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Abstract—End-to-end automatic speech recognition (ASR) has
become a popular alternative to traditional module-based systems,
simplifying the model-building process with a single deep neural
network architecture. However, the training of end-to-end ASR
systems is generally data-hungry: a large amount of labeled data
(speech-text pairs) is necessary to learn direct speech-to-text con-
version effectively. To make the training less dependent on labeled
data, pseudo-labeling, a semi-supervised learning approach, has
been successfully introduced to end-to-end ASR, where a seed
model is self-trained with pseudo-labels generated from unlabeled
(speech-only) data. Here, we propose momentum pseudo-labeling
(MPL), a simple yet effective strategy for semi-supervised ASR.
MPL consists of a pair of online and offline models that interact and
learn from each other, inspired by the mean teacher method. The
online model is trained to predict pseudo-labels generated on the fly
by the offline model. The offline model maintains an exponential
moving average of the online model parameters. The interaction
between the two models allows better ASR training on unlabeled
data by continuously improving the quality of pseudo-labels. We
apply MPL to a connectionist temporal classification-based model
and evaluate it on various semi-supervised scenarios with varying
amounts of data or domain mismatch. The results demonstrate
that MPL significantly improves the seed model by stabilizing
the training on unlabeled data. Moreover, we present additional
techniques, e.g., the use of Conformer and an external language
model, to further enhance MPL, which leads to better performance
than other semi-supervised methods based on pseudo-labeling.

Index Terms—Deep learning, end-to-end speech recognition,
pseudo-labeling, self-training, semi-supervised learning.

I. INTRODUCTION

THE field of automatic speech recognition (ASR) has wit-
nessed remarkable improvements in performance thanks

to the advances in deep learning-based techniques [1], [2].
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Much of the recent progress in ASR lies in the end-to-end
framework [3]–[5], which directly models speech-to-text con-
version using a single deep neural network. With well-
established sequence-to-sequence modeling techniques [6]–[9]
and sophisticated neural network architectures [10]–[12], end-
to-end ASR has demonstrated promising results on various
benchmarks [13]–[15]. However, the performance often depends
on the availability of a large quantity of labeled data (speech-text
pairs) [16], which requires great annotation costs and is not
always achievable.

To alleviate the heavy requirement for labeled data, semi-
supervised learning [17] has been attracting increasing attention
for improving end-to-end ASR. Semi-supervised learning uti-
lizes labeled data as well as unlabeled (or unpaired) data during
model training, where the amount of labeled data is in general
much smaller than that of unlabeled data. Some early works for
semi-supervised end-to-end ASR are based on a reconstruction
framework, including approaches based on a text-to-speech
model [18]–[20] or a sequential auto-encoder [21]–[23]. Others
adopted self-supervised pre-training techniques, such as BERT-
like mask prediction [24]–[26], contrastive learning [27]–[29],
and feature clustering [30], [31], to boost the performance of
downstream ASR tasks.

We focus on self-training [32] or pseudo-labeling [33], which
has recently been adopted for semi-supervised end-to-end ASR
and shown to be effective [34]–[44]. In pseudo-labeling, a
teacher model is first trained on labeled data and used to tran-
scribe unlabeled (speech-only) data to obtain pseudo-labels. A
student model is then trained using both the labeled and pseudo-
labeled data to achieve better performance than the teacher. As-
suming external text data is accessible, external language models
(LMs) and beam-search decoding are often incorporated into the
labeling process to generate higher-quality pseudo-labels [35],
[38]. Data augmentation is also important for assisting a student
model with training on pseudo-labels [36], [37], [40]. In addition
to these techniques, ASR performance can be further improved
by iterating the pseudo-labeling steps [39]–[43]. In [40], a model
is continuously trained on pseudo-labels, which are generated on
the fly by the model itself. Pseudo-labels are refined as the model
learns, and the model benefits from training on the refined labels.
However, we observed that this frequent update of pseudo-labels
can easily cause unstable training, especially when there is a
large amount of unlabeled data or domain mismatch between
labeled and unlabeled data, which is likely to be the case in
real-world scenarios.
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In this paper, we present a semi-supervised learning frame-
work for end-to-end ASR, referred to as momentum pseudo-
labeling (MPL). In MPL, the pseudo-labels are iteratively up-
dated based on an ensemble of models at different time steps
within a single training process [45]. MPL consists of online
and offline models that interact and learn from each other,
similar to the teacher-student framework in the mean teacher
method [46]. The online model is trained to predict pseudo-
labels generated on the fly by the offline model. The offline
model maintains an exponential moving average of the weights
of the online model, which can be regarded as an ensemble of
the online models at different training steps. Through the inter-
action between the two models, MPL effectively stabilizes the
training with unlabeled data and handles the constant change in
pseudo-labels.

The contributions of this paper are summarized as follows:
� We propose MPL and show its advantages over other semi-

supervised approaches based on pseudo-labeling.
� We present an effective way for controlling the MPL train-

ing, which reduces the burden for heuristic tuning.
� We evaluate MPL in various semi-supervised scenarios,

which demonstrates its robustness against variations in the
amount of data, variations in domain mismatch severity,
and over-fitting to LM knowledge.

� We perform thorough analyses to confirm the effectiveness
of MPL and propose several methods to further improve
ASR performance.

This paper summarizes our previous studies on MPL [47],
[48] with the following extensions: we provide more detailed
explanations of relationship to prior works (Section II) and
precise formulations of end-to-end ASR and pseudo-labeling
(Section III); we present a consistent description of [47] and [48],
with more specific implementations (Section IV); we conduct
experiments on a variety of semi-supervised scenarios, including
additional experiments on smaller and larger amounts of labeled
data (Section V); and we further demonstrate the effectiveness of
MPL through more detailed experimental results and discussions
(Section VI).

