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Abstract—Self-supervised learning has achieved remarkable
success for learning speech representations from unlabeled data.
The masking strategy plays an important role in the self-supervised
learning algorithm. Most of the masking techniques operate at
a frame level. In linguistics, phone is the smallest unit of sound.
Hence, we believe that a masking technique that operates at a
phoneme level will effectively encode the phonotactic and prosodic
constraints of a spoken language, thus eventually benefits the down-
stream speech recognition tasks. In this work, we explore a novel
segmental masking strategy. Specifically, we mask phonetically mo-
tivated speech segments according to the phonetic segmentation in
an utterance. By doing so, we implicitly incorporate the properties
of a spoken language, such as phonotactic constraints and duration
of phonetic segments, into the pre-training. Through extensive
experiments, we confirm that the segmental masking strategy con-
sistently outperforms the frame-based masking counterpart. We
also further investigate the effect of segmental masking unit size, i.e.
phoneme, phoneme span, and lexical word. This work presents an
important finding about masking strategy in speech representation
learning.

Index Terms—Self-supervised learning, speech representation
learning, segmental masking.

I. INTRODUCTION

CHILDREN learn a spoken language by first listening to
unlabeled speech continuously to figure out the phonetic

and phonotactic structure of a language [1]–[3], then further
acquiring lexical and syntactic knowledge to associate with
meanings. The former is a typical self-supervised learning (SSL)
process [4]–[6], while the latter is achieved via supervised
learning.

The recent studies on representation learning of speech signals
mimics the unsupervised process of language acquisition by first
pre-training a model on a large amount of unlabeled speech
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data to capture speech dynamics, then fine-tuning the model
over a specific downstream task. Benefiting from abundant
unlabeled data, this paradigm has shown to be effective for
improving many speech-related tasks, such as automatic speech
recognition (ASR) [4], [5], [7], speaker verification (SV) [8],
[9], speech translation (ST) [10], [11] and speech enhancement
(SE) [12], [13]. As the self-supervised learning seeks to discover
useful feature representations from unlabeled data, the resulting
representations are expected to be more general and robust
than those derived from supervised learning, which tend to bias
towards downstream applications [14]. Self-supervised learning
is therefore an important stepping stone for learning robust and
generic representations [6].

Speech signals carry multiple levels of information, e.g.
acoustic, phonetic, prosodic, and linguistic units, at different
time scale, e.g. short-time frame, phoneme, word, phrase, and
sentence [15], [16]. Ideally, a learned model is expected to
characterize the speech signals in a way that is more accessible to
the downstream tasks. For example, it should capture phonetic,
phonotactic, and prosodic knowledge in a speech signal that is
useful for a speech recognition task. Furthermore, such learned
model could also help improve transfer learning and adaptations
across different data distributions and domains [17]–[19].

In practice, the pretext task is at the centre of a self-supervised
learning algorithm [4]–[6]. Solving the pretext task, a neural
network learns a mapping function that transforms the input
speech into latent representations that are potentially useful for
various downstream tasks. Therefore, the design of the pretext
task plays a crucial role in self-supervised learning. The pretext
task should be designed to encourage the model to learn the
underlying representations of speech.

Just like the Masked Language Model (MLM) of BERT [20],
[21] for language representations, the BERT-style masked re-
construction is studied for learning speech representations [22],
[23]. Mockingjay [24] introduces the reconstruction loss for
speech, in which it randomly masks the input speech frames into
zero to pre-train the Transformer encoder [25] with a masking
policy similar to BERT [20] and RoBERTa [21]. Audio AL-
BERT [26] explores a lite version of the self-supervised speech
representation model based on Mockingjay [24]. TERA [5] is
another extended version of Mockingjay, where the alterations
are introduced and applied on inputs along three dimensions:
time, channel and magnitude. In [27], the input features are
divided into chunks of four frames, and masks are applied on the
chunks at a masking rate of 15%. The above masking strategies
directly borrow ideas from natural language processing (NLP),
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and have shown effectiveness in speech processing by replacing
a discrete text symbol with a continuous speech frame. However,
speech and text are inherently different. Speech is a continu-
ous flow of signal, while text symbols are discrete. Moreover,
in linguistics, phone is the smallest unit of sound. Speech is
seen as a sequence of phones than short-time frames. Thus,
it makes more sense for speech-related downstream tasks to
have a phoneme as the minimal unit than a speech frame during
pre-training.

We herein propose a novel segmental masking strategy for
learning speech representations. Specifically, we use phoneme-
like speech segments instead of speech frames as the masking
units during the self-supervised pre-training. In this way, we
expect the model to learn the phonetic sequence, i.e. phonotactic
constraint, of a spoken language. With a phoneme-like speech
segment, we also take into consideration the phonetic duration.
Therefore, the model also learns the prosodic constraint at the
same time. We expect that the segmental masking strategy will
eventually benefit the downstream speech recognition tasks.
Furthermore, motivated by spanBERT [28], we would study the
effect of the segmental masking unit size. To the best of our
knowledge, this is the first work that investigates the impacts of
phonetically motivated masking units on self-supervised speech
representation learning.

We demonstrate the effectiveness of the proposed mask-
ing strategies on various downstream tasks, which include
phoneme classification, speech recognition and keyword spot-
ting, speaker identification, intent classification, and speech
emotion recognition. In addition, we also explore the use of
different acoustic features, e.g., Mel Frequency Cepstral Co-
efficients (MFCC), filter-bank (FBANK) features and spectro-
grams, for reconstruction-based speech representation learning.
Furthermore, we extend our masking strategies for contrastive
predictive coding (CPC) [6]. Unlike previous CPC works [6],
[18], that uses an autoregressive model to predict future frames
based on previous context, we explore bidirectional Transformer
encoder [25] instead.

This paper is a substantial extension to the study in [29].
We investigate a general segmental masking framework, and
provide a comprehensive study of masking units for speech
representation learning. We also carry out comprehensive ex-
periments and analysis on large datasets that provide insights
into the segmental masking strategies. Furthermore, we extend
the proposed segmental masking to CPC. The rest of this paper is
organized as follows. In Section II, we introduce the related work
to set the stage for our research. In Section III, we discuss the
phonotactic and prosodic constraints in self-supervised speech
representation learning, and formulate the segmental masking
strategies. The experimental setup is provided in Section IV.
In Section V, we present and discuss the experimental results.
Lastly, we conclude this paper in Section VI.

II. RELATED WORK

Let’s review three related studies, that are self-supervised
learning, speech representation learning, and segmental struc-
ture of speech, to set the stage of this work.

A. Self-Supervised Learning

Supervised learning as a deep learning technique has brought
phenomenal advances to various research areas such as image
recognition [30], [31], speech recognition [32]–[34] and ma-
chine translation [25], [35], [36]. Such technique relies heavily
on the quality and quantity of annotated datasets for particular
applications, that oftentimes are not abundantly available. Fur-
thermore, supervised learning also suffers from issues such as
generalization error, domain mismatch, spurious correlations,
and adversarial attacks [37]. Therefore, unsupervised or semi-
supervised learning strategies become attractive alternatives. In
particular, self-supervision allows a model to learn the natural
characteristics of the data itself or the relationships between
different modalities, and hence capitalise on the raw data without
the need of manual annotations.

