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Abstract—The COVID-19 pandemic created significant interest
and demand for infection detection and monitoring solutions. In
this paper, we propose a machine learning method to quickly detect
COVID-19 using audio recordings made on consumer devices. The
approach combines signal processing and noise removal methods
with an ensemble of fine-tuned deep learning networks and enables
COVID detection on coughs. We have also developed and deployed
a mobile application that uses a symptoms checker together with
voice, breath, and cough signals to detect COVID-19 infection. The
application showed robust performance on both openly sourced
datasets and the noisy data collected during beta testing by the end
users.

Index Terms—Acoustic signal processing, signal detection,
biomedical informatics, public heathcare, machine learning, Big
Data applications.

I. INTRODUCTION AND RELATED WORK

THE continuing proliferation of smart devices and growth of
their computational power have sparked research interest

related to applications of machine learning for audio-based
medical screening of respiratory infections and airborne diseases
long before the COVID-19 pandemic. The primary motive was
to enable affordable data-driven non-invasive health screening
methods, which can be rapidly scaled up in response to public
health emergencies and quickly adapted to particular public
health concerns in infection hotspots. This is especially relevant
whenever a high-risk population predominantly lives in remote
areas or cases when access to skilled clinicians or care-takers is
limited.

At the early stages of the COVID-19 pandemic, it was impor-
tant not only to detect patients affected by the scourge, but also
to estimate the severity of the disease by calculating the share of
affected lung tissue, and to distinguish COVID-positive patients
from those with other acute respiratory diseases, e.g. viral or
bacterial pneumonia, in order to help doctors prioritize patients
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and provide treatment before a PCR result was confirmed.
These reasons led machine learning practitioners to propose
diagnostic methods that exploit visual information, such as chest
X-ray images, computer tomography, or ultrasound studies (see
references in [1]). Great progress has been made due to the
availability of large datasets, and many clinics around the world
have adopted automated image-based methods to help patients
with COVID, [2]. However, further spread of the pandemic,
coupled with discoveries about COVID’s contagiousness and
course, emphasized the necessity of detecting asymptomatic
carriers and infected persons without noticeably affected lung
tissue at the early stages of the disease, since, in general, such
patients are not compelled to reduce their social activity and thus
could contribute to the sustained spread of the virus.

The simulation study [3] has shown that affordable COVID
screening, even if less sensitive than clinical tests, allows to
control the spread of the virus more effectively, by being able
to be quickly scaled up and massively deployed. Furthermore,
massive screening could reduce the exposure of first responders
and critical frontline medical workers to virulent respiratory
infections, [4]. However, medical imaging studies are impracti-
cal for rapid screening purposes and asymptomatic or unaware
carriers are unlikely to undergo such studies or seek out a PCR
test. An alternative could be to use the “everyday data” from
smart devices, such as samples of voice, breath, and cough,
as an input to an AI non-diagnostic pre-screening tool. The
effectiveness of this approach rests on the hypothesis that at
its early stages COVID-19 produces measurable physiological
changes, such as sore throat, lung obstruction, or reduced blood
oxygen saturation, [4].

In general, machine learning and deep learning methods for
medical applications require large datasets with accurate and ex-
pertly verified ground truth. The onset of COVID-19 pandemic,
however, has made it challenging to obtain sufficient volumes
of high-quality clinically reliable data, collected under strictly
controlled conditions, especially considering time constraints
and logistical limitations. In such circumstances, some stud-
ies went with the crowdsourcing approach to collecting large
open datasets of coughs for COVID, [5], [6], and [7], (see
Section II-A). Crowdsourcing, however, has severe limitations:
lack of adherence to blinding protocols, i.e. the COVID status
is known to the subject prior to participation, poorly controlled
selection bias, ambient sound conditions, or other confounding
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variables, and, most importantly, unreliable ground-truth labels,
i.e. self-reported COVID status versus a verified PCR test,
[8], [9].

Despite these shortcomings, the available crowdsourced res-
piratory sound datasets could be valuable for pre-training deep
neural networks for cough detection and COVID identification
tasks, [8], [10]. Thus initialized models can be fine-tuned on a
much smaller dataset of better quality, collected in a controlled
setting and having the infection status verified through repeated
properly conducted PCR test, [11]. This transfer learning ap-
proach is adopted in the current study: our solution is pre-trained
on the crowdsourced data with weak labels (Section II-A),
then fine-tuned and tested on a privately commissioned higher
grade dataset with strong labels (Section II-B), and additionally
validated on the real data, collected “in the wild” through a
custom mobile application (Section II-C).

Our key contributions are:
� We propose an ensemble of deep convolutional neural net-

works and gradient boosted classifiers that together predict
COVID status based on cough recordings (Section III);

� We present the validation results of the proposed pipeline
on openly accessible datasets, as well as a private dataset
collected in COVID wards (Section II and Section IV);

� We describe the implementation of the preprocessing and
COVID diagnosing pipeline in a mobile application devel-
oped for rapid COVID screening (Section V).

In the following Section I-A we briefly survey the exist-
ing approaches to cough-based disease detection. Sections II
and III describe the used datasets and the proposed approach,
respectively, while in Section IV we provide results of our
experiments on the private data along with performance on the
public datasets. Results of our models on crowdsourced data are
presented in Section V. We share the limitations of our work,
concluding remarks, and outline further research directions in
Sections VI – VIII.

A. Related Work

Respiratory diseases, such as measles, pertussis, flu, and,
since 2020, SARS-CoV-2, are some of the key of public health
concerns specifically due to their high viral potential. This has
made breaths and coughs, which are the most common symp-
toms among these airborne diseases, the primary data in medical
monitoring applications.

In the review, we focus mainly on summaries of the models
and methods employed to achieve the desired goal of automated
cough analysis, detection, or disease classification. The rationale
is that, although most studies report remarkable sensitivity,
specificity and F1 performance under different cross-validation
approaches, their use of private datasets, collected under dif-
fering acquisition protocols, or insufficient reporting of per-
formance on community-accepted benchmark datasets severely
complicate comparisons.

