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Abstract—In the past decade deep neural networks (DNNs) have
shown state-of-the-art performance on a wide range of complex
machine learning tasks. Many of these results have been achieved
while growing the size of DNNs, creating a demand for efficient
compression and transmission of them. In this work we present
DeepCABAC, a universal compression algorithm for DNNs that
is based on applying Context-based Adaptive Binary Arithmetic
Coder (CABAC) to the DNN parameters. CABAC was originally
designed for the H.264/AVC video coding standard and became
the state-of-the-art for the lossless compression part of video com-
pression. DeepCABAC applies a novel quantization scheme that
minimizes a rate-distortion function while simultaneously taking
the impact of quantization to the DNN performance into account.
Experimental results show that DeepCABAC consistently attains
higher compression rates than previously proposed coding tech-
niques for DNN compression. For instance, it is able to compress
the VGG16 ImageNet model by x63.6 with no loss of accuracy,
thus being able to represent the entire network with merely 9 MB.
The source code for encoding and decoding can be found at
https://github.com/fraunhoferhhi/DeepCABAC.

Index Terms—Deep learning, neural network compression,
efficient representation, source coding, rate-distortion
quantization, arithmetic coding.

I. INTRODUCTION

I T HAS been well established that deep neural networks excel
at solving many complex machine learning tasks [1]. Their

relatively recent success can be attributed to three phenomena:
1) access to large amounts of data, 2) researchers having de-
signed novel optimization algorithms and model architectures
that allow to train very deep neural networks, 3) the increasing

Manuscript received July 1, 2019; revised November 19, 2019 and January
15, 2020; accepted January 16, 2020. Date of publication January 27, 2020; date
of current version August 10, 2020. This work was supported in part by the
German Ministry for Education through the Berlin Big Data Center under Grant
01IS14013A and in part by the Berlin Center for Machine Learning under Grant
01IS18037I. The associate editor coordinating the review of this manuscript and
approving it for publication was Dr. Diana Marculescu. (Corresponding author:
Wojciech Samek.)

The authors are with the Fraunhofer Heinrich Hertz Institute, 10587 Berlin,
Germany (e-mail: simon.wiedemann@hhi.fraunhofer.de; heiner.kirchhoffer
@hhi.fraunhofer.de; stefan.matlage@hhi.fraunhofer.de; paul.haase@hhi.fraun
hofer.de; arturo.marban@hhi-extern.fraunhofer.de; talmaj.marinc@hhi.fraunh
ofer.de; david.neumann@hhi.fraunhofer.de; tung.nguyen@hhi.fraunhofer.de;
heiko.schwarz@hhi.fraunhofer.de; Thomas.Wiegand@hhi.fraunhofer.de; det
lev.marpe@hhi.fraunhofer.de; wojciech.samek@hhi.fraunhofer.de).

This article has supplementary downloadable material available at https://
ieeexplore.ieee.org, provided by the authors.

Digital Object Identifier 10.1109/JSTSP.2020.2969554

availability of compute resources [1]. In particular, the latter two
allowed machine learning practitioners to equip neural networks
with an ever growing corpora of layers and, consequently, to
consistently attain state-of-the-art results on a wide spectrum of
complex machine learning tasks.

However, this has triggered an exponential growth in the
number of parameters these models entail over the past years [2].
Trivially, this implies that the models are becoming more and
more complex in terms of memory. This can become very
problematic since it does not only imply higher memory require-
ments, but also slower runtimes and high energy consumption.
In fact, IO operations can be up to three orders of magnitude
more expensive than arithmetic operations in terms of energy
consumption [3]. Moreover, [2] show that the memory-energy
efficiency trend of most common hardware platforms are not
able to keep up with the exponential growth of neural networks
size, thus expecting them to be more and more power hungry
over time.

In addition, there has also been an increasing demand on
deploying deep models to resource constrained devices such
as mobile or wearable devices [4], [5], and on distributed learn-
ing scenarios such as in federated learning [6]–[8]. These ap-
proaches have direct advantages with regards to privacy, latency
and efficiency issues. However, high memory complexity greatly
complicates the applicability of neural networks in those use
cases, in particular in federated learning since the parameters of
the networks are transmitted through bandwidth-limited com-
munication channels.

Model compression is one possible paradigm to solve this
problem. Namely, by attempting to maximally compress the
information contained in the networks parameters we automat-
ically leave only the bits that are necessary for solving the
task. In addition, model compression can have direct practi-
cal advantages such as reduced communication and compute
cost [9]–[11]. In fact, the Moving Picture Expert Group (MPEG)
of the International Organization of Standards (ISO) has recently
issued a call on neural network compression [12], which stresses
the relevance of the problem and the broad interest by the
industry to find practical solutions.

A. Entropy Coding in Video Compression

The topic of signal compression has been long stud-
ied and highly practical and efficient algorithms have been
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designed. State-of-the-art video compression schemes like
H.265/HEVC [13] employ efficient entropy coding techniques
that can also be used for compressing deep neural networks.
Namely, the context-based adaptive binary arithmetic coding
(CABAC) scheme [14] provides a very flexible interface for en-
tropy coding that can be adapted to a wide range of applications.
It is optimized to allow high throughput and a high compression
ratio at the same time. In particular, the transform coefficient
coding part of H.265/HEVC contains many interesting aspects
that might be suitable for compressing deep neural network.
Hence, it appears only natural to try to apply current state-of-
the-art compression techniques on deep neural networks and
assess their compression gains.

B. Contributions

Our contributions can be summarized as follows:
1) We empirically identify a set of priors that are common

across all studied neural networks.
2) We redefine CABAC’s core scheme such that it captures

those priors, thus, adapting it to the task of neural network
compression. To the best of our knowledge, we are the first
in applying state-of-the-art coding techniques from video
compression to neural networks.

3) We quantize the parameters of the networks by minimizing
a generalized form of a rate-distortion function which
takes the impact of quantization on the accuracy of the
network into account.

4) In our experiments we show that DeepCABAC is able to
attain very high compression ratios and that it consistently
attains a higher compression performance than previously
proposed coders.

C. Outline

In Section II we start by reviewing some basic concepts
from information theory, in particular from source coding the-
ory. We also highlight the main difference between the clas-
sical source coding and the model compression paradigms in
subsection II-D. Subsequently, we propose DeepCABAC in
Section III. In Section IV we provide a comprehensive review
of the related work on neural network compression. Finally,
we provide experimental results and a respective discussion in
Section V.

II. SOURCE CODING

Source coding is a subfield of information theory that studies
the properties of so called codes. These are mappings that assign
a binary representation and a reconstruction value to a given
input element. Figure 1 depicts their most common structure.
They are comprised of two parts, an encoder and a decoder.
The encoder is a mapping that assigns a binary string of finite
length b to an input element w. In contrast, the decoder assigns
a reconstruction value q to the corresponding binary representa-
tion. We will also sometimes refer to q as a quantization point.
Furthermore, it is assumed that the output elements b and q of
the code C are elements of finite countable sets, and that there is
a one-to-one correspondence between them. Therefore, without
loss of generality, we can decompose the encoder into a quantizer

Fig. 1. The general structure of codes. Firstly, the encoder maps an input
sample w from a probability source P (w) to a binary representation b by a
two-step process. It quantizes the input by mapping it to an integer i = Q(w).
Then, the integer is mapped to its corresponding binary representation b = B(i)
by applying a binarization process. The decoder functions analogously maps the
binary representation back to its integer value by applying the inverseB−1(b) =
i and assigns a reconstruction value (or quantization point) Q−1(i) = q to it.
We stress that Q−1 does not have to be the inverse of Q.

and a binarizer, where the former maps the input to an integer
value Q(w) = i ∈ Z, and the latter maps the integers to their
corresponding binary representation B(i) = b. Analogously for
the decoder. Naturally, it follows that the binarizer is always a
bijective map, thus (B−1 ◦B)(i) = i.