Self-supervised learning is a form of unsupervised learning
that treats the input or modifications of the input as learn-
ing targets (pretext tasks). In doing so, it takes advantage of
abundantly available unlabeled data for training [4], [5], [20],
[38]. Specifically, in Computer Vision (CV), some studies in-
corporate contrastive objective and self-supervised learning for
learning visual representations [38], [39]. In NLP, people exploit
self-supervised learning to learn powerful language representa-
tions. ELMo [40] is the first work that introduces the concept
of contextualized word representations using a bidirectional
language model. BERT [20] first introduces the concept of
masked language model (MLM) with deep Transformer en-
coder [25] architecture. XLNet [41], built with different attention
strategies, outperforms both autoregressive models and MLM.
RoBERTa [21], a BERT model with more data, larger batch
size, and better hyperparameters, shows competitive results with
XLNet in various downstream tasks. ALBERT [42] reduces the
parameters drastically without losing performance compared to
BERT [20]. We further the study of masking strategy of MLM
in this paper in the context of speech representation.

B. Speech Representation Learning

The self-supervised learning algorithms for speech represen-
tations can be generally grouped into two strands: discriminative
and generative. Generative approaches learn representations by
reconstructing the input speech data or predicting withheld parts
of the data, while discriminative approaches learn discriminative
representations directly, often based on metric learning-based
objectives.

1) Discriminative Approach: Contrastive Predictive Coding
(CPC) [6] is one of the typical discriminative approaches, that
combines contrastive loss and predictive coding for learning
speech representations. With CPC, we use an autoregressive
model to learn representations by conditioning on the past con-
text to discriminate the future frames from the negative samples,
that is, the contrastive loss is used to pull temporally nearby
representations closer and push temporally distant ones further.
Following this work, [19] further explores CPC to learn robust
and multilingual speech representations, and [18] uses CPC to
learn representations that can transfer well across languages for
low-resource scenarios.
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Wav2vec [43] is a fully convolutional network that is trained
with a self-supervised learning strategy. In wav2vec [43], the
network is first optimized by the CPC loss, then used for speech
recognition. VQ-wav2vec [44] learns discrete speech represen-
tation through a two-stage pre-training pipeline. Wav2vec2.0 [4]
introduces a framework for self-supervised learning of speech
representations which masks latent representation of the raw
waveform and solves a contrastive task over the quantized
speech representations. It jointly learns discrete speech units
with contextualized representations. Motivated by MLM [20],
w2v-BERT [45] combines contrastive learning and MLM for
speech representation learning, where the former trains the
model to discretize continuous speech signal input and the latter
trains the model to learn contextualized speech representations
via solving a masked prediction task consuming the discretized
tokens.

The discriminative approaches are generally effective. How-
ever, their masking schemes are mostly based on speech frames,
without taking segmental information into consideration.

2) Generative Approach: Similar to Recurrent Neural Net-
work (RNN) LM for text, Autoregressive Predictive Coding
(APC) technique [16], [17] learns generic speech representa-
tions. It incorporates an autoregressive model to encode the
temporal information within an acoustic utterance for recon-
structing the target frame conditioning on previous context.
To encourage APC to learn more global structures of speech
sequences, the APC model is trained to predict a frame that is a
few steps ahead of the current frame. In [46], the APC objective
is extended to multi-target training. The new objective predicts
not only the future frame conditioning on previous context but
also past memory through reconstruction. In VQ-APC [47],
VQ layer is combined to impose a bottleneck and force the
model to learn better speech representations. DeCoAR [48] and
DeCoAR 2.0 [49] further the APC technique and study deep
contextualized acoustic representations.

Mockingjay [24], Audio ALBERT [26] and TERA [5] learn
speech representations using bidirectional Transformer en-
coder [25], in which the model is trained to reconstruct the
current frame through jointly conditioning on both past and fu-
ture context. These BERT-style masked reconstruction methods
are largely inspired from MLM from BERT [20], and adapt the
NLP pre-training techniques to continuous speech. They follow
similar masking policy to BERT [20] and RoBERTa [21]. [22],
[23], [27] follow the standard BERT masking policy to pre-
train the ASR encoder, in which 15% of the input frames
are randomly chosen to be masked. The chosen frames are
replaced with zero vectors for 80% of the time, with frames
from random positions 10% of the time, and kept unchanged for
remaining 10% of the time. In Speech-XLNet [50], motivated
by Permutation Language Modeling (PLM) from XLNet [41],
the model learns by reconstructing from shuffled input speech
frames rather than masked frames. PASE [51] and PASE+ [7]
explore to learn problem-agnostic speech representation from
multiple self-supervised tasks, including reconstruction of raw
waveform, Low Power Spectrum (LPS), MFCC and prosody
and other binary classification tasks.

Similar to the discriminative approaches, the generative ap-
proaches also operate with masking schemes based on speech

frames. The main difference lies in the manner in which they
optimize the model: while generative approaches attempt to
reconstruct masked frames, discriminative approaches learn to
distinguish masked frames from negative distractors.

The studies of both discriminative and generative suggest that
the choice of masking schemes matters in the speech represen-
tation learning. In this work, we take two typical discriminative
methods, wav2vec [43] and CPC [6], and two typical genera-
tive methods, Mockingjay [24] and TERA [5] as the reference
baselines.

C. Segmental Structure of Speech

In linguistics, phone is the smallest unit of sound. A sequence
of linguistic units, e.g. phonemes, words, and phrases, form
a speech signal. Thus, it makes more sense for a model to
predict phonemes than speech frames in a running speech.
Phoneme segmentation is an important precursor task for many
speech processing tasks. Phoneme boundary detection has been
explored under both supervised and unsupervised settings [52]–
[55]. In [53], self-supervised learning (SSL) is used for phoneme
boundary detection, in which the model is optimized to identify
spectral changes in the signal using the Noise-Contrastive Es-
timation (NCE) principle and achieves state-of-the-art perfor-
mance.

There have been studies on the segmental structure of speech,
such as SCPC [56], ACPC [57], and mACPC [58]. SCPC [56]
aims at performing phoneme segmentation with self-supervised
learning, however, the training is still done at a frame level.
ACPC [57] is a modification of CPC which predicts a se-
quence of latent representations instead of a single future latent
vector. mACPC [58] is built on top of [56], [57] by using a
frame-level encoder and a segment-level encoder that follows
the same principle as that in the encoder in SCPC [56]. Unlike
these methods, we directly incorporate segmental structures of
speech, e.g. phonemeand word, into the masking strategy of
self-supervised speech representation learning, and implicitly
inject the phonotactic and prosodic constraints of a spoken
language into the pre-training.

D. Contribution of This Work

Generally, the discriminative approach learns the speech rep-
resentations by distinguishing masked positive samples from
negative distractors, while the generative approach learns the
representations by predicting the masked samples. Therefore,
the masking strategy plays a vital role in the Masked Speech
Model (MSM) [4], [5], [24]. A frame-level random sampling
strategy was studied that treats a speech frame as the masking
unit, similar to a token of text in Masked Language Model [20],
[21]. This work is a departure from the prior work in several
ways. First, we propose the use of phonetically motivated seg-
ment, instead of speech frame, as the masking unit, and show
that segmental masking is more effective than masking random
speech frames. Second, as the segmental masking involves
multiple consecutive speech frames, we further study the effect
of masking unit size, e.g., phoneme span and lexical word.
Third, we apply the proposed segmental masking strategy to both
generative and discriminative approaches using the Transformer
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Fig. 1. The hierarchical structure of speech. The waveform is sampled at
16KHz from train-clean-100 subset of LibriSpeech. A speech frame is a
short-time window of 10 ms, which serves as a masking unit in many speech
pre-training algorithms. A phoneme is a speech segment of multiple consecutive
frames, as illustrated in red boxes. A sentence is typically over one second.

encoder [25]. Finally, we validate the proposed segmental mask-
ing strategy on various downstream speech recognition tasks to
conclude the study.

