i ASR WSJ si284 WSJ eval92 - 81 hrs
BMR [103] Evssé(f(‘)zg4’ St - =
rs PR WSJ si84/si284 WSJ dev93 - 15/81 hrs

PC WSJ 5i284%! WSJ devo3 v 81 hrs
Vg-APC [98] LS 360 hrs = i —

SID WSJ si284 WSJ si284 v 65'° hrs
vq-wav2vec + LS test-clean, 10 mins'g,
DiscreteBERT [129] LS 960 hrs ASR LS 100 hrs LS test-other B 1/10"/100 hrs

LS 960 hrs PR TIMIT" TIMIT'® v 4 hrs
speech-XLNet [109] + WSIJ si284 "
+ TED2 ASR WSJ si284 WSJ eval92 - 7'/14"130'°/81 hrs
g@g@ ggncc_mcr, ASR-zh HKUST" HKUST" v 168 hrs
1d1 Dictation,
MPC [101], [104] Open Mandarin ASR-zh  AISHELL-1" AISHELL-1" v 178 hrs
SWB, Fisher 1k, ASR SWB Hub5°00 - 260 hrs
LS 960 hrs
WSJ si284, ASR WSJ si284 WSJ eval92 - 25'%/40"/81 hrs
MPE [102] LS 960 his
rs ASR LS 100/360/960 hrs LS test-clean - 100/360/960 hrs
LS 50 [251]/360/ . 519/50™/100™ mins,
ConvDMM [252] 960 hus PC/PR WSJ si284 WSJ eval92 v 1197819401 hirs
LS test-clean 10 mins™

ASR LS 960 hrs g - :
wav2vee 2.0 [125] IL‘i 282 :‘; S $ 960 hrs LS test-other 1'°/10'°/100/960 hrs

PR TIMIT" TIMIT"® v 4 hrs

PC WSJ 5i284%! WSJ dev93 v 81 hrs
NPC [107] LS 360 hrs . - .

SID WSJ 5i284%° WSJ 5i284%° v 65" hrs
DeCoAR 2.0 [110] LS 960 hrs ASR LS 100 hrs LS test-clean, : 1'9/10'°/100 hrs

LS test-other

PC LS 100 hrs'* LS 100 hrs'* - 80" hrs

SID LS 100 hrs' LS 100 hrs' - 80" hi
TERA [106] LS 100/360/ s rs rs

960 hrs PR TIMIT" TIMIT"® v 4 hrs
ASR LS 100 hrs LS test-clean - 100 hrs
LS 960 hrs, ] LS test-clean 10 mins",
HUBERT [130] LL 60K hrs ASR LS 960 hrs LS test-other ) 11%/10"/100/960 hrs
wav2vec-c [126] Alexa-10k ASR Alexa-eval Alexa-eval v 1K hrs
LL 60K hrs
UniSpeech-SAT + GigaSpeech-10k Multi SUPERB SUPERB v See SUPERB [44] paper
[219] + VP-24k for details
LL 60K hrs
WavLM [131] + GigaSpeech-10k Multi SUPERB SUPERB v See [44] for details
+ VP-24k
ASR VP, MLS, CV-dataset, BBL, LS VP, MLS, CV-dataset, BBL, LS -
VP-400k + MLS SID VoxCelebl VoxCelebl v )
XLS-R [218] + CV-dataset-7k + VE See [218] for details
+ BBL ST CoVoST-2 CoVoST-2 v
LID VL VL -

See the caption of table iii for a detailed description of all the abbreviations used in this table.

consolidate multiple downstream tasks have gained attention for
evaluating SSL methodologies [131], [219]. The goal of such
benchmarks is to provide a holistic evaluation of the perfor-
mance of learned representations; we discuss these in detail in
Section IV-E. With the increasing popularity of SSL research,
we expect future experiment settings to proliferate and cover
more languages, downstream tasks, and pre-training/fine-tuning
datasets.

E. Benchmark Results and Discussion

Given the diversity of datasets and downstream tasks used
to evaluate SSL techniques in the literature, it is infeasible to
discuss all experiment settings in this survey. Hence, due to
their wide adoption for experiments conducted by studies in
both SSL and the speech community in general, we focus first
on ASR on the LS dataset to understand the efficacy of SSL. We
examine SSL techniques which report ASR results on the LS
test-clean split, and summarize the published WER in Fig. 3.
The ASR models were obtained first by using unlabeled speech
to pre-train a model with each SSL technique. The model was

