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Abstract—Exploiting spatial redundancy in images is respon-
sible for a large gain in the performance of image and video
compression. The main tool to achieve this is called intra-frame
prediction. In most state-of-the-art video coders, intra prediction
is applied in a block-wise fashion. Up to now angular prediction
was dominant, providing a low-complexity method covering a large
variety of content. With deep learning, however, it is possible
to create prediction methods covering a wider range of content,
being able to predict structures which traditional modes can not
predict accurately. Using the conditional autoencoder structure,
we are able to train a single artificial neural network which is
able to perform multi-mode prediction. In this paper, we derive
the approach from the general formulation of the intra-prediction
problem and introduce two extensions for spatial mode prediction
and for chroma prediction support. Moreover, we propose a novel
latent-space-based cross component prediction. We show the power
of our prediction scheme with visual examples and report average
gains of 1.13% in Bjøntegaard delta rate in the luma component
and 1.21% in the chroma component compared to VTM using only
traditional modes.

Index Terms—Video coder, intra prediction, conditional
autoencoder, deep learning.

I. INTRODUCTION

NATURAL images contain a large amount of spatial redun-
dancy. To compress an image to a small size, the encoder

typically exploits the spatial correlation of neighboring pixels
and reduce this redundancy. This is very often done with a
suitable prediction scheme. Since most current codecs, like High
Efficiency Video Coding (HEVC) [1] or Versatile Video Coding
(VVC) [2], [3], are block-based, the task at hand is to predict the
content of one block from a causal neighborhood. The causal
neighborhood usually consists of pixels above and to the left of
the current block. Currently, angular intra prediction is dominant
in HEVC and VVC. Angular prediction is particularly useful
to predict blocks which mainly consist of one sharp edge. In
such prediction schemes, the content from the neighborhood is
extended in a certain angle into the block. The angle is subject to
rate-distortion-optimization (RDO) at the encoder and has to be
transmitted to the decoder. It is common that intra prediction uses

Manuscript received June 18, 2020; revised September 28, 2020; accepted
October 15, 2020. Date of publication October 29, 2020; date of current version
February 22, 2021. The guest editor coordinating the review of this manuscript
and approving it for publication was Dr. Michele Covell. (Corresponding author:
Fabian Brand.)

The authors are with the Multimedia Communications and Signal Pro-
cessing Friedrich-Alexander-Universit at Erlangen-Nurnberg, BY 91058
Erlangen, Germany (e-mail: fabian.brand@fau.de; juergen.seiler@fau.de;
hongbojiang2004@gmail.com).

Digital Object Identifier 10.1109/JSTSP.2020.3034768

additionally signaled side-information. Additionally to angular
prediction modes, HEVC and VVC define a DC and a planar
mode which are used for blocks that do not consist of a single
edge. A novel feature in VVC is Matrix Intra Prediction (MIP)
[4], [5] which is the first learning-based intra prediction to
be incorporated in a standard. MIP interprets the support area
as vector and performs a matrix multiplication to obtain the
prediction signal. The matrix is picked out of several options
which were learned in advance using a large training set and are
explicitly saved in the software.

Another improvement in intra prediction, specifically ad-
dressing chroma coding, is the Cross-Component Linear Model
(CCLM) [6]. With CCLM, the chroma component can be pre-
dicted from the luma component using a simple linear model.
The parameters of this model can be estimated from the support
area of the chroma and luma components and therefore do not
have to be transmitted. Furthermore, VTM allows using different
reference lines for intra prediction with a distance of up to four
pixels from the block to be predicted.

Apart from novel methods for intra prediction, the perfor-
mance of VVC is due to a number of other new features. A
large gain was achieved by using a new tree partitioning by
extending the Quadtree which was used in HEVC with a nested
Multi Type Tree (MTT), thus allowing for rectangular blocks
also in intra prediction. In coding the chroma component, a
so called Chroma Separate Tree (CST) is used, which creates
two separate trees for luma and chroma content. Both methods
increase the performance significantly at the cost of complexity.
Furthermore, there were improvements in in-loop-filtering by
introducing the Adaptive Loop Filter (ALF) [7], which trains
several filters during the encoding process which are explicitly
signaled. Beside the mentioned tools, there are several others
which individually sometimes only have a small improvement,
but altogether give a gain of 24.2% rate savings over HEVC in
all intra configuration for version 6 [8].

The remainder of the paper is organized as follows: Sec-
tion 2 will give an overview of state-of-the-art methods for
learning-based coding tools as well as relevant machine learning
techniques. In Section 3, we will first introduce the concept of
the conditional autoencoder for intra prediction with a spatially
correlated latent space. Afterwards, as a new contribution, we
will introduce several methods how the components which have
been introduced for the luma component can be applied for
predicting the chroma component. In Section 4, we will evaluate
all methods. At first, we will give visual examples demonstrating
the flexibility of the proposed prediction method compared
to state-of-the-art methods. Afterwards, we will evaluate the
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rate-distortion behavior of the methods, showing that both the
prediction in the luma component as well as in the chroma
component result in gains compared to state-of-the-art methods.

