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RaDICaL: A Synchronized FMCW Radar, Depth,
IMU and RGB Camera Data Dataset With

Low-Level FMCW Radar Signals
Teck-Yian Lim , Spencer A. Markowitz , and Minh N. Do

Abstract—Within the autonomous driving community,
millimeter-wave frequency-modulated continuous-wave (FMCW)
radars are not used to their fullest potential. Classical,
hand-designed target detection algorithms are applied in the
signal processing chain and the rich contextual information
is discarded. This early discarding of information limits what
can be applied in algorithms further downstream. In contrast
with object detection in camera images, radar has thus been
unable to benefit fully from data-driven methods. This work
seeks to bridge this gap by providing the community with a
diverse, minimally processed FMCW radar dataset that is not
only RGB-D (color and depth) aligned but also synchronized with
inertial measurement unit (IMU) measurements in the presence of
ego-motion. Moreover, having time-synchronized measurements
allow for verification, automated or assisted labelling of the radar
data, and opens the door for novel methods of fusing the data from
a variety of sensors. We present a system that could be built with
accessible, off-the-shelf components within a $1000 budget and
an accompanying dataset consisting of diverse scenes spanning
indoor, urban and highway driving. Finally, we demonstrated
the ability to go beyond classical radar object detection with our
dataset with a classification accuracy of 85.1% using the low-level
radar signals captured by our system, supporting our argument
that there is value in retaining the information discarded by
current radar pipelines.

Index Terms—Radar, FMCW, sensor-fusion, autonomous
driving, dataset, RGB-D, object detection, odometry.

I. INTRODUCTION

IN COMPARISON to visible light and the lasers used by
lidar systems, millimeter-wave (mmWave) FMCW radars

use wavelengths that are much larger than fog, dust, and other
particles present in adverse driving conditions that limit visi-
bility. This longer wavelength allows the radar signals to easily
penetrate or diffract around such particles, allowing mmWave
radars to function as a robust, all-weather sensor [1]–[4].

While recent published works in autonomous driving attempt
to incorporate radars, the input from the radar consists only
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of points with velocity, retaining little information from the
raw measurements [5]–[8]. In these sources, we see methods to
increase the number of points such as integrating over time and
using inputs from multiple sensors. In contrast, lidar provides a
much denser point cloud than radars and thus see more use in
sensor fusion works.

The use of radars, however, should not be limited by these
sparse point cloud. The sparse points returned from the commer-
cial radar packages are the results of statistical object detection
algorithms (CFAR) [9], of which the goal is to detect strong
radio reflectors in the scene, with no intention of capturing the
semantic meaning of the objects. As a result, the rich information
of the reflected radar signal is discarded. Therefore, current
published work within the autonomous driving community often
does not exploit the capabilities of radar to its fullest potential. In
our work, we seek to remove this limitation, furthermore, within
a very small budget of $1000.

In particular, our contributions include:
1) Modularized RGB-D-Radar Architecture: We present the

modularized and expandable design of a raw frequency-
modulated continuous wave (FMCW) + RGB-D (color and
depth) system, ready to be integrated into robotics projects. Our
system is built using simple, off-the-shelf components that cost
less than $1000 to assemble. Our system is also designed with
the purpose of functioning as an additional module for existing
autonomous driving data-collection platform that may include
lidars and other sensors.

2) Radar-Camera Alignment Method: We present an ap-
proach to automatically capture and label complex millimeter
wave radar signatures with the help of a calibrated RGB-D
camera.

3) Indoor and Street Scenes Dataset: As part of our work,
we publicly share1 a novel dataset consisting of both indoor
and outdoor scenes. The indoor scenes include a variety of
rooms with different quantities of people and static clutter. The
outdoor scenes contain people walking and running together
with vehicles driving along a suburban street as well as scenes
recorded from a moving vehicle in a myriad of environments.
For the scenes recorded from a moving car, inertial measurement

1All data used in this publication, including preprocessing code and associated
documentation, is available at https://doi.org/10.13012/B2IDB-3289560_V1
Code snippets for using the dataset and code documentation can be found on
the authors’ website.
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Fig. 1. A comparison of commercially available automotive FMCW radar systems with our raw radar dataset. We record the unprocessed ADC readings from
the antennas and differ processing to a later stage. With off-the-shelf components, we can achieve a data rate of up to 325 Mbps for the radar alone. This is in
contrast with the heavily processed and sparse point targets of commercially available radar packages. Furthermore, commercially available radar packages are
often black-boxes that contain non-trivial optimizations to radar waveform and antenna pattern design.

unit (IMU) data is also provided. To the best of our knowledge,
there are no other public datasets that offer raw radar measure-
ments, let alone aligned RGB-D images, IMU measurements,
and projected object labels generated with the help of recent
advances in RGB image object detection.

4) Rich Object Detection With Radar: Finally, we show the
capabilities of our dataset in two applications. One for semantic
object detection, in contrast with classical radar object detec-
tion, and micro-Doppler exploitation assisted by RGB-D pose
estimation.

A. Paper Organization

The rest of our paper is organized as follows, Section II covers
recent works involving FMCW radars and their related use in
autonomous driving. Section III provides a brief overview of
FMCW radar signal processing, its classical signal processing
chain and our proposed changes to it to enable better exploitation
by deep neural nets. Section IV describes our system archi-
tecture, capabilities and limitations. Section V describes the
scenarios and configuration in which we operated our system.
Finally, in Section VI, we demonstrate the capability of our
dataset and system with high resolution velocity estimation and
temporal synchronization task and a small object radar signature
classification task.