then fine-tuned on labeled data by utilizing a supervised training
objective. Respectively, 960, 100, 10, 1 h(s), and 10 minutes of
labeled LS training data were used for fine-tuning, as indicated
in different panels of Fig. 3 (see the caption of Fig. 3 for more
details). Semi-supervised methods such as self-training, where
a model is first trained on labeled data to annotate unlabeled
speech, and then subsequently trained on combined golden and
self-annotated label-speech pairs, are gaining popularity in the
speech community and have yielded competitive results. For
comparison, we also show performance from such methods
(iterative pseudo labeling (IPL) [63], slimIPL [254], noisy stu-
dent [62]), as well as the current state of the art—conformer
XXL + noisy student [255]—which augments SSL with various
advanced techniques including self-training. Furthermore, we
illustrate in the figure the performance of a baseline system [44]
based on log mel filterbank (fBANK), which is one of the
most commonly used features designed by domain experts. As
observed in the figure, most SSL techniques outperform fBANK
features, and with the growing investment in model size, better
performance is achieved. The largest ones, such as wav2vec
2.0-L and HuBERT-L/XL, yield competitive results when the
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the horizontal axis. Markers in blue correspond to models initialized with various SSL techniques and then fine-tuned using 960, 100, 10, 1 h(s), and 10 minutes
respectively. The 960-hour training set is the aggregation of train-clean-100, train-clean-360, and train-other-500 splits. The 100-, 10-, 1-hour, and 10-minute
sets leverage train-clean-100 or its sampling, except for Bidir-CPC, which samples 10% of the training examples from the entire 960-hour corpus. For simplicity,
several SSL techniques are appended with suffixes B, L, XL, or XXL indicating the Base, Large, X-Large, or XX-Large variants specified in the original publication.
We also compare with baselines including the log mel filterbank (fBANK) and semi-supervised, self-training approaches (iterative pseudo labeling (IPL) [63],
slimIPL [254], noisy student [62]). These approaches are visualized in black. Also, note that the current state of the art—conformer XXL + noisy student [255]—is a
combination of self-training and SSL techniques. Given the diversity of the listed methods in experiment settings (e.g., pre-training corpora and objectives, whether
a language model is used in decoding, whether model parameters are frozen in fine-tuning), readers should be careful that the superiority of methods cannot be

decided only based on lower WER numbers.

entire 960-hour of labeled data is used in training/fine-tuning.
The benefit of SSL, especially models with more parameters
like wav2vec 2.0 and HuBERT, becomes more evident when the
labeling resources become scarce. Compared to popular semi-
supervised methods such as IPL, slimIPL, and noisy student us-
ing 100 hours of labels, wav2vec 2.0 and HuBERT achieve lower
or competitive WERs with 1 h or even 10 minutes of labeled
examples. The results are highly favorable for low-resource use
cases, for instance when expanding systems to new domains
or languages for which large amounts of unlabeled audio are
available, since collecting labels for new conditions is often
prohibitively slow or costly.

In addition to the ASR task, where the current state of the
art is achieved by a method combining SSL pre-training and
self-training techniques [255], SSL models are competitive in
other tasks, including IC, SID, ASV, and QbE. We summarize
the performance of these models and previous non-SSL meth-
ods in Table V. The results suggest that the benefit of SSL
is generalizable among tasks that require encoding informa-
tion such as content, speaker, and semantics. As SSL research
gains more attention, we expect that SSL pre-trained models
will achieve state-of-the-art results on an increasing number of
tasks.

TABLE V
TASKS WHERE THE STATE OF THE ART IS MODELS WITH SSL PRE-TRAINING

Tasks Dataset non-SSL SSL

ASR (WER ) LS test-clean/other  2.1/4.0 [63]  1.4/2.6 [255]
IC (Acc 1) FSC 98.8 [237] 99.3 [219]
SID (Acc 1) VoxCelebl 94.8 [256] 95.5 [131]
ASV (EER ) VoxCelebl 3.1 [257] 2.4 [258]
QbE (MTWYV 1)  QUESST (EN) 10.6 [259] 11.2 [219]

Despite the obvious trend of increasing performance as more
parameters and SSL pre-training data are being used, numbers in
Fig. 3 and Table V are less comparable than might be expected.
The task performance is obtained from the original papers and
is often achieved with different downstream fine-tuning recipes,
including various language models (used in the ASR sys-
tem), prediction heads (networks added to SSL for downstream
inference), or choices between fine-tuning the whole net-
works or freezing the SSL encoders. For example, in the ASR
task, HUBERT-L and wav2vec 2.0-L leverage Transformer as
their language model, while a 4-gram language model trained
on LS is used in DeCoAR 2.0. The lack of common and
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established mechanisms to evaluate SSL techniques in down-
stream applications makes it difficult to compare techniques
fairly and understand their capabilities. To address this
challenge, there are increasing efforts to establish bench-
marks with shared downstream tasks, datasets, and down-
stream recipes. Such efforts include SUPERB [44], LeBench-
mark [260], ZeroSpeech [261], HEAR [262], NOSS [263], and
HARES [264].

SUPERB [44] is a benchmarking platform that allows the
SSL community to train, evaluate, and compare speech rep-
resentations on diverse downstream speech processing tasks,
from acoustic and speaker identity to paralinguistic and se-
mantics. SUPERB consolidates downstream recipes to focus
on common and straightforward settings (e.g., prediction head
architectures, language models, hyperparameter spaces) to fa-
cilitate generalizable and reproducible benchmarking of SSL
techniques. SUPERB also encourages researchers to innovate
for efficient use of model parameters and computation resources
to democratize SSL beyond race among Big Tech. LeBench-
mark [260] shares a vision similar to SUPERB and provides a
reproducible framework for assessing SSL in French with ASR,
spoken language understanding, speech translation, and emo-
tion recognition. ZeroSpeech [261] (described in more detail
in Section VI-B1) challenges the scientific community to build
speech and language understanding systems using zero expert
resources for millions of users of “low-resource” languages.
SSL techniques are also benchmarked with the ZeroSpeech
challenge [265], [266]. Apart from the speech community,
researchers have also established HEAR (holistic evaluation
of audio representations) [262], NOSS (non-semantic speech
benchmark) [263], and HARES (holistic audio representation
evaluation suite) [264] to benchmark audio representations.
These efforts promote the creation of an audio embedding
that is as holistic as the human ear in interpreting speech,
environmental sound, and music. Given the significant need to
understand and compare SSL techniques fairly and comprehen-
sively, we expect SSL benchmarking to remain an active research
area.