The main contributions of this paper are three-fold: First we
propose an extension to the CAE model enforcing a spatially
correlated latent space. This extension allows us to develop a
spatial mode prediction scheme. Afterwards, we propose sev-
eral chroma-prediction methods that extend our previous work.
Finally, using the newly proposed models, we demonstrate that
we are able to build a fully functional intra coding system giving
gains over the state-of-the-art prediction methods in all three
components.

II. RELATED WORK

With the recent developments in the area of artificial neural
networks and larger computational capabilities both for training
and on end-user-devices for inference, there is a focus on using
neural networks for image and video coding. Multiple methods
have been proposed to use neural networks as coding tools in
classical hybrid video coding.

First to mention is Matrix Intra Prediction (MIP), which is
a complexity-reduced version of a neural-network-based intra
prediction method [9]. Pfaff et al. train several neural networks
to serve as prediction modes for intra prediction. Furthermore,
the authors propose a second network to predict the mode itself,
which can be used to generate a Most Probable Mode (MPM)
list as used in HEVC and VVC. This model was improved and
simplified in [5] and finally was integrated in the VVC standard
[4].

There are several other approaches to intra prediction using
neural networks. In [10], [11], the authors use neural networks
to train one or two additional modes to the classical prediction.
For training, they split the training set in blocks which would be
predicted with angular prediction and those which would be pre-
dicted with DC or planar mode. That way, the authors were able
to train two networks covering different signal characteristics.

In [12], Schiopu et al. propose several CNN-based modes
specifically trained for lossless coding with HEVC. Different to
other approaches, they use a large surrounding area as input
instead of just one or a few lines. This enables the use of
convolutional neural networks, while most other approaches use
fully connected layers. The authors propose to use only their
modes, dismissing the traditional modes. In a similar approach
in [13], Meyer et al. use convolutional neural networks with fully
connected layers at the end to propose new intra modes for both
luma and chroma prediction, also including cross-component
prediction

All of the above methods train multiple networks for multiple
modes. Since the modes have to cover different signal character-
istics, special attention has to be paid to the training procedure.
On the one hand each network has to be specific enough to
perform accurate prediction for the specific content. On the other
hand, all networks together have to be broad enough to cover
a large variety of content. Possible solutions for this problem
are splitting the training set according to some criterion as in
[11], or innovative training methods as in [5], training multiple

networks jointly. In [14], we have proposed the conditional
autoencoder for intra prediction, a novel method to generate
an arbitrary number of modes using just one network. With this
approach, instead of a prediction mode, we transmit a latent
space representation which, in a very abstract way, contains
instructions how to predict the block from its neighborhood.
The network follows principles of an autoencoder [15], extended
by additional side-information. Similar networks, using autoen-
coders with additional information added in various stages [16]
were used in different research areas such as segmentation [17]
or hand writing recognition [18].

Besides intra prediction, other coding tools can be improved
by neural networks as well. In [19], Ding et al. proposed to use
a convolutional neural network (CNN) for in loop filtering. The
network structure the authors used is built upon the very deep
super resolution (VDSR) network [20]. The trained network
is applied on the decoded image in the loop filter stage. The
authors report gains for a low bitrate scenario, in which the
coding artifacts are particularly strong and can be removed by
the trained filters.

In another instance [21], Laude et al. proposed to generate
artificial reference pictures generated by neural networks for
inter prediction. The artificial image replaces one reference
frame for inter prediction.

Aside from improving coding tools within existing codecs,
much research goes into end-to-end image compression. This
was achieved by Ballé et al. in [22]. Here, the whole image was
transformed into a latent space using a compressive autoencoder.
An autoencoder is a two stage network consisting of an encoder
and decoder network which are concatenated. Essentially, the
network is trained to approximate the identity function, i.e.,
the output should be equal to the input. However, the network
contains a so-called bottleneck, which is the layer between
encoder and decoder network that has a lower dimensionality
than the input and output. This layer therefore contains a dimen-
sionality reduced representation of the input, called the latent
space representation. With additional constraints to the latent
space, compressibility of the latent space can be enforced and
then be transmitted over the channel. In a subsequent publication
[23], the authors have proposed a second stage to the autoencoder
which allows them to compress and transmit priors for the latent
space representation which are used in the arithmetic coding to
further enhance the coding performance.