We also distinguish between two types of codes, the so called
lossless codes and lossy codes. They respectively correspond
to the cases where Q is either bijective or not, thus, the latter
implies that information is lost in the coding process. Therefore,
we stress that the map Q−1 does not necessarily have to be the
inverse of Q!

After establishing the basic definition of codes we will now
formalize the source coding problem. In simple terms, source
coding studies the problem of

finding the code that maximally compresses a set of input samples,
while maintaining the error between the input and reconstruction
values under an error tolerance constraint.

Or more precisely: let W ⊂ Rn be a given input set and let
P (w) be the probability of an element w ∈ W being sampled.
Then, find a code C∗ that

C∗ = arg min
C

EP (w) [D(w, q) + λLC(b)] (1)

where b = (B ◦Q)(w) and q = (Q−1 ◦Q)(w). D is some dis-
tance measure and LC is the length of the binary representation
b. We will refer to LC(·) as the code-length of a sample, and to
D as the distortion between w and q. EP [·] denotes expectations
as taken by the probability distributionP . λ ∈ R is the Lagrange
multiplier that controls the trade-off between the compression
strength and the error incurred by it.

Minimization objectives of the form (1) are called rate-
distortion objectives in the source coding literature. However,
solving the rate-distortion objective for a given input source is
most often NP-hard, since it involves finding optimal quantizers
Q, binarizersB and reconstruction valuesQ−1 from the space of
all possible maps. However, concrete solutions can be found for
special cases, in particular in the lossless case. In the following
we will review some of the fundamental theorems of source
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coding theory and introduce state-of-the-art coding algorithms
that produce binary representations with minimal redundancy.

A. Lossless Coding: Producing Binary Representations With
Minimal Redundancy

Lossless coding implies that the quantizer Q is bijective
and therefore q = (Q−1 ◦Q)(w) = w ∀w. Thus, D(w, q) =
0 ∀w ∈ W in (1) and the rate-distortion objective simplifies
into finding a binarizer B∗ that maximally compresses the input
samples. Hence, throughout this section we will equate the
general code C with the binarizer B and refer to it accordingly.

Information theory already makes concrete statements regard-
ing the minimum information contained in a probability source.
Namely, Shannon in its influential work [15] stated that the
minimum information required to fully represent a samplew that
has probability P (w) is of − log2 P (w) bits. Consequently, the
entropy HP (W ) =

∑
w∈W −P (w) log2 P (w) states the mini-

mum average number of bits required to represent any element
w ∈ W ⊂ Rn. This implies that

HP (W ) ≤ L̄C(W ), ∀C (2)

where L̄C(W ) =
∑

w∈W P (w)LC(w) is the average code-
length that any code C assigns to each element w ∈ W . Eq. (2)
is also referred as the fundamental theorem of lossless coding.

Fortunately, from the source coding literature [16] we know
of the existence of codes that are able to reach the average
code-length, up to only 1 bit of redundancy to the theoretical
minimum. That is,

∃C : HP (W ) ≤ L̄C(W ) < HP (W ) + 1 (3)

Moreover, we even know how to build them.
Before we start discussing in more detail some of these codes,

we want to recall an important property of joint probability
distributions. Namely, due to their sequential decomposition
property, we can express the minimal information entailed in
an output sample w ∈ Rn as

− log2 P (w) = −
n−1∑

j=0

log2 P (wj |wj−1, . . ., w0)

That is, we can always interpret a given input vector as ann-long
random process and encode its outputs sequentially. As long
as we know the respective conditional probability distributions,
we can optimally encode the entire sequence. Respectively, we
denote with wj the scalar value of the j-th dimension of w (or
equivalently j-th output of the random process). Also, we denote
with Ws the set of possible scalar inputs, where wj ∈ Ws, ∀j.

1) (Scalar) Huffman Coding: One optimal code is the well
known Huffman code [17]. However, Huffman codes can be
very inefficient in practice since the Huffman-tree grows very
quickly for large input dimensions n. Therefore, most often
scalar Huffman codes are used instead. These codes consider
1-dimensional inputs only and are therefore suboptimal, i.e.,
they produce redundant binary representations. Concretely, they
produce average code-lengths of

HP (W ) ≤ L̄SH(W ) < HP (W ) + n

where L̄SH(·) is the average code-length produced by the scalar
Huffman code on an entire input sequence w ∈ W ⊂ Rn.
Hence, if n is large (e.g., in the order of hundreds of millions
of values as in the case of deep neural networks parameters),
then the resulting binary representation of the entire sequence
of values may have a high number of redundant bits.

We provide a pseudocode of the encoding and decoding
process of scalar Huffman codes in the appendix.

2) Arithmetic Coding: A concept that approaches the joint
entropy H(W ) of eq. (3) in a practical and efficient manner
is arithmetic coding. Concretely, an ideal arithmetic coder pro-
duces only up to two bits more than the minimum possible code
length of an n-long random process. It therefore became the
state-of-the-art for lossless coding and is widely applied across
different compression algorithms. We would like to refer to the
appendix for a more detailed description of the arithmetic coding
method.

B. Universal Coding

In the previous subsection we learned that there exist codes
that are able to produce binary representations of (almost) mini-
mal redundancy (e.g. arithmetic codes). However, we implicitly
assumed that the decoder knows the joint probability distribution
of the input source. This is not the case in many real world
scenarios. Hence, in such cases one usually relies on so called
universal codes. They basically apply the following principle:
1) start with a general, prior probability model PDec, 2) update
the model upon seeing data, 3) encode the input samples with
regards to the updated probability model.

Thus, the theoretical minimum of universal codes are lower
bounded by the decoder’s probability estimate. Concretely, let
PDec be the decoder’s estimate of the inputs probability model,
then the minimum average code-length that can be achieved is

L̄C(W ) ≥ HP,PDec(W ) = HP (W ) +DKL(P ||PDec)

with HP,PDec(W ) = −∑
w∈W P (w) log2 PDec(w) being the

cross-entropy and DKL the Kullback-Leibler divergence.
Hence, a lossless code can only create binary representations
with minimal redundancies if and only if its decoder‘s probabil-
ity model matches the input source’s. In other words, the better
its estimate is, the more compact it can encode the input samples.

In general, a universal lossless code should have the following
properties:
� Universality: The code should have a mechanism that

allows it to adapt its probability model to a wide range of
different types of input distributions, in a sample-efficient
manner.

� Minimal redundancy: The code should produce binary
representations of minimal redundancy with regards to its
probability estimate.

� High efficiency: The code should have high coding effi-
ciency, meaning that encoding/decoding should have high
throughput.

1) CABAC: Context-based Adaptive Binary Arithmetic
Coding is a form of universal lossless coding that fulfils all
the above properties. It offers a high degree of adaptation,
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Fig. 2. Context-based Adaptive Binary Arithmetic Coding (CABAC) is a
universal lossless codec that encodes an n-long sequence of 1-dimensional
values by: 1) representing each unique value by a binary string that corresponds
to traversing a particular path on a predefined decision tree, 2) assigning to each
decision (or bin) a probability model (context model) and updating these upon
encoding/decoding data, and 3) applying a binary arithmetic coder in order to
encode/decode each bin.

optimal code-lengths, and a highly efficient implementation.
It was originally designed for the video compression standard
H.264/AVC [14], but it is also an integral part of its successor
H.265/HEVC. It is well known to attain higher compression
performance as well as higher throughput than many other
entropy coding methods [18]. In short, it encodes each input
sample by applying the following three stages:

1) Binarization: Firstly, it predefines a series of binary de-
cisions (also called bins) under which each unique input
sample element (or symbol) will be uniquely identified.
Thus, it builds a predefined binary decision tree where
each leaf identifies a unique input value.