V. ANALYSIS OF SELF-SUPERVISED REPRESENTATIONS

The previous sections have shown how self-supervised
learning can result in powerful representations that provide a
robust starting point for several downstream tasks. It is natural
to ask if we can gain an even deeper understanding of the
nature of these representations, in order to further optimize them
or apply them to different problems. What is the information
encoded in these representations? How robust are they to distri-
butional shifts, and how dependent are they on the size of the
training data? Do they generalize across languages? What are
the key ingredients for training powerful representations: input
data, network architecture, training criterion, or all three? Can
we predict their performance on downstream tasks from their
training behavior? This section tries to answer these questions
by summarizing several studies that analyze self-supervised
representations.
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A. Information Content

In [68] wav2vec 2.0 representations were analyzed with
respect to their acoustic-linguistic information content at dif-
ferent network layers. Three different mechanisms were used
for this purpose. The first of these is canonical correlation
analysis (CCA), which computes similarity scores between two
continuous vectors based on the maximum correlation of their
linear projections. These can be used to judge the similarity of
embeddings at different layers with each other, with standard
acoustic representations such as mel filterbank features, or word
embeddings derived from text. The second method clusters con-
tinuous representation vectors and computes the discrete mutual
information between cluster IDs and phone or word labels. The
third method involves probing tasks: representation vectors ex-
tracted from the network are used to perform simple downstream
tasks, in particular determining whether two acoustic segments
correspond to the same word, and a standard benchmark of 11
word similarity tasks [267]. These are mostly used to gauge
the amount of lexical information present in the embeddings.
Using this battery of tests the authors compared pre-trained
models of varying sizes as well as models fine-tuned for ASR.
They found that pre-trained models show an autoencoder-style
behavior, with early layers showing strong similarity with input
features, intermediate layers diverging more, and final layers
reverting back to higher similarity with input features and early
layers. Generally, the earlier layers in wav2vec 2.0 models
encode acoustic information. The next set of layers encodes
phonetic class information, followed by word meaning infor-
mation, before reverting back to encoding phonetic/acoustic
information. Thus, extracting representations from the last layers
for tasks that require phonetic or word-related information may
not be the best strategy. Indeed, the authors of [268] show
that a phone classifier trained on each of the 24 frozen layers
of a wav2vec 2.0 model showed the lowest phone error rates
for layers 10-21 and higher error rates for the other layers.
[68] further show that fine-tuning the pre-trained model with
a character-level CTC training criterion changes the behavior
of the last layers (especially the final two layers), breaking
the autoencoder-style behavior and focusing the information
encoded in the last layers on orthographic-phonetic and word
information.

The peaking of class-relevant information in intermediate
layers seems to be common across different self-supervised
learners and different modalities. In an analysis of text-based
Transformers trained with a masked language model crite-
rion [269] observed a similar compression plus reconstruction
pattern. Interestingly, similar network behavior was also recently
described for self-supervised learners in computer vision: using
a contrastive self-supervised learner (SimCLR) that optimizes
for augmentation invariance, [270] show that it is the interme-
diate representations that most closely approximate informa-
tion learned in a supervised way, i.e., they provide more class
information than the representations from final layers. This is
similar to the findings described above for wav2vec 2.0 without
fine-tuning, where intermediate layers provide more information
about phone and word classes.
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Self-supervised representations may encode other informa-
tion besides phonetic classes or words, for example, channel,
language, speaker, and sentiment information. It is shown that
the per-utterance mean of CPC features captures speaker in-
formation to a large extent [271]. Location of information per-
taining to speakers vs. language classes was analyzed in [272]
for a 12-layer BERTphone model. This model combines a
self-supervised masked reconstruction loss with a phone-based
CTC loss to produce representations for speaker recognition and
language identification. By analyzing the weights of a linear
combination of layer representations for these two downstream
tasks, it was shown that language recognition draws on rep-
resentation from higher layers (peaking at layer 10) whereas
speaker recognition benefited from layers at positions 6, 9, and
12. This may indicate that language recognition relies more on
higher-level phonetic information whereas speaker recognition
uses a combination of acoustic and phonetic information. In a
recent study [131] the same technique was used to identify layer
contributions for the downstream SUPERB benchmark tasks in
the WavLM model. For a smaller model (95 M parameters) it
was again confirmed that lower layers encode speaker-related
information necessary for speaker diarization and verification
whereas higher layers encode phonetic and semantic informa-
tion. Another study [273] used explicit self-supervised loss at
the intermediate layers rather than just the output layer of a
HuBERT model in order to enforce better learning of phonetic
information. The resulting model was indeed better at down-
stream tasks requiring information about phonetic content, such
as phone recognition, ASR, and keyword spotting, but worse at
speaker-related tasks like speaker diarization and verification.

Most self-supervised learning approaches rely on a Trans-
former architecture for the representation model. In [274] the
attention patterns in generatively trained Transformer represen-
tation models were analyzed. Self-attention heads were grouped
into three categories: diagonal, vertical, and global. It was found
that the diagonal head focuses on neighbors and is highly
correlated with phoneme boundaries, whereas the vertical head
focuses on specific phonemes in the utterance. Global heads
were found to be redundant as removing them resulted in faster
inference time and higher performance.