III. CONDITIONAL AUTOENCODER FOR INTRA PREDICTION

A. General Concept

In intra prediction, the goal is to generate a good prediction
signal ŷ for the content y of a block from the reference area x,
which is a causal spatial neighborhood of y. Fig. 1 shows
an example for a four pixel wide causal reference area. This
problem has similarities to image inpainting, however with two
major differences. First, the problem is harder since there is
only data from one side available for inpainting. However, since
the encoder knows the true content, the second difference is
that we can use side-information to compensate the previous
disadvantage by multi-mode prediction. Multi-mode prediction
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Fig. 1. Schematic showing a four pixel wide reference area x of the block y.

allows us to use M different prediction functions fm(·), where
m ∈ {1, 2, . . . ,M} denotes the index of the prediction mode.
The coder tests different functions as predictor and signals the
best to the decoder. Let us now assume, the modem∗ was picked
as optimal and transmitted as side-information, we can formulate
the prediction as follows:

ŷ = fm∗(x) (1)

Our goal is now to convert this equation into a form where we
have only one trainable prediction function which still performs
multi-mode prediction. First, we can rewrite this equation by
using m∗ as additional argument to the function instead of
an index, yielding f(m∗,x). This way, formally, we have one
function. This function has an integer value m∗ as input, so we
can not compute gradients for this variable. Hence, instead of
using a scalar value for the mode, we use the continuous vectorp.
We can now write:

ŷ = f(p,x) . (2)

The vector p contains information how to predict y from x. We
can therefore assume it depends only on the original block y
and the reference area x, as it describes a connection between
both of them. Therefore we can define a function g(·) which
computes p:

p = g(y,x) . (3)

Now, g(·) computes a vector describing how to perform the pre-
diction from x to y, before f(·) uses this information to perform
the prediction. So far, both functions were only described in an
abstract way.

Neural networks are known to be universal approximators
[24], [25], meaning they can approximate any function arbitrar-
ily close. We therefore can use them to approximate the functions
g(·) and f(·). We model each function with a neural network
consisting of seven fully connected layers. Since they have
shown an efficient convergence behavior, we mainly use leaky
rectified linear units (LReLU) [26] as activation functions φ:

φ(v) =

{
0.1 · v if v < 0

v else
(4)

Fig. 2. Networks we use to model g(·) (left) and f(·) (right). FCL denotes a
fully connected layer. The number of neurons is noted in braces. LReLU and
TANH denote the leaky rectified linear unit and hyperbolic tangent activation
function, respectively.

Only the last layer of g(·) has a hyperbolic tangent activation
function to limit the elements of p between −1 and 1.

By modeling both functions as neural networks and concate-
nating the networks appropriately, we can train them jointly
end-to-end. In Fig. 2, we show the networks we use to model
both functions. In Fig. 3, the red underlaid area shows the
concatenation of both networks. We see that the structure re-
sembles the autoencoder structure. A signal y is compressed
to a low-dimensional representation p, before the second part
of the network reconstructs the signal, yielding ŷ. The crucial
difference to a classical compressive autoencoder is that both the
encoder and the decoder part know the spatial neighborhood x.
The compression and decompression is therefore performed
under the condition of the known spatial neighborhood, hence
the name conditional autoencoder (CAE).

We train the network with a loss function according to [5].
The function models the bitrate needed to transmit the residual.
Using σ(·) as the sigmoid function, we can write the model as:

L1 = min
t=1...5

∑
m,n

|c(t)m,n|+ α1σ
(
α2|c(t)m,n| − α3

)
, (5)

where c(t)m,n denotes the frequency coefficient at positions (m,n)
of the residual block transformed with the tth transform as used
in VVC. The function tests all available transforms and picks
one with the least estimated number of bits. As in VVC, we use
DCT Type 2 in both directions as one possible transform and
the four combinations of DCT Type 8 and DST Type 7 as the
remaining four transforms. By this means we get as close to
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Fig. 3. Training setup for joint training of encoder and decoder. The red
underlaid area shows the base network, the remainder extends the network with
a spatially correlated latent space. For this schematic we use only one spatial
neighbor which has the content yl and the support area xl. In training both
encoder networks share their weights to assure the same behavior. The input
prand denotes a randomly generated vector in the latent space and N denotes
zero-mean white Gaussian noise with variance 0.1.

the coding procedure in VVC as possible. Here, α1,2,3 denote
model parameters which are chosen such that the function is
approximately proportional to the actual bitrate of a residual
signal that is coded within VVC as measured on a separate
training set.

The vector p has to be transmitted as side information similar
to the prediction mode in classical prediction approaches. For
transmission, we have to quantize this vector. We choose a
trained Linde-Buzo-Gray vector quantizer [27] for that purpose.
In the following, we denote the quantized latent space represen-
tation as p̂. For good performance, we need to take this into
account during training. Since it is not possible to efficiently
model an adaptively trained vector quantizer in a neural network,
we approximate p̂ for the training by adding white Gaussian
noise N(0, 0.1) with variance 0.1:

p̂ ≈ p+N(0, 0.1) (6)

The number of quantization levels corresponds to the new
number of modes. It is easy to see that this number can be chosen
arbitrarily without changing the number of networks or the main
training, solely by changing the vector quantizer. The strength
of the noise was determined empirically. We need a certain
amount of noise to simulate the large quantization we perform
afterwards. However, if we add noise with too high variance, the
initial convergence is inhibited. We therefore choose a variance
of 0.1 as a compromise.