II. RELATED WORK

A. Self-Ensembling for Semi-Supervised Learning

Self-ensembling [45] is a semi-supervised learning frame-
work, where a target of an unlabeled sample is obtained by
a consensus of predictions from models at different training
steps or different models. This prediction ensembling is expected
to produce a more accurate pseudo-label than the most recent
model prediction. Several approaches have been proposed to im-
plement self-ensembling; we here refer to techniques based on an
exponential moving average (EMA). Temporal ensembling [45]
maintains an EMA of label predictions from different models,
which is used as a target for model training at the current step.
The mean teacher method [46] improves temporal ensembling
by calculating an EMA of model weights and generating a
pseudo-label using the averaged model. This can avoid sudden
changes in pseudo-labels and enable the model to learn from
unlabeled samples stably. The concept of EMA-based weight

averaging has also been shown to be effective for stabilizing
self-supervised representation learning [49], [50].

MPL is inspired by and similar to the mean teacher frame-
work. However, we differentiate MPL from prior work in the
following perspectives. 1) MPL is a semi-supervised learning
framework for end-to-end ASR: while most previous studies
focus on classification problems (e.g., image classification),
few have introduced self-ensembling techniques to sequence-
to-sequence mapping objectives, here connectionist temporal
classification (CTC) [6]. 2) MPL uses hard (pseudo-)labels
for training with unlabeled data: while soft labels generally
contain richer information for promoting a model training [51],
applying a distillation loss to CTC-based ASR systems is known
to be problematic [52]; as CTC models emit spiky posterior
distributions and predictions are naturally high-confidence, we
consider hard labels more suitable for MPL.1 3) MPL applies
data augmentation (i.e., SpecAugment [55]) to the input only
for training the online model, while the offline model generates
pseudo-labels in inference mode: since we do not use soft labels
in MPL, it is preferable for pseudo-labels to be accurate; more-
over, the online model can learn to robustly predict pseudo-labels
from noisy input, an effective approach known as consistency
training [36], [40], [56].

B. Pseudo-Labeling With Multiple Iterations

A simple extension for enhancing the pseudo-labeling-based
method is to conduct multiple rounds of the pseudo-label gen-
eration and model training processes, demonstrating promis-
ing results in various fields [57], [58] including end-to-end
ASR [39]–[43]. Iterative pseudo-labeling (IPL) [39], an iterative
version of [35], continuously trains a single ASR model with pe-
riodic regeneration of pseudo-labels. Here, the labeling process
is performed via beam-search decoding with an external LM,
which makes the pseudo-labels biased toward LM training texts
and the model over-fit to the LM knowledge [42], [43]. In [40], an
ASR model is trained on pseudo-labels generated without using
an LM, where the pseudo-labels are updated on the fly after every
training iteration. However, this frequent relabeling is likely to
make pseudo-labels unstable and thus cause the model training
to diverge. slimIPL [42] mitigates this problem by introducing a
dynamic cache mechanism, which stores and uses pseudo-labels
generated from the previous model states instead of regenerating
them with the most recent model every iteration.

MPL is another direction for improving pseudo-labeling with
multiple iterations, which can be considered as a general frame-
work extending [35] and [40] (see Section IV-B). In each iter-
ation of MPL training, pseudo-labels are generated on the fly
from the offline model without an LM and used as targets to
train the online model. The offline model maintains an EMA of
the online model weights to stabilize pseudo-labels. This can
be seen as alternative caching mechanism to [42] for exploiting

1Several works have proposed practical approaches for distilling frame-level
knowledge between CTC-based models [53], [54]. As in TutorNet [54], we tried
MPL training with the l2 loss between the online and offline models, but we did
not observe a significant improvement. Hence in this work, we only focus on
using hard (pseudo-)labels for simplicity.
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older models. A similar approach to MPL was proposed in [59],
which focused on lower-resource settings and conducted exper-
iments on a hybrid ASR system in addition to a CTC-based
end-to-end system. This paper thoroughly investigates MPL on
its robustness against variations in domain mismatch severity
and over-fitting to LM knowledge.

III. BACKGROUND

In this section, we review a formulation of CTC-based end-
to-end ASR [3] and semi-supervised ASR based on pseudo-
labeling [35]. Let X = (xt ∈ RD|t = 1, . . . , T ′) be an input
sequence of length T ′, and Y = (yl ∈ V|l = 1, . . . , L) be the
corresponding output sequence of length L. Here, xt is a D-
dimensional acoustic feature at frame t, yl is an output token at
position l, andV is a vocabulary. Note that, in general, the output
length is much shorter than the input length (i.e., L� T ′).

A. Network Architecture

1) Transformer Encoder: For converting an audio sequence
X into a sequence of hidden representations, we build a
Transformer-based encoder model [60] consisting of a stack of
Nenc identical blocks:

H = TransformerEncoder(X), (1)

where H = (ht ∈ Rdmodel |t = 1, . . . , T ), and ht is a dmodel-
dimensional hidden representation at index t.

Given an audio sequence X , the encoder first applies 2D con-
volution Conv2D(·) to down-sample the input sequence length
from T ′ to T (= T ′/4) [61]. Positional encodings PosEnc(·) are
then added to each frame of the down-sampled sequence, which
results in an initial hidden sequence:

H(0) = Conv2D(X) + PosEnc(T ). (2)

The i-th encoder block outputs a sequence of hidden represen-
tations H(i) = (h

(i)
t ∈ Rdmodel |t = 1, . . . , T ) as

H̄(i) = LayerNorm(H(i−1)), (3)

H̃(i) = H(i−1) + SelfAttention(H̄(i)), (4)

H(i) = H̃(i) + FeedForward(LayerNorm(H̃(i))), (5)

where i ∈ {1, . . . , Nenc}, and LayerNorm(·), SelfAttention(·),
and FeedForward(·) indicate layer normalization, multi-head
self-attention, and feed-forward network, respectively. The final
sequence H is obtained by normalizing the output of the last
encoder block, i.e., H = LayerNorm(H(Nenc)).

2) Conformer Encoder: Besides the Transformer encoder,
we construct a model based on the Conformer-based en-
coder [12] consisting of a stack of Nenc identical blocks:

H = ConformerEncoder(X). (6)

Conformer is a variant of Transformer-based encoder architec-
ture augmented with convolution to increase the capability for
capturing local feature patterns [12], which has been shown to
be more effective than standard Transformers on various speech
processing tasks [62].