II. RELATED WORKS

Autonomous driving application is the impetus behind sensor
fusion research. In a recently published dataset, nuScenes [10],
automotive radar is listed as one of the available sensors. How-
ever, the radar processing pipeline (Fig. 1) discards all of the
semantic information and only provides sparse point clouds.
In PointPillars [11], the authors proposed a method to convert
point clouds into pseudo-images, allowing the use of convolu-
tional neural networks for object detection. However, due to the

sparsity of the points that commercial radar packages return,
with some manufactureres even having an upper limit of 64
points [12], [13], such an approach is unlikely to provide quality
detection results. While there seems to be a significant amount
of research that attempts to utilize radar information, the sparsity
of information available from existing radar setups greatly con-
strains its effectiveness in early stage processing, forcing many
systems to incorporate radar in later stage post-processing.

In two much more recent datasets [14], [15], lower level radar
signals are available. The radar however, differs significantly
from the solid state radars typically found in vehicle systems.
This radar functions similarly to a lidar and is mechanically spun
at 4 Hz and 400 angle bins are sampled per revolution [16]. Only
range-magnitude measurements are available at each azimuth
and the entire field-of-view is not observed simultaneously. A
row in a frame in this dataset is equivalent to 1 transmitter and
1 receiver using a single chirp and after taking the magnitude
of the range FFT in our radar setup (mathematical details are
provided in Sec. III-A).

The closest related work is RF-Pose [17] and FusionNet [18],
where minimally processed radar signals are used to produce
object detections with the help of a deep neural net. Authors
of RF-Pose [17] demonstrated empirically the possibilities of
minimally processed FMCW radars when coupled with today’s
advances in deep learning. Using a 16x16 2D array of antennas,
they demonstrated the capability of predicting a human’s pose
with a customized FMCW radar system configured for short
range detection. The radar used by the authors had a wave-
length of approximately 5 cm, thus falling below the Rayleigh
criterion [19], [20] for humans, causing the reflection to be
highly specular. Whereas in our work and in [18], a wavelength
of approximately 3.8 mm is used. This enables better spatial
resolution and lower specularity at the cost of poorer penetration
through thick building materials. In comparison with Fusion-
Net [18], we include depth information with an RGB-D sensor,
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enabling an accurate projection of the camera image into world
coordinates, rather than relying on a planar road assumption.
Lastly, and most importantly, our system is easily reproducible,
using off-the-shelf components and a widely available commer-
cial radar platform [21], with a total cost below $1000.

III. PRIMER ON FMCW RADAR SIGNAL PROCESSING

There exists extensive literature about radar signal processing
since its invention the 1930 s. We do not intend for this section,
nor is it possible, to be comprehensive, but we hope to cover
the basics in sufficient detail to enable the effective use of our
novel dataset. We limit our discussions mainly to the type and
characteristics of our radar system.

Radars work on a simple idea: send out a radio signal and wait
for an echo. The time it takes for the echo to arrive is directly
proportional to the distance of the reflecting object. A simple
manifestation of this concept is a pulse radar. Transmission
occurs for an instant, followed by a period of waiting for echoes.
Mathematically, the transmitted signal at any instant, t, can be
defined as:

Stx = Atx(t) cos(2πfct+ φ0). (1)

Where Atx is a constant transmit amplitude when the radar
is transmitting and zero otherwise, fc is the transmission fre-
quency, and φ0 is the starting phase. Without loss of generality,
we can assume that the starting phase is 0, and we will drop
the term for clarity of notation, and only reintroduce it when its
value is no longer negligible.

In addition to being able to estimate a target’s range from its
reflection’s time delay, its velocity can be determined from the
frequency shift of its reflection due to a phenomenon known as
the Doppler effect. Because the transmit frequency is constant,
a target with no radial velocity will reflect the signal at the
same frequency that was transmitted, while a moving target
will induce some measurable Doppler shift of that frequency.
Although simple in terms of operating principles, due to the
speed of light, pulse radars are blind at short ranges (below 1 km).
While not an issue for long-range applications (e.g. aircraft,
ships), this makes them of limited use where the range is small.

Consequently, for small working ranges in automotive and
small robot applications, pulse radars cannot be used. For these
applications, Frequency Modulated Continuous Wave (FMCW)
radars are a better fit as they allow for very short working
ranges. Similar to the pulse radar, we receive a time-delayed and
Doppler-shifted version of the transmitted signal. In contrast to
the pulse radar, however, both the transmitter and receiver are
on simultaneously, mitigating the blindness at very short ranges.
Additionally, FMCW radars transmit a signal, often referred to
as a chirp, whose frequency changes with time:

Stx(t) = Atx(t) cos(2π(fc + fτ (t))t). (2)

Where fc is the starting frequency, and fτ (t) is a function
describing how the frequency changes over time. One possible

Fig. 2. For the scenario with one target, the reflected waveform is a time
delayed version of the transmitted signal. With prior knowledge of the slope
B, the time delay τ can be deduced from the frequency of the low-pass-filtered
signal.

waveform for a single chirp is a sawtooth wave (in frequency-
time), with one period as:

Stx(t) = Atx(t) cos

(
2π

(
fct+

B

2
t2
))

, for 0 ≤ t < T

(3)
Where B is the slope of the rate of change in frequency. For

the rest of the discussion, we assume that we are working with
a sawtooth wave.

