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Machine Learning Techniques for Coherent CFAR
Detection Based on Statistical Modeling of UHF

Passive Ground Clutter
Nerea del-Rey-Maestre, Marı́a-Pilar Jarabo-Amores , David Mata-Moya , José-Luis Bárcena-Humanes,

and Pedro Gómez del Hoyo

Abstract—Ultra high frequency (UHF) passive ground clutter
statistical models were determined from real data acquired by
a passive radar for the design of approximations to the Neyman–
Pearson detector based on machine learning techniques. The cross-
ambiguity function was the input space without any preprocessing.
The Gaussian model was proved to be suitable for high Doppler
values. Other models were proposed for Doppler close to zero,
where ground clutter and low bistatic Doppler targets concentrate.
Likelihood ratio detectors were built for this Doppler region, and a
neural-network-based adaptive threshold technique was designed
for fulfilling false alarm requirements throughout all the input
space. The proposed scheme outperformed a conventional passive
radar one and could be used as a reference for future designs.

Index Terms—Machine learning, Neyman-Pearson, adaptive
threshold, UHF passive ground clutter, statistical models, cross-
ambiguity function, passive radar.

I. INTRODUCTION

PASSIVE Radars (PR) are emerging technologies that en-
compass a set of techniques to detect targets and to estimate

their positions and velocities, using non-cooperative signals
(communications, radar, or radio-navigation signals) as Illumi-
nators of Opportunity (IoO), rather than a dedicated transmitter
[1]. System design and performance are strongly determined
by the IoO (waveform, transmitted power, availability), and the
geometry of the radar scenario.

Different IoOs have been studied in the last decades. Analog
TV and FM radio were considered in [2] and [3], respectively,
constituting basic references of PR technology. Systems based
on Digital Video Broadcasting-Terrestrial (DVB-T) IoOs are
under intensive research [4]–[10].
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Main advantages of PRs compared to active radars are low
cost due to the usage of Commercial Off-The-Shelf (COTS)
components, smaller size, lower weight, lower probability of
being intercepted, and minimisation of electromagnetic or en-
vironmental problems. Besides, PRs are not affected by the
progressive spectrum occupancy of communication systems.

Drawbacks related to PRs are: a) out-of-control waveforms
are used that are not designed according to detection purposes;
b) the most suitable relative locations of IoOs and PRs cannot
be always used; c) the transmitted power level and stability do
not always fulfil the desirable requirements.

The radar detector has to decide between target absence (null
hypothesis, H0) and target presence (alternative hypothesis, H1)
in presence of the receiving chain thermal noise, the radar echoes
generated by non-desired objects present in the area of cover-
age, clutter, and especially, the direct interference of the IoO
signal, whose power is usually much higher that the target echo.
The Neyman-Pearson (NP) detector maximizes the Probability
of Detection (PD ) maintaining the Probability of False Alarm
(PF A ) lower than or equal to a given value [11], [12]. If z̃ is
the complex observation vector, and f(z̃|H0) and f(z̃|H1) are
the likelihood functions, a possible implementation consists in
comparing the Likelihood Ratio (LR), Λ(z̃), to a threshold, ηlr ,
estimated according to PF A requirements (1) [12].

Λ(z̃) =
f(z̃|H1)
f(z̃|H0)

H1

≷
H0

ηlr (PF A ) (1)

Some approximations to the NP detector apply adaptive
cancelers for clutter filtering and Constant False Alarm Rate
(CFAR) systems, many of which assume Gaussian interference
models [13]–[16]. Solutions based on the Generalized Likeli-
hood Ratio (GLR) were also considered [17]–[20].

The reciprocal filter approach was proposed in [21], and the
DVB-T signal structure was exploited in [6] for the design of
pre-processing stages to mitigate the effects of signal determin-
istic components and clutter in range-Doppler processing. In
[22] different techniques based on sub-carrier orthogonality in
OFDM (Orthogonal Frequency-Division Multiplexing) signals
were compared and applied to a DVB-T based PR. The channel
detector presented in [10] unifies clutter rejection and moving
target detection, using the estimated impulse response of the
Doppler channel.
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As alternatives, learning machines trained in a supervised
manner using a suitable error function were proved to be able
to approximate the NP detector [23], [24]: Multi-Layer Per-
ceptrons (MLP), [25], Radial Basis Function Neural Networks
(RBFNN) [26], Second Order Neural Networks (SONN) [27],
Support Vector Machines (SVM) [28], [29].

Nowadays, there is a general trend toward cognitive radars.
Three main properties of cognitive radars are [30]: “1) intelligent
signal processing, which builds on learning through interactions
of the radar with the surrounding environment; 2) feedback from
the receiver to the transmitter, which is a facilitator of intelli-
gence; and 3) preservation of the information content of radar
returns, which is realized by the Bayesian approach to target de-
tection through tracking.” In passive radars, the feedback from
the receiver to the transmitter is not possible, but an intelligent
algorithm capable of selecting the most suitable IoO among
those available in the radar scenario can be designed and imple-
mented [31].

In this context, the radar scene analyser is the cognitive radar
main element responsible of the characterization of the radar
scenario. It should provide environment and target statistical
information to the detection and tracking tasks [32]. One of the
objectives of this paper is to demonstrate that the knowledge
about the statistical characterization of the radar returns can be
used to design machine learning based detectors, exploiting the
concept of cognition in passive radars.