The computation in each Conformer encoder block can be
defined by modifying the encoder steps in Transformer, where
(4) and (5) are replaced with

=

H
(i) = H(i−1) +

1

2
FeedForward(H̄(i)), (7)

H̃(i) =
=

H
(i) + SelfAttention(LayerNorm(

=

H
(i))), (8)

≈
H

(i)
= H̃(i) + Conv(LayerNorm(H̃(i))), (9)

H(i) =
≈
H

(i)
+

1

2
FeedForward(LayerNorm(

≈
H

(i)
)). (10)

In addition to the self-attention layer, Conformer introduces a
module Conv(·) based on depthwise separable convolution [63].
The convolution module consists of point-wise convolution,
gated linear unit activation, 1D depth-wise convolution, batch
normalization, Swish activation, and point-wise convolution.
Unlike Transformer, each Conformer block adopts relative po-
sitional encoding [64] for the self-attention layer, which enables
the model to increase the robustness against different input
lengths. Moreover, Conformer employs the Macaron Net-style
structure [65], where the original feed-forward layer (5) is
replaced with two half-step feed-forward layers ((7) and (10)).

B. Connectionist Temporal Classification (CTC)

CTC [3], [6] optimizes end-to-end ASR by training a model
to find monotonic alignments between an input sequence X
and target sequence Y . To align the sequences at the frame
level, Y is augmented by adding an additional blank token ε
and allowing repetitions of the same token, which results in
a CTC alignment Z = (zt ∈ V ∪ {ε}|t = 1, . . . , T ). Assuming
the conditional independence of frame-wise token predictions,
CTC models the probability P (Z|X) as the product of token
emission probabilities:

P (Z|X) =

T∏
t=1

P (zt|z1, . . . , zt−1, X), (11)

≈
T∏

t=1

P (zt|X), (12)

where P (zt|X) is a probability density function of the tokens
and is obtained by applying a linear projection layer and a
softmax layer to the encoded sequence H from (1) or (6).

For a given target sequence, there exist several possible
alignments, depending on the position of the blank tokens and
the number of repeated tokens. Let B be a collapsing function
that maps a CTC alignment Z to a target sequence Y , which
is performed by suppressing repeated tokens and removing
blank tokens. With the collapsing function, CTC calculates the
probabilityP (Y |X)by marginalizing (12) over CTC alignments
as

P (Y |X) =
∑

Z∈B−1(Y )

P (Z|X), (13)

where the inverse function B−1(Y ) returns a set of CTC align-
ments that are compatible with Y . While (13) has to deal with all
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possible Z, it is efficiently computed via dynamic programming
(e.g., forward-backward algorithm) [6].

Given a pair of input and output sequences (X,Y ), a model
is trained to minimize the CTC loss defined by the negative
log-likelihood of (13):

L = − logP (Y |X). (14)

C. Semi-Supervised ASR With Pseudo-Labeling

The goal of semi-supervised ASR, in this work, is to exploit
a large amount of unlabeled (audio-only) data to enhance a pre-
trained ASR model in a self-training manner. To this end, we
focus on an approach based on pseudo-labeling [33], [35], which
is described in two steps: 1) the supervised training of a seed
end-to-end ASR model, and 2) the semi-supervised training of
the seed model using unlabeled data.

1) Supervised Training of a Seed Model: A seed model
Pθ with parameters θ is first trained on labeled data Dlab =
{(Xn, Yn)|n = 1, . . . , N}, using the CTC loss from (14):

Llab(θ) = − logPθ(Yn|A(Xn)), (15)

where A(·) denotes a data augmentation for improving general-
ization of the model, here SpecAugment [55].

2) Semi-Supervised Training With Pseudo-Labels: The seed
model is then used to generate pseudo-labels for unlabeled
data Dunlab = {XN+m|m = 1, . . . ,M}.2 For each unlabeled
sample, pseudo-labels ŶN+m are generated as

ŶN+m = argmaxY ∈V∗{logPθ(Y |XN+m) + γ logPlm(Y )},
(16)

where argmax is performed using an external LMPlm and beam-
search decoding, and γ is the LM weight. With the pseudo-labels
from (16), the loss for the unlabeled data is calculated in the same
manner as (15):

Lunlab(θ) = − logPθ(ŶN+m|A(XN+m)). (17)

Finally, using both Dlab and Dunlab, the seed model is further
trained on the combined objective of Llab and Lunlab.

IV. MOMENTUM PSEUDO-LABELING

In this section, we explain our momentum pseudo-labeling
(MPL) for semi-supervised ASR [47], [48]. The overall process
of MPL is shown in Algorithm 1, which trains a pair of online
and offline models that interact and learn from each other. Let us
define the online and offline models as Pξ and Pφ, with model
parameters ξ and φ, respectively. Both models are initialized
with the seed model Pθ trained as in Section III-C1.

2Filtering out pseudo-labels of low quality is an effective technique for
semi-supervised ASR [41], [43]. It is particularly important for sequence-to-
sequence models, where their autoregressive structure is prone to looping and
early stopping issues during inference [35], [66] and likely to generate severely
erroneous pseudo-labels. As CTC-based models are known to be robust against
length issues [67], we do not perform any label filtering in this work.

Algorithm 1: Momentum Pseudo-Labeling.
Input:
Dlab,Dunlab � labeled and unlabeled data
A � an ASR model architecture
α � a momentum coefficient

1: Train a seed model Pθ with architecture A on Dlab

using (15)
2: Initialize an online model Pξ and an offline model Pφ

with Pθ

3: for epoch = 1, . . . , Empl do
4: for all S ∈ Dlab ∪ Dunlab do
5: Obtain X ∼ S

6: Obtain Y =

{
Y ∼ S (S ∈ Dlab)

Ŷ ∼ Pφ(Y |X) (S ∈ Dunlab)
7: Compute loss L for Pξ(Y |X) as in (15)
8: Update ξ using ∇ξL
9: Update φ← αφ+ (1− α)ξ

10: end for
11: end for
12: return Pξ � online model is returned for final

evaluation

A. Online Model Training

On unlabeled sample XN+m ∈ Dunlab, the online model is
trained using pseudo-labels ŶN+m generated on the fly by the
offline model:

ŶN+m = argmaxY ∈V∗Pφ(Y |XN+m), (18)

where argmax is performed based on the best path decoding of
CTC [6]. Specifically, the most probable tokens Ẑ are selected
at each frame, and an output sequence is obtained using the
collapsing function, i.e., Ŷ = B(Ẑ). Note that (18) differs from
(16) in that we use neither LM nor beam-search decoding.

