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Abstract—Deploying 3D single-photon Lidar imaging in real
world applications presents multiple challenges including imaging
in high noise environments. Several algorithms have been pro-
posed to address these issues based on statistical or learning-based
frameworks. Statistical methods provide rich information about
the inferred parameters but are limited by the assumed model
correlation structures, while deep learning methods show state-of-
the-art performance but limited inference guarantees, preventing
their extended use in critical applications. This paper unrolls a
statistical Bayesian algorithm into a new deep learning architecture
for robust image reconstruction from single-photon Lidar data, i.e.
the algorithm’s iterative steps are converted into neural network
layers. The resulting algorithm benefits from the advantages of
both statistical and learning based frameworks, providing best
estimates with improved network interpretability. Compared to ex-
isting learning-based solutions, the proposed architecture requires
a reduced number of trainable parameters, is more robust to noise
and mismodelling of the system impulse response function, and pro-
vides richer information about the estimates including uncertainty
measures. Results on synthetic and real data show competitive
results regarding the quality of the inference and computational
complexity when compared to state-of-the-art algorithms.

Index Terms—3D reconstruction, Lidar, single-photon imaging,
algorithm unrolling, attention, Bayesian inference.

I. INTRODUCTION

S INGLE-PHOTON light detection and ranging (Lidar) is an
emerging technique for reconstructing and analyzing 3D

scenes and has a wide range of applications [1], [2]. Using time
correlated single-photon counting (TCSPC) technology [3], a
single-photon Lidar system builds a histogram of photon counts
with respect to their time-of-flights (ToF). Unlike Radar using
radio signals [4], single-photon Lidar detects reflected signal at
optical frequencies, which enables better cross-range resolution
imaging than Radar and, as a consequence, better discerning
smaller objects. Due to the counting process, single-photon
Lidar data is corrupted by discrete noise (often modeled using
a Poisson distribution) which prevents direct application of
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existing Radar reconstruction methods. Detecting reflected pho-
tons relies on a single-photon sensitive detector known as solid-
state single-photon avalanche diode (SPAD), while ToFs are ob-
tained by measuring the time difference between the emission of
laser pulses and the detection of reflected photons. The acquired
histogram contains depth and reflectivity information about
the observed objects, and reconstructing such 3D information
from single-photon Lidar data has been a subject of very active
research [1], [2].

Several approaches have been designed for image reconstruc-
tion of single-photon Lidar systems. An early method known as
first-photon imaging [5] was developed to recover 3D images
from the first detected photon at each pixel. Since then, many
reconstruction algorithms have been proposed, which can be
categorized into two broad classes: statistical approaches and
data-driven approaches. Statistical methods design a prior-based
model to reconstruct 3D scenes, while accounting for the sparsity
of single-photon Lidar data [6], [7] and spatial correlations
between 2D pixels or within the 3D point cloud [8]. The param-
eters of the resulting models are then estimated using optimiza-
tion [9]–[14], Markov chain Monte-Carlo (MCMC) [8], [15],
[16], marginalization [17], expectation-maximization [18], [19],
or Plug-and-Play methods [20], [21]. Such statistical methods
provide good interpretability in the sense that we can predict
the results, depending on the considered observation model and
imposed priors, but they often require user-defined parameters
and hand-crafted priors. Data-driven approaches using deep
learning have recently become popular for single-photon Li-
dar systems. Existing deep learning algorithms [22]–[25] train
neural networks from simulated data and aim to generalize to
unseen data. Once trained, deep learning models usually do not
require user-defined parameters, a distinct advantage, compared
to statistical methods. Lindell et al. [22] first proposed an end-
to-end deep learning model which infers depth profiles from
Lidar data. Peng et al. [23] suggested a non-local network and
showed a state-of-the-art performance in low photon and high
noise cases. Despite their excellent performance on challenging
data these deep learning methods lack interpretability, require
long running times for high dimensional Lidar data and can
present over-smoothing artifacts around 3D surface boundaries.

This paper takes advantage of statistical and deep learning
approaches, by proposing an interpretable and efficient deep
learning architecture for high dimensional Lidar data. We de-
sign a neural network architecture by unfolding an iterative
Bayesian algorithm [26] in the sense that we replace some
of its internal operations with neural network blocks. The
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Fig. 1. The proposed model (BU3D) requires fewer parameters and lower
running time in high dimensional Lidar data, compared to the state-of-the-art
deep learning methods by Lindell [22] and Peng [23]. The running time is tested
on two Lidar data cube: one with a size of 555×695×1024 (circles) and the
other with 278×348×1024 (diamonds).

proposed method is in line with an emerging technique called
algorithm unrolling [27], [28]. This technique replaces the steps
of a conventional iterative method by neural network blocks,
hence exploiting the domain knowledge when designing the
network. This framework was first proposed in [27] which
unfolded an iterative method known as the iterative shrinkage
and thresholding algorithm (ISTA) [29] for sparse coding, and
since then, unrolling approach has been successfully applied in
many signal processing tasks such as compressive sensing [30],
super-resolution [31] and radar imaging [32]. Following the
algorithm unrolling approach, our Bayesian-based unrolling
model, named BU3D, is made interpretable, so that we can ana-
lyze the internal behaviors, and is efficient in terms of the number
of network parameters, training time and running time. Fig. 1
compares the running time with respect to the number of network
parameters on two different sizes of data. The proposed method
is shown to require orders of magnitude fewer parameters and
lower computation time, compared to two state-of-the-art deep
learning methods of Lindell [22] and Peng [23].