The data in these datasets typically features spontaneous
or induced coughs, obtained from consenting participants that
meet the requirements of a study and recorded on a dedicated
smart device. In detection studies, the audio is evaluated by

the presence of ambient sounds or speech, against which cough
identification is to be performed. Disease classification studies
consider demographic factors, avoid collection site imbalances
and curate the data by the type and severity of the illnesses and
recency of clinical tests for each particular disease.

Prior to feature extraction and analysis, the audio signal
is commonly preprocessed with a low-pass filter with cut-off
frequency at about 4 kHz, the threshold determined in [12] to
contain most of the spectral content of a cough. The respiratory
data is then typically processed with the Short-time Fourier
Transform, i.e. the time-frequency representation computed by
the discrete Fourier transform of the signal in a sliding window
with overlap. Subsequently, these spectrograms are transformed
using filter banks which prioritise higher resolution in lower
frequencies, e.g. Mel-scale (Mel-spectrogram) or Gammatone
(cochleagram). Although based on perceptually equal contri-
bution to speech articulation, these filter banks are frequently
used for cough analysis since speech and cough generation
share physiological similarities, [13]. In [14], it was observed
that wet and dry coughs can be distinguished by their spectral
power distribution at initial burst, noisy airflow and glottal
closure phases, specifically in the 1.5− 2.5 kHz and ≤ 750 Hz
bands. This concentration of informative spectral content in
lower frequencies justifies the use of Mel-spectrograms and
cochleagrams, [13].

Research prior to 2017 tends to focus on acoustic or engi-
neered features – the features based on multi-scale wavelet,
spectral or time-domain analysis commonly employed in signal
processing. Examples include the rate of sign change in the time-
domain, indices, and values of the local extrema of the signal
power in specific frequency bands, full or partial auto-correlation
coefficients, etc. However, the most often used features are the
Mel-Frequency Cepstral Coefficients (MFCC), computed as the
discrete cosine transform of the log-spectrogram aggregated
into Mel-scale frequency bins. Analysis of the pairwise Mutual
Information in [15] concluded that the commonly used acoustic
features complement each other in cough detection tasks. Other
engineered features used in the studies include spectral spread
and centroid, Sample Entropy, which measures the complexity
and self-similarity of the time-series, non-Gaussianity statistics,
and Linear Predictive Coding features, [16]–[19].

These acoustic features are used in a large variety of cough
detection methods: a keyword spotting Hidden Markov model
repurposed for continuous cough monitoring [16], a cough-
speech classification tree [17], a 4-layer detector network with
additional bispectral features [20], three Hidden Markov models
stacked atop a neural network to distinguish cough from speech
and ambient noise [12], and a k-nearest neighbors classifier to
detect the “initial burst” phase of a cough, built on the PCA of
acoustic features, [21]. In [22] respiratory cycle segmentation
was done using a recurrent network with an input noise mask-
ing mechanism driven by an auxiliary network, trained on the
MFCC features. Going against the trend of increasing model
complexity, the authors of [23] insist on a minimalist approach
to cough detection and show that a logistic regression trained
on just four acoustic features can deliver competitive sensitivity
and specificity metrics, comparable with the state of the art.
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Methods for automated cough-based diagnosis of respiratory
diseases borrow many ideas and share technical similarities with
detection. For instance, pneumonia can be discerned from other
respiratory infections with a logistic regression on the acoustic
features of a cough supplemented with wavelet transforms,
[24], [25], or pertussis can be identified by a dedicated whoop
detector and a cough classifier built with logistic regressions with
greedily selected features, [19]. Chronic Obstructive Pulmonary
Disease can be identified with a random forest, [26], or gradi-
ent boosted classifier ensembles on the MFCC features, [27].
Finally, the problem of croup diagnosis can be tackled with an
SVM on 1st and 3rd moments of time-frequency sub-blocks of
cough cochleagrams, [28]. Certain studies attempt to diagnose a
condition without using coughs: a naïve Bayes classifier trained
on acoustic features can detect if a patient has chronic cough
purely from the recordings of their speech, [18].

Since 2015 the cough detection and classification research
has been gradually moving towards deep features, i.e. hierar-
chical features with different local receptive fields produced by
deep networks operating purely on spectrograms of the input
signal or chunks thereof. Two key motives prompted this shift.
The first was the recognition that the commonly used acous-
tic features were crafted for speech recognition applications,
and, hence, inductively biased towards the human auditory
system and perception. The second was the wider adoption of
software frameworks for deep learning, coupled with greater
availability of cutting-edge deep networks pretrained on large
datasets.

Many studies repurpose or fine-tune the state-of-the-art deep
architectures to the tasks of sound detection and respiratory
disease classification. Indeed, it has been demonstrated that
hierarchical spectral features learnt by a convolutional neural
network (CNN) and long-term dependencies extracted by a re-
current network discriminate cough from speech and non-cough
sounds better than handcrafted acoustic features, [29]. In [30] a
CNN operating on Mel-spectrograms is shown to successfully
diagnose bronchitis and bronchiolitis from the detected coughs.
The study [13] identifies pertussis based on Mel-spectrograms
and cochleagrams of coughs fed into an ensemble of convolu-
tional networks pooled by an SVM. The author of [31] adopts the
paradigm of learning using privileged information, and proposes
an adversarial training method to suppress the effect of undesir-
able confounding variables on the outcomes of a convolutional
cough-based tuberculosis classifier. The study [32] addresses
the issue of varying quality of recordings by developing a
device-agnostic bagging ensemble of architectures inspired by
VGG-19, [33].

