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Abstract—Learning from audio-visual data offers many possibil-
ities to express correspondence between the audio and visual con-
tent, similar to the human perception that relates aural and visual
information. In this work, we present a method for self-supervised
representation learning based on audio-visual spatial alignment
(AVSA), a more sophisticated alignment task than the audio-visual
correspondence (AVC). In addition to the correspondence, AVSA
also learns from the spatial location of acoustic and visual content.
Based on 360◦ video and Ambisonics audio, we propose selection
of visual objects using object detection, and beamforming of the
audio signal towards the detected objects, attempting to learn the
spatial alignment between objects and the sound they produce. We
investigate the use of spatial audio features to represent the audio
input, and different audio formats: Ambisonics, mono, and stereo.
Experimental results show a 10% improvement on AVSA for the
first order ambisonics intensity vector (FOA-IV) in comparison
with log-mel spectrogram features; the addition of object-oriented
crops also brings significant performance increases for the human
action recognition downstream task. A number of audio-only down-
stream tasks are devised for testing the effectiveness of the learnt
audio feature representation, obtaining performance comparable
to state-of-the-art methods on acoustic scene classification from
ambisonic and binaural audio.

Index Terms—Audio classification, audio-visual corres-
pondence, audio-visual data, audio-visual spatial alignment,
feature learning, self-supervised learning.

I. INTRODUCTION

CURRENT state-of-the-art methods in audio classification
follow the trend from the visual domain in using large

models that require large datasets for training. Unlike in the
visual domain, large annotated audio datasets are scarce, due to
the high annotation cost (time and effort-wise). On the other
hand, audio data is relatively easy and fast to record. It is
therefore possible to produce large datasets without annotations.

Self-supervised learning has become a common approach to
learn representations using large datasets containing unlabeled
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data. Self-supervision refers to methods that learn represen-
tations of the data using so-called proxy learning tasks, in
which the learning process is guided by patterns in the data
and the main goal is to learn mappings from input examples to
low-dimensional representations. These representations, called
embeddings, can be later used as features in downstream tasks,
or the trained network can be fine-tuned using the downstream
task data and setup.

Methods for learning embeddings for audio can be based on
audio only or different combinations of audio and other modal-
ities, e.g., audio-visual data, audio with corresponding textual
descriptions, or tags. For example, language-agnostic speech
embeddings learned using only speech signals were successfully
used in emotion classification on languages different from that
used in pretraining [1]. In a similar manner, Fonseca et al. [2]
trained a deep neural to learn the association between different
views of the same time-frequency representation of a signal,
in other words to be insensitive to transformations applied by
different augmentation methods to the original data. Trained
on FSD18k noisy dataset [3] and tested on the in-domain task
of sound event classification, the pretrained model exceeded
or at least attained the same performance as a baseline sys-
tem trained in a supervised manner [2], showing that robust
learning is possible without use of explicit labels. Another
recent self-supervised learning approach for audio based on
unsupervised sound source separation learns the association
between the mixture audio and one separated track of the same
audio segment [4]. Trained on AudioSet and tested on the
in-domain task of audio tagging, the method was shown to learn
useful representations even with imperfectly separated tracks.
These methods prove that semantic structure in the data can be
learned without explicit supervision using only the audio signal
itself.

The scientific literature also contains a number of approaches
using audio-visual data that learn to distinguish visual and aural
signals with an appropriately designed learning objective that
promotes associating the two. A popular strategy is the use of
audio-visual correspondence as proxy task, which has proved to
be a powerful criterion for unsupervised or self-supervised rep-
resentation learning [5]–[8], and useful in various downstream
audio-visual or audio-only classification or recognition tasks
[5], [9]. While these works can leverage spatial visual informa-
tion on the video, as shown by visualizing sound activity on the
visual objects that produce it [10], they work with monophonic
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audio, dismissing spatial information in audio, if more than one
audio channels are available.

Only a handful of audio-visual studies have exploited the
spatial information in multichannel recordings that may re-
veal directions of sound events, line-of-sight sources, rever-
berant conditions, and other acoustic characteristics of the
recorded scene. The work of Gan et al. [11] transfers knowledge
from videos of moving vehicles to train a model to localize
them using only the audio from a stereo microphone, while
Valverde et al. [12] attempt a similar task including additional
modalities such as depth maps and thermal maps, and a larger
microphone array. Vasudevan et al. [13] use object detection and
depth maps from 360◦ video as supervision for an audio network
using four pairs of binaural microphones. They study a multi-
task setting that includes sound event detection and localization
(SELD), generating 360◦ depth maps from audio, and generating
rotated binaural signals at unseen orientations. Irie et al. [14]
combine video along with corresponding spatial acoustic activ-
ity visualizations, obtained with microphone arrays, in order to
infer object segmentation masks using only audio at run-time.
Perez et al. [15] follow a similar strategy for sound event detec-
tion showing benefits over using only monophonic audio. They
additionally use the audiovisual input to transfer knowledge
successfully into monophonic audio classification.

Two recent works have been especially focused on leveraging
information from spatial audio cues together with visual data
in order to obtain powerful embeddings that can be useful in
various downstream visual or audio tasks. In [16] ASMR videos
from YouTube with corresponding 2-channel binaural audio
are fed to a neural network with their left and right channels
either in the correct order or flipped. The network, trying to
learn to differentiate the correct from incorrect samples, learns
spatial representations that prove useful in further audiovisual
tasks, surpassing non-spatial audio versions. Morgado et al. [17]
extend this idea to 360◦ videos with 4-channel ambisonic audio.
They train a network to distinguish whether crops in a 360◦ video
frame are spatially aligned with the corresponding ambisonic
audio, to learn a representation between spatially aligned views
from 360◦ video and 360◦ spatial audio, through a contrastive
learning approach.

The audio-visual alignment performed in [17] was shown to
learn useful embeddings for a number of downstream video
classification task. However, its focus on the visual side means
that the learned audio embeddings were only used when test-
ing the in-domain audio-visual alignment tasks, therefore no
explicit audio downstream task was investigated. Moreover, the
ambisonic format used in the study is not common in audio
datasets, unless they specifically target spatial audio rendering,
sound source tracking, or localization. The feature representa-
tion for the audio input was the log-mel spectrum, even though
the Ambisonics format provides the opportunity for spatial audio
features, which may be more suitable for the intended alignment
task. The learning method in [17] uses random crops from the
video frames. For the purpose of audio-visual alignment, random
crops may not contain relevant information with respect to the
audio, and therefore a more careful selection of the content may
be beneficial.