2) Context-modeling: Then, it assigns a binary probability
model to each bin (also named context model) which is
updated on-the-fly by the local statistics of the data. This
enables CABAC to model a high degree of different source
distributions.

3) Arithmetic coding: Finally, it employs an arithmetic
coder in order to optimally and efficiently code each bin,
based on the respective context model.

Notice that, in contrast to Huffman codes, CABAC’s encoder
does not need to encode its probability estimates, since the
decoder is able to analogously update its context models upon
sequentially decoding the input samples. Codes that have this
property are called backward-adaptive codes. Moreover, it is
able to take local correlations into account, since the context
models are updated in an autoregressive manner by the local
statistics of the data.

C. Lossy Coding

In contrast to lossless coding, information is lost in the
lossy coding process. This implies that the quantizer Q is non-
invertible, and therefore ∃w : D(w, q) 
= 0. An example of a
distortion measure may be the mean-squared error D(w, q) =
||w − q||22, but we stress that other measures can be considered
as well (which will become apparent in Section III).

The infimum of the rate-distortion objective (1) ∀λ is re-
ferred to as the rate-distortion function in the source coding
literature [16]. It represents the fundamental bound on the per-
formance of lossy source coding algorithms. However, as we

have already discussed above, finding the most optimal code
that follows the rate-distortion function is most often NP-hard,
and can be calculated only for very few types and/or special
cases of input sources. Therefore, in practice, we usually relax
the problem until we formalize an objective that can be solved
in a feasible manner.

Firstly, we fix the binarization mapB by selecting a particular
(universal) lossless code and condition the minimization of (1)
on it. That is, now we only ask for the quantizer Q, along
with its reconstruction values Q−1, that minimize the respective
rate-distortion objective. Secondly, we will always assume that
we encode an n-long 1-dimensional random process. Then,
objective (1) simplifies to:

Given a lossless code (B,B−1), find (Q,Q−1)∗ that

(Q,Q−1)∗ = arg min
(Q,Q−1)

EP (wj) [D(wj , qj) + λLQ(bj)] , (4)

∀j ∈ {0, . . ., n− 1}, where qi ∈ Qs := {q0, q1, . . ., qK−1} ⊂
R and K = |Qs| < |Ws| = n.

For instance, if we choose B such that it assigns a binary
representation of fixed-length to all wj , then the minimizer of
(4) can be found by applying the k-Means algorithm.

The minimizers of (4) are called scalar quantizers, since they
measure the distortion independently for each input sample.
In contrast, vector quantizers measure the distortion in the
respective vector space by grouping a sequence of input samples
together. It is well known that the infimum of scalar codes are
fundamentally more redundant than vector quantizers, however,
due to the associated complexity of vector quantizers it is more
common to apply scalar quantizers in practice. Moreover, the
inherent redundancy of scalar quantizers is negligible for most
practical applications [16].

We stress that although the distortion in (4) is measured
independently for each sample wj , the binarization bj (and
consequently the respective code-length) can still depend on the
other samples by taking correlations into account.

1) Scalar Lloyd Algorithm: An example of an algorithm that
finds a local optimum is the Lloyd algorithm. It approximates
the average code-length of the quantized samples qj = (Q−1 ◦
Q)(wj) with the entropy of their empirical probability mass
distribution (EPMD). Thus, it substitutes the code-length in (4)
by LC(bj) = − log2 PEPMD(qj) and applies a greedy algorithm
in order to find the most optimal quantizer Q and quantization
pointsQ−1 that minimize the respective objective. A pseudocode
can be seen in the appendix.

2) CABAC-Based RD-Quantization: If we are given a set
of quantization points Qs and select CABAC as our universal
lossless code, then we can trivially minimize (4) by sequentially
quantizing the input samples. In the video coding standards the
set of quantization points are predefined by the particular choice
of quantization strength λ [13]. However, in the context of neural
network compression we do not know of a good relationship
between the quantization strength and the set of quantization
points. In the next Section III we describe how we tackled this
problem.
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D. Model Compression vs. Source Coding

So far we have reviewed some fundamental results of source
coding theory. However, in this work, we are rather interested in
the general topic of model compression. There is a fundamental
difference between both paradigms. Namely, now we are more
interested in the predictive performance of the resulting quan-
tized model rather than the distance between the quantized and
original parameters. We will formalize the general model com-
pression paradigm for the supervised learning setting. However,
the problem can be analogously formulated for other learning
tasks.

Firstly, we assume that we are given only one model sample
with n real-valued weight parameters (thus, here the data to be
coded is equivalent to the ones discussed above). In addition,
we assume a universal coding setting, where the decoder has
no prior knowledge regarding the distribution of the parameter
values. We argue that this simulates most real world scenarios.

Let now (x, y) ∈ D be a set of data samples related to the
learning task. Let further y′ ∼ P (y′|x,w) denote the approx-
imate posterior of the data, parameterized by w ∈ Rn. For
instance, P (y′|x,w) may be a trained neural network model
with parametersw. Finally, letB be a chosen and fixed universal
lossless code. Then, we aim to find a quantizerQ∗ that minimizes

(Q,Q−1)∗ = arg min
(Q,Q−1)

∑

(x,y)∈D

L(y, y′′) + λLQ(b) (5)

with y′′ ∼ P (y′′|x, q) being outputs of the quantized model q =
(Q−1 ◦Q)(w) and b = (B ◦Q)(w).

The first term in (5) expresses the minimization of the usual
learning task of interest, whereas the second term explicitly ex-
presses the code-length of the model. This minimization objec-
tive is well motivated from the Minimum Description Principle
(MDL) [19]. However, finding the minimum of (5) is also most
often NP-hard. This motivates further approximations where,
as a result, one can directly apply techniques from the source
coding literature in order to minimize the desired objective.

1) Relaxation of the model compression problem into a
source coding problem: We now may further assume that the
given unquantized model has been pre-trained on the desired task
and that it reaches satisfactory accuracies. Then, it is reasonable
to replace the first term in (5) by the KL-Divergence between
the unquantized model P (y′|x,w) and the respective quantized
model P (y′′|x, q). That is, now we aim to quantize our model
such that its output distribution does not differ too much from
its original version.

Furthermore, if we assume that the output distributions do
not differ too much from each other, then we can approximate
the KL-Divergence with the Fisher Information Matrix (FIM).
Concretely,

EPD
[DKL(y

′′ || y′)] = δwFδwT +O(δw2) (6)

with δw = q − w and

F := EPD
EP (y′|x,w)

[
∂w logP (y′|x,w)(∂w logP (y′|x,w))T ]

Then, by substituting (6) in (5) we get the following mini-
mization objective

(Q,Q−1)∗ = min
(Q,Q−1)

(q − w)F (q − w)T + λLQ(b) (7)

Objective (7) now follows the same paradigm as the usual
source coding problem. However, with the peculiarity that now
D(w, q) (approximately) measures the distortion of w and q
in the space of output distributions instead the euclidian space.
The advantage of the rate-distortion objective (7) is that, after the
FIM has been calculated, it can be solved by applying common
techniques from the source coding literature, such as the scalar
Lloyd algorithm.