Numerous measurement campaigns have been carried out for
decades to obtain data of ground and sea clutter using active
radars, so as to characterise their statistical distributions. The
statistical characteristics of clutter depend on frequency, polar-
isation, incidence and scattering directions, and system resolu-
tion. The Gaussian model is widely used in low resolution radars
(pulse width > 0.5μs and grazing angles > 5◦ for monostatic
sea clutter). It is also considered when the grazing angle is >
5◦, regardless of radar resolution, for land clutter. In high reso-
lution radars, the Probability Density Function (PDF) of clutter
exhibits a long tail (‘spiky’ clutter), and the study of alternative
clutter statistical distributions is required [33].

On the contrary, very few studies of bistatic clutter are avail-
able in the literature. They were mainly made using radar fre-
quencies, and the results cannot be easily extrapolated to com-
munication systems frequencies used in many passive radars. A
study with bistatic sea clutter in the C band was carried out in
[34], measuring the bistatic reflection coefficient (σ0 , the cross
section per unit area). A study in the L band was presented in
[35]. Measurements of σ0 from L band to X band for terrain
clutter were carried out in [36]. A detailed analysis of the pub-
lished radar data, and the proposal of an empirical model, which
expresses the variation of E{σ0} with the measurement geom-
etry and sea conditions, working in the X band, were carried
out in [37]. All these works used raw radar data, acquired with
active bistatic radars in different frequency bands, and without
any preprocessing.

More recent papers were published dealing with FM frequen-
cies [38]–[40], GSM (Global System for Mobile communica-
tions) [41], [42], S-band [43]–[47]. Nevertheless, as far as the
authors know, there is not any study of clutter modelling with
passive radars that use the DVB-T signal as IoO.

Fig. 1. Basic geometry of a bistatic PR. RT i is the target-to-transmitter dis-
tance, RRi is the target-to-receiver distance, L is the transmitter-to-receiver
distance, βi is the bistatic angle, and σbis ,i is the bistatic radar cross section
(RCS), where i ∈ {b, c, a} refers to building, car, and airplane, respectively.

Data acquired by a DVB-T passive radar demonstrator de-
veloped at the University of Alcalá [48], were used for clutter
characterization and the design of detection schemes based on
learning machines. IDEPAR central frequency can be varied
from 450 MHz to 850 MHz, the signal bandwidth is equal to
25 MHz, and the maximum acquisition time is equal to 40 s. The
output of the Cross Ambiguity Function (CAF) was the obser-
vation space, and amplitude, in-Phase (I) and in-Quadrature (Q)
components, and complex samples (z̃) statistics were estimated.
A semi-urban scenario composed of big buildings, vegetation
and parking areas was considered. Results demonstrated that
the Gaussian model can be applied in areas of the CAF far from
the zero Doppler. However, a non-homogeneous characterisa-
tion was required for the region close to the zero Doppler. The
proposed coherent clutter models were used for implementing a
bank of LR detectors. Due to the complexity of the LRs, and its
variability throughout the CAF, a learning machine was trained
to implement the CFAR operation throughout the whole CAF,
taking [49] as starting point. The proposed solution outper-
formed conventional PR detection schemes in clutter rejection
and PD .

The paper is structured as follows: in Section II the oper-
ating principle of PRs is summarized. The proposed approach
is presented in Section III. Clutter models and statistical anal-
ysis techniques are studied in Section IV. In Section V, the
radar scenario and the observation space parameters are de-
fined. Statistical analysis results are presented in Section VI.
The detection scheme based on the bank of LR detectors is de-
signed in Section VII, and the machine learning based CFAR
technique is designed and validated in Section VIII. Finally, the
main conclusions are summarized in Section IX.

II. PASSIVE RADAR PRINCIPLE

PRs detect and track objects by processing reflections from
IoOs, such as commercial broadcast and communications sig-
nals. Due to the lack of control over the transmitter, a reference
channel is used to acquire the signal transmitted by the IoO, and
a surveillance one to capture targets echoes. The basic geometry
and associated parameters are defined in Fig. 1, whilst the basic
receiver architecture is presented in Fig. 2, which includes the
following stages:
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Fig. 2. Basic architecture of a PR.

– The reception stage is composed of the antenna system, ra-
dio frequency (RF) front-ends, and analog-to-digital con-
verters (ADC), for generating digital reference and surveil-
lance channels.

– The processing stage, which includes matched filtering and
pre-processing techniques for rejecting interferences.

– Non-coherent CFAR techniques are usually applied in the
detection stage.

For performing the matched filtering, delayed and Doppler
shifted copies of the reference channel signal are correlated with
the surveillance channel one to generate the Cross-Ambiguity
Function (CAF) [3][2][50]:

SC AF [m, p] =
N −1
∑

n=0

s∗ref [n − m] · ssurv [n] · exp−j2π p
N n

(2)

– sref [n] is the reference signal.
– ssurv [n] is the surveillance signal.
– N = Tint · fs , is the number of samples, being Tint (s) the

integration time, and fs (Hz) the sampling frequency.
– m is the time bin associated with a delay τm = m/fs .
– p is the Doppler-shift corresponding to fdop = fs (p/N).
The CAF is based on the matched filter implementation which

maximises the Signal to Noise Ratio (SNR), when Additive
White Gaussian Noise (AWGN) is considered, and it is used by
the vast majority of radars and communication systems [51]. Al-
though this implementation is not optimum for detection when
clutter is present, it is frequently used for several reasons [52]: It
is simpler than the optimum receiver; clutter scattering function
may be unknown, and it can work almost as well as the optimum
receiver in many situations.