In this work, we propose a system that learns from 360◦

audio and video data through spatial alignment. We build on the
method proposed by Morgado et al. [17] by proposing a number
of specific audio processing steps. We focus on the audio-visual
spatial alignment because we presume that the audio-visual
correspondence with addition of spatial audio-visual alignment
should provide more powerful embeddings than only corre-
spondence, including for audio-only tasks. Even though tasks,
applications, and downstream datasets may not be based on
360◦ video and audio, this format offers a powerful learning
strategy based on a full field of view (everything that makes
a sound is visible if not occluded or too far). Furthermore,
the Ambisonics format can be transformed straightforwardly
into “lower-dimensionality” practical formats, such as stereo
or mono, but using its full spatial diversity during training
will transfer knowledge to the downstream tasks even on these
spatially limited formats. We therefore consider worthy of in-
vestigation how the AVSA training strategy applies to audio
tasks, and how effective audio embeddings can be learned for
the different audio formats.

The contribution of this work are as follows: 1) We combine
audio beamforming with visual object detection in order to
create a strong spatial correspondence between the audio and
video modalities, and therefore feed the learning process with
a correspondence between visual objects in the scene and the
sounds they produce; 2) We represent the audio signal using
spatial audio features, to provide an explicit representation of
its spatial content; 3) We investigate the use of stereo and mono
(beamformed) audio formats in combination with object detec-
tion and spatial features, and examine the effect of this transfor-
mation on both in-domain and out-of-domain downstream tasks.
We show the usefulness of our approach in a number of audio
and video downstream tasks, including the in-domain AVC and
AVSA, human action recognition, acoustic scene classification
with ambisonic audio using the Eigenscape dataset [18], and
with binaural audio using the TAU Audio-Visual Urban Scenes
2021 dataset, and audio-visual scene classification [19].

The rest of this paper is organized as follows: Section II intro-
duces in more detail the methods for learning from audio-visual
data that serve as background to our work. Section III presents
the learning procedure, and includes the AVC and AVSA learn-
ing methods, the visual crop selection procedure and spatial
audio processing, while Section IV presents the stereo audio
setup. Section V presents the experimental setup and results,
including the dataset, the AVC and AVSA tasks results, the
human action recognition video-only tasks, and the audio-only
Ambisonics and binaural acoustic scene classification. Finally
Section VI presents conclusions and future work.

II. RELATED WORK

Self-supervised learning from audio-visual data has provided
a number of powerful models for a variety of downstream tasks.
In those methods, firstly, proxy learning tasks are framed as
correspondence or coincidence between the audio and visual
signals. The methods are then commonly tested on down-
stream tasks such as single-modality classification problems,
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e.g., acoustic scene or sound classification, image classification,
human action recognition from video, etc. Below we review the
approaches most related to ours.

One of the most well-known such methods is Look, Listen and
Learn, or L3-Net, [5], which explores what can be learnt from
a large number of unlabelled videos using the video and audio
information without any supervision. To achieve this, authors
proposed an AVC learning task by training a video subnetwork
and an audio subnetwork simultaneously to predict if a frame of
a video corresponds or not to an audio segment. Positive pairs
come from the same video where 1-second audio clip overlap the
video frame. Negative pairs are obtained by randomly choosing
two different videos, picking one random frame from one video
and a random 1-second audio segment from the other. The
authors found that the method could solve the AVC task, and also
learn good visual and audio features. The effectiveness of audio
features was tested on two sound classifications tasks [20], [21]
and set new state-of-the-art performance at the time, while
visual features evaluated on the ImageNet challenge [22] also
performed on par with the state-of-the-art methods.

More recent work by Cramer et al. [8] studied the effect of
audio embeddings obtained from various audio input represen-
tations to L3-Net, showing that mel-frequency log-magnitude
spectrograms used as the input to the audio subnetwork out-
perform the linear-frequency log-magnitude spectrograms. In
addition, the authors also found that it is not necessary to match
the content of audio for training embeddings to the audio in the
downstream tasks, which further indicates that L3-Net is able to
learn more general and robust features. The approach was used
for audio-visual scene classification as a baseline system in the
DCASE 2021 Challenge [9]. Audio features and visual features
were extracted from the pretrained audio and video subnetworks
of L3-Net, respectively, after which the audio and video embed-
dings were concatenated into a single feature representation.
Classification using the joint feature representation was found
to outperform significantly the single-modal embeddings, but
more advanced image-based approaches outperformed the given
baseline system in the challenge [9].

While methods in [5], [8] have focused on learning to match
the video and audio streams, in [16], the authors proposed to
learn representations by learning a spatial correspondence task
between video and audio which aligns the spatial information in
the audio towards the given positions in the video frame. Unlike
the works in [5], [8] in which the system is trained to tell if a video
frame corresponds or not to an audio segment, the work proposed
by Yang et al. [16] is designed to distinguish if a video frame
spatially aligns with an audio frame. Positive pairs are created by
using a video with its original audio left-right channels, while
negative pairs are generated by flipping the video’s left-right
audio channels. The effectiveness of the learnt representation
was evaluated on downstream tasks such as sound localization,
audio spatialization, and audio-visual source separation. The
authors showed that by learning such spatial correspondence,
the system achieves quantitative gains over those that do not
leverage spatial audio cues.

Similar to [16], Morgado et al. [17] also emphasize the
importance of spatial cues which often occur in audio and video

streams. To learn from the spatial information, authors trained a
network to distinguish if crops in a 360◦ video frame are spatially
aligned with the corresponding ambisonic audio. It should be
noted that previous works have focused on training a two-stream
network (video stream and audio stream) with a final linear layer
which does the binary classification task to tell if a video frame
corresponds or not to an audio frame [5], or if a video frame
spatially aligns or not with an audio frame [16], where binary
cross entropy loss is used to regularize the network. However,
in [17], the authors adopted contrastive losses [23]–[25] which
are prevalent in recent work in the vision community to perform
audio-visual spatial alignment. Given a batch of video-audio
pairs, features from a positive pair are pulled together while, for
a negative pair, are pushed away.