III. SELF-SUPERVISED LEARNING WITH

SEGMENTAL MASKING

We can describe a spoken language by its phonotactic con-
straint, that dictates how phonemes sequence form syllables and
words in a language. In a frame-based masking strategy, the
self-supervised learning model learns to predict a frame from its
context. In this paper, we propose a segmental masking strategy,
with which the self-supervised learning model learns to predict
a segment of frames instead.

A. Segmental Masking

For both discriminative and generative approaches, the mask-
ing strategy plays an important role. The masking strategy
decides what the model learns and what effect of the model
has on the downstream tasks.

Typically, a frame-based masking scheme firstly selects 15%
of frames, and then 1) masks 80% of the time to zero, 2) replaces
10% of the time with a random frame, 3) leaves 10% of the time
unchanged, simply adopting the masking strategy in BERT [20],
[21]. While effective, this simple random masking scheme treats
speech as a sequence of feature frames, without considering its
phoneme-based construct. The model learns to encode speech
frame sequences with a focus on local context at a fine resolution
that is not directly related to phonetic decoding. Fig. 1 shows
an example of the hierarchical structure of a speech utterance.

As the frame-based masking scheme randomly masks the
speech frames, it treats all the speech frames in an utterance
equally. It is apparent that individual speech frames do not carry
equal information because the duration and energy distributions
of phonemes vary very much. Therefore, randomly masking
speech frames does not benefit from the inherent properties of a
spoken language, e.g. phonotactic and prosodic patterns.

In [59], it was shown that data selection matters in the self-
supervised pre-training for downstream ASR tasks. The topic of
data selection and masking strategy has been not well studied.

All the studies and observations above prompts us to look into the
way to incorporate speech properties into the masking strategy
in speech representation learning.

B. Segmental Masking Strategies

1) Phoneme-Based Segmental Masking Strategy: The mask-
ing schemes dictate what the pretext task predicts during pre-
training. We propose to use a phoneme instead of a speech frame
as the masking unit. In this way, the model learns to predict a
phonetic segment from its phonetic context in a speech utterance.
It should be noted that the proposed technique does not require
the phonetic identity of the speech segment, it only uses phoneme
boundary to define a speech segment, i.e. multiple consecutive
speech frames.

In practice, a speech utterance can be segmented into phonetic
segments either in an supervised [52], [60] or unsupervised [53]
manner. Once we obtain the phoneme boundary, we can ran-
domly apply the masking at a segment level, i.e. over multiple
consecutive speech frames, that we will discuss in further detail
next.

We denote the entire speech corpus as X and the acoustic
features of the utterance sampled from X as X . The length (the
number of frames) and the height (the number of channels) of
X are denoted as Lx and Hx, respectively. The utterance X
containsN phonemesX = (x1, x2, . . . , xN ). To mask the input
utterance, we randomly select {m : m < N} phonemes without
replacement. This is another difference between the phoneme-
based phonetic masking scheme and the traditional frame-based
masking in the literature.

We first randomly select a set of phonemes. 1) We mask
80% of selected phonemes to zero across all the frames. 2) We
replace 10% of them with randomly sampled frames. 3) We
leave the remaining 10% unchanged. Similar to the masking
policy in [5], [20], [21], [24], the 10% unchanged phonemes
are introduced to mitigate the train-test mismatch at run-time as
the model only receives unmasked speech frames or phonemes
during downstream training stage.

In addition to temporal masking, TERA [5] shows that chan-
nel alteration and magnitude alteration are also beneficial for
speech representation learning. For channel alteration, we ran-
domly mask a certain percentage of channels to zero for all
time steps across the input sequence. For magnitude alteration,
we randomly apply sampled Gaussian noise to augment the
magnitude of input sequences with a certain probability. These
two alterations can be easily combined with our phoneme-based
masking strategy.

2) Phoneme Span-Based Segmental Masking Strategy:
Given a sequence of phonemesX = (x1, x2, . . . , xN ), we select
a subset of phonemes Y ⊆ X by iteratively sampling the spans,
i.e. �, of consecutive phonemes until the masking budget (e.g.,
20% of X) has been spent. At each iteration, we first sample a
span length (number of phoneme) from a geometric distribution
� ∼ Geo(p), which is skewed towards shorter spans. We then
randomly (uniformly) select the starting point for the span to
be masked. Following preliminary trials, we set p = 0.4, and
also clip � at �max = 7. This yields a mean span length of
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Fig. 2. An overview of the proposed self-supervised learning with segmental masking strategy. The left panel is self-supervised pre-training stage, while the
right panel is a downstream application. In the masked spectrogram, some phonemes are selected for masking. We only highlight the phonemes that are randomly
masked in the spectrogram.

mean(�) = 2.3. Fig. 3 shows the distribution of span mask
lengths.

As in above phoneme-based masking, we mask 20% of the
phonemes in total: replacing 80% of the masked phonemes with
zeros, 10% with random frames, and 10% with original frames.
However, we perform this replacement at the span level and not
for each phoneme individually, i.e. all the phonemes in a span
are replaced with zeros or samples frames.

3) Word-Based Segmental Masking Strategy: We may fur-
ther extend the size of a masking unit to a spoken word. For
this to work, we may apply a speech recognizer on the training
data to delimit the spoken words. Similar to the phoneme based
masking strategy, here, we randomly select a certain proportion
of words in the utterance, and mask all speech frames belonging
to those selected words.

C. Segmental Predictive Coding

We propose to use bidirectional Transformer encoder [25],
similar to [5], [24], to learn speech representations via masked
prediction task as illustrated in Fig. 2. The input acoustic frames
and the target predicted frames could be any acoustic frames,
such as MFCC, FBANK or spectrogram features. In this work,
FBANK features are used if not specified otherwise. Each
Transformer encoder layer consists of two sub-layers: (1) a
multi-head self-attention module, and (2) a position-wise fully
connected feed-forward network (FFN). Each sub-layer has a
residual connection, followed by layer normalization [61].

1) Transformer Encoder: Multi-head attention (MHA) is the
core module of Transformer encoders, which learns the relation-
ship between queries, keys and values from different represen-
tation subspaces at different positions. The basic unit of MHA
is self-attention [25].

Fig. 3. We sample random phoneme span lengths from a geometric distribution
� ∼ Geo(p = 0.4) clipped at �max = 7.

Since the Transformer encoder is neither recurrent nor convo-
lutional, we use the sinusoidal positional encoding to incorporate
the position information of the input acoustic sequence order.
Specifically, we first linearly project the input frames into the
dimension of the model then we sum the input frames and the
positional encoding.

2) Objectives: This work considers two predictive coding
methods for learning speech representations: generative pre-
dictive coding (GPC) and contrastive predictive coding (CPC).
GPC is a generative approach, while CPC is a discrimina-
tive approach. In this work, GPC and CPC share a similar
methodology as both use the bidirectional transformer encoder
to learn representations but differ in the way they optimize
the model: while GPC attempts to predict the masked speech
frames via minimizing L1 regression loss, CPC incorporates a
proposal distribution for drawing negative samples, and learns
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representations containing information that most discriminate
the masked speech frames from the negative samples using
contrastive loss, which is defined as:

Lc = −log
exp(sim(ct, qt)/k)∑

q̃∼Qt
exp(sim(ct, q̃)/k)

(1)

where sim(a, b) = aT b/‖a‖‖b‖ is the cosine similarity between
the context representations and the target features, Qt is a set
of K + 1 candidate representations q̃ ∈ Qt which includes qt
and K distractors. The K distractors are drawn from the same
sequence X .