However, minimizing (7) as well as estimating the FIM for
deep neural networks usually requires considerable computa-
tional resources, and is most often infeasible in practical scenar-
ios. Therefore, we usually consider only the diagonal elements
of the FIM (FIM-diagonals), which can be efficiently estimated
(see appendix). As a result, (7) simplifies to

(Q,Q−1)∗ = arg min
(Q,Q−1)

Fi(qi − wi)
2 + λLQ(b) (8)

∀i ∈ {0, . . ., n− 1}, which can be feasibly solved.
In the next section we will give a thorough description of our

proposed coder. Its design complies with all desired properties
that a coder for neural network compression should have.

III. DEEPCABAC

In light of the discussion introduced in the previous section,
we can highlight a set of desiderata that a coder for neural
network compression should have.
� Minimal redundancy: State-of-the-art deep neural net-

works usually contain millions of parameters. Thus any
type of redundancy in the weight parameters may imply
several additional MB being stored. Hence, the code should
output a binary representation with minimal redundancy
per weight element.

� Universality: The code should be applicable to any type
of incoming neural networks, without having to know
their distribution a priori. Hence, the code should entail
a mechanism that allows it to adapt to a rich family of
possible parameter distributions.

� High coding efficiency: The computational complexity of
encoding/decoding should be minimal. In particular, the
throughput of the decoder should be very high if perform-
ing inference on the compressed representation is desired.

� Configurable error vs. compression strength: The coder
should have a hyperparameter that controls the trade-off be-
tween the compression strength and the incurred prediction
error.

� High data efficiency: Minimizing (5) implies access to
data. Hence, it is desirable that the coder finds a (local)
solution with the least amount of data samples possible.
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Fig. 3. Sketch of the DeepCABAC compression procedure. Firstly, Deep-
CABAC scans the weight parameters of each layer of the network in row-major
order. Then, it selects a particular hyperparameter β that will define the set
of quantization points. Subsequently, it applies a quantizer on to the weight
values that minimizes the respective weighted rate-distortion function (9).
Then, it compresses the quantized parameters by applying our adapted version
of CABAC. Finally, it reconstructs the network and measures the respective
accuracy of it. The process is repeated for different hyperparameters β until the
desired trade-off between accuracy and size of the network is achieved.

A. DeepCABAC’s Coding Procedure

We propose a coding algorithm that satisfies all the above
properties. We named it DeepCABAC, since its based on ap-
plying CABAC on the networks quantized weight parameters.
Figure 3 shows the respective compression scheme. It performs
the following steps:

1) It extracts the weight parameters of the neural networks
layer-by-layer in row-major order.1

2) Then, it selects a particular value β which defines the set
of quantization points.

3) Subsequently, it quantizes the weight values by minimiz-
ing a weighted rate-distortion function of the form (8),
which implicitly takes the impact of quantization on the
accuracy of the network into account.

4) Then, it compresses them by applying our adapted version
of CABAC.

5) Finally, it reconstructs the network and evaluates the pre-
diction performance of the quantized model.

6) The process is repeated for a set of hyperparameters β,
until the desired accuracy-vs.-size trade-off is achieved.

This approach has several advantageous properties. Firstly, it
applies CABAC to the quantized parameters and therefore we
ensure that the code satisfies the desiderata 1–3. Secondly, by
conducting the compression for a set of hyperparameters for
the quantizer we can select the desired pareto-optimal solutions
of the accuracy vs. bit-size plane, thus satisfying property 4.
Finally, since only evaluation of the model is required in the
process, a significantly lower amount of data samples are re-
quired for the compression process than usually employed for
training.

In the following we will explain in more detail the different
components of DeepCABAC. The source code for encoding

1Thus, it assumes a matrix form where the parameters are scanned from
left-to-right, top-to-bottom.

Fig. 4. Distribution of the weight matrix of the last layer of VGG16 (trained
on ImageNet) after uniform quantization over the range of values. In red is
CABAC’s (possible) estimation of the distribution. The first n+ 2 bits allow
to adapt to any type of shape around 0 since they are encoded with regards to
a context model. The remainder can only approximate the shape by a step-like
distribution, since they are encoded with an Exponential-Golomb where the
fixed-length parts are encoded without a context model.

and decoding can be found at https://github.com/fraunhoferhhi/
DeepCABAC.

B. Lossless Coder of DeepCABAC

Consider the weight distribution of the last fully-connected
layer of the trained VGG16 model displayed in Figure 4. As
we can see, there is one peak near 0 and the distribution is
asymmetric and monotonically decreasing on both sides. In
our experience, all layers we have studied so far have weight
distributions with similar properties. Hence, in order to accom-
modate to this type of distributions, we adopted the following
binarization procedure.

Given a quantized weight tensor in its matrix form,2 Deep-
CABAC scans the weight elements in row-major order and
binarizes them as follows:

1) The first bit (or bin), SigFlag, determines if the weight
element is a significant element or not. That is, it indicates
if the weight value is 0 or not. This bin is then encoded
using a binary arithmetic coder, according to its respective
context model (color-coded in grey). The context model is
initially set to 0.5 (thus, 50% probability that a weight el-
ement is 0 or not), but will automatically be adapted to the
local statistics of the weight parameters as DeepCABAC
encodes more elements.

2) Then, if the element is not 0, the sign bin or SignFlag is
analogously encoded, according to its respective context
model.

2For fully-connected layers this is trivial. For convolutional layers we con-
verted them into their respective matrix form according to [20]

https://github.com/fraunhoferhhi/DeepCABAC
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Fig. 5. DeepCABAC binarization of neural networks. It encodes each weight
element by performing the following steps: 1) encodes a bit (or bin) named
SigFlag which determines if the weight is a significant element or not (if its 0
or not). 2) If its not 0, then the sign bin, SignFlag, is encoded. 3) Subsequently,
a series of bins are encoded, which indicate if the weight value is greater equal
than 1, 2, . . ., n ∈ N (the so called AbsGr(n)Flag). 4) Finally, the remainder is
encoded. The gray bins (also named regular bins) represent bits that are encoded
using an arithmetic coder according to a context model. The other bins, the so
called bypass bins, are encoded in fixed-point form. For instance, in the above
diagram n = 1, and thus 1 → 100, −4 → 111101 or 7 → 10111010.

3) Subsequently, a series of bins are analogously encoded,
which determine if the element is greater than1, 2, . . ., n ∈
N (hence AbsGr(n)Flags). The number n becomes a
hyperparameter for the encoder.

4) Finally, the remainder is encoded using an Exponential-
Golomb3 code [21], where each bin of the unary part
are also encoded relative to their context-models. Only
the fixed-length part of the code are not encoded using a
context-model (color-coded in blue).

For instance, assume that n = 1, then the integer −4 would
be represented as 111101, or the 7 as 10111010. Figure 5 depicts
an example scheme of the binarization procedure.

The first three parts of the binarization scheme empower
CABAC to adapt its probability estimates to any shape distri-
bution around the value 0 and, therefore, to encode the most
frequent values with minimal redundancy. For the remainder
values, we opted for the Exponential-Golomb code since it
automatically assigns smaller code-lengths to smaller integer
values. However, in order to further enhance its adaptability, we
also encode its unary part with the help of context models. We
left the fixed-length part of the Golomb code without context
models, meaning that we approximate the distribution of those
values by a uniform distribution (see Fig. 4). We argue that this
is reasonable since usually the distribution of large numbers
become more and more flat and it comes with the direct benefit
of increasing the efficiency of the coder.

C. Lossy Coder of DeepCABAC

After establishing CABAC as our choice of universal lossless
code, now we aim to find the optimal quantizer that minimizes
the objective stated in (5) (Section II-D). To recall, this involves
the optimization of two components:
� Assignment: finding the quantizer Q that optimally as-

signs the quantization point (or cluster centre) to each
weight parameter,

3To recall, the Exponential-Golomb code encodes a positive integer 2k < i ≤
2k+1 by firstly encoding the exponent k using an unary code and subsequently
the remainder r = i− 2k in fixed-point representation.