To solve this audio-visual spatial alignment task, the authors
also adopted a curriculum learning strategy [26] by dividing the
task into two stages. Firstly, the network is trained to identify
AVC at the instance level where a positive pair is obtained from
a crop sampled from a random angle in a video frame and its
corresponding rotated ambisonic audio of the same video, and a
negative pair is created from a crop sampled from a random angle
in a video frame and the rotated ambisonic audio from a different
video from the same batch. In the AVSA stage, the contrastive
learning is done at both instance-level and crop-level, where
four crops from a video frame and their corresponding rotated
ambisonic audio from the same video form positive pairs, and
four crops from a video frame with their misaligned Ambisonics
from the same video and other videos form negative pairs, which
also means that a crop in a video frame is distinguished against
the other three crops in the same video frame and the other
crops in different videos. The effectiveness of the features was
evaluated on both in-domain downstream tasks such as AVC
and AVSA, and out-of-domain downstream tasks such as video
segmentation and action recognition.

Our work builds upon the above-mentioned method, and pro-
poses selecting object-oriented crops instead of random viewing
angles, adopting explicit spatial audio features instead of just
multichannel mel-spectrograms, and investigating the effect of
different combinations between object-oriented crops and spa-
tial features. We also investigate the effectiveness of the learnt
audio embeddings in audio-only downstream tasks, using stereo
and mono audio, something that the authors of [17] were not
concerned with.

III. LEARNING FROM SPATIAL AUDIO FEATURES

A simplified block diagram of the proposed method is illus-
trated in Fig. 1. A video clip and corresponding audio in the
training dataset are first processed before being input into the
learning system, which is either AVC or AVSA, depending on
the used learning procedure. The AVC learning process aims to
learn feature representations based solely on the correspondence
(the temporal overlap) of the audio and the video clip. On the
other hand, the AVSA aims to learn feature representations by
using multiple crops and rotated audio signals of the same clip,
and their spatial correspondence (temporal overlap and correct
spatial orientation). Once trained, the system will be able to
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Fig. 1. Simplified block diagram of the proposed system. Object-oriented crops are selected from the video using an object detection method, and the ambisonic
audio is rotated towards the center of the crop to form positive pairs.

Fig. 2. Block diagram of the AVC learning. For each audio-video pair, one crop and its corresponding correct or rotated ambisonic audio are used.

produce as its output video and audio embeddings for the video
frames and audio representation presented as its input.

A. Data Preprocessing

To select audio-video pairs, 0.5 s of video clip with 16 fps
resulting in eight frames, and 1 s of audio with 24 kHz sampling
rate which overlaps with the video are chosen. For each frame,
the objects in the image are detected using YOLO [27] applied
on the equirectangular image (360◦ image), returning objects
with their bounding boxes and center points. From the detected
objects, one crop is randomly chosen, and the ambisonic audio
signals are rotated or beamformed towards the selected object
crop direction, as will be explained in Section III.

The object crops are further processed by applying a
gnomonic projection in order to transform the equirectangular
frame into normal field-of-view crops given the center point.1

Crops are further resized to 112 × 112 resolution. Standard
image augmentation techniques are applied to increase the vari-
ability of the training data: RandomHorizontalFlip which flips

1[Online]. Available: https://github.com/NitishMutha/equirectangular-
toolbox

the images horizontally from left to right with a probability 50%,
and ColorJitter which randomly changes the brightness, contrast,
saturation and hue of the images.

The audio is processed through a feature extraction step,
which extracts either log-mel or spatial features, as will be
explained in Section III. For the versions with multiple channels,
log-mel spectrograms are extracted from each channel and are
stacked along the channel axis. Spectrograms are calculated
using a window size of 21 ms with a hop size of 10 ms, resulting
in 100 frames for a 1s segment of audio, further mapped onto
the mel scale using 128 mel bands.

The processed crops from the video signal and feature rep-
resentation of the audio signal, obtained as explained above,
form the pairs which are used as input to the video and audio
encoders, respectively, and which drive the AVC or AVSA
learning process.

B. Audio-Visual Correspondence Learning

The block diagram of the AVC learning procedure is pre-
sented in Fig. 2 for processing a single clip selected from the
training dataset. For AVC, one cropC corresponding to an object

https://github.com/NitishMutha/equirectangular-toolbox
https://github.com/NitishMutha/equirectangular-toolbox
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Fig. 3. Block diagram of the AVSA learning. Four crops and their corresponding rotated ambisonic audio are used for each audio-video pair.

detected in the image is selected, and the audio features M of
the corresponding rotated audio are used per clip. We follow the
same architecture used in [17] to have a fair comparison. The sys-
tem consists of two encoders: one video encoder which adopts
an 18-layer R2 + 1D model (a 3D convolution, implemented as
2D followed by 1D, and used within a ResNet architecture) as
proposed in [28] and one audio encoder which is a 9-layer 2D
convolutional neural network (CNN). The object crops, and the
corresponding spectral audio features are input into the video
and audio encoders, respectively. These encoders produce the
video embedding v ∈ R512 and audio embedding a ∈ R512.

Video embeddings are projected to target video embeddings
ṽ ∈ R128 by a video head, and the audio embeddings are
projected to target audio embeddings ã ∈ R128 by an audio
head. The target video embeddings are also used as predicted
audio embeddings and vice versa, so that â = ṽ and v̂ = ã. This
setting helps audio and video embeddings from the positive pairs
to come closer and negative pairs to be apart. Both video and
audio heads consist of one linear layer of 128 neurons.

For a batch of N audio-video pairs, the cosine similarity is
calculated between the predicted audio âi outputted from the
video head and the target audio ãj outputted from the audio head,
where i and j are the clip index, i, j = 1, . . ., N . At the same
time, the cosine similarity is calculated between the predicted
video v̂i outputted from the audio head, and the target video ṽj

outputted from the video head:

sim(âi, ãj) =
âi · ãj

‖âi‖‖ãj‖ and sim(v̂i, ṽj) =
v̂i · ṽj

‖v̂i‖‖ṽj‖ (1)

Finally, cross-entropy loss (CEL) is applied between each
cosine similarity matrix and the labels, with the target in the
CEL calculation being 1 for audio and crops that originate from
the same clip (i.e. i = j), and 0 for for audio and crops that
originate from different clips (i.e. i �= j). In practice, this means
that, for positive audio-video pairs, the video subnetwork is
trained to generate embeddings as similar as possible to the audio

Fig. 4. The AVSA learning procedure uses four crops of the same clip and
corresponding audio, presented as green, blue, red and yellow pairs.

embeddings generated by the audio subnetwork and vice versa.
The two subnetworks are trained jointly.