Using multiscale information to process single-photon data is
an essential component of several state-of-the-art 3D Lidar re-
construction algorithms. This was exploited in the proposed net-
work which requires an initial estimate of few multiscale depths
as input, instead of the large histogram data cube as in [22],
[23]. In this way, the knowledge of the system impulse response
function (IRF) is exploited to generate the multiscale depths
and the high dimensional data is compressed to the essential
information. The network layers mimic the iterative steps of the
Bayesian algorithm in [26], which alternated between a weighted
median step to choose the best depth scale to represent a pixel,
and a soft-thresholding step to account for spatial correlations
between pixels. Our conversion relies on a popular tool called
attention [33]–[37], which computes weights highlighting the
features or areas of interest (i.e., areas requiring attention). An
attention layer is said to be hard attention [38] if the attention
weights are sparse (one-hot encoding), or soft otherwise. In
this paper, inspired by the weighted median filter used in [26]
and promoting sharp surface’s boundaries, we consider hard

attention to select the best depth scale per pixel, i.e. the one
showing the highest attention weight. The proposed network also
includes soft attention to improve the 3D object reconstruction
by considering local spatial correlations. Results on simulated
and real data show the benefit of this model when compared
to the state-of-the-art learning-based algorithms [22], [23], as
it preserves surface edges and has a lower computational cost
(in terms of memory or computational time). Another distinct
advantage of the proposed method is in enabling access to un-
certainty maps on the predicted depth. The uncertainty maps are
obtained by connection to the underlying Bayesian method [26]
without additional complexity, while some previous works [39],
[40] require multiple passes of inference and averaging steps to
predict the uncertainty of the network’s outputs.

In summary, the contributions of this paper are:
� an efficient deep learning model suitable for high-

dimensional single-photon Lidar data,
� interpretable neural network blocks, providing uncertainty

information on the final depth map,
� a scale selection strategy through a combination of hard and

soft attention, showing competitive results when compared
to state-of-the-art methods, i.e. fewer artifacts on surface
boundaries, and improved robustness to mismodelling ef-
fects.

The remainder of the paper is organized as follows. Section II
describes the multiscale observation model for single-photon
Lidar measurements. Section III reviews the underlying itera-
tive method [26] resulting from a Bayesian hierarchical model.
In Section IV, we present the proposed unrolling model with
details on the training procedures. In Section V, we analyze the
proposed network and evaluate the performance of our method
on simulated data as well as real data. Section VI presents the
conclusions and future work.

II. MULTISCALE OBSERVATION MODEL

This section presents the considered Poisson-based observa-
tion model for single-photon Lidar system, which is required to
derive the underlying Bayesian algorithm in Section III. Akin
to [26], we include multiscale information in the observation
model. Single-photon Lidar systems provide range information
about the scene by measuring the time difference between
emission of light pulses and detection of photons. Collecting
such time delays, the Lidar system builds a histogram of counts
denoted by yn,t ∈ {0, 1, 2, · · · } where n represents the pixel
index and t the time bin index. The observed photon counts
are commonly assumed to follow the Poisson distribution with
mean value sn,t as follows yn,t ∼ P(sn,t) [9], [12]. Assuming
one target per each pixel n, the observation model for sn,t can
be written as

sn,t = rng (t− dn) + bn, (1)

where rn is the reflectivity of the target, dn the depth information
of the target, bn the background photons due to ambient light
and detector dark counts and g is the system IRF. We approxi-
mate the system IRF g by the Gaussian function N (t ; μ, σ2)
with the mean μ and the standard deviation σ and consider
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that
∑T

t=1 g(t− dn) = 1 for all n, for all possible depths of
the scene [10], [26]. By assuming independent observations
between yn,t, ∀n, t, the joint likelihood for Y = {yn,t} can be
written as

p (Y | d, r, b) =
N∏

n=1

T∏
t=1

s
yn,t

n,t

yn,t!
exp−sn,t , (2)

where d, r, b represent the column vectors of size N gather-
ing depth, reflectivity and background parameters, respectively.
Without background photons, the maximum likelihood estimate
of the reflectivity can be computed as rML

n = s̄n =
∑T

t=1 yn,t
and the depth as the following (known as the log-matched filter):

dML
n = argmax

d

∑
t

yn,t log g(t− d). (3)

In this case, the likelihood can be written to be proportional
to the following (See Appendix of [26] for the details)

p (yn | rn, dn) ∝ G (rn; 1 + s̄n, 1)Q (yn)

×N (
dn; d

ML
n , σ̄2

)
, (4)

where G(x ; ·, ·) is the gamma distribution with shape and scale
parameters, Q is a function of yn and σ̄2 := σ2/s̄n. To be able
to deal with high noise in Lidar data, it is common to incorporate
multiscale information, as demonstrated in statistical [12], [26]
as well as deep learning methods [22], [23], [25]. We employ
a similar multiscale approach, using the fact that low-pass fil-
tered histograms (resulting in summing neighbouring pixels)
still follow a Poisson distribution. We generate L downsampled
histogramsy(�)

n with � ∈ {2, . . . , L}, by spatially downsampling
the original histogram datay(1)

n := yn with uniform filters. This
multiscale data can be efficiently computed using convolution
with different uniform kernel sizes. Assuming the same ob-
servation model in (4), the likelihood for each downsampled
histogram y

(�)
n can be written as

p
(
y(�)
n | r(�)n , d(�)n

)
∝ G

(
r(�)n ; 1 + s̄(�)n , 1

)
Q
(
y(�)
n

)

×N
(
d(�)n ; dML(�)

n , σ̄2(�)
)
, (5)

where s̄(�)n =
∑T

t=1 y
(�)
n,t and σ̄2(�) = σ2/s̄

(�)
n . For example, we

can consider L = 4 scales with different kernel sizes such as
1×1, 3×3, 7×7 and 13×13. The detailed procedure to generate
multiscale depths is explained in Sec. IV-C.