In radar signal design and analysis, the Ambiguity Func-
tion (AF) is a basic tool. It is calculated using (2) substituting
ssurv [n] by sref [n]. In PRs, the kind of IoO determines the de-
tection properties. The DVB-T signal is composed of a random
component and deterministic ones included for signal decoding
in commercial TVs. Its AF is a thumbtack function with spuri-
ous, that spread throughout the delay-Doppler plane of the CAF
[6], [53]. The study of these spurious is of great interest, and

different solutions were proposed in the literature for reducing
their impact on the system detection performance [8], [54], [55].

PR signal processing architectures usually include adaptive
cancelers for clutter filtering before CAF generation, and Con-
stant False Alarm Rate (CFAR) detectors (Fig. 2), many of
which assume Gaussian interference models [13]–[16]. Solu-
tions based on the Generalized Likelihood Ratio (GLR) have
also been considered [17]–[20].

In [21], the reciprocal filter was proposed to keep the de-
sired target delay and Doppler information after range-Doppler
processing, getting rid of the autocorrelation of the reference
signal. The filter performs a modulus frequency equalization
of the transmitted signal. Because it is calculated from the ac-
tual measured reference signal, it can be applied to an arbitrary
IoO waveform. In this line, the DVB-T signal structure was
exploited for the design of reference and surveillance chan-
nels pre-processing techniques to reduce the impact of clutter
and ambiguities [6]. In [22], different techniques based on sub-
carrier orthogonality in OFDM signals were compared. Clutter
rejection and moving target detection were unified in the channel
detector proposed in [10].

The problem of detecting a target in presence of noise, the
direct IoO signal captured by the surveillance channel (DPI),
clutter, and interfering targets in additive white Gaussian noise
was also formulated as a composite hypothesis test [18]. Results
proved that the basic architecture depicted in Fig. 2 is based on
the GLR detector for no interfering targets and known noise
variance. Both approaches differ in the method applied for es-
timating clutter complex amplitudes: in Fig. 2 adaptive filters
are used for subtracting DPI and clutter from the surveillance
channel before the CAF, in [18] the Maximum Likelihood Es-
timates, MLE, of clutter complex amplitudes are derived for all
the clutter region in the delay-Doppler plane.

III. PROPOSED METHODOLOGY

When the CAF is applied to reference and surveillance sig-
nals without any preprocessing, the results are the MLEs of the
complex amplitude, delay and Doppler shift of the desired tar-
gets and the clutter [56]. In this work, the CAF output is used
as observation space for the detection problem formulation.

Neural Networks (NN) have been proposed for radar detec-
tion. In [23], a theoretical study proved that learning machines
trained in a supervised manner using a suitable error function
are able to approximate the NP detector. In this paper, an al-
ternative approach is proposed, based on a detailed study of
clutter statistics for determining statistical models to be used for
the implementation of a bank of LR detectors, and a NN based
CFAR technique for guaranteeing the desired PF A .

For each scatterer, the result of the CAF is the AF of the
transmitted signal, scaled and shifted to be centred on the scat-
terer time delay and Doppler shift. In Fig. 3 the CAFs generated
by different combinations of the DPI and stationary point tar-
gets are compared. The main contributions concentrate on the
zero Doppler line, with spreading effects of the main peaks, and
pedestals that spread throughout all the Range-Doppler plane.
Signal powers along a Doppler line far from zero were estimated
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Fig. 3. CAF for the DPI (a), for a point stationary target plus the DPI (b), and for a set of four stationary targets plus the DPI (c). The average value of the
magnitude of the samples belonging to the row marked with a black rectangle are: 163.28 dBW for (a), 166.24 dBW for (b), and 170.37 dBW for (c).

TABLE I
DISTRIBUTIONS FOR CLUTTER INTENSITY MODELING, x = |̃z|2

Exponential f (x|λ) = λ · e−λx ;
E; x ≥ 0 λ > 0
Weibull f (x|a, ρ) = a ·xa −1

ρa · e−(x/ρ )a

W; x ≥ 0 a > 0, ρ > 0; if a = 1, E with λ = 1/ρ [41]

K-distributed f (x|ν, b) = 2 ·b
ν + 1

2 ·x
ν −1

2
Γ(ν ) Kν−1 (2

√
xb)

K; x ≥ 0 ν > 0, b > 0; if ν −→ ∞, E

Log-normal f (x|a, μ) = 1
ax

√
2π

· e

(

− ( l n (x )−μ ) 2

2 a 2

)

LN; x ≥ 0 a > 0, μ ∈ 	
Gamma f (x|a, ν) = 1

Γ(ν )a ν · xν−1 · e− x
a

Γ; x ≥ 0 a > 0, ν > 0; if ν = 1 and a = 1/λ, E

Gamma Mixture [61] f (x) =
∑k

j=1 wj · φ(x|νj , aj )

ΓMD; x ≥ 0 φ(x|νj , aj ) is Γ, wj ≥ 0 and
∑k

j=1 wj = 1

(caption of Fig. 3), showing an increase in the estimated power
as the number of stationary point targets increases.