In [14], we furthermore have shown that the prediction quality
can be increased by performing a second training, which refines
only the decoder network and accustoms it to vector-quantized
inputs. That way, we can compensate the lower variance of the
simulated quantization noise. Optimally, this training has to be
performed for each number of modes. This kind of training is
possible since we only have a small amount of possible values. In
the following we set the number of quantization levels q = 64.
The quantization also determines the size of the latent space,
i.e. the dimensionality of the vector p. On the one hand, a
larger latent space yields a better representation of the block
and allows more flexibility in training. On the other hand,
a higher dimensionality also increases the error made during
quantization. In preliminary experiments we found a latent space
size of 4 suitable. In the context of CAE, the term mode will from
now on represent a quantized latent space representation.

B. Spatial Mode Prediction

Intra prediction exploits also larger scale correlation by spa-
tially predicting the intra mode itself. This is possible since the
classical intra-prediction modes have very generic properties,
describing a direction of the block content. The modes generated
by the CAE do not have that property, they are therefore difficult
to predict over different blocks. As further described in [28], to
make mode prediction possible, we train the network only for
16× 16 blocks and rescale the other blocks accordingly, such
that all block sizes are predicted with the same model. That
way, we do not have to take different models for each block size
into account, which greatly simplifies mode prediction across
different block sizes.

As a second step, we define a spatial neighborhood in the
latent spacepS = [ps,1 . . .ps,n . . .ps,N ], consisting of the latent
spaces ps,n of N spatial, causal neighboring blocks. If one or
more blocks are not available due to boundary effects or coder
constraints, they are copied from those which are available. If
none is available, all neighbors are set to the representation
with the highest a-priori probability. We now want to use pS

to construct a most probable mode list. However, predicting the
latent space of the current block from the latent space of its
spatial neighbors is only possible if neighboring blocks yield
similar latent spaces. We therefore add another loss function:

L2 =

N∑
n=1

∥∥p− ps,n

∥∥
2
, (7)

with the �2 norm ‖ · ‖2. This loss function enforces the latent
space of adjacent blocks to be similar. However, this is a strong
additional constraint on the network and decreases the perfor-
mance. We therefore use p̂S as additional input to the encoder
and decoder network, conveying additional information. We
hence arrive at the following equations:

p = g(y,x,pS) (8)

ŷ = f(p,x,pS) . (9)

We do not need to signal this information since it is known at
the decoder. Fig. 3 shows the setup for the training. We train
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the network using weight-sharing between both instances of the
encoder network. For sake of simplicity, in the figure, we set
N = 1 and only use the block to the left as reference.

Having trained an autoencoder with such correlated latent
space, we can define an elegant prediction scheme, similar to the
most-probable-mode (MPM) list, already in use in VVC [3]. We
define an MPM list with six elements according to the following
distance measure d(p̂) representing the inverse probability:

d(p̂) = min
n=1...N

[∥∥p̂− p̂s,n

∥∥
2

]
(10)

A latent space representation that is close, in the sense of
euclidean distance, to one of the neighboring representations
is therefore considered likely. Note that this definition sets the
reference modes themselves to the maximal probability. The six
elements with smallest distance are picked for the MPM list.
If two modes have the same distance measure, the one with
the smaller index is preferred. We order the modes, such that
modes with higher prior probability—measured on the training
set—have a smaller index.

The algorithms from the two previous sections can now be
integrated in the coding software. For that purpose, we re-
placed Matrix Intra Prediction (MIP) with CAE-based prediction
functions. The proposed CAE-based prediction modes therefore
exists in parallel to classical prediction. Since we can only
transmit a quantized latent space, we need to make sure, that the
best quantization point close to the non-quantized value is trans-
mitted. For that purpose, we use rate-distortion-optimization to
choose between the five quantization points which are closest to
the ideal p. As for MIP, first a flag is transmitted, whether classi-
cal prediction or CAE-based prediction is used. Afterwards, the
mode is transmitted using the MPM list. In [28], this method is
described in more detail and examined extensively.

C. Prediction of the Chroma Components

The algorithms in the previous sections were all concerned
with predicting the luma component. However, the prediction
of the chroma components is also important for the coding
performance. The chroma component also strongly affects visual
quality, since color artifacts can cause irritable effects. Since the
chroma components are transmitted after the luma component,
and both components are locally correlated to some degree, it is
possible and sensible to use the reconstructed luma component
for prediction. To integrate a chroma component prediction into
the CAE-based approach, we need to extend our model.

A straightforward approach would be to use both an encoding
and a decoding network on the chroma components and transmit
a new latent space representation. We could train a new CAE
in a similar way on the chroma component for that purpose.
However, VVC only uses very little rate to signal the chroma
prediction mode, since it is picked from a short list. In order to
be compatible, we therefore would have to quantize the latent
space very coarsely, leading to bad results.