B. Training Criterion

In [275], representations based on different training criteria
(masked predictive coding, contrastive predictive coding, and
autoregressive predictive coding) were compared and analyzed
with respect to the correlation between their training loss and
performance on both phone discrimination and speaker classi-
fication probing tasks. It was observed that the autoregressive
predictive coding loss showed the strongest correlation with
downstream performance on both tasks; however, models were
not further analyzed internally. An evaluation of the similarity
of representations trained according to the three criteria above
(but with different architectures and directionality of contextual
information) also showed that it is the training criterion that most
influences the information encoded in the representations, not
the architecture of the learner or the directionality of the input.
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A similar insight was obtained in [276], which compared
vg-vae and vg-wav2vec with respect to their ability to discover
phonetic units. The vq-vae model extracts continuous features
from the audio signal; a quantizer then maps them into a dis-
crete space, and a decoder is trained to reconstruct the original
audio conditioned on the latent discrete representation and the
past acoustic observations. By contrast, vq-wav2vec predicts
future latent discrete representations based on contextualized
embeddings of past discrete representations, in a CPC-style way.
The models were evaluated according to their ability to discover
phonetic units (as measured by phone recognition error rate on
TIMIT, and the ZeroSpeech ABX task (see Section VI-B for
more details)), and it was found that the predictive vq-wav2vec
model fared better than the autoencoder-like vg-vae model, most
likely due to its superior ability to model temporal dynamics.

C. Effects of Data and Model Size

How does the performance of self-supervised models change
in relation to the amount of training data, and in relation to
the size (number of parameters) of the model? Several studies
have demonstrated better downstream performance when using
larger datasets [123], [131], [277]. For example, [123] compared
representations learned by a bidirectional CPC model from the
standard 960 h LS corpus and a corpus of 8,000 hours of diverse
speech from multiple sources.'® Not surprisingly, an ASR model
trained on top of these representations performed better when
representations were learned from the larger dataset. Although
the precise relationship between data size and performance has
not been quantified, we can assume that it follows a law of dimin-
ishing returns (or power law), similar to observations for most
data-intensive machine learning tasks. In addition to the size of
the dataset, the diversity of the data also seems to play a role,
although this was not quantified in this study. However, recent
experiments with larger and more diverse data collections [131]
confirm this assumption, as do explicit investigations of domain
shift robustness (see Section V-D below).

The relation between model sizes and downstream perfor-
mances have also been investigated [278], [279]. Using the
Mockingjay model [100], the authors in [278] attempt to estab-
lish a relationship between model size and self-supervised L,
loss and demonstrate that it approximately follows a power law.
Model size and accuracy on downstream phone classification
and speaker recognition tasks are positively correlated but do
not exactly follow a power law; rather, the accuracy saturates
as models increase in size, possibly due to the lack of a corre-
sponding expansion in training data size.

D. Robustness and Transferability

It is well known that traditional speech features like MFCCs
lack robustness against environmental effects such as additive
noise, reverberation, accents, etc., that cause differences in
the distributions of speech features. Do pre-trained representa-
tions offer greater robustness against distributional shifts? One
study [123] compared pre-trained representations from a CPC
model against MFCCs and found pre-trained representations to
be more robust to mismatches between training and test data.
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The training data consisted of clean, read speech (LS) whereas
test data consisted of the Switchboard corpus and TED talks. The
distributional shifts here may stem from both the acoustics (mi-
crophone, room reverberation) as well as lexical effects related
to topic and style, as well as differences in speaker characteristics
such as accent. Similar problems were also investigated using
HuBERT and wav2vec 2.0 models in [280]. In [281] domain
effects were studied in greater detail using datasets from six
different domains. In particular, the authors focused on the
usefulness of adding out-of-domain data to pre-training. The
general conclusions are that pre-training on more and diverse
domains is preferable: models pre-trained on more domains
performed better than those pre-trained on fewer when tested
on held-out domains, regardless of which additional labeled
data was used for fine-tuning. Adding in-domain unlabeled
data—if available—to pre-training improves performance ro-
bustly; however, even out-of-domain unlabeled data is helpful
and closes 66—73% of the performance gap between the ideal
setting of in-domain labeled data and a competitive supervised
out-of-domain model.

In [277] the effectiveness of CPC-trained representations
for phone discrimination tasks was compared across several
languages. It was found that representations pre-trained only on
English successfully enabled phone discrimination in 10 other
languages, rivaling supervised methods in accuracy in low-data
regimes (1 h of labeled data per language). Thus, self-supervised
pre-training enables the model to learn contextualized speech
features that generalize across different languages. In [282], a
wav2vec 2.0 model was trained on data from multiple different
languages and different corpora (Babel, Common Voice, and
multilingual LS) jointly, followed by fine-tuning for each indi-
vidual language. The largest model covers 53 languages in total
and consists of 56,000 hours of speech. Compared to mono-
lingual pre-training, even smaller models trained on only ten
languages improve performance substantially on a downstream
character-based ASR task. Low-resource languages with little
labeled data improve the most under this training regime. Multi-
lingual representations also resulted in competitive performance
(lower character error rate than monolingual representations)
for languages not present in the training dataset, again showing
that unsupervised pre-trained representations can learn generic
features of the speech signal that generalize across different
languages. The study also found that sharing data from closely
related languages is more beneficial than combining distant
languages. An analysis of language clusters in the shared discrete
latent representation space revealed that similar languages do
indeed show a higher degree of sharing of discrete tokens. Fi-
nally, one might ask whether the interpretation of representations
extracted from different layers of a self-supervised models also
generalizes to the multilingual setting. Experiments in [268]
on phone recognition in eight languages based on the different
layers of the multilingual wav2vec 2.0 XLSR-53 model indicate
that this is indeed the case: phone error rates showed the same
pattern as in the monolingual (English) scenario, with lower
phone error rates for middle layers as opposed to earlier/later
layers.
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VI. FROM REPRESENTATION LEARNING TO ZERO RESOURCES