In a semi-urban scenario, big buildings are expected to gener-
ate strong CAF contributions similar to those presented in Fig. 3.
Other clutter sources are cars in parking areas, trees, and urban
furniture, in general. The proposed methodology includes a lo-
cal study of different CAF regions for determining the likelihood
functions, the implementation of a bank of LR detectors using
the estimated likelihood functions, assuming a Gaussian target
for H1 ; and the design of a CFAR technique based on a NN for
adaptively estimating the detection thresholds and guaranteeing
the desired PF A throughout the whole CAF.

IV. CLUTTER MODELS AND STATISTICAL

ANALYSIS TECHNIQUES

The Gaussian model is applicable when the echo can be mod-
elled as that from a number of independent, random scatterers,
with no one individual scatterer producing an echo of magni-
tude commensurate with the resultant echo from all scatterers
[57]. Large deviations from Gaussian statistics are observed in
data acquired at low grazing angles and/or by high-resolution
systems [58]. Tables I and II summarize the considered distri-
butions. In the Weibull case, the relationships among intensity,

TABLE II
DISTRIBUTIONS FOR CLUTTER I/Q COMPONENTS MODELLNG

Normal f (y|μ, σ) = 1
σ
√

2π
· e−

( y −μ ) 2

2 σ 2

N; y ∈ 	 μ ∈ 	, σ > 0

Logistic f (y|μ, s) = e−( y −μ ) / s

s
(

1+ e−
y −μ

s

)2

LG; y ∈ 	 μ ∈ 	, s > 0; if s = σ
√

3/π , N

Gaussian Mixture [62], [63] f (y) =
∑k

j=1 wj · φ(y, μj , σj )

GMD; y ∈ 	 φ(y, μj , σj ) is N, wj ≥ 0,
∑k

j=1 wj = 1

y = 	(z̃) is the in-phase (I) component.

(a, ρ), and amplitude, (ν, b), parameters are the following:
a = ν/2, ρ = b2 , beign ν > 0 and b > 0 [59]. In the Log Nor-
mal, the shape and scale parameters for the amplitude, (σ, μ),
are: a = 2σ, b = 2μ, being μ ∈ 	 and σ > 0. Data statistical
analysis was carried out comparing the Empirical Probability
Density Function (EPDF) with the theoretical PDFs whose pa-
rameters were estimated applying the Method of Moments [60].

A. Goodness-of-Fit Tests

Goodness-of-fit tests based on the estimation of the distance
between the empirical and theoretical Cumulative Distribution
Functions (CDFs) are usually used to analyze the applicability
of theoretical distributions [41], [42]. In this work, the two-
sample Kolmogorov-Smirnov (KS-test2) and the two-sample
Cramér-von-Mises (CM-test2) were applied [64]–[66].

Given two random vectors, [X1 , ...,XN ] and [Y1 , ..., YM ], the
KS-test2 and the CM-test2 are implemented as follows:

1) Evaluate the ECDF of both observation vectors: ̂FX (x)
and ̂FY (x).

2) Compute the statistic KS-distance, dK S = supx | ̂FX (x)
− ̂FY (x)|, and CM-distance, dC M = N M

(N +M )

∫ ∞
−∞ | ̂FX

− (x) ̂FY (x)|2dH(x), where sup is the supremum of the
set of distances, and H(x) is the empirical distribution
function of the two samples together [66].

3) Compare the dK S and dC M with a threshold, selected
according to the significance level, α, and the two sam-
ple sizes, N and M . If dK S and dC M exceed the
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Fig. 4. Radar scenario with two IoOs: Torrespaña (40◦25′16.64′′N ,
3◦39′51.39′′W , at a height of 658 m) and Algete (40◦30′47.19′′N ,
3◦20′55.02′′W , at a height of 628 m). PR located on the flat roof of the Poly-
technic School of the University of Alcalá (40◦30′46.97′′N , 3◦20′55.42′′W ,
at a height of 628 m).

defined thresholds, H0 will be rejected. Alternatively, if
the p − value is less than the chosen significance level,
that suggests that the observed data is sufficiently incon-
sistent with the null hypothesis, and the null hypothesis
may be rejected.

B. Skewness and Kurtosis Study

Skewness and kurtosis are usually used to check if I and
Q components are Gaussian distributed [67]. The skewness,
γ3 = E[(X − μx)3 ]/E[(X − μx)2 ]3/2 , measures the degree of
asymmetry of a PDF with respect to its mean μx , being zero
for symmetric PDFs. In radar literature, the “excess kurtosis”,
γ4,exc = γ4 − 3, being γ4 = E[(X − μx)4 ]/E[(X − μx)2 ]2 , is
used to analyse the non-Gaussian nature of the data: negative
γ4,exc are generated by PDFs with a rate of decay higher than
the Gaussian PDF; positive γ4,exc are generated by higher tails,
typical of impulsive signals [42].

V. RADAR SCENARIO

The radar scenario is the same as that described in [48]. In
Fig. 4, two Areas of Interest (AoI) were defined by the surveil-
lance antenna beamwidth of 30◦ (in green), and 60◦ (in orange).
Two potential IoOs were identified: Torrespaña, with an Equiv-
alent Radiated Power, ERP, equal to 20 kW, and Algete, with an
ERP equal to 11.8 W. The former was selected as the main IoO;
Algete was discarded as interfering IoO because it was out of
the orange AoI. In Fig. 5, the view from the surveillance antenna
is shown. The targets to be sought were vehicles moving along
the R2 highway (in light blue) and the Meco road (in dark blue).
A parking area with trees and three Big Buildings (BBs) were
identified: BB1 (a research institute, made of Aluminium); BB2
(textile industry); BB3 (industrial area).