D. Integration With Downstream Tasks

A speech representation learning model is useful only if it
contributes to a downstream task. There are two typical ways to
integrate a pre-trained model with a downstream task.

1) Pre-Trained Model as Feature Frontend: In this approach,
we use the pre-trained model as a feature extraction frontend of
the downstream task. We may use the hidden states of the last
Transformer encoder layer and the feature representations. In
this way, the pre-trained model is fixed, and not involved in the
training of the downstream task.

Since the representations from last layer is not always the
best [62], [63], we extract the hidden states from all encoder
layers and weighted-sum them through learnable weights as the
final representations. In this way, the information encoded in
every layer can be better adapted to downstream tasks, yielding
better transfer performance. In this work, we use the weighted-
sum approach as default if not specified otherwise.

2) Fine-Tuning of Pre-Trained Model: This approach instead
involves tuning the parameters of the pre-trained network on
the downstream tasks. The fine-tuning often performs better
than the feature-based extraction approach. Since we aim to
directly evaluate the quality of learned speech representations
from pre-training, we do not consider fine-tuning approach that
updates the parameters of the pre-trained model if not specified
otherwise.

IV. EXPERIMENTAL SETUP

In this section, we conduct extensive experiments to evalu-
ate the learned speech representations obtained with different
masking strategies in six downstream tasks. We will describe
the model architectures and the hyperparameters as part of the
experiment setup.

A. Pre-Training Setup

For the pre-training, we use the publicly available Lib-
riSpeech [64] dataset. It consists of three training subsets:
train-clean-100, train-clean-360, and train-other-500. We use
these subsets to form different pre-training datasets with various
size, including 100 hours (train-clean-100), 360 hours (train-
clean-360) and 960 hours (train-clean-100, train-clean-360,
and train-other-500). Besides the commonly used LibriSpeech
for pre-training, we also consider the CommonVoice [65]. For
the phoneme segmentation or word segmentation, we use the

force-alignment from the LibriSpeech pre-trained model.1 It
should be noted that we only use the phoneme or word boundary
information, and not the phonetic labels.

To validate the effectiveness of the proposed method on a zero
annotation dataset, we also use the pre-trained unsupervised
phoneme segmentation model from [53], which is trained on
the train-other-500 subset of LibriSpeech, to obtain pseudo
phoneme boundary labels. We use the force-alignment as the
default setting if not specified otherwise. All experiments in-
cluding pre-training and downstream tasks are performed using
80-dimensional FBANK features (normalized to zero mean and
unit variance per speaker) computed over the sampled 16 kHz
audio. We conducted all the experiments using the s3prl 2 toolkit.
The total training steps of pre-training are set to 200 K, 500 K,
1 M for 100 hours, 360 hours and 960 hours of speech data,
respectively. For CommonVoice, the training steps is set to 1 M.
We use Transformer Encoders with the hidden size of 768, the
number of self-attention heads as 12, dropout probability of 0.1,
and the hidden size of the intermediate feed-forward layer as
3,072. We use gradient descent algorithm with batch size of
32. The Adam optimizer [66] is employed for updating model
parameters, warming up the learning rate for the first 7% of
total training steps to a peak of 2e-4 and then linearly decayed.
The configurations of pre-training and task-specific downstream
training are summarized in Table I. For all our baselines, in-
cluding AALBERT [26], Mockingjay [24] and TERA [5], we
directly use the released versions in the s3prl toolkit. We did not
pre-train them from scratch by ourselves.

B. Downstream Tasks

1) Phoneme Classification: We first study how the pre-
trained models with our proposed segmental masking strategies
contribute to a phoneme classification (PC) task. Following
the common setting of previous work [5], [6], we use a linear
classifier to evaluate the linear separability of phonemes on the
train-clean-100 subset of LibriSpeech. For a fair comparison, we
use the aligned phoneme labels and train/test split provided in
the CPC [6] paper, where there are 41 possible phoneme classes
obtained using the Kaldi toolkit [67] and pre-trained models on
LibriSpeech. Since not all the information encoded from the pre-
trained model is linearly accessible, we also train a non-linear
classifier with a single hidden layers for phoneme classification,
following the same setting in CPC [6] and TERA [5]. These
two classifiers are denoted as PC (Linear) and PC (non-Linear),
respectively. For fair comparison with TERA and CPC, we
here only use the hidden states of last encoder layer for clas-
sification, and report the results in terms of accuracy (ACC).
Since pre-training and downstreaming both on LibriSpeech in-
troduce a bias. To remove this bias, we also perform phoneme
classification on Wall Street Journal (WSJ)[68] dataset.

2) Speech Recognition: We further study how the pre-trained
model with segmental masking strategies benefits from the
encoded knowledge of phonotactic constraint of a language for

1[Online]. Available: www.kaldi-asr.org/downloads/build/6/trunk/egs/
LibriSpeech/

2[Online]. Available: https://github.com/s3prl/s3prl

www.kaldi-asr.org/downloads/build/6/trunk/egs/LibriSpeech/
www.kaldi-asr.org/downloads/build/6/trunk/egs/LibriSpeech/
https://github.com/s3prl/s3prl
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TABLE I
CONFIGURATIONS OF PRE-TRAINING AND DOWNSTREAM TASKS

speech recognition. Here, we perform the evaluation using a
Deep Neural Network-Hidden Markov Model (DNN-HMM).
The ASR system is built with the PyTorch-Kaldi toolkit [69].
We use the advanced DNN architecture, comprising a 5-layer
light-gated recurrent units (liGRU) followed by 2-layers of
fully-connected networks. We feed the output of the pre-trained
model to the hybrid ASR system while maintaining pre-trained
model parameters frozen during training. The supervised ASR
training experiments are conducted on the TIMIT [70] dataset.
Following the conventional settings, the ASR model on TIMIT
is based on 48 phoneme classes, while accuracy is measured
after mapping the prediction to a smaller set of 39 phoneme
classes. Splits of the dataset are obtained according to the Kaldi
TIMIT [67] recipe. The results are reported in terms of Phone
Error Rate (PER).

3) Keyword Spotting: Keyword spotting (KWS) is a variant
of speech recognition. As the KWS task that seeks to detect the
presence of pre-defined keywords in a speech flow, the knowl-
edge of phonotactic constraint in a language is certainly useful.
Experiments are conducted with Google Speech Commands
Datasets [71]. It contains 65,000 one-second-long utterance
files, recorded and labeled with one of 30 target categories.
Following Google’s implementation, we distinguish 12 classes,
namely “yes,” “no,” “up,” “down,” “left,” “right,” “on,” “off,”
“stop,” “go,” silence, and unknown. Using SHA-1 hashed name
of the audio files, we split the dataset into training, validation,
and test sets, with 80% training, 10% validation, and 10%

test, respectively. The results are reported in terms of accuracy
(ACC).

4) Speaker Identification: Speaker identification (SID) aims
to recognize who speaks in a speech audio. It is therefore a multi-
class classification task. To identify the speaker individuality
of phonetic and prosodic rendering, we believe that we could
benefit from the speech representations that are aware of the
phonotactic and prosodic constraint in a language.