In the SSL framework, speech representations can be learned
and used in various downstream tasks to achieve competitive,
robust, and transferable performance, as shown in Section IV to
V. However, labeled data is still required. For example, in ASR,
utterances and their manual transcriptions are needed to learn
downstream models or fine-tune representation models. Can a
model learn without any labeled data? In Section VI-A, we show
how to learn ASR models without any paired audio and text and
how SSL improves the framework. In addition, many languages
have no writing system. In Section VI-B, the SSL representation
is further used in scenarios where text data is unavailable.

A. Unpaired Text and Audio

1) Unsupervised ASR: If only unpaired speech and text are
available, that is, the text is not a manual transcription of speech,
can the machine learn how to transcribe speech into text? This
scenario is called unsupervised ASR, and the framework is as be-
low. Given a set of unlabeled utterances S = {S1, Sa,..., Sy}
and a set of sentences ) = {Y1, Y5, ..., Yas},* a mapping func-
tion F', which can take an utterance .S as input and generate its
transcription, is learned from data. Table VI summarizes recent
work on unsupervised ASR, including the speech representation
used, the algorithm used to learn the mapping without supervi-
sion, and the results. Below, we will discuss these methods in
more detail.

Adversarial training [285], [297], [298] is one common way
to learn such a mapping function. The framework includes a
discriminator and a generator. The mapping function F' plays
the role of the generator, which takes speech utterances as
input and outputs text. The discriminator learns to distinguish
real text from the generated output; the generator learns to
“fool” the discriminator. The generator and the discriminator
are trained in an iterative, interleaved way. After the training,
the generator serves as the speech recognition model. There is
a large amount of work using gradient penalty in the objective
of training discriminators [268], [283], [293], [296], which is
inspired by Improved Wasserstein Generative Adversarial Net-
work (WGAN) [285]. Other ways to map speech and text include
via segmental empirical output distribution matching (segmental
empirical-ODM) [290] and decipherment algorithm [294].

Success in unsupervised neural machine translation
(MT) [287], [299], [300] has inspired innovative exploration of
various unsupervised ASR algorithms. If learning a translation
model from unaligned sentences in two languages is possible,
considering speech and text as two different languages, learning
the mapping relationship from speech space to text space without
an alignment should likewise be possible. However, there are
differences between unsupervised MT and unsupervised
ASR. In unsupervised MT, most discrete source tokens can
be mapped to specific target tokens representing the same
meaning. However, because speech has segmental structures,

4Note that the speech and text are not paired, that is, Y; is not the transcription
of S;.
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TABLE VI
UNSUPERVISED ASR. TIMIT NUMBERS ARE PHONEME ERROR RATES (PER), WHILE THE NUMBERS FOR LIBRISPEECH ARE WORD ERROR RATES (WER)

Reference  Speech representation Speech segmentation

Text token/representation

Mapping approach Refinement Results

[283] Audio word2vec [284]  Oracle Phoneme Adversarial Training [285] TIMIT (PER): 63.6%
[286] Speech2vec [114] BES-GMM [196] ‘Word2Vec Adversarial Training [287]  Self-training SWC (Acc): 10.9%
Speech2vec - Word2Vec . LM rescore, X
[288] (English) Oracle (French) VecMap [289] sequence DAE ST (BLEU): 10.8%
[290] MFCC GAS [291] Phoneme Empirical-ODM [292] Self-training TIMIT (PER): 41.6%
[293] MFCC GAS Phoneme Adversarial Training [285]  Self-training TIMIT (PER): 33.1%
. . . TIMIT (PER): 18.6%,
[268] Wav2vec 2.0 [125] k-means Phoneme Adversarial Training [285]  Self-training LibriSpeech (WER): 5.9%
Universal Phone § . IR, GlobalPhone: 32.5% to just 1.9%
[294] Recogniser Grapheme Decipherment [295] Self-training worse than supervised models
[296] Wav2vec 2.0 [125] Phoneme Adversarial Training [285]  Self-training LibriSpeech (WER): 6.3%
[296] Wav2vec 2.0 [125] Grapheme Adversarial Training [285]  Self-training LJSpeech (WER): 64.0%

SWC = spoken word classifier, ST = speech translation. All speech and text are in english if not specified. The references in the table are sorted according to the date of publication.

in unsupervised ASR, each text token maps to a segment of
consecutive acoustic features of variable length in an utterance.
The generator is supposed to learn the segmental structure
of an utterance because information like token boundaries is
not directly available. This makes unsupervised ASR more
challenging than unsupervised MT.