We therefore choose to use the same latent space representa-
tion as in the luma component and train an additional network to
predict the chroma components. In the following, let yu and yv

denote the original block in the u and v component. Furthermore,

Fig. 4. Network to model fc(·). The notation is equivalent to Fig. 2.

since we perform chroma component prediction jointly for both
components, let yc = [yu,yv] denote the concatenation of both
components. For ŷ and x, we use an equivalent notation. We
can now define the chroma prediction function fc as follows:

ŷc = fc (p,xc) , (11)

with the latent space representation p from the luma component.
Again, we model fc(·) as a neural network comprising fully
connected layers. Fig. 4 shows the exact structure. There are
two possibilities to train the system, now. Since p is shared,
we can train luma and chroma component jointly by adding
the chroma decoder to the setup in Fig. 3. However, we found
that this degrades the prediction quality of the luma component.
Instead, we compute p for each luma block in the training set
and train fc(·) by itself. This has the advantage that we can
directly train on quantized latent space representations. We train
the network on a loss functionL3 = L

(u)
3 +L

(v)
3 which is similar

to the luma loss functionL1 but only takes the coefficients c(u/v)m,n

of the DCT Type 2 transform into account, since VVC only uses
this transform for chroma residual coding [3]:

L
(u)
3 =

∑
m,n

|c(u)m,n|+ β1σ
(
β2|c(u)m,n| − β3

)
. (12)

Here, c(u)m,n is the DCT Type 2 coefficient of the residual U-

component at position (m,n). We compute L
(v)
3 in the same

way and train on the sum of both functions. Both functions
share the model parameters β1,2,3, which are chosen for the
model to match the number of bits needed for transmitting the
residual. We optimize them on a separate training set. We train
the network only on a block size of 8×8 and rescale the inputs
and outputs accordingly. We choose a smaller size than for the
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luma component to take the typical downsampling of the chroma
components into account.

Since prediction in the chroma component does not allow
using as much side information as needed to transmit the latent
space, we have to derive p from the luma component. We test
two possibilities here. First, we use the mechanism already in
place which derives a possible chroma prediction mode from the
co-located luma block. In a straightforward approach, if CAE
was used for luma prediction, we use the same quantized latent
space representation in the chroma component as used in the
luma component. However, a CAE-based mode describes the
block content in a very specific way, so this principle only works
if chroma and luma block are at matching positions. However,
one new feature in VVC is the Chroma Separate Tree (CST),
which allows to generate separate block partitioning trees for
luma and chroma. Using this feature—different to HEVC—co-
located chroma and luma blocks may not be of the same size
(taking chroma subsampling into account) and can therefore
not share a latent space representation. We therefore apply this
method only to the chroma blocks for which a luma block of
same size and position exists. For all other cases, if the derived
mode is a CAE-based mode, we take the planar mode instead.
For this method we do not need to change anything in the mode
signaling, as the CAE-based chroma prediction exists as derived
mode. However, first experiments showed that this method does
not perform well, mainly due to the limitation caused by CST.
We call this model CAE with derived chroma prediction.

Since the main issue with the previous method is that there
are not suitable latent space representations available for many
blocks, we can use the reconstructed luma signal ỹ to generate a
latent space representation p̃ of the corresponding area. We then
use this vector as input to the chroma prediction function:

ŷc = fc (p̃,xc) , (13)

with

p̃ = g(ỹ,x) . (14)

The decoder can execute both parts of the network here, since
the encoder network now gets the reconstructed luma block as
input. We do not need to transmit any latent space representation.
This has the advantage that we can use p̃ directly without having
to deal with the quantization error. On the other hand, p̃ is less
accurate than p, since it is based on the reconstructed signal
instead of the original signal.

In the coder, we implement this strategy as additional mode for
chroma prediction, which is signaled as separate flag, after cross
component linear model (CCLM) and the derived prediction
mode. Conceptually, this prediction has some similarities to
CCLM, since it bases the prediction of the chroma component
on the reconstructed signal in the luma component. However, in-
stead of applying a linear model, we extract a small dimensional
vector as kind of blueprint, in which way prediction has to be per-
formed. Different to CCLM, the actual prediction function then
does not use the reconstructed signal. This is useful, if the linear
model does not hold for the whole block, as we will see later
on. We now can allow chroma CAE prediction for all blocks,
independently of the chosen mode in the luma component. In

the following evaluation, we will refer to this chroma prediction
mode as cross component conditional autoencoder (CC-CAE).

In both methods, we have to deal with a degradation of the
latent space. If we use the first method, we use a quantized
latent space representation which was computed on the original
signal. On the other hand, we do not need to quantize the
latent space in the second method but the latent space describes
the reconstructed and therefore distorted signal instead of the
original.

IV. PERFORMANCE EVALUATION

A. Training and Setup

As recommended in [29], we use the DIV2K training set for
training all models. Since in real applications, the reference area
is taken only from the reconstructed signal, we use coded images
to extract all reference areas and uncoded images for the target
patches. We code each image with a random QP using HEVC
and extract blocks of size 16× 16. To take into account the
possibility of dealing with down-sampled patches, we use each
image several times in downscaled versions.

We implement the network in the caffe [30] environment
and train the networks using the Adam optimizer [31] with
standard parameters and learning rate 10−4. For training the
luma predictors, we combine L1 and L2 to the overall loss
function L by

L = L1 + λL2, (15)

with λ = 10. We picked the optimal value for λ and the variance
of the simulated quantization noise based on preliminary tests
on the DIV2K validation set.