We here evaluate the speaker characteristics of the learned
speech representations on train-clean-100 subset of LibriSpeech
and Voxceleb1 [72]. For a fair comparison, we first use the train-
clean-100 subset for frame-level and utterance-level speaker
classification to follow the common experimental setting [5],
[6], [24]. This subset contains 251 speakers, and we use the
same train/test split as provided in [6]. For utterance-level
speaker identification, the representations of each utterance are
first averaged over time. Then, the classifier predicts speaker
identity conditioning on the averaged embedding. For frame-
level speaker identification, the classifier predicts the speaker
identity for each input speech frame. For both tasks, we only
extract the representations from the last encoder layer and use a
linear model to perform classification for fair comparison with
CPC [6] and TERA [5]. The two different levels are denoted as
SID (Frame) and SID (Utt), respectively. It should be noted that
this speaker identification task on the train-clean-100 subset
of LibriSpeech only serves as a simple check for the speaker
information in the learned speech representations. Hence, we
further include experiments using VoxCeleb1 [72] to evaluate the
learned representations from the speaker aspect, following [62]
training, development and testing configurations, with 138,316;
6,904; 8,251 utterances respectively. We denote the task on
VoxCeleb1 as SID (Vox) and report the results in terms of
accuracy (ACC).

5) Intent Classification: Intent Classification (IC) takes an
utterance, i.e. a sequence of speech features, as input and clas-
sifies it into one of the pre-defined intent categories. Besides
the speech content, the speech prosody is also intent informing,
that is reflected in phonetic duration and energy. A pre-trained
model, that captures the knowledge of phonetic, phonotactic, as
well as phonetic duration in a spoken language, could potentially
bring benefits to the IC task.

We perform the IC experiments on the Fluent Speech Com-
mands (FSC) [73] dataset, where each utterance is tagged with
three intent labels: action, object and location. We follow the
FSC protocol, having 23,132; 3,118, and 3,793 utterances for
training, validation and testing, respectively. Following the set-
ting of previous work [62], we use MeanPooling followed by a
linear classifier for utterance-level classification and report the
results in terms of accuracy (ACC).

6) Speech Emotion Recognition: Speech Emotion Recogni-
tion (SER) is the task to classify the emotion of a speech into
one of the pre-defined categories. As the SER task is supposed to
be independent of the speech content. The phonetic, phonotactic
and prosodic patterns play a role, just like the intent classification
task.

The Interactive Emotional Dyadic Motion Capture (IEMO-
CAP) [74] dataset, which includes five sessions of utterances
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TABLE II
COMPARISON OF SELF-SUPERVISED PRE-TRAINING MODELS ON VARIOUS DOWNSTREAM TASKS, INCLUDING PHONEME CLASSIFICATION (PC), KEYWORD

SPOTTING (KWS), SPEAKER IDENTIFICATION (SID), INTENT CLASSIFICATION (IC), SPEECH EMOTION RECOGNITION (SER). THE TRAIN-CLEAN-100 SUBSET OF

LIBRISPEECH OR COMMONVOICE IS USED FOR PRE-TRAINING. THE EXPERIMENT RESULTS FOR DOWNSTREAM TASKS ARE REPORTED IN TERMS OF

ACCURACY (%). OUR MODEL IS TRAINED WITH L1 RECONSTRUCTION LOSS

between two speakers (one male and one female), is adopted in
this task. Following the conventional evaluation setting [62], we
exclude the imbalanced emotion classes, and only consider four
classes (neutral, happy, sad, angry) with a similar amount of data
points and cross-validates on five folds of the standard splits.
Similar to IC, we use MeanPooling to obtain the utterance-level
embedding, and then use this embedding for recognition. The
results are reported in terms of accuracy (ACC).

V. EXPERIMENTAL RESULTS AND ANALYSIS

We now report the experimental results on various down-
stream tasks to show the effectiveness of our proposed segmental
masking strategies, including the phoneme-based masking, the
phoneme span-based masking and the word-based masking, in
Section V-A. Then in Section V-B, we present the ablation study
of different phoneme masking rates. In Section V-C, we com-
pare the performance when pre-trained with different acoustic
features under the phoneme-based masking. Finally, we further
explore the effects of different objectives (e.g., contrastive or
reconstruction) in Section V-D.

A. Effectiveness of Segmental Masking Strategies

Table II shows the evaluation results on various downstream
tasks including phoneme classification (PC), keyword spotting
(KWS), speaker identification (SID) on two datasets (i.e. the
train-clean-100 subset of LibriSpeech and VoxCeleb1), intent
classification (IC) and emotion recognition (SER).

Among the tasks, Mockingjay [24] and TERA [5] are based
on reconstruction loss, while Mockingjay is equivalent to TERA
when the alteration is done temporally. Hence, for fair com-
parison, we here use L1 reconstruction loss for our pre-trained
model and the masking probability is set to 20%. All models
are pre-trained on the train-clean-100 subset of LibriSpeech.
Similar to TERA [5], we perform alteration from three dimen-
sions (e.g., time, channel, and magnitude). The suffix FT denotes
the fine-tuning results, the suffix CV denotes the pre-training
on CommonVoice, and the suffix Unsupervised denotes the
phoneme segmentation is obtained using pre-trained unsuper-
vised phoneme segmentation model from [53].

Firstly, as expected, all pre-trained models (ID 2-7) outper-
form the surface feature (ID 1) across all downstream tasks.
Secondly, our method (ID 5,6,7) consistently improves all down-
stream tasks over Mockingjay (ID 3), TERA (ID 4) and CPC
(ID 2). The improvements observed in the downstream tasks
support our belief that phoneme-based masking outperforms
frame-based masking as a pre-training strategy.

Specifically, our phoneme-based method (ID 7) outperforms
TERA (ID 4), e.g. from 65.1% / 77.3% to 72.8% / 80.9%
for phoneme classification, and outperforms CPC (ID 2) by a
large margin. This suggests that phoneme-based masking in the
pre-trained model strengthens the phoneme prediction in the
downstream task. As far as masking unit size is concerned,
we can see that the phoneme-based (ID 7) (72.8% / 80.9%)
masking performs the best, followed by phoneme span (ID 6)
(71.8% / 80.3%), and lastly, word-based masking (ID 5) (69.2% /
78.6%) on phoneme classification. Empirically, we observe that
phoneme serves as the suitable masking unit, that coincides with
the general understanding that phoneme is the smallest unit of
sound.

In speaker identification (SID) task, our three segmental
masking methods obtain almost 100.0% accuracy on train-
clean-100 subset (IDs 5,6,7), suggesting that the pre-trained
model with segmental masking better characterizes the speakers
than other pre-trained models. Besides the train-clean-100 sub-
set, we also evaluate the learned speaker characteristics on Vox-
Celeb1 [72]. The results show that our phoneme-based masking
(ID 7) consistently contributes to the downstream speaker iden-
tification task, yielding 58.7% accuracy, outperforming Mock-
ingjay (ID 3, 48.4%) and TERA (ID 4, 55.9%).

However, we did not find the similar gain with the phoneme
span-based masking (ID 6) and the word-based masking (ID 5).
They only gives 56.4% and 52.0% results, respectively. An
explanation for this result is that speakers characteristics differ
from one speaker to the other on phoneme level, given by the
vocal tract characteristics of each speaker.