A. Estimating Range With FMCW Radars

The reflected waveform is a delayed version of the transmitted
wave as shown in Fig. 2(a). Again, by measuring this delay,
denoted τ , we can compute the radial distance of the object
from the radar. At the receiver, a mixer (multiplier) mixes the
reflected signal with the transmitted signal. Next, this signal
passes through a low-pass filter and is sampled by an ADC. At
any instant, we can describe the signal as:

Srx(t) = Arx(t) cos(αt) cos(βt) (4)

Where, Arx is the received amplitude, α is the frequency that
is being transmitted and β is that of the reflected signal. Using
the product to sum identity, we can see that:

Srx(t) =
Arx(t)

2
(cos(α− β)t+ cos(α+ β)t) (5)

In this form, we see that there are two frequency components
in the received signal, one of much lower frequency than the
transmitted waveform and one of very high frequency. After
low-pass filtering, we are left with a low frequency signal which
demands a far lower performance ADC than what the original
GHz-band signal would have required.
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Since the slope is known, we can determine the distance
by leveraging its relationship to the time delay, slope, and
frequency:

τ =
2 d
c0

, f = Bτ (6)

d =
c0 · f
2B

, (7)

where c0 is the speed of light in free space.
Since the mixed signal gives us a frequency difference, all

we have to do is perform an FFT over the entire chirp, and
the (frequency) location of the (amplitude) peak is directly
proportional to the range of the target. In FMCW radar literature,
this is often referred to as the “intermediate frequency,” “beat
frequency” or the IF signal.

B. Estimating Doppler

With a sawtooth wave, there is no way to disentangle fre-
quency shifts that are due to a non-zero relative velocity. It is
treated as measurement noise for low-velocity targets. If this
is not the case, a different waveform might be a more suitable
choice, such as a triangular waveform as in [22].

While we are unable to resolve the velocity of a target from
a single chirp, if we look across multiple chirps as depicted in
2(b), the relative velocity can be recovered. Recall that we are
assuming that the velocity of the target is small, and its range
does not change significantly over several chirps. Numerically
this results in FFTs with peaks at the same frequency bin.
While unable to be resolved as different distances, this small
displacement manifests as a phase shift.

Suppose two chirps are sent Tc seconds (usually in the order
of microseconds) apart. Recall that the IF signal is a sinusoid:

Arx(t) cos(2πft+ φ0). (8)

If the object is stationary, the phase term of the first chirp
will be identical to that of the second chirp. However, if there
is a small, non-zero relative velocity, this slight change in dis-
tance will result in a phase delay between the closely spaced
chirps. Using a typical configuration of f0 = 77 GHz, with a
slope of B = 30 MHz/μs and Tc = 40μs between chirps, a
vehicle traveling at speeds of v = 18m/s (40 mph) will be
displaced by Δd = 0.72 mm. This displacement is smaller than
the wavelength and this will manifest as a phase change of

Δφ =
2π · 2Δd

λ
, (9)

where the factor of 2 in front of Δd accounts for the effective
change in radar wave traveling distance through a round trip.

Rearranging and dividing by the time between chirps, Tc, we
obtain the relationship between the phase difference and the
velocity of the target:

v =
λΔφ

4πTc
(10)

Velocities that result from phase shifts of greater than ±π
will be aliased, or could also result in range bin migration. A
workaround for such situations is discussed in Section III-D.

Fig. 3. Using [26] with two transmitting and four receiving antennas (creating
a total of 8 virtual antennas), we see that the discontinuity in the phase due to
TDM-MIMO can be compensated for.

Numerically, the phase difference can be obtained by per-
forming an FFT across chirps. The number of chirps and the
period between the chirps determines the velocity resolution.

In a practical FMCW radar system, N chirps are sent and
processed as a group in order to determine the velocity of the
target. We call this sequence ofN chirps a frame, also commonly
referred to as the coherent processing interval (CPI), and this is
the basic unit of FMCW radar signal just as an image is the basic
unit of a camera.

C. Estimating Angle of Arrival

Finally, with multiple receiving antennas, we can estimate
angle of arrivals using the same principle as Doppler estimation
as mentioned in the preceding section. However, instead of using
multiple chirps in time, we compute the FFT across multiple
antennas. In practice, especially for a small linear array, using
the FFT directly results in a very low resolution and noisy range-
azimuth heatmap. More sophisticated beamforming algorithms,
e.g. MVDR [23] and MUSIC [24], can instead be applied but
the details are beyond the scope of this discussion.

D. Mimo

Since angular resolution is related to the spatial diversity of
the receiving antenna array, it is advantageous to have as many
receiving antennas as possible. However, space and computation
often constrain the number of receiving antennas too heavily to
achieve fine angular resolution. One solution to this is time divi-
sion multiplexing (TDM) which leverages multiple transmitting
antennas along with a uniform linear array (ULA) of receiving
antennas. By transmitting identical chirps successively from
two adjacent antennas and approximating the transmit times as
the same, it is possible to create instances of virtual antennas
and subsequently increase angular resolution. This method is
thoroughly described in [25].

Making the assumption that successive chirps are transmitted
simultaneously can cause errors in the phase when a detected
object has a nonzero velocity as seen in Fig. 3. This stems from
the motion of the target that occurs between the two transmission
times which can cause a discontinuity in the phase. One easy way
to correct for this is described in [26] and suggests that before
taking the FFT along the Doppler axis, one should upsample
the radar frame along that axis such that the two different
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transmitters alternate. For example, for two transmit antennas
Tx0:1 and four receiving antennas Rx0:3, one can upsample as
follows: ⎡

⎢⎢⎢⎢⎢⎢⎣

Tx0Rx0:3 0

0 Tx1Rx0:3

Tx0Rx0:3 0

0 Tx1Rx0:3

...
...