For unsupervised ASR to be feasible, the common idea is
to make the speech and text units close to each other. For the
text side, word sequences can be transformed into phoneme
sequences if a lexicon is available. On the other hand, we
must first convert the speech signal into something close to
phonemes. To achieve that, most studies on unsupervised ASR
use a phoneme segmentation module before the generator to
segment utterances into phoneme-level segments [283], [290],
[293]. A representation vector or a token then represents each
phoneme-level segment. It is easier for the generator to map each
segment-level representation or token to the correct phoneme
when the representation or token is highly correlated to the
phonemes. Wav2vec-U [268] selects the input feature from
different layers of wave2vec 2.0 [125]. The selection criterion
is based on analysis of the phonetic information in each layer.
If a universal phone recognizer trained from a diverse set of
languages is available, it is another way to transcribe speech
into phone-level tokens [294]. Another series of work is to
transform a word into a word embedding. [286], [288] use
adversarial training to map the word-level speech embedding
space [114] to the word embedding space and achieve promising
performance on spoken word classification, speech translation,
and spoken word retrieval. Table VI summarizes the various
ways to segment speech and represent speech and text in each
reference.

As shown in Table VI, most studies use self-training to refine
the models. In self-training, the generator serves as the first-
version phoneme recognition model. Inputting unpaired speech
to the generator generates the corresponding “pseudo transcrip-
tion”. We then view the speech utterances and their pseudo
transcriptions as paired data which we use to train a model
in a supervised manner. Although the pseudo transcriptions
have more errors than oracle transcriptions, experiments show
that training models on pseudo transcriptions still significantly
boosts performance compared to the first-version’ model.

Wav2vec-U [268] achieved state-of-the-art results at the time,
which suggests that representation learning is essential for the
success of unsupervised ASR. It achieved an 11.3% phoneme
error rate on the TIMIT benchmark. On the LS benchmark,
wav2vec-U achieved a 5.9% WER on fest-other, rivaling some
of the best published systems trained on 960 hours of labeled
data from only two years earlier. And wav2vec-U 2.0 [296]
further removes the requirement of the segmentation stage,
so the unsupervised ASR model can be learned in an end-
to-end style. The robustness of wav2vec-U was further an-
alyzed with respect to domain-mismatch scenarios in which
the domains of unpaired speech and text were different [301].
Experimental results showed that domain mismatch leads to
inferior performance, but a representation model pre-trained on
the targeted speech domain extracts better representations and
reduces this drop in performance.

2) Asr-Tts: Here we describe an alternative approach by
which to train an ASR and text-to-speech (TTS) system based
on unpaired text and audio. The ASR-TTS framework, which
combines the ASR and TTS systems in a cascaded manner, can
be regarded as an autoencoder, where the encoder f corresponds
to the ASR module and the decoder g corresponds to the TTS
module. In this framework, we consider the intermediate ASR
output as a latent representation; the framework as a whole can
be regarded as a variant of self-supervised learning.

The ASR-TTS framework can jointly optimize both ASR and
TTS without using paired data [302], [303], [304]. A speech
chain [302], [305] is one successful way to utilize audio-only
and text-only data to train both end-to-end ASR/TTS models.
This approach first prepares pre-trained ASR model f5 (X ) with
acoustic input X and pre-trained TTS model gys(Y") with text
input Y. By following the TTS system with an ASR system,
we generate new acoustic feature sequence X, which must be
close to the original input X. Thus, we design a loss function
Lasr—tts (X, X ), where X is generated by

) (36)

X = gus (.fasr(X

SHowever, to make this complicated system work, we often require that data
is paired. Therefore, in practice, ASR-TTS and other methods described in this
section are categorized as semi-supervised learning.
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Thus, we train the ASR model (or both ASR and TTS models)
using only the acoustic input by minimizing L, ys. Note that
this approach does not require the supervised text data Y.
As an analogy to the generative approach in Section III-B,
the intermediate ASR output Y can be regarded as the latent
representation Z.

The other cycle with the text-only data Y is also accomplished
by the concatenated TTS-ASR systems:

Y = fasr (gns (Y))

Similarly, this approach does not require the supervised au-
dio data X, and the intermediate TTS output X can be re-
garded as the latent representation Z. Although this approach
initially freezes either the ASR or TTS model, extensions of
this study [303], [306], [307] implement the joint training of
both ASR and TTS parameters using REINFORCE [308] and
straight-through estimators.

An emerging technique uses a well-trained TTS system to
generate speech and text data from text-only data. This technique
is a sub-problem of the TTS-ASR approach formulated in (37)
in which we fix the TTS system part and estimate only the
ASR parameters. For example, a huge amount of text resources
can be obtained from the web and document archives without
corresponding audio data. The typical use case scenario of such
a text resource for ASR is through the language model. We
combine the ASR and language model via a noisy channel
model [309], a weighted finite state transducer [310], or shallow
fusion [311], [312]. However, the progress of TTS systems
boosted by deep learning [80], [313] has inspired another in-
teresting and straightforward research direction: artificially cre-
ating paired text and audio data {X , Y} with only text data Y by
generating the corresponding audio data X with TTS. The most
straightforward approach is to simply use multi-speaker TTS to
generate the waveform with various acoustic variations [314],
[315], [316], [317], [318]. The other approaches are based on
the generation of high-level (more linguistic) features instead
of generating the waveform, e.g., encoder features [319] and
phoneme features [320], [321]. This approach is similar to the
back-translation technique developed in neural machine transla-
tion [322]. One benefit of the above data generation approaches
is that it can be used to feed unseen word or context phrases to
end-to-end ASR.

