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Investigation of Japanese PnG BERT Language
Model in Text-to-Speech Synthesis for Pitch
Accent Language

Yusuke Yasuda

Abstract—End-to-end text-to-speech synthesis (TTS) can gen-
erate highly natural synthetic speech from raw text. However,
rendering the correct pitch accents is still a challenging problem
for end-to-end TTS. To tackle the challenge of rendering correct
pitch accent in Japanese end-to-end TTS, we adopt PnG BERT,
a self-supervised pretrained model in the character and phoneme
domain for TTS. We investigate the effects of features captured by
PnG BERT on Japanese TTS by modifying the fine-tuning con-
dition to determine the conditions helpful inferring pitch accents.
We manipulate content of PnG BERT features from being text-
oriented to speech-oriented by changing the number of fine-tuned
layers during TTS. In addition, we teach PnG BERT pitch accent
information by fine-tuning with tone prediction as an additional
downstream task. Our experimental results show that the features
of PnG BERT captured by pretraining contain information help-
ful inferring pitch accent, and PnG BERT outperforms baseline
Tacotron on accent correctness in a listening test.

Index Terms—PnG BERT, text-to-speech, Japanese, pitch
accent, self-supervised learning.

1. INTRODUCTION

ND-TO-END (E2E) text-to-speech synthesis (TTS) can
E generate highly natural synthetic speech from raw texts [1],
[2]. However, rendering correct pitch accents or tones, which are
accents involving pitch change, remains a challenging problem
for E2E-TTS [3]-[5]. The accuracy of rendering pitch accents is
crucial in pitch accent languages such as Japanese, because pitch
accents control the meaning of words. Conventional TTS sys-
tems resolve accent information with a morphological analyzer-
based text front-end by looking it up in a accent dictionary, which
is normally expensive and requires language-specific knowledge
to construct [6]. The characteristics of E2E-TTS to use texts or
phonemes directly as input enables it to be applied to various data
and languages without constructing a pronunciation dictionary.
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On the other hand, the challenge of rendering a pitch accent in
an E2E-TTS approach comes from building knowledge corre-
sponding to accent dictionary implicitly from text and speech
pair.

To tackle the challenge of rendering the correct pitch accent in
Japanese E2E-TTS, two main issues should be addressed. One
is the low word coverage in the speech corpus. Pitch accents
in pitch accent languages are mainly determined by words, so
a low word coverage in training speech data can result in the
main problem of poor pitch accents for an end-to-end TTS
model. However, even a large-scale speech corpus can never
match a lexicon dictionary in terms of word coverage [7]. The
other problem is the diversity of characters. The Japanese writing
system contains ideographic characters that represent meaning
rather than pronunciation. Owing to the diversity of ideographic
characters, Japanese end-to-end TTS from raw texts has been
impossible. Therefore, phonemes are used as input in end-to-
end Japanese TTS instead. This results in loss of word-related
information, leading to incorrect pitch accents [3], [S]. Both
phonemes and pitch accents are important speech representa-
tions to render in Japanese TTS, but these two representations
depend on different features: rendering phonemes depends on
characters and phonemes, and rendering pitch accents depends
on word and syntactic features. Therefore, a framework to
capture both surface form and high-level features is required.

To tackle these two main issues, we utilize a self-supervised
pre-trained model using a large-scale text corpus. As a self-
supervised learning method, we use PnG BERT [8]. PnG BERT
is an extension of BERT [9] designed for TTS as a downstream
task by capturing both word and phoneme contexts. We adopt
PnG BERT for Japanese end-to-end TTS because (1) it can
capture both word and phoneme contexts; (2) word and phoneme
alignment can be learned in text domain instead of the speech
domain; (3) a downstream task can be performed against fea-
tures corresponding to a phoneme segment instead of a word
segment. Regarding (1), we can expect that features extracted
from PnG BERT are helpful to render correct pitch accents,
because Japanese pitch accents are mainly determined by words.
Moreover, BERT can not only provide semantic information but
also syntactic information [10], [11]. Syntactic information such
as conjugation type is also helpful inferring the fundamental
frequency (F,) in Japanese speech [12]. Concerning (2), intro-
ducing multiple soft-attention layers to TTS enables to us align
multiple linguistic units to speech [13] and to overcome the
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lack of word boundary symbols in the Japanese writing system.
However, it is preferable to align multiple language units in the
text domain considering the limited volume of clean speech data.
On the other hand, PnG BERT can learn alignment between
words and phonemes in self-attention layers [14] by utilizing
large-scale text corpus [8]. This characteristic enables feature
extraction considering both words and phonemes for TTS. With
(3), we can introduce tone prediction as a downstream task of
PnG BERT in addition to TTS straightforwardly. Tone represen-
tation of Japanese pitch accent is determined in at the syllable
level. Therefore the tone can be predicted in the phoneme part of
PnG BERT token-by-token. Naturally, we can expect that tone
prediction is also benefited from word or syntactic information
captured by PnG BERT considering (1). The tone prediction is
used to explicitly teach PnG BERT accent information in this
work.