Speeds lower than 6.5 km/h in the R2 highway and the Meco
road gave rise to Doppler shifts close to the zero Doppler line
of the CAF, −10 < fd < 10 Hz; but in a roundabout, targets
speeds up to 35 km/h would generate Doppler shifts in this
range, proving the impact of the radar system geometry in the

Fig. 5. View from the surveillance antenna.

Fig. 6. Time processing parameters definition.

expected bistatic Doppler shifts. BBs were expected to reflect
a strong signal, whose maximum values would be concentrated
on the zero Doppler line of the CAF, at different bistatic range
bins.

A. Observation Space Parameters

A database composed of acquisitions of Tacq = 20 s. was
generated controlling that there wasn’t any moving car in the
scenario during system operation. Each acquisition was divided
into Coherent Processing Intervals (CPIs) of duration Tint s.,
the integration time, using a periodic pulse train with a selected
Pulse Repetition Interval (PRI) (Fig. 6).

PRI defines the data updating speed and is selected according
to the implemented signal processing scheme and system appli-
cation (as an example, in [54] PRI = 0.6 s and Tint = 0.5 s).
In this work, PRI = Tint .

Taking into consideration desired targets dynamics, PRI =
Tint = 250 ms was selected in [48]. In this work, Tint ∈
{250 ms, 500 ms} were used, for evaluating the impact of sys-
tem Doppler resolution in clutter characterization.

Each CAF matrix was composed of 1,000 range bins, cover-
ing a distance of 9.450 km along the pointing direction. Doppler
ranged from −799.744 Hz to 799.744 Hz, but the frequency
step depended on Tint : 4 Hz for Tint = 250 ms, and 2 Hz for
Tint = 500 ms. Different Doppler regions were defined follow-
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Fig. 7. Example of CAF function (normalized magnitude in dB), with the
defined study regions and BBs contributions maxima.

ing a subjective criterion based on CAF magnitude mean level
estimation, and possible targets Doppler shifts (Fig. 7):

– Areas far from the zero Doppler: 1A [−799;−550] Hz, and
1B [550; 799] Hz.

– Areas where aircrafts flying at low altitudes could be de-
tected: 2A (−550;−300] Hz, and 2 B [300; 550) Hz.

– Areas where terrestrial vehicles are expected [48]: 3A
(−300;−40] Hz, 3B [40; 300) Hz, and 4 (−40; 40) Hz.
Area 4 is of special interest because it concentrates ground
clutter highest contributions.

For saving space, and without loss of generality nor accuracy,
the data acquired on February 13, 2015 were selected. I and Q
components were identically distributed, because of that, only
the results related to the I component were included. The PDF
of data amplitude can be obtained from the PDF of their in-
tensity, so only intensity results are presented. For each clutter
region, KS-Test2 and CM-Test2 goodness-of-fit tests (5% signif-
icance level), skewness, kurtosis, and Autocorrelation Functions
(ACFs) were analysed.

VI. STATISTICAL ANALYSIS RESULTS

In Table III, dK S , dC M , and pC M values for regions 1, 2 and
3, Tint = 250 ms and 500 ms, are shown.

– Intensity was exponentially distributed. Weibull, Gamma
and K-distributions also were accepted, with estimated pa-
rameters quite close to the values that make them equal to
the exponential.

– The Log-normal distribution was discarded. dK S and dC M

values belonged to [0.068, 0.072] and [47.90, 124], respec-
tively, with pC M = 0.

– The I component was Gaussian distributed. The study of
the skewness and excess kurtosis values for I and Q com-
ponents confirmed it.

Statistical parameters were similar in regions i − A and
i − B, and depended on Tint . Fig. 8 represent the standard
deviations (std) of the I components for the different regions.

TABLE III
GOODNESS-OF-FIT TEST DISTANCES AND p-VALUE FOR CM-TEST2 WITH

α = 0.05; REGIONS i − A AND i − B , i = 1, 2, 3

Intensity Q component

E, Tin t = 250 ms N, Tin t = 250 ms

dK S dC M pC M dK S dC M αC M

1A 0.005 0.15 0.3738 0.008 1.15 0.2277
2A 0.004 0.07 0.7533 0.003 0.08 0.5186
3A 0.004 0.07 0.7522 0.005 0.54 0.5799
4 0.92 3138 0 0.94 6341 0
3B 0.004 0.08 0.7079 0.004 0.20 0.7857
2B 0.005 0.19 0.2950 0.003 0.08 0.2527
1B 0.008 0.55 0.3012 0.007 1.27 0.6362

E, Tin t = 500 ms N, Tin t = 500 ms

1A 0.005 0.22 0.4321 0.003 0.09 0.6199
2A 0.005 0.114 0.7118 0.003 0.09 0.6314
3A 0.003 0.10 0.3730 0.002 0.04 0.9182
4 0.42 682 0 0.42 1370 0
3B 0.004 0.06 0.2623 0.002 0.082 0.6783
2B 0.005 0.21 0.6937 0.001 0.03 0.9809
1B 0.004 0.09 0.2930 0.003 0.23 0.2091

Fig. 8. Standard deviation (std) of the I component in the Gaussian regions of
the CAF.