⎤
⎥⎥⎥⎥⎥⎥⎦

(11)

where TxnRx0:3 is the data from all four antennas associated
with the nth transmitter.

Another undesirable result of TDM-MIMO is that if each
frame is constrained to N chirps, increasing the number of
transmitting antennas reduces the number of chirps per transmit-
ting antennas which in turn reduces the maximum unambiguous
velocity. One can overcome this reduction by observing if there
is a still a discontinuity in the phase due to TDM-MIMO even
after the phase correction described above. As outlined in [27],
for a system with two transmitting antennas, there is a residual
phase jump of ±π if the detected velocity is actually within
[−2fD,Max,−fD,Max] or [fD,Max, 2fD,Max], respectively, where
fD,Max is the maximum unambiguous velocity.

E. Suggested Further Reading

Many aspects of FMCW radar signal processing are beyond
the scope of this paper. The topics covered in this section pertain
to our radar antenna configuration, MIMO mode, and waveform
selection. We encourage readers to refer to other literature such
as [28] in order to gain a deeper understanding of FMCW radars
or radars in general.

Open implementations of the methods discussed in this sec-
tion are available in OpenRadar [29], a library that we used
heavily in our work.

IV. MODULARIZED HARDWARE AND SOFTWARE

A. Sensors Overview

Our setup consists of an RGB-D camera and a 4-Rx 3-Tx
77 GHz mmWave radar as photographed in Fig. 4. While the
radar in our setup has 3 transmitters, with one suitable for
elevation estimation, we did not enable the elevation transmitter
in this dataset so as to improve our maximum unambiguous
velocity estimation and velocity resolution. The RGB-D sensor
module is an Intel RealSense D435i that includes an IMU.

B. System Architecture

Our data collection system is implemented on top of the Robot
Operating System (ROS) [30], so as to allow for integration into
ROS based autonomous driving systems.

Our radar consists of 2 hardware components, the radar
front-end with a Texas Instruments single chip radar and the
data acquisition card that streams the radar measurements to
a computer over Ethernet. In a typical setup, the single chip
radar acquires the raw radar signals and processes it with the
traditional FMCW radar pipeline as described in the previous

Fig. 4. Our FMCW radar with a RealSense D435 RGB-D camera mounted
above it. The RealSense camera provides 1280 × 720 RGB images at 30 fps,
an aligned depth map at the same resolution. Optionally, we can also record
stereo near-infrared images at 640 × 480, however this is not included in our
published dataset. The FMCW radar consists of 3 transmitting antennas and 4
receiving antennas. The receiving antennas are spaced λ/2 wavelength apart
and the transmitters are spaced 2λ apart. This provides us with a virtual array of
8 antennas.

section, which results in sparse points for objects with statisti-
cally significant returns. To retain the raw signals, we run a bare
minimum real-time firmware on the radar chip that does not
perform any signal processing. This results in a far higher data
rate than a typical setup and requires us to transfer the data over
a high-bandwidth Ethernet connection which is provided by the
data acquisition board. Different physical requirements (i.e. max
range, range resolution, max Doppler, Doppler resolution, frame
rate, etc.) can result in different data rates. While our selection
of hardware components allow a maximum of 600 Mbps, we
found that 375 Mbps is a more manageable rate. Our datasets
work within these limits to ensure minimal packets are lost by
the data recording host. The RGB-D camera is controlled by the
Realsense SDK. We use it as is.

C. Temporal Alignment Between the Radar and
RGB-D Camera

Depending on the radar configuration, the radar and the cam-
era may run at a different frame rate. Instead of an external
clock trigger, we allow the sensors to be triggered indepen-
dently by their own internal clocks. We maintain high resolution
time-stamps of each data unit received from the individual
sensors on the recording system. To this end, we implemented
a custom firmware on the radar that does not perform any radar
signal processing, but send out the raw signals immediately after
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Fig. 5. Coordinate frames of radar and camera. For spatial calibration of the
sensors, we seek to estimate the rotation and translation, T , between the camera
frame and the radar frame.

sampling. As for the RealSense camera, high resolution times-
tamps were readily available in the library provided.

D. Sensor Spatial Calibration

Calibration, the spatial transformation between the camera
image and the radar observation, is largely similar to that of
calibrating the transforms between multiple camera views, with
some modifications, as the radar is a ‘camera’ with peculiar
imaging properties.

Firstly, the appearance of objects in camera and in radar is
significantly different. Thus, the typical approach of performing
feature detection and key-point matching will fail. In order to
tackle this problem, we collected calibration sequences consist-
ing of objects that are easily identifiable both in radar and in
camera. Our chosen object is a radar corner reflector, the radar
equivalent of a retro-reflecting mirror in the visible spectrum.
This object will produce a strong and well localized return in
the radar’s measurement, thus easily interpretable in the radar
heat-map. Visually, this is a large, silver octahedron, and we
use the midpoint of this object when computing correspondence
with radar observations. We use only one reflector in each frame
so that we do not have to disambiguate the source of the returns.
Furthermore, we collected the calibration sequence outdoors in
an open space to avoid potential problems due to multi-path
effects. We opted for outdoor data collection as opposed to using
an RF anechoic chamber which might be prohibitively expensive
for groups that do not have easy access to such facilities. Next,
we set the reflector on the ground for a short period of time so
as to remove the need of precise temporal calibration for spatial
calibration. Finally, we assigned point correspondence manually
from the camera image to the point with the strongest return in
the radar image over multiple frames.