In this study, we investigate the effects of feature contents
captured by PnG BERT on Japanese TTS by modifying the
fine-tuning condition. In our experiments, we manipulate the
content of PnG BERT features from being text-oriented to
speech-oriented by changing the number of fine-tuned layers
by TTS. In addition, we inject pitch accent information itself to
PnG BERT features by fine-tuning with tone prediction as an
additional downstream task.

This paper is organized as follows. In Section II, we de-
scribe backgrounds of BERT, PnG BERT and background of
Japanese TTS. In Section III we introduce our proposed method
for Japanese TTS using PnG BERT. Section IV shows our
experimental results. In Section V, we summarize related works.
Finally, In Section VI, we conclude our findings.

II. BACKGROUND
A. BERT

BERT [9] is a self-supervised learning-based language model
for general language representation. It has two steps to learn
textual representation and task-related features: pre-training and
fine-tuning. BERT uses the masked language model (MLM)
objective during pre-training to capture general language repre-
sentation. The MLM objective optimizes a model by predicting
masked tokens given input texts in which some parts of the
tokens are randomly masked. In addition to MLM, BERT has
the next sentence prediction (NSP) objective, which classifies
whether two sentences are adjacent or unrelated. During fine-
tuning, BERT uses a supervised objective to solve a specific task.
Examples of a downstream task to fine-tune BERT are natural
language processing (NLP) tasks such as language understand-
ing and question answering.

To use the MLM and NSP objectives, BERT arranges input
tokens as follows: an input sequence always starts with a CL.S
token, which is used for a classification task such as NSP. Each
input sentence ends with a SEP token, which means the end of
a sentence. As for the masking method, a portion (e.g., 15%) of
the input tokens are randomly chosen to be predicted as targets in
self-supervised learning. Most of the selected tokens (e.g., 80%)
are masked by being replaced with a MASK token Some tokens
(e.g., 10%) are replaced with a random token, whereas some
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A

| Masking |

tokens [as] [P1 ] [p2 ] [ps ] [ser] [e1] [e2] [es] [sep]
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token positions IZI III IZI

(a) Pre-training
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I T 1
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tokens [G5]) [p1] [P2] [ea] [52] [o7] [=2] [=]] [5]

segments | A | | B |

word posttions [ 0]
token positions III IZI

(b) Fine-tuning

Fig. 1. Mechanism of PnG BERT. P: phoneme, G: grapheme.

tokens (e.g., 10%) are not replaced. A BERT model is trained to
recover the original sentences from the modified inputs.

The architecture of BERT is equivalent to that of the encoder
of Transformer [14]. It consists of a stack of self-attention
blocks that are a combination of a multihead self-attention layer
and a feed-forward network with ReLU activation. Positional
encoding is used to take the order of tokens into consideration.

B. Png BERT

Language models for TTS tasks aim to capture pronunciation-
related information, whereas language models for NLP tasks
focus on syntactic or semantic information. PnG BERT is a self-
supervised learning-based language model that can capture both
contextual word and phoneme information in the text domain [8].
PnG BERT is an extended method of BERT: it uses the same
Transformer-based architecture and MLM training objective.
PnG BERT extends BERT in terms of input representation,
masking strategy, and fine-tuning to capture pronunciation in-
formation.

Fig. 1 shows the structure of PnG BERT. It uses graphemes
and phonemes as input representation instead of words. Here,
we use graphemes to refer to as any textual representation
unit such as characters and subwords. A target downstream
task of PnG BERT is TTS. Character and phonemes are com-
mon input representations for end-to-end TTS. The input se-
quence for PnG BERT consists of the concatenation of phoneme
and grapheme sequences of a corresponding text. Each of the
phoneme and grapheme sequences ends with a SEP token. A
CLS symbol is prepended to the whole sequence. The CLS token
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is for the sentence classification task. Token, word, and segment
positions are specified by positional encoding [14], because
self-attention in Transformer is permutation invariant.

The masking strategy of PnG BERT is designed at the word
level. Because the input representations in PnG BERT are
graphemes and phonemes, masking at token-level limits con-
textual information captured in pretraining up to surface-form
level. The word-level masking enables PnG BERT to learn
all layers of contextual information: semantic, surface form,
and pronunciation. In PnG BERT, one of the following mask-
ing strategies is chosen for a random word: both graphemes
and phonemes are masked; only graphemes are masked; only
phonemes are masked; both graphemes and phonemes are kept
intact; both graphemes and phonemes are randomly replaced
with other phonemes and graphemes. For evaluation, grapheme-
to-phoneme (G2P) and phoneme-to-grapheme (P2G) masking
strategies may be used in addition to MLM. In the G2P masking,
all the phoneme segments are masked. In P2G masking, all the
grapheme segments are masked.

A TTS downstream task can be conducted with PnG BERT by
feeding its final outputs corresponding to the phoneme segment
into the TTS decoder. PnG BERT models are jointly fine-tuned
with the TTS decoder while freezing its parameters in part of
its layers to prevent the loss of learned knowledge during pre-
training. PnG BERT is compatible with any TTS decoder.