(37

B. No Text or Lexicon

1) Zero-Resource Speech Technologies and Challenges:
Zero-resource speech technologies, which seek to discover lin-
guistic concepts from audio only (no text nor lexicon), are one
of the most active applications of unsupervised/self-supervised
speech processing. Zero-resource speech technologies were ini-
tially studied for acoustic and linguistic unit discovery from
speech data without linguistic resources, e.g., transcriptions
and other annotations [323]. This study was motivated by un-
supervised query-by-example, applications of non-parametric
Bayesian machine learning to speech processing, and low-
resource speech recognition, and was also inspired by the learn-
ing process of infants. The goal of this type of work is to
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build spoken dialog systems in a zero-resource setup for any
language. To encourage zero-resource research, zero-resource
speech challenges have been organized since 2015.

In this section, we describe the research directions of zero-
resource speech technologies by following the series of zero-
resource speech challenges.

® Zero Resource Speech Challenge 2015 [279] mainly fo-

cused on building an acoustic model without using any
linguistic annotations based on subword unit modeling
and spoken term discovery tracks. For the subword unit
modeling track, the ABX score for the within- and across-
speaker tasks was used as an evaluation metric. The spoken
term discovery track used the normalized edit distance and
coverage scores in addition to the precision, recall, and F1
scores for types, tokens, and boundaries. Both tracks were
based on the English and Xitsonga languages.

® The Zero Resource Speech Challenge 2017 [324] focused

on unseen language and speaker aspects from the previous
challenge. For example, to demonstrate the robustness
against unseen languages, the systems were developed with
English, French, and Mandarin and tested on two “sur-
prise” languages: German and Wolof. Similarly, robustness
against unseen speakers was demonstrated by varying the
amount of speech available for each speaker.

e The Zero Resource Speech Challenge 2019 [325] extended

a goal of previous challenges by synthesizing speech
without text or phonetic labels but with acoustic units
obtained using zero-resource techniques. The evaluation
metrics were also extended to subjectively evaluate the
quality of synthesized speech, including its intelligibility,
naturalness, and speaker similarity.

® The Zero Resource Speech Challenge 2020 [261] was

based on two tracks, revisiting previous challenges with
different evaluation metrics. The first task revisited the
2019 challenge with low bit-rate subword representations
that optimize the quality of speech synthesis. The second
task revisited the 2017 challenge by focusing on the dis-
covery of word-like units from unsegmented raw speech.
® The Zero Resource Speech Challenge 2021 [326], the latest
challenge, expanded the scope to include language model-
ing tasks. In addition to phoneme-level ABX, the challenge
includes lexical, semantic, and syntactic evaluation metrics
computed via a language model of pseudo-acoustic labels.

These challenges have facilitated the tracking of techni-
cal trends in zero-resource speech technologies. For exam-
ple, research directions thereof have expanded to various
speech processing components to cover the entire spoken di-
alogue systems. To keep up with this expansion, the chal-
lenge has continued to develop appropriate evaluation met-
rics for zero-resource scenarios. Following the success of rep-
resentation learning, baseline and challenge techniques have
shifted from purely generative models [327], [328], deep au-
toencoders [83], [329], and incorporation of neural-network-
based TTS/VC techniques [266] to self-supervised learn-
ing [330]. The latest challenge included the visual modality,
continuing the expansion to include more aspects of human
interaction.
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2) Textless NLP: Textless NLP is a new research direction
that leverages the progress mentioned above in self-supervised
speech representation learning to model language directly from
audio, bypassing the need for text or labels [76], [77], [78],
[331]. Not only does this open the gate for language and dialect
modeling without orthographic rules, but it also offers the oppor-
tunity to model other non-lexical information about how speech
is delivered, e.g., speaker identity, emotion, hesitation, inter-
ruptions. The generative spoken language model (GSLM) [78]
utilizes discrete representations from wav2vec 2.0, HuBERT,
and CPC algorithms as inputs to an autoregressive language
model trained by using the cross-entropy function to maximize
the probability of predicting the next discrete speech token.
A synthesis module follows the language model to produce
speech waveforms given the generated discrete speech units.
The generated spoken continuations compete with supervised
generations and synthesis using a character language model in
subjective human evaluations. The model completes incomplete
words (pow[..] — POWER) and continues using words in the
same general mood (dark — BLACKNESS)® and has been
extended to model and generate dialogues [332].” Given its
flexibility in modeling spoken content, the GSLM has been
further extended to jointly model content and prosody [77]. This
prosodic-GSLM model introduced a multistream causal Trans-
former, where the input and output layers use multiple heads
to model three channels: discrete speech units, duration, and
quantized pitch. The prosodic-GSLM model jointly generates
novel content and prosody congruently in the expressive style
of the prompt.® Going one step further, [331] used a speech
emotion conversion framework to modify the perceived emotion
of a speech utterance while preserving its lexical content and
speaker identity. Other studies have extended the idea of textless
language processing or audio discrete representation to applica-
tions such as spoken question answering [333], speech separa-
tion [334], TTS [335], and speech-to-speech translation [336].

VII. DISCcUSSION AND CONCLUSION

In this overview, we have presented the historical context of
self-supervised learning and provided a thorough methodolog-
ical review of important self-supervised speech representation
models. Specifically, we have categorized the approaches into
three categories, generative, contrastive and predictive, differing
in terms of how the pretext task is defined. We have presented
an overview of existing benchmarks and reviewed the efforts
towards efficient zero-resource learning. Although the field is
progressing rapidly, with new approaches reaching higher levels
of performance, a couple of patterns have emerged: (1) The
solid performance of Wav2vec 2.0 for speech recognition and
many downstream tasks, as well as the public availability of its
pre-train wide adoption in the community making it a “standard”
go-to model. (2) The simplicity and stability of the HuBERT
approach, as well as the resemblance of its training procedure
to classic frame-level ASR systems, made it an easy choice for

6[Online]. Available: https://speechbot.github.io/gslm/
7[Online]. Available: https://speechbot.github.io/dgslm/
8[Online]. Available: https:/speechbot.github.io/pgsim/
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research extensions on improving representation quality, speech
translation, and textless NLP.