With unlabeled data XN+m ∈ Dunlab and the corre-
sponding pseudo-labels from (18), the semi-supervised loss
of the online model is defined in the same manner
as (17):

Lunlab(ξ) = − logPξ(ŶN+m|A(XN+m)), (19)

which is maximized via a gradient descent optimization. In (19),
we apply the data augmentation to an unlabeled input, aiming to
provide the online model with training signals to learn robustly
from the noisy input [36], [40]. In Section VI-D, we show that
data augmentation is an important factor of MPL.

Assuming labeled data Dlab is available during the semi-
supervised process, we also use the supervised loss Llab(ξ)
calculated similarly as in (15), which helps to stabilize the
online model training as it learns from unlabeled data. Using
Dlab andDunlab, the online model is trained using the combined
objective of Llab(ξ) and Lunlab(ξ). Note that in Section VI-B,
we demonstrate that MPL is yet stable and effective even when
trained solely on unlabeled data, i.e., trained only withLunlab(ξ).
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B. Offline Model Training

After every update of the online model, the offline model
accumulates parameters of the online model via

φ← αφ+ (1− α)ξ, (20)

an exponential moving average with a momentum coefficient
α ∈ [0, 1]. This momentum update makes the offline model
evolve more smoothly than the online model. We can thus
control the change in pseudo-labels generated on the fly by
the offline model at each training step. This is important to
prevent pseudo-labels from deviating too quickly from the initial
labels generated by the seed model and to avoid collapsing to a
trivial solution. Indeed, we empirically observe that training is
prone to collapse (emitting only blank tokens for unlabeled data)
for α = 0.0, in which case the online and offline models share
parameters and the online model is trained with self-generated
pseudo-labels as in [40]. The problem is prominent when there
is a domain mismatch between labeled and unlabeled data, as
is often the case in real-world deployment. At the other end
of the spectrum, when α = 1.0, this approach becomes similar
to standard pseudo-labeling [35] as described in Section III-C,
where the offline model is never updated, and the online model is
trained on fixed pseudo-labels generated from the seed model.
This can stabilize the semi-supervised training, at the cost of
leaving no room for improving pseudo-labels and limiting the
improvement of the online model. We demonstrate the effective-
ness of the momentum update in Section VI-B.

After training with MPL, both the online and offline models
can be used for evaluation, although we use the online model as
our default. We compare and analyze the performance of these
models in Section VI-C.

C. Tuning the Momentum Coefficient

Instead of directly tuningα in (20), we design a more intuitive
method for deriving an appropriate value of α. Based on (20),
the parameters of the offline model after K iterations can be
written as

φ(K) = αKφ(0) + (1− α)

K∑
k=1

αK−kξ(k), (21)

where φ(k) and ξ(k) denote the parameters of each model at the
k-th iteration, and φ(0) = ξ(0) = θ. We here assume that it is
important to retain some influence of the seed model to stabilize
the pseudo-label generation. As a measure of this influence, we
focus on the term αKφ(0) in (21) and define a weight w of the
seed model in φ(K) as

w = αK , (22)

where we consider K as the number of iterations (i.e., mini-
batches) in a training epoch. As K can often be in the thou-
sands, small changes in α lead to huge differences in w (e.g.,
0.9993000 � 0.99973000), requiring small adjustments on α for
different amounts of training data. Instead of directly tuning
α for the momentum update, we propose to tune the weight

w, which can be regarded as the proportion of the seed model
parameters retained after a training epoch. Given w and K, α is
calculated as

α = e(1/K) logw. (23)

By controlling the update through w, we expect MPL to be less
affected by the amount of training data, which we examine in
Section VI-B.

D. Adopting Conformer for MPL Training

To further enhance the MPL performance, we investigate uti-
lizing the Conformer-based architecture [12], which is expected
to improve overall ASR performance and thus enable a model
to generate accurate pseudo-labels. While Conformer-based
models have achieved outstanding ASR performance compared
with standard Transformers [62], we empirically observe that
Conformer suffers from poor generalization from labeled data
to unlabeled data. A similar issue has been reported in other ASR
tasks [68]–[70]. Simply adopting Conformer for MPL makes the
training become unstable and diverge easily, especially when a
domain mismatch exists between labeled and unlabeled data.

We assume that such a problem comes from unreliable statis-
tics computed and used by batch normalization (BN) [71] in the
convolution module (in (9)). As the seed model is first trained
on labeled data only, the mean and variance estimated in BN are
fitted to the statistics of Dlab. When the model is then further
trained on the combined Dlab and Dunlab via MPL, the data
variation becomes large among mini-batches, which leads to
making BN unstable [72]. Hence, we consider replacing BN
with group normalization (GN) [73] in the convolution module,
as it has been shown effective for Conformer-based streaming
ASR [68]. GN divides feature maps into groups and normalizes
the features within each group, which makes the training less
dependent on the variations across mini-batches. This is found
critical for stabilizing the Conformer-based MPL training, as
carefully investigated in Section VI-E1.

E. Exploiting LM Knowledge for MPL Training

While using an external LM and beam-search decoding has
been shown to be effective for generating pseudo-labels with
high-quality [35], [38], [40], it is too computationally intensive
to be adopted for MPL due to the on-the-fly label generation.
To mitigate this limitation, we consider performing the standard
pseudo-labeling (PL) training (as described in Section III-C2)
prior to MPL. With this combination of PL and MPL, LM
knowledge is implicitly transferred to the seed model, providing
the MPL training with a better initialization for generating
higher-quality pseudo-labels. Moreover, by avoiding the explicit
LM usage during the MPL training, we can prevent the ASR
model from over-fitting to the LM training text data, which
often degrades the generalization capability of the model [42],
[43]. In addition to PL, we investigate iterative pseudo-labeling
(IPL) [39], which extends PL by continuously training a model
with periodic regeneration of pseudo-labels.
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Algorithm 2: Incorporating LM Knowledge into MPL.
Input:
Dlab,Dunlab � labeled and unlabeled data
A � an ASR model architecture
α � a momentum coefficient