C. Japanese TTS

Japanese is classified as a pitch accent language in terms of
prosodic description. Japanese pitch accents are lexical, which
means that accents depend on words or a combination of words
to form an accentual phrase. The Japanese pitch accent has an
accentual nucleus position that is specified by a pitch fall within
an accent phrase. The accent nucleus position is measured in a
syllable unit called mora. Although the pitch accent of individual
words can be described in a lexicon, it is affected by adjacent
words in an accentual phrase, which is a phenomenon called
accent sandhi.

The Japanese TTS system uses text front-end for word seg-
mentation and lexicon lookup for pronunciation by using a
morphological analyzer. After the lexicon lookup, accent sandhi
is estimated on the basis of rules [15] or machine learning [16],
[17]. The Japanese text front-end provides full-context labels
that include various type of information helpful to TTS such
as part of speech. Ref. [18] shows that at least accent nucleus
position, or the accentual type, should be provided to TTS to
render a natural pitch accent.

III. JAPANESE TTS USING PNG BERT

Fig. 2 shows our method to conduct Japanese TTS using
PnG BERT. Its general framework is the same as that of the
plain PnG BERT: graphemes and phonemes are concatenated
as one sequence, and the sequence is fed to Transformer layers;
the PnG BERT model is pretrained with the MLM objective
by masking a grapheme and phoneme pair at the word level;
during fine-tuning and speech generation, the phoneme part of
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| Masking |
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(a) Pre-training

| Attention based decoder | —> mel-spectrogram

| Tone predictor | —> tones
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tokens G5 [ ] [2] [es ] [58] [ar] [e2] [e] [5ep]
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(b) Fine-tuning

Fig. 2. Mechanism of Japanese PnG BERT to perform pre-training and fine-
tuning with text-to-speech synthesis and tone prediction as downstream task.
P: phoneme, G: grapheme.

the output of the last Transformer layer is used as the input for
a TTS decoder to generate a spectrogram.

We introduce two changes to the PnG BERT to conduct
Japanese TTS. The first modification is the absence of word-
level alignment information between graphemes and phonemes
as word positions in the inputs. The Japanese writing system
lacks clear word boundary symbols. To obtain word boundaries
of Japanese texts used for pre-training, we use morphological
analyzers. Obviously, automatically derived word boundaries
from the morphological analyzer contain errors. We do not
use word positions to extract features to avoid dependence on
erroneous information. Thus, word-level alignment information
is required only during pre-training to conduct word-level mask-
ing. We expect that removing word positions does not affect
the performance of TTS negatively as Ref. [8] suggests. We
also expect that masking based on erroneous word boundaries
derived from the morphological analyzer does not have major
negative effects, because it just affects size of word units but does
not affect consistency of word alignments between graphemes
and phonemes. It is known that the consistency of the word-
level masking affects the performance of pre-training and the
downstream TTS task in PnG BERT [8]. We will confirm these
assumptions by measuring the G2P conversion performance of
PnG BERT.

The second modification is the introduction of tone prediction
to TTS as an additional downstream task. Japanese pitch accents
are an important spoken feature to disambiguate homonyms.
Unfortunately, accent labels are not available on the scale of
large corpora that are used for pre-training. Therefore, we in-
corporate tone prediction as one of the downstream tasks. The
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tone prediction task is performed against the phoneme part of
PnG BERT’s output features similar to the TTS downstream
task. We use tone labels to represent accent information because
they are aligned to phonemes in a syllable unit. Ideally, the
relationship between extracted features and pitch accents is to be
learned implicitly from the target mel-spectrogram that contains
F, information. The tone prediction task is to explicitly teach
PnG BERT pitch accents. We expect that fine-tuning PnG BERT
with accent prediction makes it easy for PnG BERT to learn pitch
accents.

IV. EXPERIMENTAL EVALUATIONS

To investigate the effects of feature contents captured by
PnG BERT on Japanese TTS, we pre-trained a Japanese
PnG BERT model and constructed TTS models under various
fine-tuning conditions.

A. Pre-Training Condition

To construct a PnG BERT model, we used a BERT model
with model size, so-called BERT-base [9], which consists of
12 Transformer layers with 768 hidden size."! The model is
trained up to 11.63 M steps with 20 batch size and learning
rate with linear decay started from 5.0 x 1075 with the Adam
optimizer with L2 regularization [19]. Note that the original
PnG BERT uses the SM3 optimizer [20] instead of Adam.
We found that with Adam, it was easy to optimize the model,
whereas with SM3, it was difficult to find the proper hyper
parameters, although it was memory-efficient.

We randomly selected 25% words in a sentence as a target of
the MLM objective. For the 25% selected words, we applied the
following masking strategy: (a) both graphemes and phonemes
are masked for 48% random words; (b) only the character part
is masked for 8% random words; (c) only the phoneme part is
masked for 8% random words; (d) both characters and phonemes
are kept intact for 10% random words; (d) both characters
and phonemes are randomly replaced with other phonemes or
characters for 10% random words. Note that (b) and (c) are not
present in the original PnG BERT [8]. In preliminary experiment,
we found that these masking strategies were very effective for
improving G2P and P2G performances.