Secondly, the radar ‘image’ after beamforming is not a typical
camera image, but an image in polar coordinates (Fig. 6). As
we are observing objects on the ground and the height of our
radar is relatively fixed, we do not expect variations in height to
result in significant changes to radial range. Thus we model the
cartesian projected radar ‘image’ as an orthographic projection
onto the horizontal plane (xz-plane, Fig. 5). Thus we will require
some modification to the typical approach used in multiple-view
geometry.

In our calibration, we picked the camera frame, denoted xc =
[x y 1]T , as the reference frame i.e.:

λcxc = Λc[I|0]W, (12)

Fig. 6. Polar radar ‘image’ to Cartesian transform. After range processing
and beamforming, we obtain a polar image(right). In the calibration process,
we transform this polar image into Cartesian coordinates. This image is the
bird’s-eye view of the scene in front of the radar and pixel coordinates is directly
proportional to the physical distances of reflectors in the scene.

where λc is a normalizer, Λc is the camera’s intrinsic matrix, W
the homogenous world coordinates, and [I|0] is the camera’s
extrinsic matrix with the identity matrix and the zero vector
as its rotation and translation respectively. On the contrary, we
model the radar as having a rotation Ω and translation T as in:

xr = Λr[Ω|T]W, (13)

wherexr is the pixel coordinates in the Cartesian radar heat-map,
andΛr is the intrinsic matrix of the radar which can be expressed
as:

Λr = r

⎡
⎢⎣1 0 0 −1

0 0 1 0

0 −1 0 1

⎤
⎥⎦ (14)

Here, r = rmax/rres is a scale factor capturing the max range,
rmax, and range resolution, rres, of the radar configuration in use.
With this projection, we lose the y dimension of the world coor-
dinates and x and z are scaled according to the range of the radar.
Note that in contrast with perspective projection, we simply drop
the 3 rd coordinate for orthographic projection. Furthermore, by
setting both xc and xr as functions of W, we are able to work
directly with the projection of world coordinates into the radar
frame simplifying the task of finding point correspondences.

Because the radar is unable to detect the elevation of a given
target, we project the world coordinates determined from (12)
onto a plane by setting the vertical component to a constant value
for all W in (13).

With point correspondence and projection taken care of, we
can proceed with the multiple-view estimation of the fundamen-
tal matrix, F = Λr[Ω|T] by solving:

xr = FW

⇐⇒ xr × FW = 0

⇐⇒
⎡
⎣ 0 −WT zWT

WT 0 −xWT

−zWT xWT 0

⎤
⎦
⎛
⎝F1

F2

F3

⎞
⎠ = 0 (15)

Since a single 2D/3D correspondence described in (15) only
has two linearly independent equations, at least 6 correspon-
dences are needed for a minimal solution. To determine such
a solution, one can solve the following equation using least
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squares:⎡
⎢⎢⎢⎢⎣

0T WT
1 −y1W

T
1

WT
1 0T −x1W

T
1

· · · · · · · · ·
0T WT

n −ynW
T
n

WT
n 0T −xnW

T
n

⎤
⎥⎥⎥⎥⎦
⎛
⎝F1

F2

F3

⎞
⎠ = 0, for n ≥ 6 (16)

For the purpose of our dataset, obtaining the least squares
estimate of the fundamental matrix is sufficient. We can now
project objects and points observed in the camera image to the
radar image with

xr = FΛ−1
c λcxc (17)

While the fundamental matrix, F, can be decomposed into its
rotation and translation components [31], [32], it is beyond
the scope of our work. As the radar image is an orthographic
projection, the solution to this system will be ambiguous for
translations in the vertical(y) direction.

Calibration for different radar configurations: Our chosen
depth camera has a maximum depth of approximately 10 m.
Therefore, we perform our parameter estimation with the radar
configured to match this range. The results from our estimation
can be seen in Fig. 7. Here, the bounding boxes in the range-
azimuth frame are positioned by first determining the location
of the humans in the RGB frame using an off-the-shelf neural
network. From there, we set xc in (17) to points on the perimeter
of those RGB bounding boxes and compute the locations of the
projected bounding boxes in the radar frame.

Depending on the radar configuration parameters, the maxi-
mum range, range resolution, and azimuth resolution can change
significantly. These changes can be computed from the radar
profile and should be incorporated into the radar intrinsic matrix
according to (14) when projecting points from the camera frame.
Since the relative position of the camera and the radar are fixed
(excluding unavoidable mechanical vibrations when moving the
data collection setup) we only need to perform the calibration
once for different radar configurations. Concretely, this is a scale
operation on the projected points xr, with scale factor

λr1,r2 = r2,max/r1,max, (18)

where r·,max is the maximum range of radar configura-
tion 1 or 2, with radar configuration 1 being the calibrated
configuration.