� Quant. points: finding the optimal quantization point val-
ues qj = (Q−1 ◦Q)(wj).

Since neural networks usually rely on scalable, gradient-based
minimization techniques in order to optimize their loss function,
finding the quantizers that solve (5) becomes infeasible in most
cases since Q is a non-differentiable map. Therefore, we opted
for a simpler approach.

Firstly, we decouple the assignment map Q and the quanti-
zation points Q−1 from each other and optimize them indepen-
dently. The quantization points then become hyperparameters
for the quantizer, and their values are selected such that they
minimize the loss function directly. This separation between Q
and Q−1 was empirically motivated, since we discovered that
the networks performance is significantly more sensitive to the
choice ofQ−1 than to the assignmentQ. We discuss this in more
detail in the experimental section.

1) The Quantization Points: Since finding the correct map
Q−1 for a large number of points can be very complex, we
constrain them to be equidistant to each other with a specific
step-size Δ. That is, each point qk can be rewritten as to be
qk = ΔIk with Ik ∈ Z. This does not only considerably simplify
the problem, but it does also encourage fixed-point representa-
tions which can be exploited in order to perform inference with
lower complexity.4

2) The Assignment: Hence, the quantizer has two config-
urable hyperparameters β = (Δ, λ), the former defining the set
of quantization points and the latter the quantization strength.
Once a particular tuple is given, the quantizerQβ will then assign
each weight parameterwi to its corresponding quantization point
qk by minimizing the weighted rate-distortion function

Qβ(wi) = k∗ = arg min
k

Fi(wi − qk)
2 + λLik (9)

∀i ∈ {0, . . ., n− 1}, where Lik is the code-length of the quan-
tization point qk at the weight wi as estimated by CABAC.

As previously mentioned, we perform a grid-search algorithm
over the hyperparameters Δ and λ in order to find the quantizer
configuration that achieves the desired accuracy vs. bit-size
trade-off. However, for that we need to define a predefined set
of candidate hyperparameters to look for. In this work we con-
sidered two approaches for finding the set of step-sizes, which
we denote as DeepCABAC-version1 (DC-v1) and DeepCABAC-
version2 (DC-v2).

3) DeepCABAC-Version1 (DC-v1): In DC-v1 we firstly es-
timate the diagonals of the FIM by applying scalable bayesian
techniques. Concretely, we parametrize the network with a
fully-factorized gaussian posterior and minimize the variational
objective proposed in [22]. As a result, we obtain a mean μj and
a standard deviation σj for each parameter, where the former
can be interpreted as its (new) value (thus wi → μi) and the
latter as a measure of their “robustness” against perturbations.
Therefore, we simply replaced Fi = 1/σ2

i in (9). This is also
well motivated theoretically since [23] showed that the vari-
ance of the parameters approximate the diagonals of the FIM
for a similar variational objective. We also provide a more

4[Online]. Available: https://www.tensorflow.org/lite

https://www.tensorflow.org/lite
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thorough discussion and a precise connection between them in
the appendix.

After the FIM-diagonals have been estimated, we define the
set of considered step-sizes as follows:

qk = ΔIk, Δ =
2|wmax|

2|wmax|
σmin

+ S
, S, Ik ∈ Z (10)

where σmin is the smallest standard deviation and wmax the
parameter with highest magnitude value.S is then the quantizers
hyperparameter, which controls the “coarseness” of the quanti-
zation points. By selectingΔ in such a manner we ensure that the
quantization points lie within the range of the standard deviation
of each weight parameter, in particular for values S ≥ 0. Hence,
we selected S to be S ∈ {0, 1, . . ., 256}.

One advantage of this approach is that we can have one global
hyperparameter S for the entire network, but each layer will
automatically attain a different value for its step-size if we select
one σmin per layer. Thus, with this approach we can adapt the
step-size to the layers sensitivity to perturbations. Moreover,
the quantization will also take the sensitivity of each single
parameter into account.

4) DeepCABAC-Version2 (DC-v2): Estimating the diago-
nals of the FIM can still be computationally expensive since
it requires the application of the backpropagation algorithm for
several iterations in order to minimize the variational objective.
Moreover, it only offers an approximation of the robustness
of each parameter, and can therefore sometimes be misleading
and limit the potential compression gains that can be achieved.
Therefore, due to simplicity and complexity reasons, we also
considered to directly try to find a good set of candidates Δ ∈
{Δ0, . . .,Δm−1} for the entire network. We do so by applying a
first round of the grid-search algorithm while applying a nearest-
neighbor quantization scheme (that is, for λ = 0). This allows us
to identify the range of step-sizes that do not considerably harm
the networks accuracy when applying the simplest quantization
procedure. Then, we quantize the parameters as in eq. (9), but
without the diagonals of the FIM (thus, Fj = 1 ∀j).

Under a limited computational budget, this approach has the
advantage that we can directly search for a more optimal set of
step-sizes Δ since we spare the computational complexity of
having to estimate the FIM-diagonals. However, since DC-v2
considers only one global step-size for the entire network, it
cannot adapt to the different sensitivities of the layers.

IV. RELATED WORK

There has been a plethora of work focusing on the topic of neu-
ral network compression [9], [10]. When discussing about differ-
ent compression techniques it is important to also consider their
respective complexity, since different real-world scenarios may
constrain their applicability. Again, we are not only interested
in attaining high compression performance, but also in finding
practical viable solutions. This becomes very relevant at the
time of benchmarking these algorithms, since only methods that
belong to the same category ought to be compared against each
other. Following this line of thought, [24] proposed a four-level
categorisation paradigm in which factors such as whether or not
a method requires data, whether or not a method requires error

backpropagation on the quantized model, and whether or not a
method is generally applicable for any architecture (universality)
are taken into account. In a similar spirit, we also considered
low data as well as low coding complexity as desired properties
in the previous Section III. Nevertheless, in the following we
will classify different compression techniques based not only on
their complexity, but also on important inherent properties that
the methods share. Concretely, we classify methods into two
main groups, lossy vs. lossless methods. Inside the lossy group
we further distinguish between methods that require training vs.
methods that do not, whereas in the lossless group we distinguish
between methods that require decoding for performing inference
vs. methods that do not. Notice, that the MPEG group on neural
network compression classifies compression techniques in a
similar manner [25], [26].

A. Lossy Neural Network Compression

1) Trained Scalar Quantization (Require Training): These
are methods that aim to minimize the model compression ob-
jective (5) by applying training algorithms that learn the opti-
mal quantization map and reconstruction values, most often in
a simultaneous fashion. Inter alia, this includes sparsification
methods [22], [27]–[29] which try to minimize the L0-norm of
the networks parameters. Others attempted to find optimal binary
or ternary weighted networks [30], [31], or a more general set
of (locally) optimal quantizers [32]–[34].

These methods are able to attain very high compression
ratios since they are allowed to entirely change the underlying
distribution of the weight parameters during the compression
procedure. However, it comes at the cost of requiring access to a
large training data set and high computational resources in order
to apply the method.

2) Non-Trained Scalar Quantization Methods (do not Re-
quire Training): Another line of work have focused on implic-
itly minimizing (5). They also rely on distance measures for
quantizing the networks parameters [35], [36]. In fact, these
methods can be seen as special cases of (8), in that they either
use different approximations of the FIM-diagonals or apply
other minimization algorithms. To the best of our knowledge,
mainly two quantizers are widely applied by the community,
either the scalar uniform quantizers or the weighted scalar
Lloyd algorithm. The former basically consist on spreading
K ∈ N quantization points separated equidistantly over the
range of parameter values, and then applying nearest-neighbor
quantization [32], [33], [35]. The latter consists of applying
the scalar Lloyd algorithm in order to find the most optimal
quantizer that minimizes a weighted rate-distortion objective
(8). In particular, [35] considers the diagonal elements of the
empirical average of the Hessian of the loss function, which has
a close connections to the FIM-diagonals (see appendix for a
comprehensive discussion).