We followed the input representations of the original
PnG BERT paper [8]. We used character and phoneme represen-
tations as input to PnG BERT. The two sequences were appended
with the SEP token and concatenated into one sequence. The
CLS token was prepended, but we did not use the NSP objective.

As Japanese text corpora for pre-training, we used Wikipedia®
and Aozorabunko.? Table I shows statistics of the text corpora
used in this study. Wikipedia is a collection of online encyclo-
pedia. We used a subset of Japanese Wikipedia that contained
about 18.5 M sentences. Aozorabunko is collection of Japanese

'We also tried the original model size, which consists of 6 Transformer layers
with 512 hidden size. We found that fine-tuning of PnG BERT with the original
model size converged faster and its synthetic speech sounded similar quality as
PnG BERT with BERT-base size.

2[Online]. Available: https://dumps.wikimedia.org/

3[Online]. Available: https://github.com/aozorabunko/aozorabunko/
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TABLE I
STATISTICS OF JAPANESE TEXT CORPUS USED IN THIS STUDY
Usage
Corpus #Records Pre-training gFinc:e-tuning
Wikipedia 18,486,538 Training -
Aozorabunko 4,891,288 Training -
JSUT 6,385 Validation Training/Validation/Test

books in public the domain. We used subset of Aozorabunko
that contained about 4.9 M sentences. Phoneme transcriptions
were obtained by morphological analysis using the Kuromoji
analyzer4 with Neologd dictionary [21]-[23]. For validation,
we used text and phoneme labels from the JSUT corpus [24],
which was also used to fine-tune a TTS model. We used a
subset of JSUT corpus called basic5000, which contains
5,000 sentences that cover the pronunciations of commonly used
ideographic characters.

B. TTS Systems

We constructed five TTS systems using the same pre-trained
PnG BERT model on the basis of different fine-tuning condi-
tions.

1) PGBO: No fine-tuning

2) PGB2: Two-layer fine-tuning

3) PGBA4: Four-layer fine-tuning

4) PGB6: Six-layer fine-tuning

5) PGB2T: Two-layer fine-tuning with tone prediction in
addition to TTS

6) PGB2MC: Two-layer fine-tuning and all graphemes are
masked during fine-tuning and prediction.

The PGBO system is equivalent to TTS using fixed features
extracted from PnG BERT. The PGB2, PGB4, and PGB6 sys-
tems conducted fine-tuning of the last two, four, and six layers
while freezing the other layers, respectively. The PGB2T uses
multi-downstream tasks of both TTS and tone prediction. In
all systems, only an output from the last layer was used as
input feature to TTS. Note that the PGB2T system did not use
tone labels during prediction. PGB2MC was to distinguish the
contribution of the graphemes by masking all graphemes during
fine-tuning and prediction.

We constructed another pre-trained BERT model that uses
only phonemes during pre-training, fine-tuning and prediction
as a baseline to clarify the contribution of the graphemes. In this
system, pre-training, fine-tuning, and prediction scheme were
same as PnG BERT except that all graphemes were masked out.
We trained phoneme BERT up to 1.0 M steps with 80 batch
size with linear decay started from 5.0 x 10~° with the Adam
optimizer with L2 regularization. We fine-tuned the last two
layers of phoneme BERT with TTS task. We referred to this
system as PB2MC.

7) PB2MC: Phoneme BERT that uses only phonemes as
inputs during pre-training and fine-tuning. The last two
layers of BERT encoder are fine-tuned.

We prepared five baseline systems with different encoder and

input representations.

4[Online]. Available: https:/github.com/atilika/kuromoji
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8) PGBN: Non-pretrained PnG BERT as the encoder with
grapheme and phoneme labels

9) TAC: Tacotron2’s encoder with phoneme labels
10) TACT: Tacotron2’s encoder with phoneme and tone la-
bels
BTAC2A: Tacotron2’s phoneme encoder and pre-trained
character BERT encoder. Its two sources are aligned to
target with dual source attention [25].
BTAC2B: Tacotron2’s phoneme encoder and pre-trained
character BERT encoder. Its two sources are aligned to
target with dual source biattention [26].

The PGBN system used the same framework to conduct TTS
with PnG BERT except for skipping pre-training. It used the
same BERT architecture, input representation, and TTS proce-
dure as the other five systems using PnG BERT.

We used Tacotron2 [1] as the baseline method, different from
PnG BERT. We constructed two Tacotron2 models without
pre-training: TAC that uses the phoneme label and TACT that
uses phoneme and tone labels as inputs. The phoneme and tones
were concatenated after being processed by the pre-net layer
to feed to the encoder in the TACT system [27]. We used the
same phoneme and tone labels that were used in the fine-tuning
of TTS and tone prediction for the PnG BERT-based systems.
The encoder of Tacotron2 consists of three convolutional layers
and a bidirectional LSTM layer. Note that TAC is a baseline
comparable to the PnG BERT systems considering that the
PnG BERT systems did not use tone labels during prediction,
and TACT worked as the upper bound as it used tone labels
during prediction.