For depth beyond reliable range of the RGB-D camera:
While scaling various elements in the radar’s intrinsic matrix will
suffice for targets within the 10 m range of the depth camera,
to fully take advantage of the radar’s range and the camera’s
high resolution, one must compute the location of the bounding
boxes in the radar frame without the use of the depth camera. One
such method is to first perform some object detection algorithm
in the range-azimuth frame using an algorithm like CFAR. Then,
compute the azimuthal angle of the targets in the RGB frame.
This is done by first finding the difference in the horizontal
coordinates of the targets,xtarget

c from the horizontal component
of the camera center, xcenter

c . Then, using the pinhole camera
model with a focal length fx, the projected angle in the radar

Fig. 7. In Fig. (a), we see the results of feeding an RGB image into an
off-the-shelf deep neural network that detects humans. Using the calibration
methodology discussed in Section IV-D and the depth measured at the center of
the RGB bounding box, we are able to predict the location of those same targets
within the associated range-azimuth plot in Fig. (b).

frame is just

θx = tan−1

(
xtarget
c − xcenter

c

fx

)
(19)

To simplify the procedure, here it is appropriate to assume
the translation and rotation between the radar and camera are
negligible. Subsequently, one can determine which objects de-
tected in the range-azimuth frame correspond to which targets
in the RGB frame by measuring the distance or overlap be-
tween the projected angle and the detected object in the radar.
Similar to the scenario in which the depth camera could be
used, we demonstrate the efficacy in Fig. 8 by first using a
neural network to compute bounding boxes in the RGB frame.
Using (19), we create bounds in the horizontal axis by project-
ing points on the box’s perimeter. From there, we match the
detections.

For the purpose of sanity checks, we’ve also provided simple
scenes consisting of one to a few targets. Furthermore, we’ve
also provided simple scenes containing a radar reflector.
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Fig. 8. In Fig. (a), we see the results of feeding an RGB image into an off-the-
shelf deep neural network that detects cars. Using (19), we are able to project
those bounding boxes into azimuthal bounds in the range-azimuth plot in Fig.
(b). The two detected objects farthest to the right exhibit convincing overlap
with those bounds. The distant car in the left lane is detected in the RGB image
but is out of the detectable range of the radar configuration. The detected objects
on the left of the radar frame are caused by static clutter.

E. System Constraints, Scaling Out and Real-Time
Considerations

Our choice of radar hardware has the maximum capacity
of streaming 600 Mbps of raw sensor data. In practice, we
recommend working with lower rates (below 325 Mbps) to
ensure that recording software can keep up with the amount
of generated data. Together with the RGB-D images and IMU
data, we generate about 12 GB of data per minute.

V. DATASET DESCRIPTION

Because radar heatmaps are very different from what humans
see, it is very difficult for humans to generate ground truth labels
without special training and only given a radar heatmap. Our
dataset provides means of assisted labelling with well synchro-
nized RGB frames. The dataset consists of a number of different
radar chirp configurations that are described in Table I as well
as multiple types of scenes as described in Table II.

A. Calibration Dataset

The calibration dataset contains scenes with few targets and
minimal static clutter to cut down on multi-path. For the indoor
radar chirp configuration, the scenes consist of a the radar
mounted to the ground with a radar-reflector placed at many

TABLE I
DATA SUBSETS AND THE PHYSICAL PROPERTIES OF THE ASSOCIATED RADAR

CONFIGURATION. *THE MAXIMUM VELOCITY CAN BE EXTENDED TWOFOLD

USING [26] AND [27].

locations on the ground within the field of view in order to
test a variety of angles and radial distances from the camera
and radar. Calibration of the relative transforms between the
camera view and radar observations was performed using this
dataset. It should be noted that the maximum detectable range for
the indoor radar configuration is only slightly greater than that
of the depth camera. This allowed us to incorporate the depth
camera in our calibration. In our own calibration experiments
using hand labeled camera and radar data and (16), we were
able to achieve an MSE of .054 m2 for targets within 8 m. While
we do provide our own calibration parameters, we share this
sequence for others to reproduce our calibration or to design
novel calibration methods.

For the outdoor radar configuration that can detect targets at
ranges greater than 30 meters, we provide multiple scenes with
human and automotive targets in environments with minimal
static clutter. Although the depth camera is not able to accurately
see much more than 10 meters, it can still prove useful when
the targets are at closer ranges. Additionally, because the envi-
ronment is largely empty, it will be relatively easy to associate
targets between the camera images and the range-azimuth plots
at longer ranges.

B. Indoor Scenes

For the indoor scenes, we configured the radar to work at a
comparable range to our depth camera. The indoor scenes consist
of lobbies of campus buildings as well as a small eating area.
These scenes also include a variety of levels of human activity.
An example of a crowded scene is shown in Fig. 9(a).

Indoor scenes present many unique challenges to processing
the data. First, due to the geometry and material makeup of
the enclosure, there will be observable multi-path. Moreover, in
many indoor settings, there is a high presence of static clutter
including, but not limited to, furniture and decorations. Lastly, in
indoor settings, human targets often interact in close proximity to
each other, a problem that is not as prominent in outdoor driving
settings. These characteristics of indoor scenes demand further
algorithm development in the areas of detection, segmentation,
and other related fields of deep learning. The provided dataset
offers an opportunity to engineers to further develop algorithms
and deep learning architectures that can improve detection and
segmentation with radar data in these challenging environments.
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TABLE II
NUMBER OF FRAMES IN EACH RADAR CONFIGURATION AND SCENE SUBTYPES. DEPTH MEASUREMENTS FROM OUR DEPTH CAMERA IS ONLY RELIABLE UP TO

10 m, THUS SOME ARE EXCLUDED FROM THE ALIGNED FRAMES IN THE OUTDOOR SCENES IN THE LONG RANGE CONFIGURATION. THE IMU MEASUREMENTS

WERE TAKEN AT A MUCH HIGHER RATE THAN THE RGB AND RADAR SENSORS AND HAVE THEIR OWN TIME STAMPS AVAILABLE FOR

DEAD-RECKONING PURPOSES

Fig. 9. Sampling of RGB frames and their associated range-azimuth and range-Doppler plots.