III. UNDERLYING BAYESIAN ALGORITHM

In this section, we review an underlying Bayesian algorithm
proposed by Halimi et al. [26] which inspired the design of our
deep learning method in Section IV. This method [26] follows
a Bayesian approach, by considering prior distributions on the
unknown depth as well as their uncertainty information. The
prior distributions will be combined with the observation model
in (5) to derive the posterior distribution, which contains rich
information regarding the parameters of interest. To exploit
this distribution, the method in [26] approximated the parame-
ter’s maximum-a-posteriori (MAP) estimator using a coordinate

descent method. Although this method can estimate both depth
and reflectivity, for the purpose of this paper, we only consider
estimating depth profiles.

A. Prior and Posterior Distribution

The observation model for multiscale depthsd(�) is derived in
(5). From this multiscale information, the goal now is to estimate
the true depth denoted by a latent variable x. A prior is imposed
on this latent variable, requiring spatial smoothness within a
homogeneous surface while preserving the discontinuity around
the boundaries of the surfaces. To satisfy this requirement and
estimate a robust depth map, Halimi et al. [26] introduced
some pre-defined weights called guidance weights between local
pixels for each scale. A high value ofw(�)

n,′n encourages the latent

variable xn to be similar to d(�)n′ . Using the guidance weights, the
latent variable x is assigned the conditional Laplace distribution

xn | d(1,...,L)
νn , w

(1,...,L)
νn,n , εn ∼∏

n′∈νn

[∏L
�=1 L

(
xn; d

(�)
n′ ,

εn
w

(�)

n′,n

)]
(6)

whereL( · ;μ, ψ) is the Laplace distribution with the meanμ and
the scale parameter ψ, νn represents the local neighbourhood
around the nth pixel and εn is the variance of the depth xn. To
ensure the positivity of the variance ε, it is assigned a conjugate
inverse gamma distribution as

ε ∼
∏
n

IG (εn;αd, βd) (7)

where αd and βd are user set positive hyperparameters. Com-
bining the prior distributions in (6) and (7) and the likelihood in
(5), the posterior distribution reduces to

p (x, ε,D | Y ,W ) ∝ p (Y |D) p (x,D | ε,W ) p (ε)
(8)

where W represents the guidance weights and D represents the
multiscale depths d(1,...,L).

B. Iterative Algorithm

To approximate the parameter’s MAP estimates, a coordi-
nate descent method is employed to minimize the negative
log-posterior of (8). The algorithm proposed in [26] updates one
variable at a time while fixing other variables and is summarized
in Algorithm 1. The updates of unknown variables can be divided
into three parts. Firstly, the latent variable xn is updated using a
weighted median filtering as follows

xn ← argmin
x
C(x) =

∑
�,n′∈νn

w
(�)
n′,n

∣∣∣x− d(�)n′

∣∣∣ . (9)

This operation will be replaced by attention mechanisms in the
proposed deep learning model in the squeeze block in Sec-
tion IV-A. Secondly, the multiscale depths d(1,...,L) are updated
by minimizing the negative log-conditional distributions of D
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Algorithm 1: Iterative Bayesian Algorithm [26].
1: Input: Lidar data Y , the number of scales L

2: Construct downsampled histograms Y (1,...,L)

3: Compute initial multiscale depths dML(1,...,L)

4: Compute the guidance weights W
5: while not converge do
6: Update the variable x by (9)
7: Update the multiscale depths d(1,...,L) by (10)
8: Update the uncertainty information by (12)
9: break if the convergence criteria are satisfied

10: end while
11: Output: x, ε

in (8) as follows:

d(�)n ← argmin
d

[
d− dML(�)

n

]2
2σ̄2(�)

+
∑
n′∈νn

w
(�)
n,n′∈νn

|d− xn′ |
εn′

.

(10)
This operator is known as a generalized soft-thresholding
operator and can be solved analytically [41]. It will be replaced
by the expansion block in the proposed network in Section IV-A.
Lastly, given the estimations of x and d, the depth uncertainty
information can be evaluated by considering the depth variance.
The conditional distribution of ε is given by

εn | x,D,W ∼ IG [LN̄ + αd, C (xn) + βd
]
, (11)

where N̄ = |νn| is the number of neighbors considered. The
mode of this distribution represents the MAP estimator of εn
and is given by

ε̂n ← (C (xn) + βd)/(LN̄ + αd + 1). (12)

This formula will subsequently provide a basis to estimate the
uncertainty of the depth map estimated by the neural network,
explained in Sec. V-A. As mentioned in the previous subsec-
tion, the guidance weights W connect the latent variable x to
multiscale depths. These weights play an important role in the
performance of the algorithm. Halimi et al. [26] determines the
weights W based on the deviation of dML(�), ∀�, from a given
reference depth map, while this paper proposes to learn them
from the data, as described in the following section.

IV. PROPOSED UNROLLING METHOD

Motivated by Algorithm 1, we propose a Bayesian-based
Unrolling model for 3D Lidar imaging (BU3D). As mentioned
in Section I, the main idea of algorithm unrolling is to unfold an
underlying iterative method and mimic its operations with neural
network blocks. Here, we replace the operations of Algorithm 1
by neural network layers. The major components of the proposed
network use attention modules, which allow learning the weights
W , i.e., the correlations between local pixels at the multiscale
depths. The proposed method for inference (after training) is
summarized in Algorithm 2.