In region 4 all distributions were rejected (bold numbers
in Tables III and IV). Q samples had negative skewness and
positive excess kurtosis: γ3 = −2.342 and γ4,exc = 469.957
for Tint = 250 ms, and γ3 = −2.889 and γ4,exc = 867.027 for
Tint = 500 ms; skewness and positive excess kurtosis values
for I were quite different: γ3 = −19.740 and γ4,exc = 1, 776
for Tint = 250 ms, and γ3 = −26.655 and γ4,exc = 3, 283 for
Tint = 500 ms.

A. Study of the Non-Gaussian Region of the CAF

Region 4 was divided into different sub-regions:
– Tint = 250 ms. Doppler resolution of 4 Hz.

Intervals (Hz): [−42,−18); [18, 30); [30, 42).
Lines (Hz): [−18,−14); [−14,−10); [−10,−6); [−6,
−2); [−2, 2); [2, 6); [6, 10); [10, 14); [14, 18).

– Tint = 500 ms. Doppler resolution of 2 Hz.
Intervals (Hz): [−41,−15); [−15,−9); [15, 31); [31, 41).
Lines (Hz): [−9,−7); [−7,−5); [−5,−3); [−3,−1);
[−1, 1); [1, 3); [3, 5); [5, 7); [7, 9); [9, 11); [11, 13);
[13, 15).
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TABLE IV
GOODNESS-OF-FIT TEST DISTANCES AND p-VALUE FOR CM-TEST2 WITH α = 0.05; REGION 4; Tin t ∈ {250 ms, 500 ms}

Intensity, Tin t = 250 ms Q component, Tin t = 250 ms

W K LN Γ LG

dK S dC M pC M dK S dC M pC M dK S dC M pC M dK S dC M pC M dK S dC M pC M

0.22 210 0 0.96 3051 0 0.13 49 0 0.46 630 0 0.16 123 0

Intensity, Tin t = 500 ms Q component, Tin t = 500 ms

0.20 396 0 0.96 5913 0 0.11 68 0 0.48 1313 0 0.08 46 0

TABLE V
GOODNESS-OF-FIT TESTS FOR REGION 4; Tin t = 250 MS AND Tin t = 500 MS

Fig. 9. CDFs for the zero Doppler line and Tin t = 250 ms. (a) Intensity.
(b) Real part.

Table V presents the accepted distributions and the associ-
ated dC M and pC M values. Subregions far away from the zero
Doppler line are Gaussian distributed. Weibull, K and Gamma
distributions were also accepted for the intensity, with estimated
parameters that made them equal to the Exponential. The I com-
ponent can be modeled with 4 − GMDs along the zero Doppler,
but any of the considered intensity distributions passed the tests.
Fig. 9 shows the ECDFs and some estimated ones for the zero
Doppler line and Tint = 250 ms.

Fig. 9(a) presents the LN CDF, together with the esti-
mated 5 and 6 − ΓMDs. Fig. 9(b) depicts CDFs for the 4 and
3 − GMDs to show the error associated to the latest. Data ob-
tained with Tint = 250 ms were used; results were similar for
Tint = 500 ms. For the rest of Doppler subregions, 2 − ΓMD
and 2 − GMD are proposed for the intensity and the I com-
ponent, respectively. In Fig. 10, ECDFs are compared to the

Fig. 10. CDFs for region 4 and Tin t = 250 ms: fd ∈ [−14,−10)Hz (top);
fd ∈ [−6,−2)Hz (bottom). (a) Intensity (left), I component (right), [−14,−10)
Hz. (b) Intensity (left), I component (right), [−6,−2) Hz.

theoretical models for two Doppler lines: that associated to the
lowest Doppler shifts for region 4, and that just next to the zero
Doppler.

The Exponential distribution is depicted in the first case (left
image in Fig. 10) to show the difference with respect to the
empirical one; in the second case, 2 − ΓMD and 3 − ΓMD are
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Fig. 11. 2 − GMDs parameters for the I component and Tin t = 250 ms.

Fig. 12. 2 − GMDs parameters for the I component and Tin t = 500 ms.

TABLE VI
PARAMETERS OF THE 4 − MGD IN [−2, 2) HZ FOR Tin t = 250 MS

Component 1st 2nd 3rd 4th

μ · 10−2 11.80 0.1922 0.0640 −0.02680
Std ·10−2 35.60 5.33 1.20 0.3280

plotted to show that although 3 − ΓMD could have been chosen
by visual inspection, the 2 − ΓMD passed the test and was
selected due to its simplicity. Figs. 11 and 12 show the variation
of the 2 − GMD parameters throughout the defined Doppler
subregions for Tint = 250 ms and Tint = 500 ms, respectively.
4 − MGD parameters for Doppler region [−2, 2)Hz and Tint =
250 ms are included in Table VI.

VII. LR DETECTOR FORMULATION

For the formulation of the NP detector, the likelihood func-
tions of the complex observation vector are required (expression
(1)). In the case of study, this vector is composed of a single com-
plex sample, z̃ = z̃, so the joint pdf of z̄ = [Re{z̃}, Im{z̃}]T =
[z1 , z2 ]T under both hypotheses must be estimated (T denotes
the transpose operation). Although the detectors are applied
to a single complex sample, the CFAR techniques required
for estimating the detection thresholds will process the data in
range reference windows. Because of that, joint PDFs and Au-
tocorrelation Functions (ACFs) along range are analysed in the

Fig. 13. Estimated normalized ACF along range for Tin t = 250 ms, and
regions i − A, i = 1, 2, 3.