C. Audio-Visual Spatial Alignment Learning

Audio-visual spatial alignment is a difficult task, and imple-
mented by dividing it into two stages. The first stage is AVC,
as explained above, in which the system is trained to identify
correspondence at the instance level. Second, in the AVSA
stage, the system is trained to identify correspondence both at
instance-level and crop-level.

The AVSA learning procedure follows the same general pro-
cedure as the AVC learning, but instead of taking one crop for
each frame, four crops and their corresponding audio are taken
for each clip. The block diagram of AVSA is presented in Fig. 3
for processing a single clip selected from the training dataset.
Four crops Ck (k = 1, 2, 3, 4) are selected randomly or based on
the objects detected in the image, and the corresponding rotated
audio features Mk are computed, centered at each crop, as
illustrated in Fig. 4. For each crop and rotated audio, embeddings
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are produced by the video and audio encoder with the same
configuration as in AVC stage, respectively.

The audio embeddings a1, . . .,a4 ∈ R512 output from the
audio encoder, are further projected by an audio head into lower
dimension, producing the target audio embeddings ã1, . . ., ã4 ∈
R128. At the same time, the audio embeddings are translated
into video features of the same size using a translation net-
work. This translation network between two modalities, the
A2V transformer, is similar to the transformer of [29], and is
necessary for ensuring the accurate translation of features for
the projection step that follows. This is because audio clips
contain the signal from all the listening angles while only those
video crops falling into the given angle could be seen. After
the A2V transformer, the representation is further projected
by the video predict head into lower dimension, producing the
predicted video embeddings v̂1, . . ., v̂4 ∈ R128.

The same steps are performed on the video branch side: the
video embeddings v1, . . .,v4 ∈ R512 output from the video
encoder are projected by a video head into the target video
embeddings ṽ1, . . ., ṽ4 ∈ R128, and are also translated to audio
features through V2A transformer, then projected by the audio
predict head into the predicted audio embeddings â1, . . ., â4 ∈
R128. All the four projection heads consist of a linear layer of
128 neurons. For details of the transformers, we refer our readers
to [17].

For a batch of N clips, the cosine similarity is calculated
between the predicted audio embeddings âik and the target
audio embeddings ãjl, similarly between the predicted video
embeddings v̂ij and the target video embeddings ṽij , where i
and j are the clip index i, j = 1, . . ., N and k and l are the crop
index for each clip k, l = 1, . . ., 4.

sim(âik, ãjl) =
âik · ãjl

‖âik‖‖ãjl‖ and sim(v̂ik, ṽjl) =
v̂ik · ṽjl

‖v̂ik‖‖ṽjl‖
(2)

Cross-entropy loss (CEL) is applied between the cosine simi-
larity and the labels. In this case there are multiple pairs per
clip, and the network must learn to differentiate within-clip
and between-clip pairs. The target in the CEL calculation is
1 for audio and crops that originate from the same clip and are
spatially aligned (i = j and k = l), and 0 for for audio and crops
from the same clip but misaligned (i = j and k �= l), and also
for audio and crops from different clips (i �= j).

It should be noted that, in AVC learning, the object crop and
its corresponding rotated audio in one audio-video pair are con-
trasted with the ones from a different audio-video pair in a batch.
However, in AVSA learning, each crop with its corresponding
audio in one audio-video pair is contrasted with different crops
in the same pair, and with crops from other audio-video pairs.
This process allows learning of the spatial alignment within the
same clip.

D. Spatial Selection of Video Crops With YOLO

Using random crops with random field of view can increase
the variability of the dataset in terms of information presented to
the network in the learning process. However, there can be many
crops with very little information content, such as crops with

Fig. 5. Comparison of the procedure for choosing image crops between
baseline and proposed method.

only dark background, small objects, or tiny parts of a person’s
dress. In addition, visual objects are most likely to correspond
to sound sources. For example, a car passing by on the road is
often heard along with the engine noise; people in the meeting
room tend to create speech. Alignment that focuses on learning
from the direct sound of the source and the corresponding visual
object are likely to produce a stronger correspondence. To do
this, we propose to select crops which are object-oriented, using
YOLO to detect the objects [27].

YOLO detector is applied on the equirectangular frames
(360◦ image) of the video directly, returning objects with their
bounding boxes and center points. In AVC learning, one crop
is randomly chosen from the detected objects. If no objects are
found by YOLO, one random crop is chosen the same way as
in [17]. In the AVSA training, four crops are chosen from those
detected crops, having center points falling into azimuth angle
[180,90] (left-back), [90,0] (left-front), [0,−90] (right-front),
[−90,−180] (right-back), respectively. If no crop is detected by
YOLO within the target angle area, a random crop is taken for
that area. This procedure ensures that the four crops are apart
from each other, to avoid redundant information.

The comparison of the crop selection method for the two
approaches is presented in Fig. 5.

E. Spatial Sound Focusing With Beamforming

The effect of different spatial audio formats, including mono
channel audio, was investigated in [17] in the ablation studies.
The authors tested three cases: a mono case, a stereo case, and
the ambi case using the full ambisonic signal set. Both the mono
and stereo cases were generated from the ambisonic signals as
described further in the text. The reference to a mono signal
can be confusing, since in typical audio recording terminology
it would commonly refer to a single-channel recording without
directional selectivity, i.e. an omnidirectional recording, which
corresponds to the first channel of Ambisonics. However, by
mono the authors of [17] actually refer to a beamforming opera-
tion using the ambisonic signals, steering a beam towards each of
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the video crops. The process can be formulated as follows. The
first-order ambisonic (FOA) format has a directional response
to a wave incident from azimuth and elevation angles (θ, φ)

u(θ, φ) =

⎡
⎢⎢⎣

1
sin θ cosφ

sinφ
cos θ cosφ

⎤
⎥⎥⎦

where the three lower elements correspond to the Cartesian
components of a unit vector pointing to the direction-of-arrival
(DOA). The format can also be interpreted as an omnidirectional
channel and three directional channels with dipole directivities
oriented along the three principal axes. For a source signal s(n)
then, the ambisonic signals x(n) are

x(n) =

⎡
⎢⎢⎣
w(n)
y(n)
z(n)
x(n)

⎤
⎥⎥⎦ = u(θ, φ)s(n). (3)