With the onset of the SARS-CoV-2 pandemic the volume
of research on the feasibility and public health capabilities
of fast and inexpensive audio-based diagnostics of respiratory
illnesses have grown considerably, [1]. In particular, lung X-
Ray and CT scan studies suggest that COVID-related coughs
should have idiosyncratic signatures stemming from distinct
underlying pathomorhpology, [4]. Surveys [34] and [35] provide
references to non audio-based deep learning solution related to
COVID, including disease identification from medical images
and ultrasound, contact and spread tracking and tracing using

facial recognition, screening of respiratory patterns, and protein
analysis for drug discovery and virulence prediction.

Studies using respiratory audio related to COVID-19 collect
curated datasets of sounds and symptoms from local hospitals or
wards, paying special attention to patient eligibility criteria, prior
knowledge of COVID status, and imbalance due to acquisition
time, location, demographics, the equipment, and the hardware
used to capture and record audio, [8], [36]–[38]. Other studies
crowdsource the data through web or mobile apps, which is
a more affordable and less time-consuming option, that yields
much larger datasets, albeit of lesser quality both in the ground
truth infection status labels and the audio recordings themselves,
[5], [10], [39].

The machine learning methods and pipelines considered for
cough-based COVID screening have for the most part continued
prior audio-based disease identification research. For example,
[39] identify COVID with non-deep classifiers trained on a
subset of their crowdsourced dataset using acoustic features
and VGGish embeddings [40] of breath cycles and coughs. A
preliminary study [37] uses an extended acoustic feature set in
a class-balanced linear support vector classifier to predict sleep
quality, fatigue, anxiety levels and a proxy for COVID severity
on 51 patients from a COVID ward without a non-COVID
control group. In [38] the authors collect a dataset of ≈ 8300
cough samples from patients with clinically verified qRT-PCR
test outcome on which they develop a deep detection and COVID
infection severity classification system, that operates on the
Mel-spectrogram, the MFCC, and sliding partial autocorrela-
tions. Another study [4] develops a screening tool that vets the
input audio for coughs and combines the outputs of a committee
of intermediate heterogeneous classifiers into a final COVID
diagnosis by unanimous voting, abstaining in case of discord.
SVM classifiers in the ensemble are built on the aggregated
MFCC features and their principal projections, while the CNN
classifiers are trained on Mel-spectrograms.

The diagnostic model from [10] aggregates salient informa-
tion from biomarkers computed from MFCC of the input audio
with three ResNet-50 models, [41], independently fine-tuned to
detect sentiment, to measure vocal cord fatigue, and to capture
acoustic idiosyncrasies due to respiratory tract structure. In
another recent study [8], the authors build a two-layer classifier
atop the deep feature extractor of a pre-trained ResNet-18, [41].
Their model is then fine-tuned on Mel-spectrograms for a cough
detection task on a pooled non-COVID dataset of speech and res-
piratory sounds, [6], [42], [43], with each sample contaminated
by a random background environmental noise, [44]. Finally, the
model is further fine-tuned to identify COVID-positive coughs
from a carefully curated dataset of three thousand samples
collected from testing sites and COVID wards in India. The
ablation study with stratified grouped cross-validation in [8]
demonstrates that cough-non-cough pretraining and ensembling
contribute positively to the performance of a stacked composite
COVID-classifier, consisting of the deep ResNet-18 classifier
and shallow models on acoustic features from [39]. The ap-
proach in [36] departs from cough event analysis and instead
repurposes the voice embeddings, produced by a pre-trained
transformer speech model, in an SVM-stacked ensemble of deep
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TABLE I
THE LABEL DISTRIBUTION WITHIN DIFFERENT SLICES OF THE

COVID19-COUGH DATASET

recurrent classifiers trained on 292 voice samples of 88 patients
with COVID status verified by the RT-PCR test.

II. DATASETS

Datasets that were used in this work can be split into three
types: prior crowdsourced, curated clinical, and newly collected
data. Namely:

1) Openly accessible moderately large crowdsourced cough
datasets with unverified labels collected by other projects
and researchers, e.g. [45],

2) Smaller size curated private datasets with verified labels
from hospitals and COVID wards in Russia acquired under
proper participation and recording protocols,

3) New cough and symptom data, being continuously col-
lected in uncontrolled conditions from users of our mobile
application since its initial release

This section describes all these types of data in more detail.

A. Open Datasets

As of the time of writing, only three large cough datasets
featuring COVID-19 positive samples were publicly available –
the EPFL COUGHVID dataset [5], Coswara [6], and Covid19-
Cough [7].

The EPFL dataset comprises 20072 records with 1010 self-
reported COVID-positive. Each record contains cough recording
and additional metadata like age, gender, symptoms, geographi-
cal location. Part of the dataset is annotated by three doctors. The
Coswara dataset consists of about 2000 records including about
400 from positive patients. Similarly to COUGHVID it con-
tains additional metadata and the COVID status is self-reported.
The Covid19-Cough dataset consists of 1324 samples with 682
COVID-positive cases, 382 of them confirmed by a PCR test.
Samples were collected through a call-center and via Telegram
messenger bot (see Table I).

B. Proprietary Data

As mentioned earlier, the affordability of the crowdsourcing
option comes at the cost of control over selection bias, confound-
ing variables, and reliability of the ground-truth labels. The open
datasets in the previous section suffer from these shortcomings,
especially since the COVID status labels are self-reported and
mostly unverified by a PCR test, i.e. weak. In order to make a

mobile application using a deep learning model, which is capable
of detecting COVID on cough, breath, and speech input, we have
collected a private dataset with the infection status, verified by
a PCR test. We expect that fine-tuning on a strongly labeled
cough dataset would reduce the potential classification bias of
the model trained on abundant, but weaker data, and, therefore,
improve the final performance.

Each sample in the collected dataset consists of three audio
recordings, symptom data, and COVID status. Every person
who agreed to participate in the study has been recorded only
once. We make sure each participant gives informed explicit
consent prior to uploading their respiratory and voice samples
and medical data to a cloud data storage for later processing. The
type of collected data is similar to [39], but rather than asking
for a specific number of isolated respiratory events, we limit the
duration of of the recorded continuous coughing and breathing.
We obtain two five-second audio samples of induced cough and
breathing cycles, and a recording of the vocalized recitation of
the Russian phrase “I hope, this recording will help battle the
pandemic”.