First experiments training the networks showed that a pre-
trained network yields a better performance. We therefore per-
form a training where we jointly optimize on all different trans-
forms instead of just the best one. This means that we replace the
minimum operator in (5) by a sum. We use the obtained weights
to initialize the network. This is only necessary for the luma
network. Since the chroma network only uses one transform,
this step is skipped.

For the experiments, we implemented the prediction scheme
into the VVC test model (VTM) version 6.2. We use the same
method as MIP to signal the use of CAE-based modes. In our
experiments, CAE and MIP are exclusive, so MIP is not used
together with CAE. We perform our tests on 10 frames of each
sequence from the JVET test set [32] with the All Intra (AI)
profile. In accordance with the JVET common test conditions
[32], we only code every eighth frame to gain a larger diversity
of tested content.

B. Visual Examples

Before demonstrating the performance of our prediction
scheme in terms of rate-distortion behavior, we first visually
show the prediction performance in different scenarios. For this
purpose, we configured the coder to use only blocks of size
16× 16. For the following examples we compare the traditional
modes, MIP and our proposed CAE. We only show blocks,
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Fig. 5. Examples of blocks predicted with different methods. The left column
shows the original block. The second column, labeled VTM, shows the best
traditional mode. The third column, MIP, shows the prediction with MIP and
the right column shows the predicted signal of CAE. The red frame shows the
predicted block. Outside of the frame, we show the reconstructed signal from
which the reference signal originates.

where MIP and CAE were selected in the respective coders.
Consequently, in each shown example, MIP and CAE both
perform better than the traditional modes, which are denoted
with VTM in the figure. At first we analyze the luma signal more
closely. To that end, we selected blocks, in which the difference
between the predictors are more visible.

In many cases, it is noticeable that the CAE is able to predict
in multiple directions at the same time. We show examples of
this property in Fig. 5(a)–(c). In Fig. 5(a), we see that the upper
left edge should be predicted from top right to bottom left and the
upper right edge in the other direction. Since this is not possible

with traditional prediction, VTM chooses to use the planar mode.
MIP is performing something similar to an angular prediction,
causing a large error in the center of the block. CAE, on the other
hand, is able to accurately estimate both edges while keeping the
remainder of the block clean.

Similarly, in Fig. 5(b), VTM and MIP both ignore the thin
line on the left side by performing prediction mainly from one
direction. CAE is able to predict both edges, however, the result
is less sharp than for the traditional modes. We also see that the
initially vertical direction of the upper edge is kept. In Fig. 5(c),
the chosen planar mode is not able to perform a good prediction,
while MIP has errors on the bottom of the block. CAE produces
sharp and correct edges except for the upper right corner, where
the edge becomes blurry.

Fig. 5(d) shows that CAE is able to preserve sharp edges better
than MIP while remaining more flexible than the traditional
modes. We see that VTM chose planar mode here instead of the
vertical mode. This is probably due to the fact that the vertical
prediction mode would fill the left part of the block with black
due to the black pixels in the reference area. With the planar
mode this problem does not occur, however, the edge gets less
sharp. Here, MIP and the planar mode perform similarly. We see
that CAE is able to obtain the sharp edge while still choosing the
correct color in the left part, accurately following the gradient.

Fig. 5(e) shows an advantage of MIP and CAE compared
to traditional prediction when it comes to structures that stop
at a certain point in the block to be predicted. We see that
VTM chooses the planar mode again, yielding a white structure
reaching far in the block. MIP and CAE manage to stop the
white structure from progressing too far into the block while
maintaining the black background. In Fig. 5(f), we see a similar
effect, however, here MIP has problems keeping the background
dark, probably due to the larger amount of bright pixels in
the reference area, while CAE is able to maintain the dark
background. None of the prediction algorithms is able to predict
the brighter area in the bottom right corner.

In Fig. 5(g), we see that, in a limited way, CAE is able to
predict content that can not be seen in the reference area, such
as the black area at the lower right corner. This content is less
sharp than other predictions. However, in this block, we see that
the prediction follows the original structure.

With the examples from Fig. 5 as described above, we see that
CAE-based prediction has a great flexibility and can predict a
wide variety of content, even though we only use 64 quantization
points in the latent space, which is very similar to the number
of traditional modes.

It is more difficult to find visual examples for the performance
in the chroma domain since the content carries much less in-
formation. Therefore the differences in the prediction signal are
often only very subtle. For that reason, we increased the contrast
of the following examples to improve the visual impression.

Fig. 6 shows selected blocks where the difference in the sig-
nals is visible. For each block and chroma component, we show
the original block, and the signal coded by standard VTM and
our new method CC-CAE. Additionally, we show the co-located
reconstructed luma component which is used in CCLM for each
block.
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Fig. 6. Examples of chroma blocks which were predicted with traditional methods in VTM and with CC-CAE. We show the original and predicted signals for
both chroma components, as well as the co-located reconstructed luma signal which serves as reference for CCLM. The mode which was used by the original VTM
to predict the chroma component is given in the sub captions.