1: Train a seed model Pθ with architecture A on Dlab

using Eq. (15)
2: # Iterative pseudo-labeling
3: for i = 1, . . . , Iipl do
4: Generate D̂unlab = {(XN+m, ŶN+m)|XN+m ∈

Dunlab}, using Eq. (16)
5: for epoch = 1, . . . , Eipl do
6: for all (X,Y ) ∈ Dlab ∪ D̂unlab do
7: Compute loss L for Pθ(Y |X) with Eq. (15)
8: Update θ using ∇θL
9: end for

10: end for
11: end for
12: # Momentum pseudo-labeling
13: Initialize an online model Pξ and an offline model Pφ

with Pθ

14: for epoch = 1, . . . , Empl do
15: for all S ∈ Dlab ∪ Dunlab do
16: Obtain X ∼ S

17: Obtain Y =

{
Y ∼ S (S ∈ Dlab)

Ŷ ∼ Pφ(Y |X) (S ∈ Dunlab)
18: Compute loss L for Pξ(Y |X) as in Eq. (15)
19: Update ξ using ∇ξL
20: Update φ← αφ+ (1− α)ξ
21: end for
22: end for
23: return Pξ � online model is returned for final

evaluation

Algorithm 2 shows the proposed MPL training with the ini-
tialization strategy based on PL or IPL. In the beginning, a seed
model is trained using a labeled set as in Section III-C1 (line
1). Then, the seed model is further trained via PL or IPL with
LM and beam-search decoding (lines 3–11). Here, we denote
Iipl as the number of iterations (pseudo-label updates), and Eipl

as the number of epochs trained in each iteration. Note that
this process becomes PL [35] when Iipl = 1 and IPL [39] when
Iipl > 1. Finally, the enhanced seed model is used to initialize
the online and offline models for MPL (lines 13–22). The MPL
training lasts Empl epochs.

V. EXPERIMENTAL SETTING

A. Data

The experiments were carried out using the LibriSpeech
(LS) [74] and TEDLIUM3 (TED3) [75] datasets. LS is a corpus
of read English speech, containing 960 hours of training data
(split into train-clean-100, train-clean-360, and train-other-
500). We also used the 10-hour Libri-Light (LL) training data
(train-10 h) [16], which is a low-resource subset extracted from

the LS training data. TED3 is a corpus of English Ted Talks
consisting of 450 hours of training data (train-ted3). For each
dataset, we used the standard validation and test sets for tuning
hyper-parameters and evaluating performance, respectively. As
input speech features, we extracted 80 mel-scale filterbank coef-
ficients with three-dimensional pitch features using Kaldi [76].
For text tokenization, we used SentencePiece [77] to construct
a 1 k subword vocabulary, which was extracted from either
train-clean-100 or train-10 h transcriptions, depending on the
semi-supervised setting.

B. Semi-Supervised Settings

We simulated several semi-supervised settings, where either
the train-clean-100 (LS-100), train-10 h (LL-10), or train-
clean-460 (LS-460) set is regarded as labeled. With a seed model
trained on LS-100, we considered three settings with different
unlabeled sets:
� LS-100/LS-360, an in-domain setting with train-clean-

360 (LS-360);
� LS-100/LS-860, an in-domain setting with train-clean-

360 and train-other-500 (LS-860); and
� LS-100/TED3, an out-of-domain setting with train-ted3.
In addition, with a seed model trained on LL-10, we consid-

ered three low-resource settings with different unlabeled sets:
� LL-10/LS-360, an in-domain setting with train-clean-360

(LS-360);
� LL-10/LS-9603, an in-domain setting with train-clean-

100, train-clean-360, and train-other-500 (LS-960); and
� LL-10/TED3, an out-of-domain setting with train-ted3.
We also considered two settings with more labeled data, using

LS-100 and LS-360 (LS-460) for training a seed model:
� LS-460/LS-500, an in-domain setting with unlabeledtrain-

other-500 (LS-500); and
� LS-460/TED3, an out-of-domain setting with

unlabeledtrain-ted3.

C. Model Architecture

As an ASR model, we trained the Transformer [60] or Con-
former [12]-based encoder architecture described in Section III-
A1 or III-A2, implemented in ESPnet [78]. The model consisted
of the Conv2D layer (in (2)) followed by a stack of 12 encoder
blocks (Nenc = 12). The Conv2D layer down-samples the input
length by a factor of 4, using two 2D convolution layers with
256 channels, a kernel size of 3× 3, and a stride size of 2. In the
multi-head self-attention module (in (4) and (8)), the number of
heads dh and dimension of a self-attention layer dmodel were set
to 4 and 256, respectively. The dimension of the feed-forward
network dff (in (5), (7), and (10)) was set to 2048. For the
convolution module of Conformer (in (9)), we used a kernel size
of 31. The number of groups was set to 8 for group normalization
when it was used as a replacement for batch normalization in
the convolution module.

3Note that LS-960 contains the LL-10 audios, so the LL-10 utterances are
included both as labeled and unlabeled samples, and only the LS-960 data other
than LL-10 should be considered as truly unlabeled.
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TABLE I
NUMBER OF MINI-BATCHES K AND MOMENTUM COEFFICIENT

α IN EACH SETTING

Given w = 0.5 and K, α is calculated from
(23).

D. Training Configuration

The seed model was trained for 150 epochs using the Adam
optimizer [79] with β1 = 0.9, β2 = 0.98, and ε = 10−9. We
used Noam learning rate scheduling [60] with 25 k warmup steps
and a learning rate factor of 5.0. The semi-supervised training
lasted up to 200 epochs, where the gradient-based optimization
was done by using the Adam optimizer with an initial learning
rate of 10−3, β1 = 0.9, β2 = 0.999, and ε = 10−8. IPL was
performed by iterating PL for a maximum of 8 times (Iipl ≤ 8),
where the model was trained for 25 epochs (Eipl = 25) in each
iteration. After each iteration of IPL, we averaged model pa-
rameters over the last 5 checkpoints to stabilize the pseudo-label
generation. For the momentum update of MPL (in (20)), we used
w = 0.5 for all the semi-supervised settings, and Table I lists an
actual value of the momentum coefficient α used in each setting.
For the training of all models, we used SpecAugment [55] as data
augmentation.