Audio samples for COVID-positive cases were collected in
hospitals and verified by both a PCR test and lung CT scan.
COVID-negative participants were recorded in an office envi-
ronment which required a recent and verified negative PCR test
for entry. Ultimately, we obtained 211 samples from healthy
users and 228 records from COVID-19 wards from two hos-
pitals in Moscow, Russia. Although these samples could bias
the dataset towards severe COVID-positive cases and provide
little help in detecting asymptomatic carriers, when used to
fine-tune the model they appear to improve its performance
(see Section IV). Since the number of samples in our private
dataset was limited we have decided not to allocate a test set for
testing the model’s performance, but keep a comparatively small
subset of the collected data mainly for inevitable unit tests. This
subsample comprises of 17 randomly chosen recordings from
COVID wards and eight random recordings of healthy people.
We have one exclusion from this approach, namely, we used this
small held out dataset to combine distinct ensembles into a single
meta-ensemble (Section IV-E. The rest of the collected private
data was pooled with the Covid19-Cough dataset to fine-tune
our models (Section IV-D).

Along with the audio data, we have collected self-reported
subjective symptom data by asking the participants to pick
the symptoms from a list in Table II, which correlates with
prior medical or clinical studies, [46] and [4, Section I.C, II.A,
and II.B] and was approved by practicing medical experts.
The case numbers in the table reflect the incidence rate in the
collected dataset.

C. App Data

The trained and validated models were deployed as a backend
of our custom iOS / Android application, which we have used
to collect similar respiratory audio, speech, and symptom data.
No personal data or metadata was collected, other than the
device model information, useful for adjusting for possible bias
associated with the hardware. It is worth noting that this dataset
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TABLE II
THE MOST SALIENT SYMPTOMS FOR COVID DIAGNOSIS

Fig. 1. The diagram of the entire pipeline of our solution.

is prone to label noise since COVID status is self-reported by
the users, in contrast to the strongly labeled dataset, mentioned
in the previous section (the “Hospital” dataset).

We collected the validation dataset for section V and Fig. 2
(“app data”) on the first day after the release of the application.
During this time we collected 1395 records from 1035 unique
devices: 901 data points from 700 unique iOS devices and 494
– from 335 unique Android devices.

Fig. 2. Datasets used in our work. Models were trained on the Covid19-Cough
dataset and fine-tuned on the Covid19-Cough and the part of the “Hospital”
dataset. Red dotted boxes indicate the data that was used in some way to change
the weights of our models. Green dotted boxes indicate those parts of datasets
that were used for stacking and/or calculating the target metrics.

TABLE III
CLASSIFICATION METRICS OF DIFFERENT PREDICTORS ON OPENLY AVAILABLE

CROWDSOURCED DATASETS

III. THE METHOD

Ensemble methods combine weak predictors into composite
models with reduced bias or variance with the goal of im-
proving prediction performance, [47]. Stacking uses a trained
meta-model to combine raw predictive outputs of independent
intermediate models, and bagging averages predictions of sepa-
rate unbiased predictors decorrelated by data- and feature-level
bootstrapping, random projections, and other methods. Boosting
builds a superior predictive model by blending intermediate
weaker ones through what amounts to stochastic gradient de-
scent, with each model estimating a finite-sample approximation
of the functional derivative of the loss.

The method we use in this study employs a hybrid ensemble
approach (Fig. 1) – we bag heterogeneous classifiers trained
and fine-tuned on multiple datasets and stack a second level
meta-model. It is possible to assign different weights to the
intermediate models in order to achieve the desired trade-off in
the classification performance metrics (Table VI). The overall
ensemble analyzes the input respiratory audio using a diverse
set of learnt and tuned patterns and supplements the detected
“signal” with simple-to-observe, yet informative symptom data.
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TABLE IV
THE MCC SCORES CALCULATED FOR EXPERTS’ PREDICTIONS AND

SELF-REPORTED LABELS ON THE EPFL DATASET

TABLE V
THE AVERAGE MODEL PERFORMANCE FOR 10-FOLD CROSS-VALIDATION WITH

COVID19-COUGH DATASET AND JOINED COVID19-COUGH AND HOSPITAL

DATASET. TESTING WAS PERFORMED ON THE SAME TEST PARTS OF CV SPLITS

OF THE COVID19-COUGH DATASET

TABLE VI
DISTINCT VARIANTS OF ENSEMBLING LEAD TO DIFFERENT PERFORMANCE ON

THE TEST DATASET. WE ARE ABLE TO CHANGE WEIGHTS IN THE ENSEMBLE IN

ORDER TO MAXIMIZE SPECIFIC METRICS

By carefully combining fine-tuned predictors in the ensemble
we improve the overall prediction quality of our method and
achieve favorable bias-variance trade-off. The pipeline, depicted
in Fig. 1, represents the workflow of the app (see Section V).
During training, each model in the ensemble outputs a proba-
bility of a binary label, without considering the possibility of
“abstention” or “indecision”.

The pipeline starts with the quality control step, which uses a
deep detector to filter out audio recordings that do not contain
cough events (Section V-A). At the preprocessing stage, we
extract the VGGish features from the audio sample, [40], and
compute its Mel-scale spectrogram representation (Section III-
A) as well as the time-aggregated statistics of its cochleagram
(Section III-A). The spectrogram is fed as-is into a bagged
ensemble of deep convolutional networks trained and fine-tuned
on sub-sampled datasets. At the same time, VGGish features are
combined with the cochleagram statistics and passed into the
gradient boosting ensemble. In parallel to the ensemble models,
there is a binary COVID classifier trained on user-reported
flu-like symptoms. The final step is computing the weighted
average of the intermediate classifiers’ output probabilities.