We also included two Tacotron baseline systems extended
with pre-trained character BERT encoder. These systems com-
bines the character BERT encoder and phoneme encoder by
dual source attention [25]. This was a common method to
combine BERT with Tacotron [13], [28], and we referred to
the system as BTAC2A. This method did not consider alignment
between the two sources, i.e. phoneme features and character
features. The BTAC2B system used dual source biattention to
learn alignment between the two sources [26]. With biatten-
tion, the model learned to align the two sources, and then the
aligned sources are aligned to targets to predict outputs. Guided
attention loss [29] were used for alignments between BERT
features and target mel-spectrogram to enforce monotonicity.
We used a publicly available pre-trained Japanese BERT model
that used characters as input representation and was trained with
word-level masking.’ We fine-tuned the last two layers of BERT
encoder.

All these systems used the same decoder as that of
Tacotron2 [1]: two-layer LSTM decoder, attention layer with
forward attention [27], and two-layer pre-net bottleneck. The
forward attention enabled faster training by enforcing a mono-
tonic structure of alignment [27]. The decoder pre-net layer
prevented the decoder from excessively depending on autore-
gressive feedback by applying dropout [30].

1)

12)

5BERT—base_mecab—ipadic—char—4k_d0—whole—word—mask‘ [Online]. Avail-
able: https://github.com/cl-tohoku/bert-japanese
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C. Fine-Tuning Conditions

1) Fine-Tuning With TTS Task: The TTS models were fine-
tuned with a batch size of 60 and learning rate of 1.0 x 106
until validation loss stopped improving. The PGB0 system was
trained up to 488 K steps by using pre-trained PnG BERT
parameters. The PGB2 system was trained up to 272 K steps
by warm-starting from parameters of PGB0. The PGB4 system
was trained up to 90 K steps by warm-starting from parameters
of PGB2. The PGB6 system was trained up to 142 K steps by
warm-starting from parameters of PGB4. The PGBN system was
trained up to 282 K steps from scratch. The PGB2MC system was
fine-tuned up to 72 k steps by warm-starting from parameters
of PGB2. The PB2MC system was fine-tuned up to 156 k steps
by freezing all layers and then was fine-tuned up to 32 k steps
by unfreezing the last two layers. The BTAC2A system was
fine-tuned up to 80 k steps by freezing all layers and then was
fine-tuned up to 20 k steps by unfreezing the last two layers. The
BTAC2B system was fine-tuned up to 64 k steps by freezing all
layers and then was fine-tuned up to 26 k steps by unfreezing
the last two layers. We used the same optimizer, i.e., Adam with
L2 regularization, to fine-tune a TTS model [19].

We extracted an 80-dimensional mel-spectrogram from a
waveform with a 24 k sampling rate as a target acoustic feature.
We used Parallel Wave GAN [31] to generate a waveform from
the mel-spectrogram.

We used JSUT [24] as the speech corpus to fine-tune TTS
models. We used phoneme labels transcribed from speech.® We
split the data into train, validation, and test sets with 5,386, 499,
and 500 sentences, respectively.

2) Fine-Tuning With TTS and Tone Prediction Task: To cap-
ture accent information, the PnG BERT model was fine-tuned
by the tone prediction task in the PGB2T system. In this setting,
a PnG BERT model predicts tone labels from the phoneme
segment of an input sequence.

The PGB2T system was trained up to 180 K steps by warm-
starting from parameters of PGB0 with the Adam optimizer
with L2 regularization. The fine-tuning of tone prediction was
performed at the same time with TTS fine-tuning. We found that
the multitask learning of TTS and tone prediction was essential
to incorporate tone prediction to PnG BERT. Separating the
fine-tuning by TTS and tone prediction tasks in two stages failed
to learn the alignment between input features from PnG BERT
and target speech during TTS training.

We used the same corpus as that of TTS, namely, JSUT cor-
pus [24] to fine-tune with tone prediction.” The data split setting
for tone prediction was the same as that of TTS. We used the
X-JToBI [32] format to represent the tone labels. The tone label
contains the following pitch contour patterns: L (neutral low),
and H (neutral high), %L (neutral low at the start of accentual
phrase), L% (neutral low at the end of accentual phrase), and

fkana_level3. [Online]. Available: https://github.com/sarulab-speech/jsut-
label

"The accent labels. [Online]. Available: https:/github.com/sarulab-speech/
jsut-label
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A (accent nucleus position). The tone labels were aligned to
phoneme labels.

D. Evaluation Methods

1) Pre-Training Evaluation: We evaluated the performance
of pre-training with three metrics: accuracies of MLM, G2P,
and P2G as in [8]. The accuracy of MLM was computed on the
basis of the MLM objective with random masking, the same
as in the pre-training. The accuracy of G2P was computed by
masking the entire phoneme segment, and the accuracy of P2G
was computed by masking the entire grapheme segment.

2) Objective Evaluations: We measured attention error
rate (AER) [18], character error rate (CER), tone predic-
tion accuracy (TA), phrase prediction accuracy (PA), and
accentual nucleus prediction accuracy (AA) as objective
metrics.

The AER was used to evaluate how easily the feature from
PnG BERT was aligned to speech. The AER was calculated on
the basis of the number of non-monotonic attention distribu-
tions that contain discontinuities or overestimation of duration.
We counted discontinuities over four encoder time steps and
duration over 30 decoder time steps as alignment errors.