C. Outdoor Scenes

We provide two subsets of outdoor scenes with different radar
configurations. One with shorter range, but better resolutions
(in both range and Doppler), and another with longer range and
large maximum velocity, but with poorer resolution. We envision
the radar on a vehicle to be able to change its configuration
adaptively depending on the scene it’s in.

The outdoor scenes consist largely of data collected from
inside a car that was driving on a road. The roads driven are
a myriad of neighborhood, suburban, highways and city roads.
The radar/camera setup was placed in two different positions
inside the car as seen in Fig. 10:
� On top of the front dashboard on the passenger side looking

in front of the car.
� In the second row of seats looking out the passenger side

window.

Fig. 10. The two ways in which the radar system was mounted in the moving
vehicle for the scenes on the road. In both cases, there was a window in front of
the system. For the data from the front facing radar, there are reflections caused
by the front of the car, namely the hood and engine.

Both views offer unique perspectives of the road. The front
view, as shown in Fig. 9(b), can see oncoming traffic, incoming
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obstacles, street signs, guardrails when present, as well as the
reflections from the engine and hood of the car. The side view
offers views of traffic in adjacent lanes, off-road targets such as
humans and infrastructure, as well as guardrails when present.
While vision/radar sensors are often often seen mounted on a
car’s roof or exterior, it is also not uncommon to have those
sensors mounted inside the cockpit of the car. Furthermore,
such a mounting enables the retrofitting of older cars with smart
sensors for collision avoidance [33].

Additionally, there are scenes that were taken from a moving
wheelbarrow on the road. This unique part of the dataset offers
closer and longer views of both cars and humans.

D. High Doppler Resolution

Lastly, our dataset provides synchronized RGB-D and radar
data that aims to capture the finer micro-Doppler features of hu-
man motion. To accomplish this and stay within the constraints
of our hardware and ROS setup, the configuration increases the
Doppler resolution of the indoor configuration while lowering
the frame rate slightly. Using this configuration with walking
humans reveals the cyclic nature of human motion including
one’s arms, legs, and even torso.

VI. RICH RADAR OBJECT DETECTION AND

RGB-D EARLY FUSION

With raw ADC measurements and good synchronization with
an RGB-D camera that’s easy for humans to interpret and label,
we present several opportunities to take radar object detection
to the next level.

A. Human Tracking With Radar and Depth

In order to highlight the utility of synchronized radar and
RGB-D measurements, we implemented a simple human tracker
in radar and compared the results we obtained from the depth
camera. In order to make the best use of the depth measurements,
and not to amplify small errors through computation, the human
walked directly in front of the radar system so that the measured
depth roughly corresponded to the range. To detect the location
of the human target, we first computed the range-Doppler spec-
trum and then subsequently used CFAR to find the cluster that
corresponded to the human. Within the target’s cluster, we took
a few of the points with the highest complex magnitudes and
averaged their range and Doppler-velocity values for each radar
frame.

To determine the depth using the RGB-D camera, applied
OpenPose [34] on the RGB frames to find the locations of each
of the prominent body-parts. From there, we took the location
of the torso and found its depth using the corresponding depth
image. As seen in Fig. 11, the data from the two sensors are
aligned very well. Furthermore, the velocity results highlight
one of the advantages of using radar over traditional RGB-D
sensors. Not only does the radar exhibit far less noise than the
depth camera, but it also shows the slight variations in the torso’s
velocity due to each step.

B. CFAR+: Beyond CFAR Object Detection

While CFAR, as employed by commercially available radar
pipelines, can provide a list of statistically significant radar
reflectors as objects, it is unable to differentiate between object
classes. With a temporally and spatially aligned RGB-D camera,
we can overcome the barriers of labeling otherwise uninter-
pretable radar signatures either by employing human labelers
to label objects in RGB or by automatically applying RGB
object detectors on the RGB image, and projecting these labels
onto the radar frame, thereby allowing us to inspect the radar
signatures of objects in their environment. With such labels, we
can go beyond CFAR object detection in radars and create object
detectors by applying data-driven object detection methods that
were successfully applied to RGB images in a similar method
as proposed in [18].

However, object detection networks are known to have dif-
ficulty in detecting small objects [35]. Several recent works
specifically seek to address this problem. With our indoor radar
configuration, assuming that a human occupies the space of a
70 cm square, we should see a radar signature of approximately
12 pixels in the range dimension. While RGB image object
detector methods might prove useful for larger objects like cars
as in [18], similar performance might be impossible for smaller
objects such as humans or bicycles.

In contrast to RGB images, the radar domain has two advan-
tages. First, physical object sizes correspond directly to sizes
in the Cartesian projected image. Therefore, we do not need
to handle multiple object sizes for the same object class in the
same radar configuration. Next, we can assume that our objects
of interest will show up as CFAR targets if they reflect the
wavelength in use. This allows us to use CFAR detections as
object proposals, followed by a classifier on the patch surround-
ing the CFAR target, assuming that humans have a different
radar signature than other statistically significant radar reflectors
present in the environment.