It is evident that the FOA format encodes directly the DOA
information of the source in the resulting signals. Capturing of
a general scene of multiple source signals, diffuse ambience
and reverberation can be formulated through the concept of a
plane-wave amplitude density a(θ, φ, n), describing a continu-
ous distribution of incident waves. The FOA signals for such a
general scene are then

x(n) =

∫ π

−π

∫ π/2

−π/2

u(θ, φ)a(θ, φ, n) cosφdφdθ (4)

Beamforming with ambisonic signals is typically done us-
ing a weighted version of the encoding basis as beamforming
weights [30]. In the simplest case, the beamformed signal y(n)
for a beamforming direction (θ0, φ0) is

y(n) = uT(θ0, φ0)x(n). (5)

Another common operation in Ambisonics is the capability to
rotate the sound field. In the case of FOA only, and contrary to
higher-order Ambisonics, the rotation can be simply performed
with a standard rotation matrix. Details on constructing such
matrices can be found in [31]. Following e.g., the yaw-pitch-roll
convention corresponding to angles (α, β, γ) such a rotation Q
is applied to the ambisonic signals as

xrot(n) = Q(α, β, γ)x(n). (6)

In the case of [17], the mono case was generated by applying
(5) with the beamforming direction oriented at each crop center
(θ0, φ0). Extraction of the stereo is detailed in the following
section. The full ambi case is generated by rotating the whole
ambisonic recording in order to align its frontal axis with the crop
center, using a Q(θ0,−φ0, 0) rotation matrix. The directional
responses of the channels of each case for a certain crop direction
are depicted in Fig. 6.

Tested on four downstream tasks, experiments showed that
direct beamforming as input has no advantages over stereo or
ambi, so the authors of [17] concluded that a single channel per
crop may not be sufficient to represent spatial relations between
sounds in the scene. However, since the crops are randomly taken

Fig. 6. Spatial characteristics of the spatial formats tested in AVC and AVSA.
Horizontal only view omitting the Z vertical channel of FOA. The signs indicate
polarity of the directional responses for the respective lobes. (a) original FOA
format (omitting Z channel), (b) rotated FOA towards the crop center, (c) mono
format from beamforming towards crop center, (d) stereo format from two left-
right beamformers around crop center.

from a video frame, the beams may be focusing in regions where
there are no sound sources present matching the visual informa-
tion, therefore the audio signal may be dominated by ambience
generated by all visible and non-visible sources in the scene. On
the other hand, even if the beamformed signal captures a strong
source contribution from the beamformed direction, the random
visual crop may not be spatially aligned with it, isolating a patch
from some non-informative background instead. To minimize
such audiovisual mismatches, we implement the beamforming
combined with the object-oriented crops obtained from YOLO
detector. The motivation behind this idea comes from the fact
that human beings tend to look for the objects in a scene which
are producing the sounds.

F. Spatial Audio Features

In the work of [17] spatial information from audio is passed
to the network in the form of 4-channel mel-band energies
xmel
tf = [wmel

tf , ymel
tf , zmel

tf , xmel
tf ]T, where (t, f) indicate time and

mel-band indices respectively. Mel-band energies are suitable to
partially express inter-channel level differences, such as those
naturally occurring between ambisonic signals captured with
(3), or between the left and right stereo channels in a recording,
captured with directional microphones or produced using stereo
panning. However, in the case of Ambisonics some directional
information is lost with mel-band energies since signal polarity
(sign) differences are discarded, resulting in non-unique values
of inter-channel level differences for more than one direction.

A more appropriate spatial feature for ambisonic signals is the
active intensity vector (AIV), an acoustical quantity indicating



1474 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 16, NO. 6, OCTOBER 2022

the mean flow of sound energy, which has a long history in sound
source localization [32] and spatial audio coding [33]. Recently,
it has been used in deep learning-based source localization [34]
and it proved to be the most popular spatial audio feature in the
DCASE sound even localization and detection challenge [35]
with ambisonic input. In this work we are using a normalized
version of the AIV as in [34], which bounds the magnitude of
the vector between [0,1], similar to the diffuseness feature [33],
with unity length in the presence of a single source, and less than
unity in the presence of multiple sources or noise and ambience.
The normalized AIV is given by

itf =

2�
⎛
⎝w∗

tf

⎡
⎣xtf

ytf
ztf

⎤
⎦
⎞
⎠

|wtf |2 + |xtf |2 + |ytf |2 + |ztf |2 , (7)

with �(·) being the real part of a complex number. Note that the
AIV is computed with the original STFT complex spectrograms.
To end up with similar time-frequency dimensions as the mel-
band energies xmel, the AIV features are aggregated across mel-
bands similar to [36]. Finally, training including those features
is done by stacking them as additional channels along with the
mel-band energies

xsf
tf =

[
xmel
tf

itf

]
. (8)

The cases where such features are used for training are indicated
as FOA-IV in the results.

IV. LEARNING FROM STEREO AUDIO

Apart from beamforming in the mono case, 2-channel stereo
input in the stereo case is additionally tested. While training for
spatial alignment using stereo is found better than using mono,
it is still suboptimal against the full ambi case. However, it is
of interest to investigate further the performance of training for
stereo signals in downstream tasks since there are many more
audio-visual datasets with stereo audio than with FOA audio, and
it is significantly easier to collect new ones using commodity
cameras providing stereo signals, than FOA. Morgado et al.
in [17] avoid this issue by focusing on the performance of the
learned audio-visual features in video-only downstream tasks.
However, if the method is to be applied to audiovisual tasks, or
audio-only tasks, extension to mono or stereo input is important.