E. Decoding Configuration

For evaluation, a final model was obtained by averaging model
parameters over 10 checkpoints with the best validation perfor-
mance [60]. We trained an LM consisting of 4 long short-term
memory (LSTM) layers with 2048 units, using the LS-100
or LL-10 transcriptions combined with the external text data
provided by LibriSpeech [74]. For decoding with the LM, we
adopted a frame-synchronous CTC prefix beam search algo-
rithm [80], [81], where we used a beam-size of 20, a score-based
pruning threshold of 14.0, an LM weight of 1.0, and an insertion
bonus factor of 2.0. For decoding without the LM, we performed
the best path decoding of CTC [6].

F. Evaluation Metrics

We used the word error rate (WER) to measure the ASR per-
formance. For evaluating the performance of semi-supervised
training, we measured the WER recovery rate (WRR) [35],
[82]. WRR compares WERs of the oracle model (trained using
ground-truth transcriptions for the unlabeled data as well) and
the semi-supervised model by calculating the ratio between their

absolute reductions from the seed model’s WER:

WRR[%] =
WERseed −WERsemi-supervised

WERseed −WERoracle
, (24)

where WER∗ denotes WER for each model.

VI. RESULTS AND DISCUSSION

In this section, we report and discuss results obtained from
our semi-supervised ASR experiments. First, to verify the effec-
tiveness of the proposed MPL, we perform some basic analyses
based on the Transformer-based models. Then, we show results
for further improving MPL, using the Conformer architecture
and additional training/decoding techniques.

A. MPL Results Using Transformer

1) In-Domain Settings: Table II shows results on the in-
domain LS settings, comparing PL [35] (from Section III-C)
and the proposed MPL. Note that the MPL results also appear
in our previous paper [48]. The oracle results were obtained
by fine-tuning the seed model using ground-truth labels for
both the labeled source and target training sets. Looking at
results in the LS-360 setting (A*), both PL and MPL led to
a significant improvement over the seed model (A1,A2 vs.
S1). When decoded without the external LM, PL resulted in
better performance than MPL (A1 vs. A2), benefiting from
high-quality pseudo-labels generated using the LM. However,
when decoded with the LM, the performance gain was larger
for MPL, achieving much lower WERs on the other sets with
similar WRRs to those obtained by decoding without the LM.
PL, in contrast, had smaller improvement with degraded WRRs,
which indicates PL is likely to fit to LM knowledge, as reported
in [42], [43], and have less variations in the hypotheses during
the beam-search decoding.

In the LS-860 setting (B*) with more unlabeled data, MPL
again outperformed the seed model with the same range of WRR
as was observed in the LS-360 setting (A2 vs. B2), demonstrat-
ing its scalability with respect to the amount of unlabeled data.
While PL was also effective in this setting, the gain from the
seed model was smaller than that obtained from the LS-360
setting (A1 vs. B1); on the other sets, especially, the WRRs of
PL dropped by an absolute difference of over 10%. MPL was
capable of keeping high WRRs on the other sets, successfully
increasing the generalization ability of the model. MPL greatly
benefited from decoding with the external LM and achieved
better results than those obtained with PL.

2) Out-of-Domain Setting: Table III lists results on the out-
of-domain TED3 setting. Note that the MPL results also appear
in our previous paper [48]. PL resulted in a modest improvement
over the seed model, while the gain was more substantial for
MPL (C1 vs. C2). As there is a domain mismatch between
the LM training text and the actual TED3 transcriptions, PL
was less effective at learning from the out-of-domain unlabeled
data. Moreover, the LM decoding led to lowering the WRR of
PL, indicating that the model was prone to over-fitting to LM
knowledge. MPL, on the other hand, took great advantage of
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TABLE II
WERS [%] AND WRRS [%] ON IN-DOMAIN LIBRISPEECH (LS) SETTINGS

All models were trained using transformer (Trf) encoder. The results are divided into two sections: Whether the LM with beam-search decoding was applied in the final Evaluation
or not.

TABLE III
WERS [%] AND WRRS [%] ON OUT-OF-DOMAIN TEDLIUM3 (TED3) SETTING

All models were trained using transformer (Trf) encoder.

Fig. 1. Influence of momentum update weight w on WER.

decoding with the LM while achieving as high a WRR as the
result decoded without the LM.

B. Effectiveness of w for Tuning the Momentum Update

Fig. 1 shows the performance of MPL depending on the
weight w (defined in (22)) used to derive α in the momentum
update (in (20)). Note that the figures are reproduced from
our previous paper [47]. We observed a similar trend among
the curves in different semi-supervised settings (Fig. 1(a), (b),
and (c)). WERs increased as w was set closer to 0.0. When
w = 0.0, which is a similar approach to [40], the training was
likely to be unstable and failed under the LS-360 and TED3

Fig. 2. Learning curves of MPL with different weights w in LS-100/LS-360.

conditions, as illustrated by the learning curves shown in Fig. 2.
This indicates the importance of retaining the influence of the
seed model to stabilize learning from unlabeled data. However,
depending too much on the seed model (i.e., setting w closer to
1.0) also worsened WERs. Larger w slows down the progress of
the offline model, causing MPL to become more like standard
PL [35] but without an LM.

Fig. 1(d) shows results under an extreme condition, where
not only a domain mismatch exists between the seed model and
unlabeled data, but labeled data is not used during the semi-
supervised process (i.e., training the online model withLunlab(ξ)
only). Compared to the other settings, the performance was more
sensitive to the change in w, but the overall trend was similar.

In general, the proposed tuning method with w effectively
controlled the momentum update in all settings. It provides a
more intuitive guide for tuning α, taking the amount of data into
account. Based on the validation results mainly on the LS-860
and TED3 settings, we set w = 0.5 for all the semi-supervised
settings.
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TABLE IV
WERS [%] OF ONLINE AND OFFLINE MODELS IN LS-100/LS-360 SETTING

Decoded without LM.

TABLE V
WERS [%] AND WRRS [%] FOR MPL WITHOUT DATA AUGMENTATION

†Indicates without specaugment. Decoded without LM.