In both IC and SER tasks, similar to PC and SID, the phoneme-
based masking (ID 7) performs the best, yielding 65.6% / 62.5%
accuracy, respectively, and outperforms 53.3% / 57.8% of Mock-
ingjay, and 56.4% / 60.8% of TERA. In addition, among the
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TABLE III
PHONEME CLASSIFICATION RESULTS (ACCURACY %) ON LIBRISPEECH DATASET, WITH SURFACE FEATURES (MFCC, FBANK, AND FMLLR), AND PRE-TRAINED

SPEECH REPRESENTATIONS (CPC, MOCKINGJAY, TERA, AND PHONEME-BASED SEGMENTAL MASKING), FOR BOTH LINEAR CLASSIFIER AND NON-LINEAR

CLASSIFIER (1 HIDDEN LAYER) WITH DIFFERENT PRE-TRAINING DATA SIZE

TABLE IV
PHONEME CLASSIFICATION RESULTS (ACCURACY %) ON WSJ DATASET WITH

TERA AND PHONEME-BASED SEGMENTAL MASKING, FOR BOTH LINEAR

CLASSIFIER AND NON-LINEAR CLASSIFIER (1 HIDDEN LAYER) WITH

DIFFERENT PRE-TRAINING DATA SIZE

three segmental masking implementations, it is obvious that the
phoneme-based masking beats the phoneme span-based mask-
ing and the word-based masking by a large margin, especially on
IC tasks (65.6% v.s. 56.4% and 65.6% v.s 59.7%). Overall, these
results suggest that the phoneme-based masking is effective for
downstream IC and SER tasks.

We also report two fine-tuning results in Table II, one is
TERA [5], another is our proposed method. We can see that
TERA and our method obtain comparable performance on most
downstream tasks, except that TERA gives 55.4% accuracy on
SER task, while our method gives 58.2% accuracy. On the other
side, using the pre-trained model as feature frontend, our method
achieves significantly better performance on all downstream
tasks, suggesting that our method learns much better speech
representations.

In Table III, we report the phoneme classification performance
as a function of the pre-training data size. In this experiment, we
adopt phoneme as the masking unit. The results show that the
phoneme accuracy linearly increases as the pre-training data
increases, from 72.8% on 100 hours, to 74.7% on 360 hours, to
75.6% on the full LibriSpeech 960 hours of data. This trend is not
observed in Mockingjay and TERA, suggesting that our method
exploits the available data more effectively. By using only 100
hours of pre-training data, we (72.8% / 80.9%) even surpass
the results of TERA [5] (66.4% / 78.8%) and Mockingjay [24]
(67.0% / 79.1%) that use 960 hours of data for pre-training.

Table IV shows the phoneme classification results on WSJ
dataset. Our method (77.8% / 84.6%) outperforms TERA
(76.7% / 82.8%) when the pre-training data is 100 hours, even
better than TERA (77.4% / 83.5%) that use 960 hours of data
for pre-training.

In Table V, we summarize experiment results on TIMIT
in terms of Phone Error Rate (PER), that include two
recent self-supervised learning techniques, e.g., TERA [5]
and wav2vec [43], and several competitive supervised base-
lines [75]–[77]. We can see that our phoneme-based masking

TABLE V
COMPARISON OF THE PROPOSED METHOD WITH OTHER RECENT APPROACHES

ON TIMIT. ALL PRE-TRAINING DATA ARE FROM LIBRISPEECH DATASET, IF

NOT SPECIFIED OTHERWISE

with 960 hours of pre-training data yields the best PER (13.6%),
outperforming TERA (14.5%) and wav2vec (15.6%) by 0.9%
and 2% absolute PER reduction, respectively. When only 100
hours of pre-training data, among all our proposed segmental
masking strategies, the word-based masking gives the worst
result (15.2%) as expected, while the phoneme-based masking
strategy gives the best result (14.1%). What is more, when only
using 100 hours of pre-training data, our phoneme-based mask-
ing outperforms TERA [5] (14.5%) pre-trained on 960 hours and
wav2vec [43] (14.7%) pre-trained on both full LibriSpeech and
Wall Street Journal (WSJ) datasets. Finally, increasing the data
for pre-training benefits learning with a steady PER decrease
from 14.1% on 100 hours, 13.9% on 360 hours, to 13.6% on
960 hours.

In both Table II and Table V, we also report the results where
the unsupervised phoneme segmentation is used for the pre-
training. We can see that our method does not need very accurate
phoneme segmentation to capture the phonotactic constraints
during the pre-training, but consistently benefits the downstream
tasks. However, more accurate boundary information (e.g., via
force alignment) gives better pre-training results.

In Table VI, we report the speaker identification performance
with different pre-training data size. We also include the re-
sults of three surface features, including MFCC, FBANK, and
feature-space Maximum Likelihood Linear Regression (fM-
LLR) [78]. However, these surface features perform very bad
on SID task, indicating there is almost no speaker information
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TABLE VI
SPEAKER IDENTIFICATION RESULTS ON THE TRAIN-CLEAN-100 SUBSETS OF LIBRISPEECH AND VOXCELEB1 BY VARYING AMOUNT OF PRE-TRAINING DATA. OUR

MODEL IS TRAINED WITH PHONEME BASED SEGMENTAL MASKING

TABLE VII
ABLATION STUDY OF DIFFERENT PHONEME MASKING RATE

TABLE VIII
ABLATION STUDY OF PHONEME SPAN LENGTH, WORD MASKING RATE, AND ACOUSTIC FEATURES. ALL MODELS ARE PRE-TRAINED ON TRAIN-CLEAN-100

SUBSET OF LIBRISPEECH

encoded in surface features. On the other hand, similar to the
phoneme classification and speech recognition, the speaker char-
acteristics also benefit from a larger amount of pre-training data.
The accuracy on VoxCeleb1 increases from 58.7% on 100 hours
of pre-training data, to 62.1% on 360 hours of pre-training data,
to 63.7% on full 960 hours LibriSpeech data.

B. Effect of Masking Rate

Just like in frame-based masking, the masking rate within an
utterance also plays a role. By varying the phoneme masking rate
from 10% to 50%, we hope to observe the effect. The previous
studies on Mockingjay [24] and TERA [5] show that masking
15% of the speech frames is ideal, that has been adopted in
subsequent works [22], [23], [26], [27].

Table VII shows the downstream results as we vary the
phoneme masking rate. In this set of experiments, we only did
the time alteration like Mockingjay [24], and the channel and
magnitude alterations are not applied. The results show that the
overall performance is better as the masking rate increases from
10% to 20%, with 20% giving the best performance, which is
different from that of the frame-based masking strategy (15%).
It is worth mentioning that the performance of 10% masking is
already better than the frame-based masking method with 15%

masking rate. From 20% onward, the performance will start to
drop if we keep increasing the masking rate. The reason is that
excessive masked phonemes will increase the difficulty of the
pre-training and hence hurt the quality of the learned speech
representations. For instance, when the masking rate is 50%,
the phoneme classification accuracy is only 64.9% / 76.9%,
compared to the best accuracy of 71.3% / 80.0% that pre-trained
with 20% masking rate.

Table VIII shows the ablation study of the phoneme span
length for the phoneme span-based masking and the masking
rate for the word-based masking. For the phoneme span, we
select a subset of phonemes by iteratively sampling span of
phoneme until the masking budget (20% of the phoneme se-
quence) is used up and pre-train the model with different span
length. Interestingly, we find that the length of the phoneme span
does not affect the performance of the downstream tasks as long
as they follow the same masking rate (e.g., 20%).