In the remainder of this section, we detail our approach to
selecting the preprocessing parameters, architectures and hy-
perparameters of the classifiers and ensembles.

A. Mel-Spectrogram

For the deep convolutional models, all audio recordings were
resampled to 48 kHz and the leading and trailing silence was
trimmed. We did not apply any frequency filtering in order
to preserve as much spectral data as possible. Afterwards, the
cough waveforms were converted into time-frequency repre-
sentation by the Short-Time Fourier Transform over sliding
54 ms frames with 14 ms strides and Hann windowing function
using librosa package. The Mel-spectrograms were obtained
by projecting the representations into 128-bin Mel filter-bank
spanning 20 Hz - 24 kHz frequency range. During training,
the Mel-spectrograms were augmented by randomly cropping
or replicating them along the time axis to get same-duration
chunks of roughly eight seconds. We also introduce auxiliary
frequency-bin positional encoding as the second feature channel
of the spectrogram.

We used the cochleagram statistics aggregated across the tem-
poral dimension as the inputs for the gradient boosting ensemble
model in our pipeline (Figure 1). These features were extracted
for cough samples, and, if available, from breath and voice
recordings. The input signal was transformed into cochleagrams
using Brian2Hears package1, with the number of frequency bins
set to 100 and other parameters kept at their default values. Next,
we obtained a time-frequency representation of the input signal
as a matrix with 100 rows, one for each bin in the cochleagram,
and nc columns, the number of which is determined by the
duration of the input.

For each frequency bin, i.e. the vector of dimension nc, we
computed 11 values: the mean, median, standard deviation,
skew, kurtosis, minimum, maximum, the first Q1 and the third
Q3 quartiles, the interquartile range (Q3 −Q1) and �2-norm.
The resulting feature matrix 100× 11 was flattened and joined
with the input’s VGGish 256-dimensional embeddings, [40].
Ultimately, we obtained a feature vector of length 1356, that
served as input into the subsequent ensemble (Fig. 1)

IV. EXPERIMENTS AND DISCUSSION

In this section we give a brief description of our training and
fine-tuning procedure and introduce datasets we used (Fig. 2);
in the following section, we dive into details.

A. Training Procedure Overview

At the first stage we chose the best performing publicly avail-
able dataset, Covid19-Cough (see Section II-A and Table III)
and further used it to train our models: deep CNN and gradient
boosting. We then collected two datasets: a dataset with “strong”
labels, i.e. samples with comparatively good record quality and
verified labels (we also refer to this dataset as “Hospital” dataset,
see Section II-B); and a crowdsourced dataset (App Data), that
was collected via our app (see II-C). The former was split into a
training set and a held out test set. The training set was used
to fine-tune models fit on the open Covid19-Cough dataset,
while the test subset was used i) for software unit testing and

1Auditory modelling toolbox. https://github.com/brian-team/brian2hears

https://github.com/brian-team/brian2hears
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TABLE VII
MANUALLY LABELED DATA USED TO TRAIN MOBILENETV2 COUGH DETECTION MODEL. OPEN-SOURCE DATASETS ARE SHOWN IN BLUE; OUR OWN COLLECTED

DATA ARE SHOWN IN ORANGE

TABLE VIII
ROC AUC AND MATTHEWS CORRELATION SCORE FOR DIFFERENT

ENSEMBLES ON DATA COLLECTED FROM THE APP. ANSWERS TO THE

QUESTION “DO YOU HAVE ACUTE RESPIRATORY DISEASE RIGHT NOW?”
WERE CONSIDERED AS GROUND TRUTH

ii) to select parameters for stacking models into the ensemble
(see Section IV-D). We evaluate i) the classification quality
of fine-tuned models on the Covid19-Cough dataset and ii)
ensembles, obtained after stacking models on the test dataset and
on the crowdsourced data collected via the app (see Table VIII).

B. Architecture and Fine-Tuning

We used a modified light-weight CNN architecture based
on [45], that supplemented the Mel-spectrogram image-like
input by an additional channel corresponding to log-frequency
positional encoding. The extra channel propagates through skip
connections into deeper layers, which enables better localization
and utilization of frequency information. On input the convolu-
tional model receives the recorded sound of coughs preprocessed
as described in Section III-A.

In order to train an ensemble of DCNN and a bagged ensemble
of Gradient Boosted Trees we utilized 10-fold cross-validation
on openly available datasets. Each fold was further split into
train and validation subsets, which altogether correspond to a
random 70− 15− 15 train-validation-test split of the dataset.

We trained the gradient boosted classifier ensemble with
LightGBM [48] using identical hyper-parameters on each fold,
that were fine-tuned on validation datasets. The maximum num-
ber of leaves in a tree was 5, while the minimum number of
data samples in one leaf was 35. We set the learning rate to
1 · 10−1 and optimized the weighted cross entropy loss with

�2 regularization coefficient 10−3. The models were further
fine-tuned using our private “Hospital” dataset (Section II-B).

Fig. 3 depicts ten ROC curves for each test split in the
10-fold cross-validation, with the average ROC AUC value of
0.7473. We also tried to adopt the same training strategy for
records of breath and speech, however, these ensembles did not
substantially improve overall performance.

C. Performance on Open Datasets

In order to rank the open-access datasets in terms of the label
quality we employed the following ad-hoc approach. We scored
each openly accessible crowdsourced dataset by its 10-fold
averaged ROC AUC and Matthews Correlation Score (MCC),
[49], independently computed using each branch of our model
(Section III, Fig. 1). Each replication in the k-fold CV was split
into 70%-15%-15% for train, model-selection, and test subsets,
respectively.