C. Online Model vs. Offline Model

Table IV compares results obtained from the online and offline
models after the MPL training in LS-100/LS-360. Here, last1
indicates evaluating each model from the last checkpoint and
val10 from averaging model parameters over 10 checkpoints
with the best validation performance. Without the checkpoint
averaging technique, the offline model gave better performance
than the online model. Being an exponential moving average of
the online model parameters over the MPL training (cf. (20)), the
offline model naturally benefited from the model ensembling, as
it has been shown effective in [83]. However, with checkpoint
averaging, the performance of both models improved and the gap
was reduced to almost none. As the online model was slightly
better on the development sets, we used it as our default for
evaluation, which is contrary to previous work [46].

D. Importance of Data Augmentation

In Table V, we investigate the importance of applying
SpecAugment during the MPL training (cf. (19)). Even without
the augmentation, MPL led to a decent improvement over the
seed model (S1 in Table II). However, WRRs significantly
dropped compared to the results with SpecAugment (A2, B2,
C2). Note that, for the models trained without the augmentation,
we computed the WRR against an oracle model without the
augmentation. Without SpecAugment, we observed that the
training converged earlier, and MPL was less effective.

E. MPL Results Using Conformer

1) Investigation on Normalization Method: In Table VI, we
compare WERs of seed models trained using the Transformer

TABLE VI
VALIDATION WERS [%] OF SEED MODELS TRAINED ON LABELED LS-100

For the conformer-based models, we explored different normalization methods for the
convolution module.

Fig. 3. Validation token error rate [%] of MPL training using Conformer with
batch (dotted line) or group (solid line) normalization.

or the Conformer architecture. Note that similar results also
appear in our previous paper [48]. For Conformer-based models,
we investigated different normalization methods for the con-
volution module (in (9)), including {batch [71], instance [84],
group [73], layer [85]} normalization ({BN, IN, GN, LN}).
Note that IN and LN are the same as GN with group sizes
1 and 256 (= dmodel), respectively. Comparing the two archi-
tectures, the Conformer-based models significantly improved
over the Transformer-based model (S1 in Table II). Within the
Conformer-based models, GN resulted in the best performance
on both LS and TED3, and the 100-hour training data seemed
to be too small to take advantage of BN. As normalizing across
feature maps (i.e., IN, GN, and LN) achieved better performance
than BN on the out-of-domain TED3 set, this indicates that BN
led to lower generalization capability with unreliable statistics.
Note that in [11], BN achieved better performance than the
other normalization methods when another ASR model based
on depth-wise separable convolution was trained on the labeled
full 960-hour set of LS. Fig. 3 shows learning curves from
MPL training using Conformer with BN or GN. The figure is
reproduced from our previous paper [48]. In all semi-supervised
settings, BN caused the training to become unstable. This was
especially the case in the out-of-domain setting with TED3,
where the model diverged more quickly than in the other settings.
In contrast, GN successfully stabilized the MPL training with
Conformer.

2) In-Domain Setting: Table VII lists results on the in-
domain LS settings, comparing PL [35], IPL [39], and the
proposed MPL. Note that similar results also appear in our
previous paper [48]. Looking at the MPL results (X3,Y3), MPL
led to a substantial improvement over the seed model (S2),
effectively learning from unlabeled data using Conformer with
GN. These Conformer results significantly outperformed those
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TABLE VII
WERS [%] AND WRRS [%] ON IN-DOMAIN LIBRISPEECH (LS) SETTINGS

All models were trained using conformer (Cfm) encoder. ‡indicates trained for 100 epochs.

TABLE VIII
WERS [%] AND WRRS [%] ON OUT-OF-DOMAIN TEDLIUM3 (TED3) SETTING

All models were trained using conformer (Cfm) encoder.

TABLE IX
TEST WERS [%] AND WRRS [%] ON LS-100/TED3

Different LMs were used during decoding.

of Transformer-based MPL (A2,B2 from Table II). With pseudo-
labels generated using the LM, PL [35] and IPL [39] achieved
lower WERs on the clean sets than those obtained from MPL,
and IPL resulted in better performance than MPL on the other
sets as well (*1,*2 vs. *3). However, when decoded with the
LM, the performance gain was larger for MPL with only a slight
decrease in WRRs compared with the decoding without LM, and
MPL achieved much lower WERs on the other sets. PL and IPL,
in contrast, had smaller improvement with degraded WRRs, as
was observed in the Transformer results (Table II).

3) Out-of-Domain Setting: Table VIII shows MPL results
on the TED3 setting. Note that similar results also appear in our

previous paper [48]. Conformer with GN significantly improved
MPL over the seed model and Transformer-based MPL (Z3 vs.
S2, C2), successfully stabilizing training on the out-of-domain
unlabeled data. PL and IPL led to decent improvements over
the seed model, but the gain was more substantial for MPL
(C1 vs. C2), which is consistent with the Transformer results
(Table III). Moreover, PL and IPL had little gain from decoding
with the LM, indicating the model was too fitted to the LM
knowledge.

F. Exploiting LM Knowledge in MPL via PL or IPL

In Tables VII and VIII, *4 and *5 show results for applying
MPL training after enhancing the seed model using PL and IPL,
respectively (cf. Section IV-E). Note that we performed PL or
IPL for 100 epochs and MPL for another 100 epochs to match
the total training epochs of the other methods.

In the in-domain settings (Table VII), this initialization strat-
egy provided MPL with distinct improvements (X3 vs. X4,X5
and Y3 vs. Y4, Y5). With the IPL-based initialization, MPL
achieved the best overall performance on both of the settings
with different amounts of unlabeled data (X5, Y5). When de-
coded with the LM, the improved MPL achieved higher WRRs
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TABLE X
WERS [%] AND WRRS [%] ON LOWER-RESOURCE IN-DOMAIN LS SETTINGS

All models were trained using conformer (Cfm) encoder. ‡indicates trained for 100 epochs.

TABLE XI
WERS [%] AND WRRS [%] ON LOWER-RESOURCE OUT-OF-DOMAIN TED3 SETTING

All models were trained using conformer (Cfm) encoder.

TABLE XII
WERS [%] AND WRRS [%] ON HIGHER-RESOURCE IN-DOMAIN LS SETTINGS

All models were trained using conformer (Cfm) encoder. ‡indicates trained for 100 epochs.