The CER was used to evaluate the phonetic correctness of
synthetic speech. The CER refers to the character-level Lev-
enshtein edit distance between reference texts and hypothesis
texts transcribed by automatic speech recognition (ASR). We
used ESPNet [33] for ASR .8

The TA, PA, and AA were used to evaluate the abundance of
tone-related information in encoded features. The TA is predic-
tion accuracy of all tone labels described in Section IV-C2. The
PA is the prediction accuracy of start and end of accentual phrase
(%L and L%). The AA is the prediction accuracy of accent
nucleus (A). They were measured by conducting linear classifi-
cation against fixed features from the encoder of PnG BERT or
Tacotron. In the case of the BTAC2A system, concatenation of
outputs from phoneme encoder and BERT encoder were used as
inputs for the tone classifier. In the case of the BTAC2B system,
concatenation of outputs from phoneme encoder and aligned
BERT encoder by biattention were used as inputs for the tone
classifier.

3) Subjective Evaluations: We conducted a listening test
to evaluate the synthetic speech.” We included the ten sys-
tems described in Section IV-B except for PGB2MC, PB2MC,
BTAC2A, and BTAC2B in addition to natural samples (NAT)
and analysis-by-synthesis (ABS) in the listening test. Here, ABS
meant synthetic samples from neural vocoder given ground truth
mel-spectrogram. We asked two questions to listeners. The first
question was about naturalness in the five-scale mean opinion
score (MOS): very bad, bad, acceptable, good, and very good.
The second question was about accent correctness in four-scale
MOS: totally wrong, somewhat wrong, somewhat correct, and
totally correct. Every sample was evaluated five times. We

8We used a publicly available ASR model. [Online]. Available: https:/zenodo.
org/record/4304245#.Yac84FORV(s

90ur audio sample page. [Online]. Available: https://todalab.github.io/
yasuda-japanese-pngbert-samples/
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Fig. 3. History of pre-training accuracy of a PnG BERT model for validation
set. MLM refers to accuracy under random masking as training time. G2P refers
to accuracy under masking all phonemes. P2G refers to accuracy under masking
all graphemes.

TABLE I
ALIGNMENT ERROR RATE (AER), CHARACTER ERROR RATE (CER), TONE
PREDICTION ACCURACY (TA), PHRASE PREDICTION ACCURACY (PA), AND
ACCENTUAL NUCLEUS PREDICTION ACCURACY (AA) OF TTS SYSTEMS. PRED.
DENOTES PREDICTION

Pre- Fine-

System training  tuning Tone AER] CER| TAT PAT AA?T
PGBO v - - 13.6 294 728 741 20.6
PGB2 v 2 layers - 52 197 731 735 226
PGB4 v 4 layers - 42 190 729 730 224
PGB6 v 6 layers - 36 18,6 70.0 66.8 16.2
PGBN - All - 132 442 584 278 26.0
PGB2T v 2 layers Pred. 7.6 230 816 805 56.7
PGB2MC v 2 layers - 6.8 255 665 565 234
PB2MC v 2 layers - 56 288 64.1 383 270
TAC - All - 44 210 660 562 209
TACT - All Label 54 199 885 827 69.0
BTAC2A v 2 layers - 3.0 21.8 651 499 114
BTAC2B v 2 layers - 206 22.0 60.7 482 17.1
ABS - 210 - - -
NAT - 249 - - -

collected 25,000 evaluations in total from 248 Japanese listeners.
We checked the statistical significance with the Mann-Whitney
rank test [34].

E. Experimental Results

1) Pre-Training Results: Fig. 3 shows the accuracies of
MLM, G2P, and P2G in the validation set as the performance
of pre-training. The accuracy of MLM consistently improved
during pre-training up to 70.3% until overfit. On the other hand,
the accuracies of G2P and P2G fluctuated during pre-training,
which were 45.5% and 23.6% at the model with the highest
MLM accuracy, respectively. It seemed that the performances
of G2P and P2G had a trade-off relationship: when one metric
increased, the other decreased. The magnitudes of these values
were somewhat consistent with [8]. The relatively low perfor-
mances of G2P and P2G indicated that the features captured
by PnG BERT were not dominant in surface-form information
with our masking strategy of pre-training, which was expected
to contain syntactic and semantic information [8].

2) TTS Results: Table Il shows AER, CER, TA, PA, and AA
from the TTS systems. The AER and CER showed roughly the
same trends: the systems that had high AER also showed high


https://zenodo.org/record/4304245#.Yac84FORVqs
https://zenodo.org/record/4304245#.Yac84FORVqs
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https://todalab.github.io/yasuda-japanese-pngbert-samples/
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CER. When the number of fine-tuning layers in PnG BERT was
increased, both AER and CER improved, which indicated that
features from PnG BERT contained information more aligned
to speech. The high AER and CER from the PGB0 system
showed that the pre-trained PnG BERT without fine-tuning
provides abundant textual features and less spoken features, and
it was consistent with the relatively low G2P accuracy in the
pre-training. The PGBN system showed high AER and CER
although it fine-tuned all layers in PnG BERT. This implied
that pre-training was essential for PnG BERT to learn stable
alignment between phonemes and speech for TTS.