The computed cross-validated classification scores are pre-
sented in Table III. When measured with the CNN branch,
Coswara and the EPFL datasets exhibit more or less the same
quality close to random guessing, while the Covid19-Cough
dataset scores tangibly higher. Since the convolutional model
used to get the scores is not over-parametrized to memorize
the dataset, [50], and its architecture was shown to be effective
in applications ([45], and Kaggle Freesound competition2), we
speculated that the variability of ROC AUC and the MCC scores
between the datasets could be due to the potentially mislabelled
COVID status in Coswara and the EPFL datasets, which, unlike
Covid19-Cough, are also highly imbalanced. To evaluate this
conjecture, we investigated the subset of recordings in the EPFL
dataset that were additionally assessed by practicing medical
doctors, [5]. Despite adequate recording quality indicated by
the experts, these labels appeared to be uncorrelated with each
other and with self-reported COVID status, which further lent
evidence to the presence of COVID status noise and could
explain the apparent disparity in ROC AUC and the MCC scores
(Table IV).

2https://www.kaggle.com/c/freesound-audio-tagging-2019

https://www.kaggle.com/c/freesound-audio-tagging-2019
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Fig. 3. The ROC curves for predictions of models on 10 distinct test datasets from Covid19-cough. Blue depicts the mean ROC curve calculated by averaging
false positive rates and true positive rates of individual predictors. The ROC curve on the left was built for deep neural networks; on the right – for gradient boosting.

D. Fine-Tuning

Models trained on the Covid19-Cough dataset were further
fine-tuned using our “Hospital” data (see II-B). We fine-tuned
the ensemble of CNN using records of cough. The gradient
boosting ensemble was fine-tuned using records of cough, breath
and vocalization, which we call GB,GBb andGBv respectively,
resulting in three ensembles from Table V. The private data that
we collected in hospitals was split into ten folds and combined
fold-wise with the Covid19-Cough dataset. The goal of this stage
was to train our models on data that are close to those that will
be recorded by the users of our final application.

We report the mean classification metrics before and after fine-
tuning, respectively, in columns “Covid19-Cough” and “Joined
training set” of Table V. For both ensembles, CNN and GB,
we provide mean ROC AUC and the MCC metrics averaged
over the ten held out test subsets of the Covid19-Cough dataset.
This explains why the MCC decreases while ROC AUC slightly
increases for the gradient boosting.

E. Stacking and Results on Data From the App

We stacked the four previously trained ensembles (three gra-
dient boosting ensembles from the previous section and the
ensemble of CNN) using grid search over weights assigned
to each ensemble’s prediction to maximize the classification
metrics on the test data of our private dataset (see Section II-B).

The goal of this stage was to find optimal weights that would
maximize our target metrics while using the crowdsourced data
from the app. We realize that the mentioned test dataset is
relatively small, but we aimed to determine whether a record-
ing of breath and vocalization would be able to improve the
ensemble’s performance on crowdsourced data. In Table VI
we report two variants of combining fine-tuned ensembles that
maximize certain classification metrics. Every sub-ensemble
output probability averaged over 10 distinct predictors, thus the

final probability of an ensemble is given by the formula:

p = t · pDCNN + x · pGB + y · pGBb
+ z · pGBv

,

where GB,GBb, andGBv stand for the gradient boosted ensem-
ble fine-tuned, respectively, on cough, breath, and vocalization
data.

Next, we provide the performance of our models on App
data (see Section II-C) in Table VIII. Results of CNN, GB, and
Ensembles (Variants I and II) were measured using recordings
of coughs, while GB-breath and GB-vocalization were mea-
sured on breath and vocalization data respectively. Ensembles
fine-tuned on breath and vocalization have no predictive power
per se, while ensembles trained and fine-tuned on coughs are
more successful. This raises the question of the possibility of
using such recordings for achieving good results in limited com-
putational time. Another indication that cough recordings have
higher signal compared to breath and vocalization is that among
the two variants of our stacked ensemble, the best performance
is achieved by a configuration with higher weights assigned
to cough sub-ensembles, namely CNN and GB. Note that the
results of CNN, GB are on par with those of Ensemble (Variant
II).

Not all users reported their health status – whether they are
afflicted by any acute respiratory disease at the moment of
recording. In Fig. 4 we summarised how probabilities of one
of our ensembles (Variant II) are distributed.

Green bars correspond to the overall distribution, red bars
correspond to those cases where people verified that they do not
have any acute respiratory diseases at the moment of recording,
and blue bars correspond to those people who confirmed that
they have respiratory disease(s) at the moment of recording. The
red dotted lines correspond to uncertainty thresholds mentioned
in Section III, i.e. if the model predicts presence of the COVID
with probability 0.45 ≤ p(x) ≤ 0.55, the app informs the user
about the model’s uncertainty, and allows the user to repeat the
process from the beginning.
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Fig. 4. Histogram depicts how output probabilities of the Ensemble (Variant II)
are distributed. In green – all cases; in red – cases where users reports absence of
a respiratory disease; in blue – cases where users reports presence of a respiratory
disease.

Fig. 5. Receiver operating characteristic curve of the cough validator.

We see that the histogram of probabilities (Fig. 4) is biased
towards lower probabilities, namely, 80% of outcomes have
probability lower than 0.5. For those cases where people in-
dicated absence of acute respiratory diseases, p = 0.5 is the
0.82-th quantile; for the cases where people indicated presence
of respiratory diseases p = 0.5 is the 0.675-th quantile. On the
broader population, this bias should be even more salient, but
we must take into account that the collected data might have
more COVID-positive cases or other acute respiratory diseases
than average due to the interest in the application in the first
days of the release. From this observation, we may expect that
our model’s probability distribution p(x) is not so far from the
true distribution q(x) of having COVID. Whereas it is unclear
how to estimate q(x) better than the Bernoulli distribution of
either having COVID or not, it is clear that q(0) � q(1), i.e.,
the probability that a random person in the population is not

affected by COVID is much greater than the opposite. Since our
models trained on balanced input sources, frequencies, labels,
etc., we suggest that the aforementioned bias towards lower
probabilities validates that our model captures real distribution.
On the other hand results of our models on the crowdsourced
data are on par with those on the EPFL dataset. In Section IV-C
we concluded that for the mentioned dataset such a performance
is a consequence of weak labels. We would like to suggest that
the same issue might be the reason for the poor performance
observed on our crowdsourced data.