Algorithm 2: Proposed Unrolling Method (BU3D).
1: Input: Lidar data Y
2: // number of scales L, number of stages K
3: Construct downsampled histograms // Sec. IV-C
4: Compute initial multiscale depths dML // Sec. IV-C
5: for k = 1, 2, . . .,K − 1 // kth stage
6: Update x by the squeeze block // Sec. IV-A 1
7: Update d(1,...,L) by the expansion block

// Sec. IV-A 2
8: end for
9: Compute x by the squeeze block // Sec. IV-A 1

10: Compute uncertainty information ε by (20)
11: Output: x, ε

A. Network

Fig. 2 gives an overview of the proposed neural network.
The network inputs an initial estimation of multiscale depths
dML(1,2,...,L) (See Section IV-C); and outputs the estimated
depth x. The network consists of K stages where each stage
has the same structure (except for the last stage) with different
network parameters and is designed to resemble one iteration of
Algorithm 1. Each stage begins with the feature extraction step
having three consecutive convolution layers to obtain dfeat. Af-
ter that, each stage has two main blocks: squeeze and expansion.
In this subsection, for the simplicity of notation, we use the
variable symbols for the first stage and omit the dependency on
the stage k unless explicitly mentioned.

1) The Squeeze Block (Unrolling Line 6 in Algo. 1): This is a
key element in the network as it estimates a single depth by using
the multiscale depths and their features, as shown in Fig. 3. This
block is inspired by the weighted median filtering (9) in line 6 of
Algorithm 1. It considers hard attention [38] to select the scale
with the highest attention weight for each pixel, and takes the
single depth value on that scale. Specifically, the squeeze block
first computes attention weights in a module named PAConv
(cube), a variant of the so-called pixel attention [37]. Pixel
attention considers attention weights at a pixel level, so that the
attention weights have the same size as the input. The module
PAConv (cube) computes internal weights which are multiplied
by the depth features, yielding the attention weights w(1,2,...,L).
The latter weights indicate the importance of each scale, and
only one scale is chosen by the argmax operation, yielding the
squeezed depth. Formally, the squeezed depth for the nth pixel
is computed by

xn = d(�
′)

n , �′ = argmax
�∈{1,...,L}

w(�)
n , (13)

where w(�)
n denotes the attention weight for the �th scale. Since

the argmax operation is not differentiable, we replace it with the
alternative differentiable Gumbel-SoftMax [42], [43].

2) The Expansion Block (Unrolling Line 7 in Algo. 1): This
block refines multiscale depths to obtain d as the weighted aver-
age between multiscale depths d and the squeezed depth x. This
expansion block corresponds to the soft-thresholding step (10) in
line 7 of Algorithm 1, as it updates the multiscale depths based on
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Fig. 2. Overview of the proposed network. The network consists of K stages and each stage inputs a tuple of multiscale depths
(
dML

)
, estimates a squeezed

depth (x) and refines the multiscale depths. The final stage’s output of the network is a squeezed depth (xK ). For the illustration, the network is shown for the case
of three multiscales L = 3.

Fig. 3. The squeeze block estimates a squeezed depth (x) from a tuple
of multiscale depths (d) and their features (dfeat). The symbol ⊗ denotes
elementwise multiplication.

Fig. 4. The expansion block refines the previous multiscale depths (d), by
comparing their features (dfeat) with the feature of the absolute difference
between multiscale depths and the squeezed depth (|d− x|). This block outputs
the refined multiscale depths (d).

the obtained squeezed depth. However, we design the expansion
block to exploit the attention framework, rather than mimicking
exactly the soft-thresholding operator (10). As shown in Fig. 4,
the expansion block has three inputs: the multiscale depths,
their features dfeat and the squeezed depth x. As indicated
by the weighted average, the weights will help combine values
from either the outlier-free squeezed depth x or the multiscale
depths d(�), where x values will be promoted if the two depths
are significantly different. This highlights the importance of
the absolute difference between the multiscale depths and the

squeezed depth for each scale
(

i.e., ∀�, |d(�) − x|
)

. The latter

difference is fed together with the multiscale depth features
dfeat into a module named Group PAConv to compute the
weights. This module consists of L independent sub-modules,
where the lth sub-module inputs one scale depth feature d

(�)
feat

and the difference feature |d(�) − x|. From such input, an atten-
tion module named PAConv (slice) estimates internal weights
for each scale. A softmax operator is then applied to these
internal weights after multiplying them by a coefficient ρ (note
that ρ is introduced to enforce weights sparsity and is fixed to
ρ = 2 throughout the paper). The softmax operator outputs two
normalized channels per scale, we only consider the first channel
related to the multiscale depth parts and denoted by w (See the
red rectangles in the bottom part of Fig. 4). Then, the expanded

depth d
(�)
n for the �th scale and the nth pixel is obtained by the

convex combination of d(�)n and xn as follows:

d
(�)
n = w(�)

n d(�)n +
(
1− w(�)

n

)
xn, 0 ≤ w(�)

n ≤ 1. (14)

We have described one stage of the network corresponding to
one iteration in Algorithm 1. All stages have the same structure,
except the last which only has the squeeze block to produce the
final output of the network.