Applying quantization methods that do not rely on retrain-
ing during quantization are significantly less computationally
expensive and do not require access to training data at the
time of quantization.5 Therefore, these methods can be applied

5Although sometimes they may require access to some amount of data in
order to estimate the FIM-diagonals or the Hessian-diagonals.
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to a much broader set of real-world scenarios, including cases
where access to training data is, e.g., prohibited (for instance, in
medical applications). But their compression gains are heavily
limited by the networks underlying parameter distribution, since
they rely on a distance measure for quantization. Moreover, as
already mentioned, most of these methods do only implicitly
take the impact on to the accuracy of the network into account,
thus at least a one-time evaluation is required in order to as-
sess the resulting prediction performance of the model after
quantization.

B. Lossless Neural Network Compression

In the field of lossless network compression we are given
an already quantized model and we want to apply a universal
lossless code to its parameters in order to maximally compress
it. In the following we describe some of the most popular
lossless compression algorithms that are applied to the networks
parameters.

1) Fixed-Length Numerical Representations and Com-
pressed Matrix Formats (do not Require Decoding for Infer-
ence): One line of work try to reduce the bit-length repre-
sentation of the parameter values after quantization [30], [31],
[37]–[39]. They usually have the advantage of directly reducing
the complexity for performing inference. However, it results in
a highly redundant network representation, greatly limiting the
attainable compression ratios.

Another line of work apply compressed matrix representa-
tions, e.g., Compressed Sparse Row (CSR) representation. These
matrix data structures do not only offer higher compression
gains, but also an efficient execution of the associated dot product
algorithm. Similarly, [11] proposed two novel matrix represen-
tations, the Compressed Entropy Row (CER) and Compressed
Shared Elements Row (CSER) representations, that are provably
more optimal than the CSR with regards to both, compression
and execution efficiency when the networks parameters have
low entropy statistics.

However, these matrix representations are also redundant
in that they do not approach the reachable entropy limit (3)
(Section II-A). [32] attempted to extract some of the redundan-
cies entailed in the CSR representations by applying a scalar
Huffman code to its numerical arrays. However, this has again
the same fundamental limitations that come by applying the
scalar Huffman code.

2) Entropy Coders (Require Decoding for Inference): Even
though decoding is necessary for inference, applying entropy
coders to the networks parameters may still be beneficial in many
real-world applications (e.g., in order to reduce parameter size
on disk or in federated learning scenarios where parameters are
send through a communication channel with limited capacity).
Moreover, in inference complexity may still be reduced even if
decoding is performed during run-time (see appendix for a more
thorough discussion).

Although lossless compression of neural networks parameters
is entirely equivalent to the usual lossless source coding setting
discussed in Sections II-A and II-B, there has not been as much
work studying the impact of applying state-of-the-art entropy
coding techniques to the networks parameters. In fact, to the best

of our knowledge, only the scalar Huffman code and the bzip2
entropy coder have been applied so far in the literature [35], [36].
However, as we have already discussed in Section II-A, these
codes have several disadvantages compared to other state-of-the-
art lossless codes such as arithmetic codes. Probably the most
prominent one is that the scalar Huffman code is suboptimal
in that it incurs up to 1 bit of redundancy per parameter being
encoded. This can be quite significant for large networks with
millions of parameters. For instance, VGG16 [40] contains 138
million parameters, meaning that the binary representation of
any quantized version of it may have up to 17 MB of redundancy
if we encode it using the scalar Huffman code.

C. Compression Pipelines

Among all different proposed approaches for deep neural
network compression there is one paradigm that stands out in
that very high compression gain can be achieved with it [22],
[32]–[34]. Namely, it consist on applying four different com-
pression stages:

1) Sparsification: Firstly, the networks are maximally spar-
sified by applying a trained sparsification technique.

2) Quantization: Then, the non-zero elements are quantized
by applying one of the non-trained quantization tech-
niques.

3) Fine-tuning: Subsequently, the quantization points are
fine-tuned in order to recover the accuracy loss incurred
by the quantization procedure.

4) Lossless compression: Finally, the quantized values are
encoded using a lossless coding algorithm.

Hence, DeepCABAC is designed to enhance points 2 and
4. As we will see in the next section, DeepCABAC is able to
considerably boost the attainable compression gains, surpassing
previously proposed methods for steps 2 and 4.

V. EXPERIMENTS

In this section we benchmark DeepCABAC and compare it to
other compression algorithms. We also perform further ablation
studies, with the purpose to shed light into how different com-
ponents involved in DeepCABAC impact the final compression
performance.

A. General Compression Benchmark

Here we benchmark the end-to-end compression gains at-
tained by applying DeepCABAC. In order to assess its uni-
versality, we applied it to a wide set of pretrained network
architectures, trained on different data sets. Concretely, we
used the VGG16, ResNet50 and MobileNet-v1 architectures,
trained on the ImageNet dataset, a smaller version of the VGG16
architecture trained on the CIFAR10 dataset,6 which we denote
as Small-VGG16, and the LeNet-300-100 and LeNet5 trained
on MNIST.

We compare the two versions of DeepCABAC, DC-v1 and
DC-v2, against previously proposed compression schemes.
Again, since DeepCABAC is based on quantization and entropy

6[Online]. Available: http://torch.ch/blog/2015/07/30/cifar.html

http://torch.ch/blog/2015/07/30/cifar.html
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coding and does therefore not rely on retraining, it is important
that we do only compare it against compression techniques
that fall into the same category. These correspond to methods
described in the related work Sections IV-A2 and IV-B2. That is,
we benchmark DeepCABAC against the nearest-neighbor quan-
tization scheme with uniformly separated quantization points
(a.k.a. uniform quantization) and the weighted-Lloyd algorithm,
as they are the two most widely applied quantization techniques.
Furthermore, we apply the scalar Huffman code, the entropy
coder proposed by [32] which we denote CSR-Huffman, and the
bzip2 entropy coder, as they are as well some of the most com-
monly applied lossless compression techniques. See appendix
for a more detailed explanation of the respective implementa-
tions.

Since the attainable compression gains are highly conditioned
by the underlying distribution of the neural networks parameters,
we also applied these methods to pre-sparsified versions of the
above mentioned pretrained models. For that, we employed the
variational sparsification algorithm [22] to all networks, except
for the VGG16 and ResNet50 due to the high computational
complexity demanded by the method. For the latter two, we
applied the iterative-pruning approach proposed by [28]. The
advantage of employing [22] is that we obtain an estimation
of the FIM-diagonals as a byproduct of the methods output,
thus being able to directly apply DC-v1 and the weighted Lloyd
algorithm after the sparsification process finished. In the former
cases (pretrained but non-sparse models), we estimated the
FIM-diagonals by minimizing the same variational objective
proposed in [22], however, while fixing the parameter values
(thus without inducing any sparsity in the process). We would
like to refer to the appendix for a more comprehensive explana-
tion on the respective sparsification method as well as a thorough
discussion on the estimation of the FIM-diagonals.7

Table I shows the results. It reports the attained compression
ratios as calculated by

CR =

∑p
i=0 Cs(Wi)

32n
(×100%)

where Wi is a particular parameter tensor of the network (e.g.,
2 d convolutional weight tensor), Cs(Wi) denotes its size in bits
(e.g., if Wi is uncompressed then Cs(Wi) = 32ni, where ni is
its total number of elements), p the total number of parameter
tensors present in the network and n is the total number of
parameter elements of the network. Thus, we calculate the ratio
between the size of the compressed network (which involves the
sum of the compressed and uncompressed parameter tensors)
and the original neural network.