TABLE VII
ESTIMATED PF A FOR CA-CFAR DETECTORS WITH DIFFERENT ρ: REGIONS

1–3, DESIRED PF A = 10−4

Nr ρ = 0 ρ = 0.2322

16 7.1612 · 10−5 8.705 · 10−5

32 8.684 · 10−5 9.613 · 10−5

64 8.937 · 10−5 9.549 · 10−5

100 9.402 · 10−5 9.719 · 10−5

following subsections. For saving space, from now on, only
results for Tint = 250 ms will be included. Conclusions were
similar for Tint = 500 ms with different sets of parameters.

A. Gaussian Areas of the CAF

As I and Q components are Gaussians, they are independent,
and the likelihood function of z̄ can be expressed as the product
of its marginals. A possible implementation of the NP detector
consists in comparing |z̄|2 with a detection threshold selected
according to PF A requirements [52].

The basic Cell-Averaging CA-CFAR detector is optimum
when input samples are independent and identical distributed
exponential random variables. To check the suitability of this
CFAR technique, the ACFs along range were estimated for re-
gions i − A, i = 1, 2, 3 (Fig. 13). Similar results were obtained
for regions i − B, i = 1, 2, 3. The estimated average one-lag
correlation coefficient was ρrange = 0.2322.

The ACFs presented peaks, lower than 0.2 except for the
samples close to the main peak. To evaluate their impact on the
detection process, CA-CFAR detectors were implemented for
ρrange = 0 and ρrange = 0.2322, and applied to the squared
magnitude of the complex data, using Nr -length range ref-
erence windows [68]. This simple methodology is based on
the hypothesis that if the estimated ρrange was relevant, the
CA-CFAR designed for ρrange = 0.2322 would present better
performance than the CA-CFAR designed for ρrange = 0. The
estimated PF A was used as performance parameter. In Table VII
the estimated PF As are very similar and close to the desired one,
so we could conclude that the impact of the correlation peaks on
the detection performance was negligible, and in regions i − A
and i − B, i = 1, 2, 3, CAF samples could be assumed to be
uncorrelated along range.
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TABLE VIII
ESTIMATED PARAMETERS FOR THE MIXTURES OF 2-D GAUSSIANS

Doppler k1 10−4 · μ1 10−6 · C1 k2 10−4 · μ2 10−6 · C2 dK S pK S

[−14,−10) 0.6873 [−0.264, 0.179]
[

0.1665 −0.0186
−0.0186 0.1924

]

0.3127 [−1.048,−0.817]
[

0.3994 0.0610
0.0610 0.3816

]

0.0530 0.2

[−10,−6) 0.0175 [−1.0044,−0.5305]
[

2.319 0.108
0.108 2.204

]

0.9825 [0.2665,−0.5305]
[

0.2533 −0.0023
−0.0023 0.2497

]

0.0430 0.2

[−6,−2) 0.9314 [−0.494,−0.019]
[

0.256 −0.002
−0.002 0.275

]

0.0686 [−1.881,−3.288]
[

3.253 −0.073
−0.073 3.427

]

0.0490 0.2

[2, 6) 0.0772 [2.999, 0.175]
[

8.674 −2.429
−2.429 6.417

]

0.9228 [−0.089,−0.723]
[

0.326 −0.003
−0.003 0.305

]

0.0540 0.2

[6, 10) 0.0606 [−0.587, .0.166]
[

0.970 −0.071
−0.071 1.303

]

0.9394 [0.459,−2.975]
[

0.233 0.006
0.006 0.220

]

0.0520 0.2

[10, 14) 0.9868 [0.555, 0.627]
[

0.238 0.006
0.006 0.233

]

0.0132 [0.6255.967]
[

0.255 −0.500
−0.500 1.663

]

0.0540 0.2

[14, 18) 0.0169 [0.304,−1.476]
[

1.470 1.379
1.379 2.486

]

0.9831 [−0.654, 0.266]
[

0.222 −0.010
−0.010 0.202

]

0.0420 0.2

[18, 30) 0.4246 [0.372,−0.236]
[

0.292 0.046
0.046 0.185

]

0.5754 [−0.104, 0.283]
[

0.189 −0.031
−0.031 0.249

]

0.0343 0.2

Doppler intervals defined for Ti n t = 250 ms.
i = 1, 2, 3, 4 stand for the considered component of the 4-MGD.

TABLE IX
ESTIMATED PARAMETERS FOR THE 4 − MGD PROPOSED FOR THE DOPPLER

INTERVAL [−2, 2) HZ AND Tin t = 250 ms

ki 10−4 · μi 10−6 · Ci

0.4132 [−1.005, 1.034]
[

13.6 −1
−1 10.3

]

0.1684 [2, 9.509]
[

2, 396 148
148 2, 487

]

0.0112 [646,−1, 410]
[

94 · 103 −27 · 103

−27 · 103 39 · 103

]

0.4072 [8.289,−2.871]
[

139 −12
−12 143

]

dK S = 0.038, pK S = 0.2

B. Non-Gaussian Areas of the CAF

I and Q components were orthogonal, but, as they weren’t
Gaussian, we couldn’t assume they were independent. The
Expectation-Maximization (EM) algorithm was used for esti-
mating their joint distributions as mixtures of 2D Gaussians (3),
[69]. The complete region was studied due to its asymmetry
with respect to the zero Doppler. N = 2 for all subregions ex-
cept for the zero Doppler, which required N = 4; μ̄i and Ci are
the mean vector and the covariance matrix of the i − th compo-
nent, respectively; |Ci | denotes the determinant of Ci , and ki

are the mixture coefficients, (k1 + · · · + kN = 1).

f(z̄) =
N

∑

i=1

ki

2π · √|Ci |
· exp

(−(z̄ − μ̄i)T · C−1
i · (z̄ − μ̄i)

2

)

(3)
Tables VIII and IX summarize the estimated parameters, and

the results of the 2D-KS-test2 algorithm [70], proving that the
proposed distributions fulfilled the test. Results of the correla-
tion study showed again peaks lower than 0.2, except for the
samples close to the main peak, whose impact in detection per-
formance was neglected (Fig. 14).