It is important to mention that we were not able to restrict the
health status self-reporting specifically to “COVID” due to the
application store rules.

V. APPLICATION

A. Cough Detection and Segmentation

Collected cough datasets and audio data coming from users
of a diagnostic application have a number of issues that could
prevent a correct diagnosis. Unlike cough sounds collected in
controlled environments, crowdsourced audio samples and live
data collected from users of the application may be severely
contaminated with background sounds, e.g. music, speech, en-
vironmental noise, or feature audio of entirely irrelevant audio
events, such as laughter, clapping or snoring. Besides contamina-
tion, data from different sources and datasets may have a varying
audio quality due to subsampling, frequency filtering, and / or
lossy compression, all of which adversely affect its spectral
properties. At the same time, there is high variability in cough
sounds even among the relevant “clean” samples themselves.
Apart from isolated wheezes, throat clears, or strong exhalations,
recordings might feature light coughs, and in many cases heavily
clipped samples due to close proximity to the microphone, or
partially cut-off cough events at the start or end of the recording,
e.g. the burst without a subsequent noisy airflow.

It is, therefore, necessary to require a certain quality of the
recorded respiratory event prior to feeding it into the COVID-19
diagnosis model, [4]. In order to make a correct diagnosis
possible, while not overly inconveniencing the user, the system
for determining the quality of a recording and detecting the
presence of a cough event should strike a balance between false
positive and false negative rates. A particular implementation
may prompt the user for another attempt in the instance of a
rejected recording, alongside a display of general instructions
outlining the recommended distance to the device or the level of
background noise (Section V-C).

Since the recordings of coughs are the most important input
to our model, we train and fine-tune a MobileNetV2 network,
[51], for a cough detection task on manually labeled cough
and non-cough data (see appendix A for training details). The
architecture was chosen for its inference speed, size, and arith-
metic complexity suitable for deployment on mobile devices.
The dataset was compiled from public and proprietary sources
(Table VII). Open datasets included Coswara [6], Covid19-
Cough [7], COUGHVID [5], Virufy [52], and FSD50K [53],
while proprietary data was collected from call-centers, patient
recordings made by hospital staff, and our mobile application.
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Fig. 6. Distribution of cough validator model outputs for 6480 recordings
collected by the mobile application over several days following release.

Preprocessing was done in python with the librosa package
to trim and extract continuous non-silent audio intervals, that
were then manually segmented. Ground truth event labeling
was done by a single party to ensure consistency – subjective
thresholds were set for the lightness of coughs and the amount
of audio clipping distortion before a sample was marked as
rejected. Call-center recordings included the full conversation
and therefore yielded many rejected segments. A total of 10263
recordings were labeled, of which 5074 were cough sounds;
the remaining 5189 non-cough samples consisted of non-cough
events as well as the undesirable cough variations described
above. Figure 5 depicts the ROC curves resulting from 5-fold
cross-validation of the cough detection model trained in the
pooled dataset (Table VII). Segmented recordings were labeled
only with a cough or non-cough flag; disjoint user sets across
folds were not enforced.

B. Performance on Real Data

We evaluated the behavior of the cough detection model on
the data collected by the mobile application. The threshold for
the model was set at reject< 0.25 ≤ accept to give some leeway
to users who might record unusual coughs, while still filtering
out clearly undesirable samples and prompting for a cleaner
recording. The distribution of model outputs representing the
probability of a cough in a given recording is shown in Fig. 6,
with 9.8% of recordings being rejected, i.e. classified as not
containing a cough.

We also considered the user response to receiving a prompt to
re-record a sample. A re-recording of rejection was defined as
an initially rejected sample followed up by another recording by
the same user within 20 minutes of the first. Out of the rejected
recordings, 37% were re-recorded.

To examine whether the recording instructions shown by
the mobile application (alongside a request to re-record) were
helpful in improving the quality of the samples, we evaluated the
number of successful attempts by users to produce an accepted
sample, in terms of re-recording sequences. A rerecording se-
quence begins with a rejected recording and consists of two or
more recordings that follow within 20 minutes of each other. The
sequence ends when an accepted recording is achieved, or when
the user does not make another recording within 20 minutes of
the last. A successful sequence ends with an accepted recording,
while an unsuccessful sequence ends with a rejected recording.
Out of all re-recording sequences, 68% were successful, showing
that in the majority of instances where users attempted to correct
an unsatisfactory recording, they were able to do so.

We believe that implementing similar filtering mechanisms
with an opportunity to re-submit a sample would be beneficial for
all audio collection efforts of this sort, especially crowdsourcing
campaigns, as it would promote standardization of samples and
produce larger and cleaner datasets. Users or volunteers would
generally be inclined to receive an accepted status on their
submitted data, as long as the re-recording process is quick and
simple. By retaining the rejected samples, such data collection
can only produce more samples than without filtering, while still
requiring the same level of commitment from each user at the
outset.

C. Application Implementation

The application is implemented in client-server manner with
iOS / Android UI frontend and server-side storage and com-
putational backend, implemented in Flask.3 The trained deep
convolutional networks are converted into ONNX format4 and
operate in inference mode using the ONNX Runtime5 library
for optimal throughput. During each user session, the client app
collects the data (symptoms, samples of cough, breath and voice)
and sends it to the server, which processes it, applies the models
and yields the response. The backend instances are replicated be-
tween several servers with a load balancer distributing requests
and workload among them for fault tolerance.

The user flow through the application requires them to record
breath and cough samples but allows them to opt out of the
voice recording step. The client also prompts the user for another
cough recording if the detector is unable to spot any cough-
events in the submitted audio sample.