Stereo signals corresponding to coincident stereo record-
ing [37] can be extracted in a straightforward way from FOA
signals, by generating two beamformers emulating two coinci-
dent directional microphones pointing left and right. Note that
ambisonic-to-binaural decoding can be also conducted in the
same manner, with frequency-dependent beamformers approx-
imating generic or individualized head-related transfer func-
tions [31]. In this work we use the same process as in [17], where
two broadband hyper-cardioid beamformers are steered towards
90◦ to the left and right respectively, falling somewhere between
stereophonic recording and binaural decoding. Since the stereo
case is extracted after alignment of the sound scene with the
crop center, obtaining the stereo signals yst(n) = [l(n), r(n)]T

combines the beamforming of (5) and rotation of (6)

yst(n) = [u(90◦, 0), u(−90◦, 0)]TQ(θ0,−φ0, 0)x(n). (9)

Similar to the FOA features, the stereo signals are converted
into log mel-band energy spectrograms ymel

tf = [lmel
tf , rmel

tf ]T,
where ltf , rtf are the left and right channels accordingly. In
addition to the log mel-band energies, we extract certain spatial
features suitable for stereo and binaural signals [38] such as the
inter-channel level differences

dtf = log

( |ltf |2
|rtf |2

)
= 2 log |ltf | − 2 log |rtf | (10)

and inter-channel phase differences

φtf =

[
cos(∠ltf − ∠rtf )
sin(∠ltf − ∠rtf )

]
(11)

where ∠ refers to extracting the argument of a complex number.
Similar to the spatial features for ambisonic signals FOA-IV,
the stereo spatial features are aggregated in mel-bands to match
the spectrogram dimensions of ymel

tf and stacked as additional
channels

ysf
tf =

⎡
⎣ymel

tf

dmel
tf

φφφmel
tf

⎤
⎦ . (12)

The cases where such features are used for training are indicated
as ICF in the results.

V. EXPERIMENTAL RESULTS

We evaluate the proposed extensions on the in-domain tasks of
AVC and AVSA that are the same as used for training the system.
We also apply our method to the purely visual-based downstream
task of human action recognition, in order to allow a comparison
to the method in [17], namely the one where training is based on
randomly selected image crops and the feature representation
for audio consists of the log-mel spectrum, to which we will
refer to as the baseline system. We then concentrate on audio
downstream tasks.

A. Dataset and Data Format Verification

Training is based on the YouTube-360 dataset that was col-
lected from YouTube and contains 360◦ video with spatial audio.
The dataset contains a total of 5506 videos, of which 4506 videos
are meant for training and 1000 for testing. Automatic curation
of content was performed to avoid silent regions. The videos
were segmented into clips of 10s, and only clips with a volume
level over a certain threshold were used, resulting in 88733 clips
(246 hours of content). The dataset is unlabeled. A more detailed
description of the dataset collection procedure and curation is
presented in [17].

Since the proposed approaches depend on the spatial encoding
of Ambisonics, and since such encoding is integrated into the
audio signals themselves and not, e.g., additional metadata, it
is crucial to know exactly which channel ordering and channel
normalization convention is used, in order to perform beam-
forming and rotation operations without errors. In this work we
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used the widely accepted ambisonic convention of ACN channel
ordering, which corresponds to (WYZX) order for FOA, and
SN3D channel normalization scheme, together known as ambiX
format [31]. However since Ambisonics are not defined yet
in audio file container formats, confusion with other surround
formats and channel swapping by audio file writers and loaders
is a common occurrence. For example, downloading the YT-360
dataset from YouTube in the AAC format results in a 6-channel
file with two additional channels that may or may not be used for
an additional orientation-independent stereo track.2 To verify the
correct channel ordering with the current downloading and audio
loading sequence before processing the recordings for feature
extraction, we uploaded a test file with known channel order to
YouTube, downloaded it, reloaded it using pyAV,3 and identified
the correct final channel mapping to WYZX. We then applied
this mapping during loading to the whole YT-360 dataset.

Beyond standardizing the channel order in the dataset, there
is still a high chance that a number of files do not conform to
the ambisonic format specifications. The reasons for this may
be many: a) the user did not upload an ambisonic file but a
stereo file with extra empty channels, or some other surround
format, b) the user uploaded an ambisonic file with the wrong
channel order, c) the recording device or the encoding software
provided a badly encoded ambisonic file to the user. All such
cases will result in erroneous alignment operations in this work,
which may affect the result. Due to the diversity of media
sources in YouTube, and the newness of the ambisonic format in
consumer media recording and production, it is expected that a
high number of files in the dataset may be invalid. To investigate
that aspect further, a simple test was devised to indicate how
close a recording is to an ideal ambisonic recording. The test is
formulated as ∣∣∣∣Exyz

Ew
− 1

∣∣∣∣ ≤ τ (13)

where Ew =
∑

n w(n)
2 is the energy of the omnidirectional

channel, Exyz =
∑

n(x(n)
2 + y(n)2 + z(n)2) is the total en-

ergy of the three dipole channels, and τ < 1 is a threshold value.
The test is based on the principle that for any combination of
uncorrelated sources in the sound scene, and incoherent diffuse
ambience and reverberation, due to the orthogonality of the
encoding in (13) the omnidirectional signal energy should be
equal to the total energy captured by the three dipole signals.
Since ambisonic microphones and recording devices suffer
from spatial aliasing at higher frequencies which compromises
the encoding, we apply a low-pass filter to all signals below
4 kHz before applying the test, below which we assume that
most devices can deliver accurate ambisonic encoding. Using a
threshold of τ = 0.1 only approximately 28% of files pass the
test in both the training and the test set.4 Note that the test is strict
in the sense that there can be valid combinations of correlated

2[Online]. Available: https://github.com/google/spatial-media/blob/master/
docs/spatial-audio-rfc.md

3[Online]. Available: https://github.com/PyAV-Org/PyAV
4The list of clips that pass the test can be found. [Online]. Available: https:

//github.com/shanwangshan/YT-360-Ambisonics

TABLE I
ACCURACIES (%) OF AVC AND AVSA DOWNSTREAM TASKS USING

DIFFERENT SUBSETS OF THE TRAINING DATASET. THE TEST DATASET IS

COMPLETE FOR ALL CASES

sources coming from different directions in the scene, which can
violate the test, but such cases are less common in reality.

Surprised by the result described above, we evaluate the
outcome of the AVC and AVSA training procedure in three cases:
using the complete training subset, using only the 28% of files
from the training set that pass the test in (13), and using randomly
selected 28% of files from the training set that do not pass the
test. No selection of the clips is done for the test set, therefore
it contains both strictly ambisonic data and not ambisonic. For
this experiment we use the baseline system setup in which the
crops are selected at random and the audio is represented using
log-mel features. The results for the AVC and AVSA training
and downstream tasks are presented in Table I.

The AVC task seems to benefit from having a variety of
erroneously rotated data, as there is enough inconsistency and
variety for the system to learn to be invariant to the orientation
and just learn the correspondence. This behavior is similar to
the contrastive learning in [2] in which positive pairs were
different views of the data created through augmentation, and the
system learned the correspondence in a manner that is invariant
to the transformation applied by the augmentation method to
the data. The strictly ambisonic data is more homogenous in
spatial content, therefore the smaller amount of data results in
lower performance. On the AVSA task, the smaller data amounts
perform similar whether ambisonic or not, but with lower perfor-
mance than the entire, larger, dataset. Since in practice deviations
from ideal ambisonic encoding are expected in datasets captured
from diverse sources, also reflected in the test set of YT-360, it
seems that even the AVSA task can benefit from such examples
included during training. In the following experiments, we use
the entire dataset when training.