3) Network Learnable Parameters: Throughout the net-
work, all the convolution layers use the 3×3 kernel with the
LeakyReLU activation [44] without bias and have the same num-
ber of output channels as the input. For example, if an input of
the convolution layer is of size 12×Height×Weight, the output
size will be the same and the number of learnable parameters
on this layer is 3× 3× 12× 12 = 1296 parameters, following
the structure of standard convolutional layers [45]. The module
Group PAConv consists of 12 independent sub-modules where
each has 144 learnable parameters from 4 convolutions whose
input and output channels are 2 (i.e., 3× 3× 2× 2 = 144
parameters). Therefore, each stage contains 14688 learnable
parameters, except for the last one which has 9072 parameters.
Table I summarizes the network operations together with the cor-
responding number of learnable parameters, when considering
K = 4 stages.

4) Property of the Network: Interestingly, the final depth
value of the proposed network is bounded pixelwise by the initial
estimates of the multiscale depths. To state formally, consider
the values of the multiscale depths d(�)n , ∀� and the squeezed
depth xn at the first stage. Since the squeeze block chooses an
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TABLE I
SUMMARY OF THE ARCHITECTURE WITH THE OUTPUT SHAPE AND THE

NUMBER OF LEARNABLE PARAMETERS. STAGE 2 AND 3 HAVE THE SAME

STRUCTURE AS STAGE 1. CONV DENOTES THE CONVOLUTION LAYER, AND H
AND W REPRESENT THE HEIGHT AND WIDTH OF AN ARRAY, RESPECTIVELY

element among L elements of d(�)n with � ∈ {1, . . . , L}, it holds
that

min
{
d(1)n , . . . , d(�)n

}
≤ xn ≤ max

{
d(1)n , . . . , d(�)n

}
. (15)

Meanwhile, the expanded depths denoted by d
(�)
n are a convex

combination of d(�)n and xn with normalized weights in Eq. (14),
so we have

min
{
d(�)n , xn

}
≤ d(�)n ≤ max

{
d(�)n , xn

}
. (16)

Combining (15) and (16), the expanded depths are bounded
pixelwise by the initial multiscale depths

min
{
d(1)n , . . . , d(�)n

}
≤ d(�)n ≤ max

{
d(1)n , . . . , d(�)n

}
. (17)

Since each stage has the same structure, this relation holds
for the next stages and the final squeezed depth value has the
same bound as in (15). This property has pros and cons. We can
predict the behaviour of the network, so that it will not produce
some extreme depth values. On the other hand, the proposed
network requires the range of initial multiscale depths to cover
the underlying true depth for each pixel.

B. Loss

Motivated by the Laplace prior in (6), we define the training
loss for depths as the �1-norm distance between the predicted
depth and ground-truth depth. We additionally impose a con-
straint that the intermediate squeezed depths should be similar
to the ground-truth depth x∗ during training. The motivation for
this constraint is twofold. It can prevent the neural network from
losing key information in the initial stages and it can help avoid
the vanishing gradient problem, by providing more paths in
computational graphs for backpropagation. With the additional
constraint, the training loss function L is defined as

L(θ) =
K∑

k=1

‖xk(θ)− x∗‖1, (18)

where θ denotes the neural network parameters, xk represents
the intermediate squeezed depth in the k stage andK is the total
number of stages.

TABLE II
PROCEDURE TO ESTIMATE INITIAL MULTISCALE DEPTHS

C. Estimation of Initial Multiscale Depths

As a reminder, the input of the proposed network is a tuple
of multiscale depths, rather than the large volume histogram
data. From the histogram data, we aim at extracting initial
multiscale depths without losing important information, while
providing several depth values to cover the true one. For this
goal, we consider several 3D low-pass filtered Lidar histograms
as summarized in Table II. We first apply the cross correlation
to the original Lidar data with the system IRF. To this cross
correlated data, we apply the 3D convolution with the uniform
filters with the sizes of 7×7×7 and 13×13×13, generating
two additional histograms. Each of the three histograms is then
spatially downsampled with 4 different kernel sizes. This results
in 12 filtered histograms in total, where we locate the main peak’s
position in each filtered histogram and for each pixel, to obtain
initial multiscale depths dML(�), ∀�. Note that we can exploit the
separability of uniform filters for efficient computation. Note
also that the actual IRF could be used and that we do not impose
any constraints on the IRF shape. It is worth mentioning that
previous deep learning models [22], [23] do not account for
a known system IRF in their architectures, but might learn it
implicitly during training.

D. Training Procedures

To train the neural network, we generate synthetic data by
simulating SPAD measurements withT = 1024 time bins, using
the Poisson observation model in (1). We choose 9 scenes from
the Middlebury stereo dataset [46] (with image sizes 555×650)
and 21 scenes from the Sintel stereo dataset [47] (with image
sizes 436×1024) for the training dataset and 2 scenes from [47]
for the validation set. To make our network robust to different
noise levels, we consider different scenarios based on the average
number of Photons-Per-Pixel (PPP); and the average Signal-to-
Background Ratio (SBR), defined as

PPP =
1

N

N∑
n=1

(rn + bnT ) , SBR =

∑N
n=1 rn∑N

n=1 bnT
.