TABLE XIII
WERS [%] AND WRRS [%] ON HIGHER-RESOURCE OUT-OF-DOMAIN TED3 SETTING

All Models Were Trained Using Conformer (Cfm) Encoder.
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than those obtained from PL and IPL (e.g., X2 vs. X5), prevent-
ing the model from over-fitting to LM knowledge but exploiting
it to improve ASR performance.

In the out-of-domain setting (Table VIII), MPL further re-
duced WERs by using the initialization based on IPL (Z3 vs.
Z5). However, the improvement was much smaller than those
observed in the in-domain settings, and the standard MPL per-
formed sufficiently well by decoding with the LM.

G. Adapting Language Model

To further improve the MPL result in the out-of-domain
setting, we explore adapting the LM to the target domain (i.e.,
TED3). To this end, we made an attempt to make use of
pseudo-labels, which were generated from train-ted3 using the
model obtained from MPL (Z3). The pseudo-labels were simply
mixed with the LS training text for training an adapted LM.
Table IX shows results decoded with different LMs, where a
source LM is trained on the LS training text (the same LM
used in the other experiments), and a target LM is trained on
the external text-only data provided by TED3 [75]. With the
adapted LM, MPL slightly improved over decoding with the
source LM. The seed and oracle models also benefited from
decoding with the adapted LM, where the gain was much larger
than that of MPL. As the pseudo-labels are obtained as a result
of MPL training, the adapted LM was less effective for MPL
with the already-acquired knowledge. Regarding LM training
on pseudo-labels (uncertain ASR hypotheses), an effective ap-
proach has been proposed in [86], which trains a Transformer
or LSTM-LM by calculating a Kullback–Leibler divergence
loss against token-wise predictions of ASR confusion networks.
We found this method challenging to apply to our framework,
as this work focused on a CTC-based model with frame-wise
predictions. Hence, future work should consider a better way
for training an LM using pseudo-labels from a CTC-based ASR
model.

H. MPL Results in Lower-Resource Settings

1) In-Domain Setting: Table X lists in-domain results where
Conformer-based PL and MPL are applied to the LL-10 settings.
With a fewer amount of labeled data, the seed model was inferior
in quality, compared to the one trained on LS-100 ( S2 vs. S3
). In both of the settings, PL and MPL successfully improved
the seed model ( *1 , *2 vs. S3 ). Even without using the LM,
MPL achieved much lower WERs than PL ( *1 vs. *2 ), and PL
resulted in a significant drop in WRRs compared to the previous
experiments with more labeled data ( I1 vs. X1 and J1 vs. Y1 ).
While PL-based approaches often depend on the quality of a seed
model, MPL managed to alleviate the problem by continuously
improving the pseudo-label quality via the interaction between
the online and offline models. Using PL as an initialization,
MPL further improved the performance by exploiting the LM
knowledge effectively.

2) Out-of-Domain Setting: Table XI shows results on the
out-of-domain setting. While PL improved over the seed model,
the gain was smaller when compared to the results from the
in-domain settings (I1,J1 vs.K1). On the other hand, MPL per-
formed better than PL and kept WRRs as high as the in-domain

results (I2,J2 vs.K2). Even with the low-quality seed model,
MPL enabled the model to train stably on the out-of-domain
data, and the tuning of the momentum update (Section IV-C)
worked robustly to the amount of labeled data. The PL-based
initialization was also effective for improving MPL performance
while maintaining the high WRRs when decoded with the LM
(K3).

I. MPL Results in Higher-Resource Settings

1) In-Domain Setting: Table XII lists in-domain results
where Conformer-based PL and MPL are evaluated on the
LS-460 settings. With a larger amount of labeled data, the seed
model had better quality than the models trained on less data
( S2 , S3 vs. S4 ). In both settings, PL and MPL improved
over the seed model ( L1 , L2 vs. S4 ), and the higher-quality
seed model led to better overall results compared to the LS-100
settings (Table VII). When decoded without the LM, MPL
achieved similar results to those obtained from PL on both the
clean and other sets ( L1 vs. L2 ). This is different from our
previous observations in Table VII, where PL performed better
than MPL by using pseudo-labels generated with the LM. With
the better seed model trained on more labeled data, the LM
was less effective in helping generate pseudo-labels, which is
consistent with the findings in [42]. When decoded with the
LM, MPL achieved lower WERs on the other sets than PL while
keeping WRRs high. Overall, the PL-based initialization ( L3 )
resulted in the best result, but it was less effective on the clean
sets compared to those in the LS-100 settings (Table VII).

2) Out-of-Domain Setting: Table XIII shows results on the
out-of-domain setting. The seed model trained on LS-460 was
also effective for the TED3 setting, achieving much lower WERs
than the models trained on less data (S2 ,S3vs.S4 ). The overall
trend was consistent with what we observed in Tables III, VIII,
and XI, with MPL achieving higher WRRs.

VII. CONCLUSION AND FUTURE WORKS

We proposed momentum pseudo-labeling (MPL), a semi-
supervised learning framework for end-to-end ASR. MPL con-
sists of a pair of online and offline models that interact and
learn from each other. The online model is trained to predict
pseudo-labels generated by the offline model. The offline model
maintains an exponential moving average of the online model
weights. The interaction between the two models continuously
improves the quality of pseudo-labels and permits stabilizing
ASR training on unlabeled data. We applied MPL to a CTC-
based end-to-end ASR model and conducted experiments on
various semi-supervised settings based on LibriSpeech, Libri-
Light, and TEDLIUM3. The results demonstrated that MPL
significantly improves the seed model and is robust against vari-
ations in the amount of labeled/unlabeled data, variations in do-
main mismatch severity, and over-fitting to LM knowledge. With
additional enhancements, e.g., Conformer with group normal-
ization and integration of LM knowledge via IPL, MPL achieved
superior performance compared to other pseudo-labeling-based
approaches.

Future work should consider introducing filtering [35], [41],
[43] as well as other data augmentation techniques [87], [88]
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into the MPL framework. We also plan to apply MPL to other
sequence-to-sequence architectures, such as the attention mod-
els [4], [5] and Transducers [7]. Combining MPL with recent
powerful pre-trained acoustic models [31], [89] can be another
promising direction.
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