B. Audio-Visual Correspondence and Spatial Alignment

We first evaluate the proposed extensions on the in-domain
tasks of AVC and AVSA that are the same as used for training
the system. The results for these tasks are presented in Table II,
starting with the baseline system as proposed in [17], and
with all the additional elements proposed in this study. Unless
mentioned, the feature representation used for the audio signal
is the log-mel spectrogram. While the AVC and AVSA tasks
are the same as what the method is trained on, we observe a
significant improvement brought by the FOA-IV features. In
particular, the spatial alignment benefits of the use of spatial
features, as predicted, with an absolute increase in performance
of 10%. YOLO improves on the AVC results, but not on AVSA,
while beamforming on its own does not bring any advantage

https://github.com/google/spatial-media/blob/master/docs/spatial-audio-rfc.md
https://github.com/google/spatial-media/blob/master/docs/spatial-audio-rfc.md
https://github.com/PyAV-Org/PyAV
https://github.com/shanwangshan/YT-360-Ambisonics
https://github.com/shanwangshan/YT-360-Ambisonics
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TABLE II
ACCURACIES (%) OF DIFFERENT METHODS TESTED ON AVC AND AVSA

DOWNSTREAM TASKS. VALUES IN BOLD ARE OUTSIDE OF THE 95%
CONFIDENCE INTERVAL W.R.T THE BASELINE PERFORMANCE

to any task. The combination of beamforming and YOLO also
does not seem to bring any advantage for the in-domain tasks
when used with the mel features, while the FOA-IV features
with YOLO have a significant effect in improving performance.

When it comes to the stereo audio, the system performs on
the AVC task significantly worse than with Ambisonics, while
in the AVSA there is no significant drop in performance. Stereo
audio with YOLO appears to worsen performance in both AVC
and AVSA tasks, whether with mel features or inter-channel
features.

Based on these results, we can clearly state that the use of spa-
tial information in the feature representation of the audio signal
results in better learnt representations for the in-domain tasks.
Changing the random crops to YOLO on the video signal also
improves slightly, but significantly, the AVC task performance.
On the other hand, training with stereo audio does not benefit
from YOLO or spatial features for the AVC and AVSA tasks.

C. Human Action Recognition

The downstream task of human action recognition is based on
two different datasets, the UCF dataset [39] that contains 101
classes, and the HMDB dataset [40] that contains 51 classes. The
classification is based on the video embeddings only, as these
datasets do not have any audio content.

A simple way to test the quality of the learned features is to use
them as embeddings and append one simple linear layer of 101
neurons (UCF dataset), or 51 neurons (HMDB) for performing
the classification. While the parameters of the classification layer
are trained for the task, the weights of the pretrained network
remain fixed. Another approach to downstream tasks is to allow
updating the parameters of the entire network, namely the linear
classification layer and all the layers of the pretrained structure,
in a process called fine tuning, which will compensate some of
the domain mismatch between the proxy and downstream tasks
and data.

We compare the proposed method with the baseline system
both with and without fine tuning. The results are presented in
Table III , for the system trained using the AVSA proxy task.
The results are presented at clip level, i.e. one clip per video,
following the procedure in [17].

TABLE III
ACCURACIES (%) OF ACTION RECOGNITION DOWNSTREAM TASK WITHOUT

AND WITH FINE TUNING

Bold entities indicate high accuracies.

TABLE IV
ACCURACIES (%) OF ACOUSTIC SCENE CLASSIFICATION ON EIGENSCAPE

DATASET, NO FINE TUNING

Bold entities indicate high accuracies.

Without fine tuning, our proposed additions to the baseline
system outperform the baseline in most cases on the UCF
dataset, with the highest performance being obtained when using
both beamforming and YOLO in training by 4% improvement.
Curiously, even the training with stereo audio and YOLO out-
performs the baseline, even though the downstream task makes
no use of the audio embeddings. Similarly, for the HMDB
dataset, which is much smaller in size, the embeddings based
on the stereo audio with YOLO are outperforming significantly
the baseline by 3%. When using fine tuning, the advantage
brought by the different extensions is diminished, even though
the performance obtained is, in some cases, higher. On UCF, the
method using FOA-IV performs the best, with 1.7% advantages
over baseline; on HMDB, the method using beamforming with
YOLO and stereo with YOLO achieve the highest with 2.2%
advantages over baseline. In both cases their performance lies
in the 95% confidence interval of the baseline.

The above results show that the use of spatial information in
the audio signal brings important benefits to the learning process,
which has an effect not only on the in-domain tasks that use audio
(as shown in the previous section), but also results in superior
video embeddings, as demonstrated by their effect on the human
action recognition task. The advantage of the spatial information
in audio is preserved also for the stereo format: the system using
stereo audio, YOLO and ICF performs significantly better than
the baseline when used without fine-tuning.

D. Acoustic Scene Classification With Ambisonic Audio

For testing the quality of the audio embeddings resulting
from the learning process, we use them on a new downstream
task, acoustic scene classification using ambisonic audio. For
this task, we use the Eigenscape dataset [18], consisting of
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TABLE V
ACCURACIES (%) OF AUDIO-VISUAL SCENE CLASSIFICATION ON TAU AUDIO-VISUAL URBAN SCENES 2021 DEVELOPMENT DATASET

Bold entities indicate high accuracies.

640 minutes of audio recordings belonging to eight classes:
Beach, Busy Street, Park, Pedestrian Zone, Quiet Street, Shop-
ping Centre, Train Station, and Woodland. The data was
recorded using the mh Acoustics Eigenmike with a windshield
to prevent wind noise, and further converted to Ambisonics.
Recordings were cut into 30-s segments, and a cross-validation
setup is provided with the data for comparison of methods. The
spatial classification system using Directional Audio Coding
(DirAC)-based features [33] provided with the data in [18] had a
69% performance, later outperformed by a CNN approach, with
82% performance [41].