We found it helpful to include the clean data to prevent overfit-
ting where the network favors some specific scales and so we
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Fig. 5. Visualization of the internal outputs in the first stage. For the purpose
of presentation, only eight scales (� = 1, . . . , 8) are visualized. [1st column]
shows the initial multiscale depths (d) and [2nd column] their corresponding
attention weights (w) in the squeeze block. [3 rd column] shows the squeezed
depth (x), [4th column] the attention weights in the expansion block and [5th
column] the expanded multiscale depths computed by Eq. (14).

consider 4 cases: (PPP=1, SBR=1), (PPP=1, SBR=64),
(PPP=64, SBR=1), (PPP=64, SBR=64). To save the GPU
memory during training, we extract patches of size 256×256
with stride 48, rather than processing the original images. We
implement our model in PyTorch and use ADAM [48] as an
optimizer with the default hyperparameter (β1=0.9, β2=0.999)
and the batchsize 16. We train the model for 200 epochs with the
initial learning rate 0.0001 which is reduced by half at epoch 100.
The training was performed on a Linux server with a NVIDIA
RTX 3090 GPU, which takes about 9 hours.

V. EXPERIMENTAL RESULTS

In this section, we perform the experiments to analyze our
model and show the relative advantages over other reconstruc-
tion methods on synthetic datasets as well as real datasets.

A. Analysis of the Network

Test dataset: For the test data, we simulated Lidar data with
T = 1024 time bins, from two scenes of Art (555 × 695) and
Reindeer (555 × 671) in the Middlebury stereo dataset [46]
which did not belong to our training sets. The reference depth
and reflectivity maps of these two scenes are visualized in the
first column of Figs. 7 and 9, respectively. In particular, the
Reindeer scene contains extremely low-photon regions which

Fig. 6. Intermediate squeezed depths along the four stages (top), the difference
between the multiscale depths and the corresponding squeezed depth in each
stage (middle) and the errors between the squeezed depths and the ground-truth
(bottom). The last column shows our estimated uncertainty map.

TABLE III
EFFECT OF THE NUMBER OF STAGES K AND THE NUMBER OF SCALES L. THE

ERROR DAE IS PRESENTED WITH THE MEAN VALUES AND THE STANDARD

DEVIATION, EVALUATED ON 98 DIFFERENT LIDAR DATA WITH DIFFERENT PPP
AND SBR ON THE ART AND REINDEER SCENE

will challenge the reconstruction algorithms. Note that these test
data are larger than the data reported in previous deep learning
works [22], [23].

Interpretability: Thanks to our unrolling strategy, we can
interpret our neural network via the connection to the underlying
Bayesian method. We first inspect whether the first stage can
successfully discard outliers. Fig. 5 visualizes the outputs of the
internal blocks in the first stage. Each pixel of the squeezed depth
x (3 rd column) is obtained using (13), where the multiscale
depths and weights are represented in the 1st and 2nd columns,
respectively. As shown in the first row, the first scale depth d(1)

shows many outliers, which leads to zero values in w(1). On the
other hand, the second scale depth d(2) contains important fea-
tures with less noise and its attention weightw(2) contains many
high values. We still observe noise in d(2) especially around the
low-photon regions. In such areas, d(4) and d(7) show more
smoothed depth values and w(4), w(7) receive higher attention
weights. In this way, the proposed network can successfully
remove noise and discard many outliers in the first stage. The
4th column shows the attention weights for the expansion block
where w(1) has only zero values, which indicates that the first
scale depth d(1) will be discarded in the next stage.

We now investigate how the squeezed depths improve along
the stages. To quantify the change within each stage, we define
the difference δk in the kth stage between the multiscale depths
and the corresponding squeezed depth, for each pixel n, as
follows:

δkn =
1

L+ 2

L∑
�=1

|xkn − dk,(�)n |, (19)
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Fig. 7. Reconstructed depth maps with different PPP and SBR levels on the Art scene. The first column shows the reference depth map (middle) and the reflectivity
image (bottom). The last two columns show the estimated uncertainty maps by Halimi and the proposed method (BU3D).

where dk,(�)n is the multiscale depth value in the kth stage. A
small value of δ would indicate a small improvement so that we
may not need a further stage. We also define the uncertainty ε
of our final depth map xK via the connection to the mode of
the depth variance (11) in the underlying method with N̄ = 1,
as follows:

εn =
1

K − 1

K−1∑
k=1

Ckn + βd
L+ 2 + αd

, Ckn =

L∑
�=1

w
k,(�)
n |dk,(�)n − xKn |,

(20)
where w

k
is the softmax-normalized version of 1−wk, ensur-

ing
∑L

�=1 w
k,(�)
n = 1. The weights w play a similar role to the

guidance weights in (10), and we set the hyperparametersαd, βd
to small values to obtain a non-informative prior. Fig. 6 shows
the intermediate squeezed depths xk for each stage k and δk

which decreases along the stages. The last row shows the errors
between the squeezed depths and the ground-truth depth map
x∗. In the first stage, the errors appear on the background due
to outliers, but such errors decrease along the stages. The last
column shows the estimated uncertainty map ε. It indicates high
uncertainty around object edges and areas with low reflectivity.