To investigate this, we performed our experiments on the
indoor dataset, where there are much more radar reflectors com-
pared to an open, outdoor environment. For each RGB image,
depth, and radar tuple, we ran a recent state of the art object
detector, EfficientDet D6 [36], to obtain a list of bounding-boxes
in the camera frame of objects detected as ‘person’. These boxes
are projected to the radar frame using the calibration parameters
described in Sec. IV-D. Next, we applied cell-averaging CFAR
on the range-azimuth radar heatmap to obtain a list of point
targets. For each point target, we checked if it was enclosed by
a projected bounding box. If it was, we extracted a small patch,
32× 32 (1.5 m × 1.5 m), from the cartesian projected heat-map
around the point target as a class positive training. Points that
were not within a bounding box were labeled as environmental
reflectors. A sampling of such patches can be seen in Fig. 12.
We observed that the neighborhood around CFAR detections
corresponding to the ‘person’ object is qualitatively different
from environmental reflectors, thus it is reasonable to assume
that we can create an object classifier for such patches.

1) Preparing the Classifier Dataset: We generated our train-
ing dataset automatically using projected bounding boxes
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Fig. 11. Plots that show the range/depth and velocity of the torso of a human target. The depth measurements were smoothed using a linear Kalman filter. Despite
the smoothing, the depth camera still exhibits a high presence of noise which is conveyed in the velocity plots. On the contrary, in the bottom right plot, the radar’s
velocity measurements are precise enough to detect the small fluctuations due to the stepping motion of the human.

Fig. 12. Randomly selected samples of 32× 32 patches surrounding CFAR
detections points in the indoor dataset. The top row shows detections that were
not enclosed by projected bounding boxes and the second row shows patches
where detections were enclosed by a projected ‘person’ bounding box. We
observe that the radar signatures are qualitatively different from strong reflectors
present in the environment.

predicted by the EfficientDet-D6 RGB object detector. As there
are much more environmental reflectors than there are people
in our dataset, we balance the classes in the training dataset
by randomly dropping the environment clutter patches so that
we end up with a class balanced dataset. Finally, as our dataset
consists of video frames, to ensure that our validation dataset
is not too similar to the training set, we selected distinct video
sequences instead of random frames from the entire collection.

Our resultant training dataset consists of 143617 person exam-
ples and clutter examples of each, whereas our validation dataset
consists of 16108 examples of each.

2) Radar Classification Network: We implemented a small
network of three 7× 7 separable convolutional layers with ELU
activations [40], followed by 2 dense layers with 256 hidden
units and ELU activations as our classifier network. We also
compared our results with several well-known image classifier
architectures, [37]–[39] on the generated classifier dataset. For
all networks, we used the Adam optimizer [41], with learning
rate 1× 10−3,β1 = 0.9 andβ2 = 0.999 and trained with a batch
size of 128. Finally we applied random left/right flipping as
data augmentation and used early stopping as regularization. We
did not use other methods for data augmentation use in image
classification as they do not have physical meaning in the radar
heatmap domain. Finally, for ResNet50 and VGG16, we applied
l2 weight decay of 1× 10−5 [38] and 5× 10−4 [39] respectively,
as described in the original papers. No weight decay was applied
for MobileNet as recommended in the original paper [37]. We
trained each network for 200 epochs and evaluate every epoch,
retaining the best performing model on the validation set. All
networks were trained from scratch with Glorot uniform ini-
tilization [42] as implemented in TensorFlow. The performance
of each network network on our dataset is shown in Table III.
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TABLE III
PERFORMANCE OF OUR RADAR SIGNATURE CLASSIFICATION NETWORK IN

COMPARISON WITH SEVERAL MODERN RGB CLASSIFICATION

NETWORK ARCHITECTURES

3) Discussion of Classifier Performance: We found that
good performance on natural images does not translate to good
performance on the Cartesian-projected radar heatmap patches.
In contrast to architectures with good performance on natural
images, we found that shallower networks with larger filter
sizes can give performance comparable to very deep networks.
Moreover, using only 3× 3 filters, and relying on pooling and
depth to increase the receptive field sizes resulted in networks
that failed to converge. We also found that while applying a
logarithmic scale to the heatmaps resulted in better images for
human interpretation, it did not help in deep network perfor-
mance. The relative small size of the dataset might result in
networks with large number of parameters, like ResNet50 and
VGG16, to overfit, thus resulting in poor performance. In the
case of overfitting, we would expect very high training accuracy
but poor validation accuracy. This, however, is not observed in
our experiments, and we speculate that intuition and priors [43]
that arise due to the network achitectures for natural image
classifiers might not apply for our data.

VII. CONCLUSION

We demonstrated baseline results and presented scenarios
where modern advances in deep learning could help in getting
richer object detection from automotive FMCW radars. We
encourage fellow researchers to beat us on our baseline, improve
on early stage preprocessing, and design novel network archi-
tectures suited for object detection and fusion using previously
unavailable low-level radar signals.

On top of providing our dataset, we’ve also included our
hardware BOM and design files which can be 3D printed. We
also encourage groups with sufficient resources to build their
own system and collect additional data.

Lastly, we also demonstrated the flexibility of a software con-
figurable FMCW radar with our dataset. No hardware changes
were required to allow usage where signal requirements were
significantly different. A next step in development would be
to allow object detection algorithms to actively reconfigure the
radar for better performance.

A. Future Work

While we demonstrated a successful use of deep neural net-
works much earlier in the radar signal processing chain, the
work done is not exhaustive. We strongly believe that much
better results can be achieved with a more in-depth exploration,
for example, transfer learning from pretrained networks, more

object classes, and alternative network architectures. Improve-
ments to our simplistic RGB to radar matching methodology
could also be explored. Next, while available in the dataset, we
did not make use of IMU data, which could be useful in situations
where single frame depth measurements are not reliable. Finally,
our placement of the radar is within the vehicle cockpit, which
may not be ideal for all situations. Other mounting locations of
our sensor system could also be explored.
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