In Fig. 6(a), we see a block in which CCLM would fail, since
both parts of the block follow a different linear model. VTM
therefore chooses the DC mode for prediction which does not
capture the diagonal structure. Note that a diagonal mode would
probably work well in this case, however since chroma modes
are only selected from a very small list, this mode is not available
here. We see that CC-CAE generates the diagonal structure in
the upper right triangle however the signal looses in sharpness.
Also, we see that in the V-component, the edge is slightly shifted.
However in both components, the lower left corner is predicted
accurately.

In Fig. 6(b), the block consists of a curved structure which
traditional prediction can not predict. As in the luma component,
CC-CAE is able to follow the structure to some extend, here
the V-component shows a better result than the U-component,
following the structure more accurately.

In Fig. 6(c), we compare our method with a block that was
predicted with CCLM in VTM. Here we see that the bright
structures in the luma block cause small disturbances in the
prediction signal of the chroma component which are not present
in the original. Furthermore, we can see that the linear model is
not valid for the right part and therefore generates wrong pre-
diction values. On the other hand, CC-CAE uses more abstract
information from the luma component. We only transfer the
knowledge, how to predict the block from the reference area.

CC-CAE therefore continues the upper right part correctly into
the block. Similarly to before, angular prediction would have
given better results than CCLM but was not available.

Fig. 6(d) shows that CC-CAE can also improve angular pre-
diction. This example was predicted by VTM using a derived
angular mode. However, the used mode yields a prediction signal
that is too steep to match the original. CC-CAE produces a signal
with the correct angle.

Altogether, we see that CC-CAE is also very flexible in the
chroma component. However, compared to the luma component,
the prediction signal looses sharpness. This may be due to the
fact that the latent space is produced from the luma component
only so some uncertainty remains in the model. However, we see
that also visually CC-CAE performs better than other available
prediction modes.

C. Results

After showing that CAE is able to predict many different kinds
of content, we now want to demonstrate the performance of
CAE in the coding software. In Table I, we show the results for
different learning-based approaches. We report the Bjøntegaard
delta rate (BD-rate) [33] for each component separately. We
report gains compared to VTM 6.2 using only traditional modes
with MIP turned off.
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TABLE I
RESULTS COMPARING DIFFERENT LEARNING-BASED METHODS REGARDING THEIR RATE-DISTORTION PERFORMANCE. ALL RESULTS ARE

BD-RATES IN %. THE REFERENCE IS VTM 6.2 WITH STANDARD CONFIGURATION AND MIP TURNED OFF

At first, we only evaluate the performance on the luma com-
ponent. Turning on MIP yields rate savings of 0.58%. We see
that all versions of CAE-based prediction outperform MIP by
an average of at least 0.51%. In the best case, using CC-CAE for
chroma prediction, we save 1.13% rate over the baseline, which
is 0.55% more than MIP. We observe that all three chroma pre-
diction schemes show very similar behavior in the Y-component.
This is no surprising result, since the chroma prediction does not
directly influence the Y-component. CAE performs particularly
well for classes with high resolution. For class A1, we measure
a gain of 1.19% against MIP, saving 2.22% compared to the
baseline. We see that only for the the BQSquare sequence, MIP
outperforms all CAE-based methods. Interestingly, this due to
both a good performance of MIP (the best of all low resolution
sequences) and a bad performance of CAE (the second worst of
all sequences). For all other sequences, CAE outperforms MIP.
With our method, we almost double the rate-savings of MIP. The
gains we achieve over MIP are considerable and comparable to
the gains of other intra-coding tools newly introduced in VVC,
like multi-reference line prediction or intra sub-partitioning [34].
Furthermore, we found that the gain is present at all evaluated
rate points.

To analyze the results further, we show the relative occurrence
of certain groups of prediction modes in Fig. 7. Here, we

distinguish between planar and DC mode and group all angular
and all CAE-based modes together. We see that on average,
CAE-based modes occur in more than 40% of the area and more
often than all angular modes combined. Individual sequences
like Kimono consist to almost 75% of CAE blocks. In Fig. 7(b),
we show how the mode distribution changes when CAE is turned
on compared to VTM only using traditional prediction modes.
We see that mainly blocks which previously were predicted with
the planar mode are selected for CAE-based prediction. This is
expected, since the planar mode is often chosen when the angular
models are not sufficient, which is the intended use case for
CAE-based prediction. In most frames, also some angular modes
are replaced by CAE-based modes, showing again the flexibility
of CAE-based modes. At this point, we want to emphasize that
we achieve this flexibility without explicitly training the network
for certain structures.

If we compare the BD-rates of the chroma components, we
observe larger differences between the CAE chroma prediction
methods. First, we note that a planar chroma prediction is
sufficient to achieve better compression in the chroma com-
ponents compared to MIP. However, in some sequences, such
as Campfire, the results are actually worse than the baseline,
having a positive BD-rate. A possible explanation lies in the way
the chroma prediction mode is chosen and signaled in VVC.
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Fig. 7. Percentage of the area predicted with the indicated group of modes for the luma component. We separate between the individual modes planar and DC
and all angular as well as CAE-based modes together. (a) shows the coverage for CC-CAE while (b) shows the difference in coverage compared to the baseline.