As for tone prediction accuracy, pre-trained PnG BERT sys-
tems (PGBO0-6) showed high accuracies. They showed high
PA but low AA, which indicated that the high TA values
mainly came from rich accentual phrase information in the
encoded features, and accentual nucleus information was not
sufficiently captured in the features. The system with tone pre-
diction (PGB2T) had high AA, which indicating that its feature
contained both accentual phrase and nucleus information. The
masking graphemes (PGBMC) resulted in degradation of TA
from 73.1% to 63.3%. The degradation was mainly caused by
significant decrease of PA from 73.5% to 38.4%, suggesting that
phrase information depends largely on contextual information
of graphemes rather than phonemes. The low TA and PA of
the PnG BERT system without pre-training (PGBN) indicated
that pre-training was essential to capture information related to
accentual phrase. Tacotron, which did not perform pre-training,
also failed to capture sufficient information related to accentual
phrase, as indicated by its low TA and PA. The high tone
prediction accuracy of TACT was because tone labels were
given as input. Both PnG BERT systems that use only phonemes
(PGB2MC and PB2MC) showed low TA compared to the system
using both characters and phonemes (PGB2). The performance
drop of TA was mainly caused by degradation of PA. This
indicated that contextual information encoded in character part
enriched phrase-related information. TA from these systems
were similar values to that of the Tacotron baselines. This
suggested that pre-training or fine-tuning with only phonemes
did not help to encode tone-related information. Both Tacotron
systems extended with character BERT (BTAC2A and BTAC2B)
showed similar values of TA, which were lower compared to TA
from PnG BERT systems. We thought that the no improvement
of TA from BERT incorporated Tacotron systems were caused by
poor alignments between phoneme features and BERT features.
We found that it was hard to learn alignment between BERT
features and mel-spectrogram in both BTAC2A and BTAC2B
systems, and alignment between BERT features and phoneme
features in the BTAC2B system even though various techniques
such as forward attention, guided attention, and biattention were
used to enforce robust alignments. The attention distributions
about BERT features were mostly blurred or nonmonotonic.
These results were consistent with the existing works [13],
[28]. We thought learning alignment proprly between phoneme
features and BERT features was important to predict tones from
the contextual features because tone labels were designed in
phoneme-level, and high TA from PnG BERT systems came
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Fig. 4. Results of listening test.

from learning accurate alignments between phonemes and char-
acters by utilizing large-scale text resources during pre-training.

Fig. 4 shows results of the listening test on (a) naturalness
and (b) accent correctness. It showed that pre-training was
crucial, considering the significant improvement of naturalness
from 1.44 + 0.02 (PGBN) to 1.95 + 0.03 (PGBO). Fine-tuning
was also essential, considering the significant improvement of
naturalness from 1.95 + 0.03 (PGBO) to 2.64 4+ 0.03 (PGB2).
Increasing the number of fine-tuned layers slightly improved
naturalness from 2.64 + 0.03 (PGB2) to 2.77 4+ 0.03 (PGB4),
but there was no significant difference between the four and six
layers, indicating that four layers were sufficient for fine-tune.
The tone prediction did not help in improving naturalness,
because there was no significant difference between PGB2 and
PGB2T. The PnG BERT-based systems did not match the natu-
ralness of the Tacotron that had MOS of 2.95 + 0.03 (TAC). We
found that samples from the PnG BERT-based systems had lower
fidelity than samples from the Tacotron systems. We consider
that the low fidelity was caused by the difficulty of optimizing the
fine-tuning of PnG BERT, as indicated by long fine-tuning time
requirements and relatively high loss values. The Tacotron with
accent labels (TACT) had the highest MOS score of 3.28 £ 0.03
among TTS systems as expected of upper bound system.

For accent correctness, pre-training and fine-tuning were cru-
cial as well. There was no significant difference among systems
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with different numbers of fine-tuned layers. The tone prediction
slightly improved accent correctness from 2.41 £ 0.03 (PGB2)
to 2.51 £ 0.03 (PGB2T). The pre-trained PnG BERT based sys-
tems significantly outperformed Tacotron, which had MOS of
1.89 + 0.03 (TAC), in terms of accent correctness in contrast to
the results on naturalness. This suggests that pre-trained features
from PnG BERT were helpful in inferring pitch accents. The
PnG BERT without pre-training, which showed a low score of
1.73 £ 0.03 (PGBN), contained graphemes in inputs, so what
helped in inferring pitch accents was not surface form informa-
tion but presumably syntactic and semantic information. Still,
accents inferred by the pre-trained PnG BERT-based systems
were not sufficiently accurate compared to accent labels, as
indicated by their lower scores than TACT, which used accent
labels during prediction. The Tacotron with accent labels (TACT)
showed relatively high MOS score of 3.04 &£ 0.03, which in-
dicated that Japanese listeners were sensitive to pitch accent.
We consider that the word coverage of training speech and
tone label data used for fine-tuning limited the correctness
of inferred accents, because the only phase in which accent
nucleus positions can be learned by PnG BERT was fine-tuning
in our method. Considering that accent nucleus positions are
the spoken features of words, we think that pre-training with
tone labels or fine-tuning with large-scale speech data would
be required to improve the accent correctness of Japanese
PnG BERT.