In Table VIII, we also report the performance of word-based
masking at different masking rates. We observe that increasing
the word masking rate (e.g., from 10% to 20%) adversely affects
the performance, with 10% giving the best results as opposed to
20% for phoneme-based masking. This could be due to the fact
that word is a much larger acoustic unit than phoneme in terms
of duration.
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TABLE IX
COMPARISON OF DIFFERENT PRE-TRAINING OBJECTIVES. ALL MODELS ARE

PRE-TRAINED ON TRAIN-CLEAN-100 SUBSET OF LIBRISPEECH AT A MASKING

RATE OF 15%

C. Effect of Different Speech Features

In order to explore the impact of different acoustic features
under the phoneme-based masking, we pre-train the model to re-
construct different acoustic features. In this study, we experiment
with three different features, including 80-dimension FBANK,
13-dimension MFCC, and 160-dimension Spectrogram. The
results are summarized in the upper part of Table VIII. We find
that pre-training with MFCC features achieves best performance
on phoneme classification, giving 73.9% accuracy on phoneme
classification, this is also the state-of-the-art result. However,
for other downstream tasks, especially intent classification, pre-
training with FBANK leads to better results (58.7% on SID,
68.5% on IC, and 62.5% on SER) compared to pre-training
with MFCC (56.5% on SID, 57.4% on IC, and 59.0% on SER)
and Spectrogram (56.1% on SID, 55.5% on IC, and 58.5% on
SER). Among these three features, pre-training with spectro-
gram yields worst overall performance. We conclude that despite
the same model architecture and objective, pre-training with
different acoustic features will significantly affect the quality
of the learned speech representations.

D. Effect of Different Pre-Training Objectives

We have used L1 reconstruction loss as the default setting
in this work. To further validate the effectiveness of the seg-
mental masking strategy, we extend this study to a contrastive
framework. In this set of experiments, only time alteration is
performed following the setting in Mockingjay [24]. For the
contrastive framework, we follow the wav2vec2.0-style [4] CPC
except that we did not use the quantization module, and we
randomly sample 50 negative samples from the same utterance
and compute the contrastive loss.

In Table IX, we report the results between L1 reconstruction
loss and contrastive loss. All masking rates are set to 15%
for both objectives. The train-clean-100 subset of LibriSpeech
is used for pre-training. With both frame-level masking and
phoneme-based masking, the contrastive loss yields better over-
all performance. Furthermore, the study on both objectives con-
firms that segmental masking strategy outperforms frame-based
masking on all downstream tasks.

E. Continual Pre-Training on wav2vec2.0

To benchmark the segmental masking constraint against the
state-of-the-art, e.g., wav2vevc2.0 [4] and HuBERT [79], we
replace the random frame-level masking in wav2vec2.0 with

TABLE X
RESULTS OF THE CONTINUAL PRE-TRAINING ON WAV2VEC2.0 USING THE

PROPOSED SEGMENTAL MASKING STRATEGY

the proposed phoneme-based segmental masking strategy in a
continual pre-training. In this set of experiments, the masking
probability is set to 50% and only the subset train-other-500 of
LibriSpeech is used for a quick turn-around. We conduct auto-
matic speech recognition (ASR) experiment from SUPERB [62]
benchmark to compare the masking strategies.

Table X shows the results of the continual pre-training on
wav2vec2.0. It is apparent that the continual pre-training with
the segmental masking strategy consistently outperforms the
wav2vec2.0 baseline, especially on the ASR, KWS, and IC tasks,
which depend more on the phonetic and semantic information.
The experiments validate the benefit of encoding phonotactic
constraints by the segmental masking strategy.

VI. CONCLUSION

We propose a novel segmental masking strategy, which uses
phonetically motivated segments as the masking units to encode
the phonotactic and prosodic constraints during the learning pro-
cess. We explore three different masking units, e.g., phoneme,
phoneme span and word, and provide a comprehensive study
into the effect of masking units. We have demonstrated the
effectiveness of the segmental masking strategy on various
downstream tasks over frame-based masking strategy. To the
best of our knowledge, this is the first work that investigates the
impacts of different masking schemes. Finally, we extend our
segmental masking scheme to contrastive learning to achieve
competitive performance.

REFERENCES

[1] K. L. Sakai, “Language acquisition and brain development,” Science,
vol. 310, no. 5749, pp. 815–819, 2005.

[2] P. K. Kuhl, “Brain mechanisms in early language acquisition,” Neuron,
vol. 67, no. 5, pp. 713–727, 2010.

[3] K. Hirsh-Pasek, D. G. K. Nelson, P. W. Jusczyk, K. W. Cassidy, B.
Druss, and L. Kennedy, “Clauses are perceptual units for young infants,”
Cognition, vol. 26, no. 3, pp. 269–286, 1987.

[4] A. Baevski, H. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0: A
framework for self-supervised learning of speech representations,” in Proc.
33th Conf. Neural Inf. Process. Syst., 2020, pp. 12449–12460.

[5] A. Liu, S.-W. Li, and H.-Y. Lee, “TERA: Self-supervised learning of
transformer encoder representation for speech,” IEEE/ACM Trans. Audio,
Speech, Lang. Process., vol. 29, pp. 2351–2366, Jul. 2021.

[6] A. van den Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” in 2018, arXiv:1807.03748.

[7] M. Ravanelli et al., “Multi-task self-supervised learning for robust speech
recognition,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.,
2020, pp. 6989–6993.

[8] J. Huh, H. S. Heo, J. Kang, S. Watanabe, and J. S. Chung, “Augmentation
adversarial training for self-supervised speaker recognition,” in Proc. 34th
Conf. Neural Inf. Process. Syst., SAS Workshop, 2020.

[9] N. Arsha, C. J. Son, A. Samuel, and Z. Andrew, “Disentangled speech
embeddings using cross-modal self-supervision,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., 2020, pp. 6829–6833.



1378 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 16, NO. 6, OCTOBER 2022

[10] A. Wu, C. Wang, J. Pino, and J. Gu, “Self-supervised representations
improve end-to-end speech translation,” in Proc. Interspeech, 2020,
pp. 1491–1495.

[11] H. Nguyen, F. Bougares, N. Tomashenko, Y. Estéve, and L. Besacier, “In-
vestigating self-supervised pre-training for end-to-end speech translation,”
in Proc. Int. Conf. Mach. Learn., SAS Workshop, 2020.

[12] Y.-C. Wang, S. Venkataramani, and P. Smaragdis, “Self-supervised
learning for speech enhancement,” in Proc. Int. Conf. Mach. Learn.,
SAS Workshop, 2020.

[13] A. Sivaraman, S. Kim, and M. Kim, “Personalized speech enhancement
through self-supervised data augmentation and purification,” in Proc.
Interspeech, 2021, pp. 2676–2680.

[14] J. Chorowski, R. J. Weiss, S. Bengio, and A. van den Oord, “Unsupervised
speech representation learning using wavenet autoencoders,” IEEE/ACM
Trans. Audio, Speech, Lang. Process., vol. 27, no. 12, pp. 2041–2053,
Dec. 2019.

[15] Y.-A. Chung, Y. Belinkov, and J. Glass, “Similarity analysis of self-
supervised speech representations,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process., 2021, pp. 3040–3044.

[16] Y.-A. Chung, W.-N. Hsu, H. Tang, and J. Glass, “An unsupervised autore-
gressive model for speech representation learning,” in Proc. Interspeech,
2019, pp. 146–150.