In VVC, there are eight modes which are tested, three cross
component prediction modes, four fixed traditional modes, hor-
izontal, vertical, planar, and DC and the derived mode, which is
usually the same as the co-located luma mode. Since CAE yields
a very flexible and powerful prediction, occupying between 30%
and 50% of the image, many blocks which were predicted with
an angular mode are now predicted with CAE. Some of these
blocks have very strong edges, that can not be properly predicted
with DC or planar mode. Since the derived mode is now set to
planar instead of the appropriate angular mode, it is no longer
possible to predict the chroma block by this angular mode and
the remaining modes are not sufficient.

It is therefore important to allow CAE modes also in the
chroma component. As discussed before, we have two possi-
bilities. First we can use derived CAE prediction, i.e., we use
the same latent space as in the luma component. We see that this
approach does not yield good results. We gain only about 0.1%
compared to the previous method using planar prediction. A
major reason is the limited possibility for derived CAE-modes.
As discussed above, a derived CAE-mode is only sensible if the
chroma block is exactly aligned with the co-located luma block.
As another possibility, we can use a latent space representation
derived from the reconstructed luma signal (CC-CAE). Table I
shows that this chroma prediction methods gives large gains
over MIP of almost 1% on average in the chroma components.
We see that in the majority of cases, CC-CAE yields the best
result among all tested algorithms. Even in the sequence Day-
lightRoad2, which suffered losses in the V-component with
planar chroma prediction, we are now able to save 0.84% in
BD-rate. Similarly to the luma component, all rate points prof-
ited from the use of CAE-based chroma-prediction.

Similarly as above, Fig. 8 shows the distribution of chroma
prediction modes. We grouped the modes into the derived mode
from luma, all cross component linear model (CCLM) modes,

TABLE II
ENCODER RUNTIME OF THE CURRENT IMPLEMENTATION

COMPARED TO VTM WITH MIP TURNED OFF

the default modes (DC, Planar and selected angular modes) and
the proposed CC-CAE mode. We see that the new chroma mode
is chosen for about 20% of the total area which is less than
for the luma component. We see that CCLM is picked in most
cases, often providing a stronger prediction scheme to compete
against than in the luma component. Also due to the picked
signaling method, signaling CC-CAE costs two bit per block
more than CCLM. However, we see in Fig. 8(b) that the amount
of blocks predicted with CCLM is reduced for almost all frames.
Furthermore, the test shows that the gains of CC-CAE arise from
replacing all three groups of modes in a similar amount. This is
different from the luma component, where the preferred mode
to be replaced by CAE was planar.

D. Complexity

Our method has a larger complexity than MIP. Our experi-
ments show that CAE-based methods take about eight to nine
times the time of VTM without MIP. Table II shows the runtime
of our coder relative to VTM with MIP disabled. The exper-
iments were performed on a Intel Xeon 3.30 GHz processor
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Fig. 8. Percentage of the area predicted with the indicated group of modes for the luma component. We separate between the individual modes planar and DC
and all angular as well as CAE-based modes together. (a) shows the coverage for CC-CAE while (b) shows the difference in coverage compared to the baseline.

and a GeForce GTX 1060 GPU. However, these measurements
include the time transferring the data to the GPU and back.
Empirical measurements indicate that in our case, since we use a
small network, the data transfer is responsible for about 80% of
total runtime of the prediction. By using different architectures
that require less overhead there is an immense potential for
reducing the runtime. Also the network itself has not been opti-
mized for inference runtime yet. There are several well-known
methods to reduce a the inference time for neural networks,
for example network pruning [35] or quantizing the network
coefficients to integer values [36].

V. CONCLUSION

In this paper we introduced novel concepts for intra prediction
for all components. We showed that the concept of the condi-
tional autoencoder for intra prediction can be extended to the
chroma components in several ways. It is possible to treat the
CAE as a derived prediction mode and use the same latent space
representation as for the luma component. This however comes
with the drawback that due to Chroma Separate Tree (CST) the
derived mode can not be used for all blocks. We show that the
better alternative is to treat CAE as cross component prediction,
using latent space representations which were computed from
the reconstructed luma component.

Furthermore, with this publication we propose a new pre-
diction system for all components building upon our previ-
ous work. Using a spatially correlated latent space and the
cross-component CAE chroma extensions, we save more than
0.5% rate in the luma and about 1% in the chroma components
compared to current technology. In this paper we proved, that the
conditional autoencoder for intra prediction, which we proposed
in [14] is able to form a fully functional intra prediction system

for all components, outperforming state-of-the-art methods in
terms of Bjøntegaard delta rate savings.

In this paper, we demonstrated how the concept of a con-
ditional autoencoder can be employed in the classical hybrid
video coder in different ways. However, the task of transmitting
information given relevant known signals is very common in
video coding problems. We therefore see great potential of
applying the concept on further points in hybrid video coders,
as well as in possible future end-to-end optimized video coding
technologies.
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