V. RELATED WORKS

An early attempt to utilize an unsupervised textual represen-
tation for TTS is the vector space model, which is an information
retrieval method to derive linguistic feature vectors from texts by
singular value decomposition [35]. The objective of the vector
space model is to improve the language versatility of TTS by
replacing text front-end, which is traditionally dependent on
many language-specific features. However, the vector space
model is not helpful for DNN-based TTS [36].

Neural-network-based pre-training methods replace the vec-
tor space model by using much larger text resources. The neural-
network-based pre-training is useful for TTS in ideographic
languages to overcome data sparsity caused by character diver-
sity. For example, pre-trained character embedding is used for
a front-end model in Maindarin TTS [37]. Pre-trained linguistic
encoder is used to enable to take ideographic characters directly
as input in Mandarin TTS by introducing G2P objective [38].

Word embedding [39], [40] and contextual word embedding
such as BERT [9] are widely used unsupervised word repre-
sentation learning methods for general purposes. Word embed-
ding is mainly used to improve prosody of synthetic speech in
TTS [28], [41]-[46]. Moreover, the word embedding is suitable
for prosody modeling in variational autoencoder (VAE)-based
TTS [47]-[49]. Word embedding is also used to improve data
efficiency under small amounts of training speech data [50].

BERT can not only be used to extract fixed contextual
word embedding features, but can also be customized to fit the
downstream task. There are three strategies to customize a BERT
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model: (1) fine-tuning, (2) input representation, and (3) masking
strategy. Fine-tuning enables the fitting of features to a down-
stream task by tuning part of the parameters of the pre-trained
model. It is known that fine-tuning improves the performance of
BERT in downstream tasks similar to pre-training methods in the
NLP domain [51]. Recent TTS works using BERT perform fine-
tuning [8], [42], [46], [48], [49]. Some studies show that the fine-
tuning of BERT with TTS improves the naturalness of synthetic
speech [8], [46], [48]. In this study, we fine-tuned PnG BERT
with TTS and tone prediction and confirmed the effectiveness of
fine-tuning.

The design of the input representation of BERT for TTS
includes words, subwords, characters, phonemes, and speech.
Pre-training in the word domain obtains semantic information,
and pre-training in the character domain obtains surface infor-
mation, and pre-training in the subword domain is considered
between them. Words [45], [45] and subwords [42], [46]-[49]
are commonly used representations for BERT. In [44], characters
were used as input to BERT for Mandarin TTS. PnG BERT [8]
combines both characters and phonemes to pre-train BERT
to capture both surface and phoneme information to apply to
TTS. This idea to combine subwords and phonemes is also
investigated in spoken language understanding [52]. In [53],
mel-spectrogram was used to pre-train BERT, which is used
as a pre-net network [30] in TTS.

The masking strategy can be designed specifically for adown-
stream task. PnG BERT [8] applies word-level masking on both
character and phoneme pairs. [52] uses “one-mode masking”
was used on subwords and phonemes, which is to mask the
entire subword or phoneme segment equivalent to the G2P or
P2G task.

VI. CONCLUSION

In this work, we investigated the effects of features captured
by PnG BERT on Japanese TTS by modifying the fine-tuning
condition to determine the conditions helpful in rendering pitch
accents. We manipulated the content of PnG BERT features
from being text-oriented to speech-oriented by changing the
number of fine-tuned layers during TTS. In addition, we taught
PnG BERT pitch accent information by fine-tuning with tone
prediction as an additional downstream task. Our experiment
showed that pre-training and fine-tuning were essential for both
naturalness and accent correctness for Japanese TTS. Increas-
ing the number of fine-tuned layers improved alignment and
character error rates, but did not contribute considerably to
naturalness. PnG BERT provided better accent correctness than
the Tacotron baseline, although all the PnG BERT-based systems
were inferior to Tacotron in terms of naturalness because of
their low fidelity. Fine-tuning with tone prediction considerably
improved tone prediction accuracies from captured features, but
its improvements were limited in the subjective evaluation of
accent correctness. Overall, the features of PnG BERT captured
by pre-training contained information helpful in inferring pitch
accent, and fine-tuning by TTS enriched pitch accent informa-
tion for the PnG BERT features.
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Our future works include the improvement of the low fidelity
of generated speech and long fine-tuning time of PnG BERT.
It would be interesting to find the optimal masking strategy
to obtain higher fidelity and fine-tuning efficiency of Japanese
PnG BERT by changing the masking strategy to control the
balance of surface form, syntactic, and semantic information.
We will also work on the further improvement of Japanese
PnG BERT to infer pitch accents. One interesting way to improve
the capture of pitch accent features is pre-training PnG BERT
with accent labels instead of fine-tuning by tone prediction. An-
other interesting way is to fine-tune PnG BERT with large-scale
speech data.
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