[17] Y.-A. Chung and J. Glass, “Generative pre-training for speech with au-
toregressive predictive coding,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., 2020, pp. 3497–3501.

[18] M. Riviére, A. Joulin, P.-E. Mazar’e, and E. Dupoux, “Unsupervised
pretraining transfers well across languages,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., 2020, pp. 7414–7418.

[19] K. Kawakami, L. Wang, C. Dyer, P. Blunsom, and A. van den Oord,
“Learning robust and multilingual speech representations,” in Proc. Conf.
Empir. Methods Nat. Lang. Process., 2020, pp. 1182–1192.

[20] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT:Pre-training
of deep bidirectional transformers for language understanding,” in Proc.
North Amer. Chapter Assoc. Comput. Linguist., 2019, pp. 4171–4186.

[21] Y. Liu et al., “Roberta: A robustly optimized bert pretraining approach,”
2019, arXiv:1907.11692.

[22] D. Jiang et al., “Improving transformer-based speech recognition using
unsupervised pre-training,” 2019, arXiv:1910.09932.

[23] L. Liu and Y. Huang, “Masked pre-trained encoder base on joint ctc-
transformer,” 2020, arXiv:2005.11978.

[24] A. Liu, S.-W. Yang, P.-H. Chi, P.-C. Hsu, and H.-Y. Lee, “Mockingjay:
Unsupervised speech representation learning with deep bidirectional trans-
former encoders,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.,
2020, pp. 6419–6423.

[25] A. Vaswani et al., “Attention is all you need,” in Proc. 31th Conf. Neural
Inf. Process. Syst., 2018, pp. 6000–6010.

[26] P.-H. Chi, P.-H. Chung, T.-H. Wu, C.-C. Hsieh, S.-W. Li, and H. yi Lee,
“Audio albert: A lite bert for self-supervised learning of audio representa-
tion,” in Proc. IEEE Spoken Lang. Technol. Workshop, 2021, pp. 344–350.

[27] D. Jiang et al., “A further study of unsupervised pre-training for trans-
former based speech recognition,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., 2020, pp. 6538–6542.

[28] M. Joshi, D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer, and O. Levy, “Span-
BERT: Improving pre-training by representing and predicting spans,”
IEEE Trans. Assoc. Comput. Linguist., vol. 8, pp. 64–77, 2020.

[29] X. Yue and H. Li, “Phonetically motivated self-supervised speech repre-
sentation learning,” in Proc. Interspeech, 2021, pp. 746–750.

[30] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learn. Representations,
2015, pp. 1–14.

[31] M. Liang and X. Hu, “Recurrent convolutional neural network for object
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015,
pp. 3367–3375.

[32] A. Graves, A. Mohamed, and G. E. Hinton, “Speech recognition with deep
recurrent neural networks,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., 2013, pp. 6645–6649.

[33] W. Shinji, H. Takaaki, K. Suyoun, H. J. R., and H. Tomoki, “Hybrid
CTC/attention architecture for end-to-end speech recognition,” IEEE J.
Sel. Topics Signal Process., vol. 11, no. 8, pp. 1240–1253, Dec. 2017.

[34] O. Abdel-Hamid, A. Mohamed, H. Jiang, L. Deng, G. Penn, and D.
Yu, “Convolutional neural networks for speech recognition,” IEEE/ACM
Trans. Audio, Speech, Lang. Process., vol. 22, no. 10, pp. 1533–1545,
Oct. 2014.

[35] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in Proc. Int. Conf. Learn. Repre-
sentations, 2015, pp. 1–15.

[36] K. Cho et al., “Learning phrase representations using RNN encoder–
decoder for statistical machine translation,” in Proc. Empirical Methods
Nat. Lang. Process., 2014, pp. 1724–1734.

[37] X. Liu et al., “Self-supervised learning: Generative or contrastive,”
IEEE Trans. Knowl. Data Eng., early access, Jun. 22, 2021,
doi: 10.1109/TKDE.2021.3090866.

[38] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in Proc. Int. Conf. Mach.
Learn., 2020, pp. 1597–1607.

[39] H. Kaiming, F. Haoqi, W. Yuxin, X. Saining, and G. Ross, “Momentum
contrast for unsupervised visual representation learning,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2020, pp. 9729–9738.

[40] M. E. Peters et al., “Deep contextualized word representations,” in Proc.
North Amer. Chapter Assoc. Comput. Linguist., 2018, pp. 2227–2237.

[41] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le, “Xl-
Net: Generalized autoregressive pretraining for language understanding,”
in Proc. 33th Conf. Neural Inf. Process. Syst., 2019, pp. 5753–5763.

[42] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut,
“Albert: A lite BERT for self-supervised learning of language representa-
tions,” in Proc. Int. Conf. Learn. Representations, 2019, pp. 1–17.

[43] S. Schneider, A. Baevski, R. Collobert, and M. Auli, “wav2vec: Unsu-
pervised pre-training for speech recognition,” in Proc. Interspeech, 2019,
pp. 3465–3469.

[44] A. Baevski, S. Schneider, and M. Auli, “vq-wav2vec: Self-supervised
learning of discrete speech representations,” in Proc. Int. Conf. Learn.
Representations, 2020, pp. 1–12.

[45] Y.-A. Chung et al., “W2v-bert: Combining contrastive learning and
masked language modeling for self-supervised speech pre-training,” 2021,
arXiv:2108.06209.

[46] Y.-A. Chung and J. Glass, “Improved speech representations with multi-
target autoregressive predictive coding,” in Proc. 56th Annu. Meet. Assoc.
Comput. Linguist., 2020, pp. 2353–2358.

[47] Y.-A. Chung, H. Tang, and J. Glass, “Vector-quantized autoregressive
predictive coding,” in Proc. Interspeech, 2020, pp. 3760–3764.

[48] S. Ling, Y. Liu, J. Salazar, and K. Kirchhoff, “Deep contextualized acoustic
representations for semi-supervised speech recognition,” in Proc. IEEE Int.
Conf. Acoust., Speech Signal Process., 2020, pp. 6429–6433.

[49] S. Ling and Y. Liu, “Decoar 2.0: Deep contextualized acoustic represen-
tations with vector quantization,” 2020, arXiv:2012.06659.

[50] X. Song, G. Wang, Y. Huang, Z. Wu, D. Su, and H. Meng, “Speech-xlnet:
Unsupervised acoustic model pretraining for self-attention networks,” in
Proc. Interspeech, 2020, pp. 3765–3769.

[51] S. Pascual, M. Ravanelli, J. Serrá, A. Bonafonte, and Y. Bengio, “Learning
problem-agnostic speech representations from multiple self-supervised
tasks,” in Proc. Interspeech, 2019, pp. 161–165.

[52] K. Felix, S. Yaniv, K. Joseph, and A. Yossi, “Phoneme boundary detection
using learnable segmental features,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process., 2020, pp. 8089–8093.

[53] F. Kreuk, J. Keshet, and Y. Adi, “Self-supervised contrastive learning
for unsupervised phoneme segmentation,” in Proc. Interspeech, 2020,
pp. 3700–3704.

[54] Y.-H. Wang, C.-T. Chung, and H. yi Lee, “Gate activation signal analysis
for gated recurrent neural networks and its correlation with phoneme
boundaries,” in Proc. Interspeech, 2017, pp. 3822–3826.

[55] P. Godard et al., “Unsupervised word segmentation from speech with
attention,” in Proc. Interspeech, 2018, pp. 2678–2682.
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