Evaluation metrics: To analyze our model quantitatively,
we use three evaluation metrics. We employ a standard met-
ric, Depth Absolute Error (DAE) defined as DAE (x,x∗) =
1
N ‖x− x∗‖1, where N is the number of pixels, which is useful
for measuring the overall disparity quality. To better evaluate
surface boundaries, we use an additional metric called Soft Edge
Error (SEE) [49], which measures the local error only at the
edges. Formally, it is defined as

SEE (x,x∗) = γ
∑

n∈Edge(x∗)

min
j∈νn

|xj − x∗j |,

where νn is a 3× 3 local window around the nth pixel, γ :=
10/|Edge(x∗)| is a scale factor, and Edge(x∗) represents a set
of edge locations in the ground-truth depth map x∗ obtained
using the Canny edge detector [50]. We also report the root mean
square error: RMSE(x,x∗) =

√
‖x− x∗‖22/N , as previously

used in [22], [23].
Ablation study: We study the effect of the number of stagesK

and scalesL. As shown in Table III, we first fixL = 12 and vary

the number of stagesK from 2 to 5. We evaluate the performance
on 98 different Lidar data with different levels of PPP and SBR
both ranging from 0.25 to 1024. We note a decreasing error
for increasing number of stages, but when K = 5, the error is
shown to increase possibly due to overfitting to our training
data. For example, we observed that the case K = 5 gives a
worse performance than that of K = 4 when SBR is less than
1 which did not belong to our tranining set. The number of
stages affects the running time by a small margin, because most
of the computational cost comes from generating the initial
multiscale depths. Next, we test the effect of the total number of
scales explained in Section IV-C. The number of scalesL affects
the error, the number of parameters and the running time. To
balance the trade-off between the performance and the network
size, we choose K = 4 and L = 12 throughout the rest of the
experiments.

B. Results on Simulated Data

In this experiment, we use the same simulated dataset and the
evaluation metrics described in the previous subsection.

Comparison methods: We compare our model to existing
reconstruction methods without additional sensor fusion. We
consider a state-of-the-art statistical method called Manipop [8]
and the underlying iterative Bayesian method in Algorithm 1 by
Halimi et al. [26]. In Algorithm 1, we consider the same filter
size consistent to the case ofL = 4 in Table II. We also compare
to two state-of-the-art deep learning models: Lindell et al. [22]
and Peng et al. [23]. We use the publicly available pre-trained
model for [22] and as no pre-trained model is available for [23],
we train this model using the authors’ publicly available codes.
We also report the result of the classical algorithm obtained by
applying a matched filter to the Lidar data by the system IRF.

Qualitative comparison: Fig. 7 shows the reconstructed depth
maps on the Art scene. In the case of high PPP and SBR, all the
methods reconstruct well except for Lindell et al. [22] which
loses some details. In the challenging data case, we first notice
that Manipop is conservative and shows many zero pixels to
indicate the absence of a target in them. Other algorithms detect
more targets, with the proposed algorithm showing the best
robustness to outliers. These results are confirmed in Fig. 8



770 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 16, NO. 4, JUNE 2022

Fig. 8. Point cloud representation of reconstruction results on the Art scene. The first column shows the reference point cloud.

Fig. 9. Reconstructed depth maps with different PPP and SBR levels on the Art scene. The first column shows the reference depth map (middle) and the reflectivity
image (bottom). The last two columns show the estimated uncertainty maps by Halimi and the proposed method (BU3D).

Fig. 10. Point cloud representation of reconstruction results on the Art scene. The first column shows the reference point cloud.

showing the point cloud representation of the reconstruction
results. When PPP=4 and SBR=1, the previous deep learning
methods suffer from so-called flying pixel artifacts (also called
bleeding effects) [51] around the surface boundaries, while less
artifacts are observed in Halimi et al. [26] and in our method.
When PPP=1 and SBR=0.25, Halimi et al. [26] yields many
outliers, compared to the proposed method. These two meth-
ods estimate similar uncertainty maps, however, the proposed
method indicates higher uncertainty in noisy regions (e.g., see
region behind the cone for PPP=4, SBR=1). Consistent results
are observed for the Reindeer scene in Fig. 9 and Fig. 10.

Quantitative comparison: In Table IV, we quantitatively
evaluate our model in different levels of PPP and SBR. Peng
et al. [23] overall outperforms other methods in terms of RMSE,
but it yields high errors in DAE and SEE. One reason is due
to oversmoothing artifacts around the boundaries of surfaces.
On the other hand, our method yields the lowest errors when
PPP=1 in terms of DAE and SEE. When PPP is 16, both
Halimi [26] and the proposed method show an overall good
performance in terms of DAE and SEE. Manipop shows good
performance for clean data at PPP=16 and SBR=4, but its errors
are higher in challenging cases, because Manipop sets as zero
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TABLE IV
QUANTITATIVE COMPARISON ON THE ART AND REINDEER SCENE WITH DIFFERENT LEVELS OF PPP AND SBR

Fig. 11. Errors in terms of different levels of SBR and PPP on the Art scene by
three methods: Halimi, Peng and the proposed method (BU3D) (top-to-bottom).
Three evaluation metrics of DAE, SEE and RMSE are used (left-to-right) and
the error values are presented in log scale.

non-target regions. Although the used metrics are not fair to
Manipop, we report the errors for reference and we empty the
numbers when they are not meaningful.

As shown in Fig. 11, we further conduct an extensive exper-
iment in a wide range of PPP and SBR levels when comparing
with Halimi et al. [26] and Peng et al. [23]. The underlying
Bayesian method [26] gives an excellent performance on the
clean data, but its performance rapidly degrades in the low-
photon and high noise cases. In such cases, Peng [23] and our
method show comparable results, but the errors in Peng’s method
begin to increase when PPP is higher than 16 and SBR is higher

Fig. 12. Generalization test on different system IRFs. When generating test
data, different system IRFs are considered by applying Gaussian smoothing
with varying standard deviations σIRF on the two baseline IRFs: a Gaussian IRF
(top-left) and a realistic asymmetric IRF (top-right). The bottom row shows the
DAE by Lindell, Peng and the proposed method (BU3D) with varyingσIRF from
the Gaussian IRF (bottom-left) and the asymmetric IRF (bottom-right).

than 512. Compared to Peng’s result, the proposed method offers
a more consistent performance even when PPP and SBR are
high.