As one can see, DeepCABAC is able to attain higher com-
pression gains across all networks (with the exception of the
last model) as compared to the previously proposed coders. It
is able to compress the pretrained by x18.9 and the sparsified
models by x50.6 on average. In contrast, the Lloyd algorithm
compresses the models by x13.6 and x47.3 on average, whereas
uniform quantization only achieves x5.7 and x25.0 compression

7Although a better compression ratio was attained, we were not able to get an
accuracy in the ±0.5 percentage point range of the original accuracy. Therefore,
this result shall not be considered as the best result.

TABLE I
COMPRESSION RATIOS ACHIEVED WITHIN AN ACCURACY LOSS OF ± 0.5%

FROM THE ORIGINAL ACCURACY WHEN APPLYING DIFFERENT CODING

METHODS. DC-V1 AND DC-V2 DENOTE THE TWO VERSIONS OF

DEEPCABAC, WHEREAS LLOYD DENOTES THE WEIGHTED LLOYD

ALGORITHM AND UNIFORM THE NEAREST-NEIGHBOR QUANTIZATION

SCHEME WITH EQUIDISTANT QUANTIZATION POINTS. FOR THE LATTER

TWO, WE REPORT THE BEST COMPRESSION RESULTS ATTAINED AFTER

APPLYING SCALAR HUFFMAN, CSR-HUFFMAN [32] AND THE BZIP2 LOSSLESS

CODING ALGORITHMS ON TO THE QUANTIZED NETWORKS. IN PARENTHESIS

ARE THE RESULTING TOP-1 ACCURACIES AND IN BRACKETS THE SPARSITY

RATIOS ACHIEVED AS MEASURED BY THE NUMBER OF NON-ZERO

PARAMETERS DIVIDED BY THE TOTAL NUMBER OF PARAMETERS

gains. In addition, notice how DeepCABAC attains higher com-
pression ratios than state-of-the-art 8-bit quantization methods
of MobileNet-v1 (21.40% < 25%). In contrast to [24], we attain
similar accuracies at higher compression ratios without applying
any a posteriori optimization such as bias correction. However,
we stress that the later technique is orthogonal to DeepCABAC,
and it can also be applied in order to further reduce the accuracy
loss. Similarly, notice that [32] reports a compression ratio of
2.05% at a top-1 accuracy of 68.83% of the VGG16 model,
whereas we were able to attain a compression ratio of 1.58% at
an accuracy of 69.43%. To recall, Deep Compression consists
on applying the sparsification technique [28], then the k-Means
algorithm followed by the CSR-Huffman entropy coder and,
finally, fine-tuning the cluster centers to the loss function. In
contrast, we were able to attain higher compression performance
at higher accuracies by simply applying [28] + DeepCABAC,
without having to perform any a posterirori fine-tuning of the
quantization points.
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TABLE II
COMPARISON OF ATTAINED COMPRESSION RATIOS WITH RELATED

LITERATURE. VGG16 RESULTS ARE FROM [32], MOBILENET-V1
FROM [24], MIXNET FROM 1ST PLACE SUBMISSION TO

MICRONET-CHALLENGE-19, BERT FROM [43] AND YOLO-V3
FROM [41]. DEEPCABAC ATTAINS SIMILAR (OR BETTER) RESULTS

WITHOUT THE NECESSITY OF APPLYING EXPENSIVE OPTIMIZATIONS

SUCH AS DISTILLATION, BIAS CORRECTION OR FINE-TUNING. THE

TOP-1 ACCURACIES, F1- AND MAP-SCORES ARE RESPECTIVELY IN

PARENTHESIS, AND THE COMPRESSION RATIOS OTHERWISE. ALL

VALUES ARE MEASURED IN PERCENTAGE

Furthermore, we also applied DeepCABAC to YOLO-v3 [41]
and BERT [42] which are state-of-the-art models for object
detection and natural language processing tasks respectively
(see Table II and the supplement for an extensive report of the
results). In short, these models can be compressed down to 10%
of their original size while negligibly affecting their prediction
performance. In particular, we were able to attain a compression
ratio of 9% at a F1-score of 86% on the BERT model, which
is competitive with the reported results from the literature [43]
(compression ratio of 11% at a F1-score of 89%). However, we
remark that [43] attained these results after applying expensive
retraining/fine-tuning procedures, plus a compression technique
known as distilling [44] which modifies the network architec-
ture. In contrast, DeepCABAC achieved the above results by
simply applying quantization plus entropy coding techniques.

Finally, we also compressed a sparsified version of MixNet8

[45], which is a state-of-the-art model for ImageNet classifica-
tion designed for efficient use on embedded devices. We were
able to compress the network by x12.7 from its original size,
attaining as such a network that achieves 75.03% top-1 accuracy
and needs only 1.31 MB of storage requirements.

We summarise all above results and their comparison with the
related literature in Table II. They corroborate that DeepCABAC
serves as a powerful universal quantizer + entropy coder for
neural networks.

B. Ablation Study: Assignment vs. Quantization Points

To recall, lossy quantization involves two types of map-
pings, the quantization map Q where parameter values are
assigned to quantization points (or equivalently integers), and the

8[Online]. Available: https://github.com/wps712/MicroNetChallenge

TABLE III
AVERAGE BIT-SIZES PER PARAMETER FOR THE SMALL-VGG16 NETWORK

AFTER APPLYING DIFFERENT QUANTIZERS. DC-V1 AND DC-V2 DENOTE THE

TWO VERSIONS OF DEEPCABAC, WHEREAS LLOYD DENOTES THE WEIGHTED

LLOYD ALGORITHM AND UNIFORM CORRESPONDS TO THE NEAREST-
NEIGHBOR QUANTIZATION. WE CHOSE THE NETWORKS THAT RESIDED

WITHIN THE ±0.1 PERCENTAGE POINT RANGE FROM THE ACCURACY

ATTAINED AFTER APPLYING A UNIFORM QUANTIZER. IN THE CASE OF

THE LLOYD AND UNIFORM QUANTIZERS, THE SIZE OF THE QUANTIZED

NETWORKS WERE MEASURED WITH REGARDS TO THE ENTROPY OF

THEIR EMPIRICAL PROBABILITY MASS DISTRIBUTION. IN CONTRAST,
WE MEASURED THE EXPLICIT AVERAGE BIT-SIZE PER PARAMETER

IN DC-V1 AND DC-V2

reconstruction map Q−1 which assigns a value to each quanti-
zation point. In DeepCABAC the former is influenced by the
Lagrangian multiplier λ which controls the trade-off between
the bit-size and the distortion incurred by the quantization, and
the latter by the quantization step-size Δ which controls the
“coarseness” of the quantization points. Both hyperparameters
influence the resulting accuracy and compression ratio of the
network. Hence, the following experiment aims to assess their
respective impact.

Table III shows the average bitsizes attained after applying
different quantizers to the Small-VGG16 network at different
step-sizes but fixed accuracies (within a range of ±0.1% from
each other). Moreover, the average bitsizes that result from
applying the Lloyd and the uniform quantizers are measured in
terms of first-order entropy values. It corresponds to the entropy
of the empirical probability mass distribution, which marks the
theoretical compression limit for all entropy coders that were
considered in conjunction with these quantizers (e.g., scalar
Huffman code).9 Thus, the difference in compression perfor-
mance at a fixed step-size do now only reflect the difference
in “assignment-decisions” made by the respective quantizer.
In other words, each row in Table III assess the clustering
performance of each quantizer.