Below we highlight various shortcomings of existing work

and future research directions:

e Using the representation model. So far, there are two
main ways to use representation models: Freeze the rep-
resentation models and use them as feature extractors,
or fine-tune the representation models on downstream
tasks. Some efficient methods for leveraging SSL mod-
els exist in the NLP community. Adapters [337], [338],
[339] are lightweight modules inserted into SSL models,
and in downstream tasks, the parameters of SSL mod-
els are frozen, and only the adapters are trained. The
prompt/instruction learning methods [20] also freeze the
SSL parameters and control the output of SSL by adding
additional information, which is called prompt, in the in-
put. Both adapter-based methods and prompt/instruction
learning yield competitive performance compared with
fine-tuning in NLP applications, but there is only little re
lated work for speech [340], [341]. In addition, prompt for
speech SSL does not achieve comparable performance on
sequence generation tasks like phoneme recognition and
slot filling, so how to use prompt is still an open question.

¢ Increasing the efficiency of the representation model.
As discussed in Section V-C, larger representation models
lead to better downstream performance. Despite the suc-
cess of these large models, they incur high costs in terms
of memory and time for pre-training, fine-tuning, and even
when used only to extract representations without gradient
calculation. This makes them unsuitable for edge devices
but also limits the ability to scale these models to very large
datasets —and leads to a large energy consumption. Prelim-
inary studies have been conducted on compressing speech
representation models through network pruning [342] or
knowledge distillation [343]. There has been quite some
effort towards more efficient general neural network mod-
els via conditional computing [344] and neural network
quantization [345] as well as extensive work on improving
the specific efficiency of Transformer models, especially
with the focus on self-attention [346], but these technol-
ogy has not been widely used in speech SSL. Because
speech is intrinsically represented as sequence, one way
to reduce computation is to reduce the length of speech
representation sequence but still keep the vital information
in speech. But we have not been aware of any publication
in this direction when writing this paper. On the other
hand, non-streaming architectures in models such as the
bidirectional Transformer have hindered the representation
model used in streaming scenarios, leading to studies that
address these problems [347]. We anticipate research in
these directions to continue in the future.

¢ Data-efficient approaches. SOTA representation learning
methods require large volumes of unlabeled speech during
pre-training, going way beyond what babies need to under-
stand language. Different learning approaches have differ-
ent data needs, e.g., generative approaches could be more
data efficient than contrastive or predictive approaches
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since they are constrained by more bits of information to
reconstruct their inputs. Comprehensive research is needed
to study the data efficiency of different approaches.

e Feature Disentanglement. Speech SSL models show
strengths on a surprisingly wide range of tasks [44], sug-
gesting that representations contain different information.
One way to further improve downstream tasks is to dis-
entangle different information from the representation.
For example, we can decompose the representation into
content embedding and speaker embedding and use content
embedding for ASR and speaker embedding for SID. Some
work has been in this direction [348], [349], [350].

e Creating robust models. As discussed in Section V-D,
studies have been conducted on the robustness of repre-
sentation models [351]. However, the failure modes of
SSL models are still poorly understood, and it remains
unclear whether they provide more or less robustness to
adversarial attacks than fully supervised models. Due to the
importance of this research direction, while writing this pa-
per, there is already some related research about enhancing
the robustness of SSL. models [281], [352], [353], [354] and
identifying their vulnerability to adversarial attack [351].

e Capturing higher-level semantic information. Although
many representation learning approaches can go beyond
low-level phonetic modeling to capture some lexical in-
formation [355], they still struggle in higher-level seman-
tic tasks easily captured by word-level counterparts like
BERT. One workaround is two-stage training [77], [332];
however, this prevents propagating rich lexical and seman-
tic knowledge modeled in the second stage to benefit the
phonetically focused first stage.

e Using text representation models to improve speech
representation. The amount of content information in
speech corpora used to train speech representation models
is far less than that of text representation models. Noting
that the BERT training corpus exceeds 3 billion words [54],
and assuming a typical speaking rate of 120 words per
minute, a speech corpus containing the same content as the
BERT training data would include 400,000 hours of audio,
which exceeds the accumulated training data of all current
speech representation models. Therefore, to enable speech
representation models to better learn human language, for
instance by extracting semantic information from acoustic
signals, the use of text models such as BERT and GPT
seems key: nevertheless, how to use these to improve
speech representation model pre-training remains an open
question.

We believe SSL representation models have considerable
room to grow. The relationship between representation models
and downstream tasks can be compared to the relationship
between operating systems and applications. Today, even in-
dividuals can build applications with desired functions on a
smartphone because the smartphone’s operating system handles
the complex communication with the hardware and provides a
convenient developer interface. Likewise, as SSL representation
models learn general knowledge from human speech, itis easy to
develop new speech processing applications on this basis. From

this viewpoint, speech representation models will play the role
of operating systems in speech processing and further facilitate
the continued development of speech technology.
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