Generalizability on different system IRFs: Unlike previous
work [22], [23], the proposed method incorporates the sys-
tem IRF, as explained in Section IV-C. Here, we test how
robust our method is to changes affecting the system IRF. We
consider two types of baseline IRFs with 15 non-zero time
bins: a symmetric IRF given by the Gaussian function and a
realistic asymmetric IRF. On these baseline IRFs, we apply a
Gaussian smoothing with different standard deviations σIRF and
use the resulting IRF to generate test data on the Art scene
with PPP=4 and SBR=4. The first row of Fig. 12 shows the
shapes of different IRFs where a large value of σIRF increases
the IRF’s width. The second row shows the errors with re-
spect to σIRF when considering the compared networks (without



772 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 16, NO. 4, JUNE 2022

Fig. 13. Reconstructed depth maps on the real dataset. The first column shows a reference intensity image and the last two columns show the uncertainty maps
estimated by Halimi and the proposed method (BU3D).

TABLE V
RUN TIME ON THE ART SCENE WITH THE RESOLUTION OF 555×695×1024.

THE RUN TIME OF THE PROPOSED METHOD (BU3D) IS PRESENTED INTO TWO

PARTS: THE ESTIMATION OF INITIAL MULTISCALE DEPTHS AND THE

INFERENCE BY THE NETWORK

retraining with the modified IRFs). The performance of our
method is shown to be less affected by the different IRFs in
both symmetric and asymmetric cases. This result highlights
the robustness of our method to the mismodelling of the system
IRF.

Efficiency of the network: Table V compares the number of
parameters of the compared deep learning methods and their
running times on the Art scene. The proposed method shows the
fastest running time when using a GPU device. The previous
deep learning models [22], [23] could not take as input the full
Lidar data due to the GPU memory limit, so they process small
size patches and stitch the resulting depths together to obtain
the final estimate. This is why they have a large running time
with high dimensional data. Meanwhile, in the proposed method,
most of the computational costs come from the estimation of
initial multiscale depths, which takes 317 seconds on a CPU
device and 5.07 seconds on a GPU device. The parameters of our
method are an order of magnitude less than those of [22], [23],

and hence the proposed method requires shorter training time,
which highlights the efficency of our network.

It is worth mentioning that during training, Lindell and
Peng use 13,800 patches of SPAD measurements with the
size 32×32×1024 simulated from NYU v2 dataset [52], while
the proposed method uses 7,860 patches of SPAD measure-
ments with the size 256×256×1024 simulated from [46], [47]
where each patch is compressed into multiscale depths of size
256×256×12 to serve as an input to our network.

C. Results on Real Data

We evaluate the proposed method on a real dataset provided
in [22] which captures real scenes under challenging scenarios.
The Lidar data cubes have the resolution of 256×256×1536
and the first column of Fig. 13 shows the reference intensity
images of 4 indoor scenes (1st to 4th row) and 1 outdoor scene
(the last row). In the figure, we report the PPP and SBR levels
which are approximately estimated. Due to the high noise on
the real data, Manipop does not yield meaningful surfaces, so
we omit its results. As shown in the checkerboard scene (1st
row), Peng [23] and our method yield flat depth maps on the
checkerboard, while other methods observe inaccurate depth
maps affected by the textures of the checkerboard. Compared
to Peng’s result, the proposed method gives a more flat depth
map within the checkerboard and has less artifacts around the
top and left borders. In the elephant scene (2nd row), compared
to other methods, the proposed method reconstructs better the
boundary of the elephant. In the lamp scene (3rd row), Hal-
imi [26] reconstructs the structures well, but it suffers from
outliers, while deep learning methods overall obtain less noisy
results. Both Lindell [22] and Peng [23] lose some details on
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Fig. 14. Point cloud representation of reconstruction results on the real dataset.

TABLE VI
COMPARISON OF RUNNING TIME (IN SECONDS) AVERAGED ON FIVE REAL

SCENES WITH THE RESOLUTION OF 256×256×1536

the top of the lamp whereas the proposed method obtains better
reconstruction. In the 4th row, Peng’s method fails to capture the
hand in the middle left region, while our method still captures
it. Fig. 14 shows the reconstruction results represented by point
clouds. The last row shows the reconstruction on the stair scene
which has a very low SBR level due to strong sunlights. The
previous deep learning methods often result in bleeding arti-
facts between the steps on the stair, while Halimi [26] and our
method show fewer such artifacts. Finally, Table VI compares
the running time, where the fastest results are obtained by the
proposed method confirming its efficiency.

VI. CONCLUSION AND DISCUSSION

In this paper, we have proposed a new deep learning model to
reconstruct depth profiles from single-photon Lidar data, taking
advantages of statistical models and data-driven approaches.
We design our neural network by unrolling a previous iterative
Bayesian method [26], exploiting the domain knowledge on a
single-photon Lidar system. This unrolling strategy improves
the interpretability and efficiency of the proposed network in
terms of the network size, and the training and testing times. The
resulting network is also more robust to mismodeling effects due
to differences between training and testing data, than classical ar-
chitectures. The numerical experiments show that the proposed
model can reconstruct high quality depth maps in challenging
scenarios with less artifacts around the surface boundaries. The

proposed model can be extended by accounting for the multi-
scale reflectivity map as an additional input or exploiting guiding
information from other systems (e.g. for sensor fusion). These
interesting extensions will be considered in future work.
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