VI. BROADER IMPACT AND MASS TESTING CONSIDERATIONS

A data-driven mass testing tool can be an invaluable and low-
cost solution to identifying disease carriers in the population and
encouraging these individuals to self-isolate [3]. It can provide
real-time data on infection hotspots and inform the allocation of
healthcare resources. At the same time, the question of trust
in machine learning models and algorithms that have policy
implications or critically affect personal decision making is very

3Web application framework, https://flask.palletsprojects.com/
4Open Neural Network Exchange, https://onnx.ai/
5High-performance inference engine for ML, https://www.onnxruntime.ai/

https://flask.palletsprojects.com/
https://onnx.ai/
https://www.onnxruntime.ai/
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pertinent in medical applications, especially since most AI tools
are based on statistical analysis, rather than causation. Due care
must be taken to clearly communicate and ensure the users’
awareness that the outcome of an uncertified ML-based solution
does not constitute medical advice.

Low sensitivity or specificity in such tools can exacerbate
the spread of disease, [54]. For example, a high false positive
rate erodes trust in pre-screening compelling the users to brush
off the alerts, which in the case of a true positive alert fails to
stimulate urgency to self-isolate or seek medical advice. Excess
trust in a tool with a high false negative rate carries the danger of
conveying a false sense of security to those who are shown a neg-
ative result, [55]. In this case, COVID carriers, who receive such
a diagnosis, might choose to forego clinical screening methods
and continue their social interactions, even when experiencing
mild symptoms. Others might neglect precautionary protective
measures if they are confident in the negative test results of their
social circle, [56]. Conversely, an unduly trusted model with a
high false positive rate can overwhelm the healthcare system, or
cause overreaction in the form of severe epidemic control mea-
sures that drastically impact individuals and businesses, [57].

To mitigate the adverse societal effects of misplaced trust, we
take care to communicate to the user of the application that the
application is not a certified medical tool, and encourage them
to exercise caution and seek proper medical advice or clinical
testing, such as an RT-PCR test.

VII. LIMITATIONS

The development of a model that predicts whether a recorded
cough has signs of a respiratory disease imposes strict restric-
tions on how data should be collected, especially if one is
working with crowdsourced data. For instance, the results of
Table VIII are of a limited interpretation due to the absence
of the ground truth labels for crowdsourced records. For a
fair comparison between models, one should collect massive
crowdsourced data verified by PCR test. This would crucially
enable the identification of asymptomatic individuals who would
otherwise not go through clinical testing.

We addressed some possible biases caused by different data
sources by dividing the dataset into groups with the same prop-
erties, such as sample rate and device type. During training,
objects were sampled from each group in such a way that the
weights of the positive and negative classes within each group
were equal. It is important to note, however, that the models
were fine-tuned with cough samples that could introduce other
kinds of biases. Positive COVID recordings were collected from
patients in hospitals, which constitute a relatively noisy and
echo-prone environment. COVID-free recordings were sampled
from an office location, which can be expected to be generally
quieter. Moreover, the participants in the office setting might
have been compelled to cough more lightly than hospital patients
and were likely on average to be younger than those admitted
to medical care. These distinct conditions and confounders
create the potential for bias in the models that exploit acoustic
characteristics of the samples unrelated to features of COVID
coughs.

Our model is also limited only to the detection of coughs
characteristic of COVID; we must extend our data in order to
detect other pathologies.

VIII. CONCLUSION

Our application is an attempt to make the identification of
people affected by COVID easier and faster. We received a lot
of help from the medical society at large to develop our app.
This help came from doctors who helped us collect data, as well
as from heads of clinics and other management who suggested
we use their data and collaborate in order to collect high-quality
samples. This shows the widespread necessity of such a service.

We encountered several projects similar to ours. Some of them
were concentrated on collecting data and sharing it with the
scientific community. Often these datasets were very noisy and
models trained on them had poor generalisation capabilities.
Some works focused on a method that could maximize the
performance of a model on private data. Our application serves
both these tasks: it is able to collect data and make a prediction.

In this work, we contribute to the scientific community by
providing baselines on open datasets, and describing our method
that combines feature engineering, classical and deep machine
learning methods. Another result of our work is the mobile app.

The further work is twofold. First, we will continue to collect
data from healthy people and people affected by COVID. We
hope that models trained on new massive and diverse data will
be more robust. Obviously, COVID is not the only respiratory
disease that might be detected. The detection of new diseases is
possible in the presence of corresponding datasets. This is the
second direction of further work: collecting data corresponding
to different respiratory diseases and training or fine-tuning mod-
els on this new data. Based on our model we released a mobile
application for public use [58], which is available on the App
Store and Google Play.

APPENDIX A
COUGH DETECTION MODEL

The cough detection model was trained using the PyTorch
library and a Tesla K80 GPU. The MobileNetV2 model was
modified to accept a single-channel input for greyscale Mel-
spectrograms. The segmented cough recordings were first nor-
malized by peak absolute value, then downsampled to 8 kHz,
and padded to 2 seconds if necessary. Mel-scaled spectrograms
were produced using the librosa package with FFT window
length of 743 samples, hop length of 186, and the number of
Mel-frequency bins of 128. Bootstrapping was used during train-
ing, with random crops to generate 128× 512 spectrograms.
The model weights were randomly initialized and the data was
randomly split into 80% training and 20% validation sets. The
training was done with Adam optimizer, an initial learning rate
of 10−3, and a cosine annealing scheduler (10 max iterations,
5 · 10−6 min learning rate). The batch size was set at 8 samples,
and the model was trained with early stopping on the validation
split and p = 0.2 dropout. The output layer of the model used
sigmoid activation and the loss criterion used was Binary Cross
Entropy.
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APPENDIX B
FAILED APPROACHES

We were not able to obtain any improvement using Poisson
masking from [10]. Similar to Poisson masking we tried to utilize
gradient masking reducing the importance of high frequencies,
but the attempts were unsuccessful. We were unable to find an
effective augmentation scheme for the training of the ensemble
of deep neural networks.

We did not seek certification for our application.
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