Our results are presented in Table IV. The system does not
use any fine tuning, training only a linear classification layer for
the task. The classification performance when using the AVC
training is 82.5%, while for the AVSA training it is 89.4%, show-
ing the superiority of the learned representations when spatial
correspondence is considered. While the AVC proxy training
attains a similar performance to the previous SOTA on this
data, the AVSA proxy training outperforms it significantly. The
use of FOA-IV instead of the log-mel representation does not
bring any improvement for the AVC-trained system, and is even
detrimental to classification performance on the AVSA-trained
system.

E. Acoustic Scene Classification With Binaural Audio

We test a two-channel downstream audio classification tasks,
for which we train the system using stereo audio with the AVSA
pretext task, as this has shown the highest performance in the
previous experiments. The quality of the learned features is first
tested without fine-tuning, using the pretrained network as a
feature generator. We also use it with fine-tuning in order to
investigate the highest achievable performance on this task.

While there is a mismatch between the stereo format that
we used for training the system and the binaural format of
the audio data we use for testing, we expect the method to
work reasonably well. The main difference is the effect of true
head-related transfer functions (HRTFs) in the binaural format,
which include strong inter-aural time differences at low-mid
frequencies and frequency-varying level differences at mid-high
frequencies, while the stereo version there contains only level
differences that are mostly frequency-independent for the range
of valid ambisonic encoding.

The experiment is based on the TAU Audio-Visual Urban
Scenes 2021 dataset [19], which consists of ten classes, 34

hours of audio and synchronized video, recorded in ten different
large European cities. Recording of audio was performed with
binaural in-ear microphones, to represent the audio information
as it would be received by a human listener, while the video was
recorded using a GoPro camera mounted on the strap of the back-
pack, offering a frontal view of the scene. The person recording
the data was requested not to move while recording, therefore
the position of the recording setup was fixed for each clip.

We investigate the classification accuracy for the system using
audio-only, video-only and early fusion of audio and video
modalities. The results are presented in Table V, and compared
with the baseline system provided with the dataset [19]. The
baseline uses OpenL3 [8] for producing audio and video embed-
dings, and uses them directly as features. Its accuracy is 75.8%
and 68.4% for the audio-only and video-only classification,
respectively, while early fusion, which concatenates the audio
and video embeddings in a single feature vector, obtains an
accuracy of 82.2%.

In comparison, the system proposed in this work has a sig-
nificantly lower performance, as can be seen in Table V. The
lower performance is seen in both audio-only and video-only
classification, irrespective of the use of YOLO and ICF. How-
ever, using fine-tuning boosts significantly the effect of YOLO
on the video side for the stereo format, resulting in around 5%
improvement compared with the stereo format without YOLO,
and a 10% increase compared with the video-only performance
of the OpenL3 system. Early fusion in our system has similar
performance with the OpenL3-based on (within 95% CI), except
the version using ICF; ICF seem to be detrimental to learning
robust video embeddings, which result in lower performance of
the video-only and the fusion system.

Based on this particular test case, it seems that for the task of
audio-visual scene classification the embeddings produced with
OpenL3 are better than the ones obtained with the proposed
system. We note that there are important differences between
the two approaches: different datasets, different network archi-
tectures, different optimization mechanisms and loss functions
in learning, and not least, different proxy tasks. We do however
believe that the AVSA learning may have advantages for tasks
that target spatial information, as shown by the high performance
in the AVSA task itself. Acoustic scenes contain a prevalent
background, and the AVSA following foreground sounds and
objects may not have sufficient additional information in order
to affect the performance.
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VI. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a self-supervised learning method
for learning audio representations based on spatial alignment
between audio and video information. To create a strong corre-
spondence between the audio and video content, we proposed a
new method for sampling crops by detecting the objects in the
video frame using YOLO. Additionally, to use the spatial audio
information from Ambisonics to its full extent, we proposed
use of acoustic intensity vector as feature representation for
the audio input. Our results show that by using YOLO only,
the AVC performance improves 1.7%, which is statistically
significant given the size of the test data (15116 clips). The use
of FOA-IV instead of conventional log-mel spectrogram boosts
the AVSA performance by 10%, showing that indeed FOA-IV
model the spatial information in the ambisonic audio better. The
use of FOA-IV has a strong effect on the overall AVSA learning
process.

We also investigated the different combinations of audio input
features with YOLO, namely YOLO wih beamforming and with
FOA-IV. We found that by using the combination of YOLO
and beamforming improves the action recognition task. The
advantage of this method is particularly strong in action recog-
nition tasks without fine tuning, obtaining a 4% improvement
on the UCF dataset and 1.2% increase on the HMDB dataset.
This reinforces our assumption that by selecting an object and
focusing on the sound that specific object makes can potentially
result in better feature representations.

The effectiveness of the audio embeddings learned through
AVSA was also tested on acoustic scene classification using
ambisonic audio from the EigenScape dataset. We found a 7%
advantage for AVSA training compared with AVC training,
which further validates the authors’ [17] conclusion, but from
an audio embedding point of view.

Since audio with ambisonic format is still not very prevalent,
we investigated learning of audio embeddings using mono and
stereo format, and tested on TAU Audio-Visual Urban Scenes
2021 dataset for scene classfication. We found that both learnt
audio and video embeddings are underperforming compared
to the embeddings produced using OpenL3 as used in [19].
However, with the help of fine tuning, the performance of audio
model, video model and early A-V fusion model get boosted
compared with no fine tuning. Especially, a significant boost of
24% was seen for the video model only with stereo + YOLO
method after fine tuning, which surpasses the Open L3-based
method by 10%. Further investigation using different tasks
is needed to assess the performance on audio data that has
more directional information than acoustic scenes, for example
sound event classification, localization, or tagging, in which
foreground sounds are dominant.

For future work, we consider that a more sophisticated detec-
tion method which works on equirectangular images is worth
investigating for sampling of the crops as done in [42]. This is
because YOLO is trained on normal images, and might not give
the optimal detection when directly applied on equirectangular
images. Another interesting direction would be selecting areas
of interest based on directions of prominent sound activity, using

more advanced techniques for acoustic imaging from FOA,
e.g. direct-path time-frequency selection [43]. Additionally, the
current learning scheme is to produce one embedding vector for
each second of audio instead of each analysis frame, which limits
applicability of the learnt audio embeddings to classification,
while many audio-related downstream tasks require a higher
temporal resolution, e.g., sound event detection or sound event
localization. In future, this learning scheme could be modified
to cater for a wider variety of audio-related downstream tasks.
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