There are two main insights we attain from Table II, namely
in the regime of strong quantizations (or big step-sizes):

1) The distortion measures do not seem to reflect the actual
accuracy loss that will result from quantization.

2) The simple, nearest-neighbour quantization scheme seems
to make (almost) as good assignment decisions as rate-
distortion based quantizers.

9Other entropy coders that take correlations between the parameters into
account, such as CABAC, may attain lower values (as can be seen in Tables II
and III).

https://github.com/wps712/MicroNetChallenge
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The first insight may be due to the approximation nature of the
distortion measures. Namely, since they do only represent local
approximations to the incurred accuracy, they may very well be
inaccurate at strong perturbations. Indeed, from Table III we can
also see that as the step-sizes become smaller, rate-distortion
based quantizers make better assignment decisions than the
uniform quantizers.10 In particular, we see that DeepCABAC-
v1 outperforms DeepCABAC-v2 at smallest step-size, which
indicates that the Fisher-weighted rate-distortion cost func-
tion serves as a better approximation of the actual MDL-loss
function than the non-weighted rate-distortion cost function.
Therefore, in the high rate regime (low step-sizes), we can
see that the lossy and lossless components are closely coupled
together.

The second insight may be considered as a more intriguing re-
sult. Namely, we see that in the strong quantization regime (high
step-size values) the entropy of the uniform quantization scheme
is lower than of the Lloyd quantizer. Moreover, it comes closer
to DeepCABAC’s compression performance as we increase
the step-size. Thus, the simple nearest-neighbour quantization
scheme seems to be a surprisingly good quantizer in terms of
compression-vs.-accuracy performance for large quantization
step-sizes. Notice, that [35] also reports a similar phenomena.
This may be due to rate-distortion quantizers inducing a biased
error that affects stronger the accuracy of the network. However,
it is not entirely trivial why this is the case, and as of today it
still remains an open question.

In conclusion, it seems that the compression performance is
more strongly affected by the particular choice of the quantiza-
tion step-sizeΔ. These insights motivated the design of DC-v2 in
the first place, since it is able to explore a larger set of step-sizes
for the best accuracy vs. bit-size trade-offs. Indeed, as Table I
from the previous experiment shows, DC-v2 attains similar or
even higher compression gains than DC-v1, in particular in the
case of pretrained networks.

C. Ablation Study: Lossless Coding

In our last experiment we aimed to assess the efficiency of the
considered universal lossless coders. To recall, there are two es-
sential components that influence its compression performance
of a universal entropy coder:

1) A probability estimate of the data to be coded
2) A mapper that assigns a binary string to the data with

minimal redundancy.
For this experiment we quantized the Small-VGG network

using three different quantizers, and subsequently compressed
each of them using different universal lossless coders. More
concretely, we quantized the model by applying DC-v2, the
weighted Lloyd algorithm and the nearest-neighbor quantizer.
We then applied the scalar Huffman code, the CSR-Huffman
code [32], the bzip2 algorithm, and the CABAC-component
of DeepCABAC. Moreover, we also calculated the first-order
entropy of the quantized networks, which measures the entropy

10The fact that DeepCABAC performs worse than the Lloyd algorithm for
the smaller step-size lies in the algorithmic design choice rather than the rate-
distortion decision.

TABLE IV
COMPRESSION RATIOS ACHIEVED FROM LOSSLESS COMPRESSING DIFFERENT

QUANTIZED VERSIONS OF THE SMALL-VGG16 NETWORK (AND ITS SPARSE

VERSION). THE NETWORK WAS QUANTIZED IN THREE DIFFERENT

MANNERS, ONE BY APPLYING DC-V2, ANOTHER WITH THE WEIGHTED

LLOYD ALGORITHM, AND FINALLY WITH THE UNIFORM QUANTIZATION

(NEAREST-NEIGHBOR QUANTIZATION). THE TOP1 ACCURACY OF EACH

QUANTIZED MODEL LIES WITHIN THE ±0.1 PERCENTAGE POINT RANGE

FROM THE ORIGINAL ACCURACY OF THE MODEL, WHICH IS 91.54%
AND 91.35% RESPECTIVELY. SUBSEQUENTLY, EACH OF THEM WAS

COMPRESSED BY APPLYING THE SCALAR HUFFMAN CODE, THE

CSR-HUFFMAN CODE [32], THE BZIP2 CODER, AND BY CABAC.
THE SECOND LAST ROW DENOTES THE ENTROPY OF THE EPMD

of the empirical probability mass distribution (EPMD). The
resulting average bit-sizes are reported in Table IV.

As one can see, CABAC is able to attain higher compression
gains across all quantized versions of the Small-VGG16 net-
work. The benefits from using CABAC come from its inherent
flexibility in that it can be accommodated to capture the prior
statistics of the weight parameters. Namely, by defining the
binarization procedure as in Section III-B, DeepCABAC is able
to quickly capture the statistics of unimodal and asymmetric
distributions, with their maxima close to 0. In addition, we
decided for a row-major scanning order so that CABAC is able
to capture correlations between elements in a row (which are
indeed present as demonstrated in [24]). This is also crucial
since CABAC’s estimate is updated in an autoregressive manner
and therefore, its compression performance also depends on
the scanning order. Indeed, as Table IV shows, CABAC is
able to capture correlations between the weight parameters and
consequently compress them beyond the first-order entropy of
the parameter distribution. This particular property highlights
its superiority as compared to the previously proposed universal
entropy coders, e.g., scalar Huffman and CSR-Huffman, since
their average code-lengths are bounded by the first-order entropy
and therefore it would be impossible for them to attain lower
code-lengths than CABAC.

Finally, since CABAC applies arithmetic coding, it automat-
ically fulfils point 2) and therefore produces binary represen-
tations with minimal redundancies. This allows him to attain
average bit-lengths of less than 1 bit per parameter element,
which usually reflects the information content in sparse models.
In contrast, the average bit-lengths of e.g. the scalar Huffman
code is lower bounded by 1 bit (since it incurs at least 1 bit of re-
dundancy per element), thus limiting the attainable compression
ratios of the model.
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VI. CONCLUSION

In this work we proposed a novel compression algorithm
for deep neural networks called DeepCABAC. It is based on
applying a Context-based Adaptive Binary Arithmetic Coder
(CABAC) to the networks parameters, which is the state-of-the-
art universal lossless coder employed in the H.264/HEVC and
H.265/HEVC video coding standards. DeepCABAC also incor-
porates a novel quantization scheme that explicitly minimizes
the accuracy vs. bit-size trade-off without relying on expensive
retraining or access to large amounts of data. Experiments
showed that it can compress pretrained neural networks by x18.9
on average, and their sparsified versions by x50.6, consistently
attaining higher compression performance than previously pro-
posed coding techniques with similar characteristics. Moreover,
DeepCABAC is able to capture correlations between the net-
works parameters, as such being able to compress the networks
parameters beyond the entropy limit of codes that assume a
stationary distribution. DeepCABAC has recently been adopted
as baseline quantization and entropy coding method for the
upcoming MPEG-7 standard for compression of neural networks
for multimedia content description and analysis (ISO/IEC 15938
part 17) [46].

As future work we will investigate the impact of compres-
sion on more recent and accurate edge-level neural networks
such as FBNet and ChamNet [47], [48] to neural network’s
problem solving strategies [49] and apply DeepCABAC in
distributed training scenarios, where the precision of the com-
municated update parameters may be critical for identifying
similar clients [50]. We will also further investigate the achiev-
able compression limits by applying different state-of-the-art
sparsification techniques such as [51].
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