Fig. 14. Estimated normalized ACFs along range for Tin t = 250 ms.

For obtaining f(z̄|H1), a Gaussian target model was as-
sumed (Gaussians I and Q components of zero mean and
variance σ2

target). The total mean vector of f(z̄|H0) was

calculated as μ̄total =
∑N

i=1 ki · μ̄i ; the total covariance ma-
trix was calculated as Ctotal =

∑N
i=1 ki(Ci + (μ̄i − μ̄total)

· (μ̄i − μ̄total)T ), with N = 2 for all subregions except the one
centred on the zero Doppler, for which N = 4.

For generating samples of f(z̄|H0), samples of the in-
dividual components must be generated with probabilities
equal to the mixture coefficients. When a target is present,
its covariance matrix (Ctarget = σ2

target · I, being I the 2D
identity matrix) is added to the covariance matrixes of
the individual components of the H0 mixture, to obtain
f(z̄|H1). The Signal-to-Interference Ratio (SIR) is defined as

SIR = 10 log10(
2σ 2

t a r g e t

tr(C t o t a l )
), where tr(Ctotal) denotes the trace

of Ctotal . The LR detector is expressed in (4).

∑N
i=1

ki exp

(

−( z̄−μ̄ i )T ·(C i + σ 2
t a r g e t

I)−1 ·( z̄−μ̄ i )

2

)

2π ·
√

|C i +σ 2
t a r g e t I)|

∑N
i=1

ki exp
(

−( z̄−μ̄ i )T ·C −1
i

·( z̄−μ̄ i )

2

)

2π ·
√

|C i |

H1

≷
H0

ηlr (PF A ) (4)

The SIR value associated to the σ2
target used in expression

(4) will be denoted as SIRd ; while the SIR value associated
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Fig. 15. SIRd for the design of the LR detectors for Tin t = 250 ms.

to the σ2
target used for generating synthetic data as input of (4)

to estimate PD will be denoted as SIRs . PD was estimated
for SIRd = SIRs , to determine the minimum SIRd values
for PD � 80%, and PF A = 10−4 for the different subregions
(Fig. 15). These SIRd values will be used for implementing the
bank of LR detectors (4).

Results presented in Fig. 15 were generated following this
methodology:

1) Vectors of 106 complex samples under H0 were generated
with the parameters included in Fig. 8, and Tables VIII
and IX. As the parameters of regions i − A and i − B, i =
1, 2, 3, were similar, a total of 12 vectors were generated:
9 for region 4, and 3 for the Gaussian areas.

2) For each region, LR detectors were built for SIRd rang-
ing from 10 dB to 40 dB in steps of 0.1 dB. Detection
thresholds for PF A = 10−4 were estimated for each LR
by Monte Carlo simulations using the data sets described
in the previous step (estimation error lower than 10%).

3) 12 vector sets were generated under H1 for PD estimation:
one set for each CAF region. Each set was composed
of vectors of 1000 samples: one vector for each SIRs

ranging from 10 dB to 40 dB in steps of 0.1 dB.
4) The set of H1 vectors designed for a region was applied

to the LR detectors of that region designed for SIRs =
SIRd varying from 10 dB to 40 dB in steps of 0.1 dB.
PD was estimated by Monte Carlo simulations using the
detection thresholds estimated in step 2.

The outputs of three detection schemes for a CPI are presented
in Fig. 16: (a) a square-law envelope detector applied to the CAF
output; (b) a zero Doppler suppression technique based on an
Extensive CAncellation (ECA) filter, the CAF, and an square-
law envelope detector [48]; (c) bank of LR detectors applied to
the CAF. Results prove the better performance of the bank of
LR detectors in clutter suppression.

VIII. MLP-CFAR FOR THE BANK OF LR DETECTORS

The complexity of expression (4), the variability of SIRd ,
ki , μ̄i , and Ci , i = 1, ..., N , along Doppler, and the computa-
tional cost associated to PF A estimations, motivate the proposal
of an alternative CFAR technique to be applied to Fig. 16(c).
Taking [49] as a starting point, the objective was the design of
a single MultiLayer Perceptron (MLP) with one hidden layer

capable of estimating the desired detection thresholds. The pro-
posed solution is presented in Fig. 17: a sliding range window
of 2(R + Rguard + 1) cells is shifted along each Doppler line
of the output of the bank of LR detectors (2R reference cells for
estimating the detection threshold, 2Rguard cells for avoiding
the contribution of target components when a target is in the cell
under test (CUT), and the CUT); Doppler lines are processed se-
quentially, reference cells are applied to the MLP-CFAR, which
will generate a threshold for the associated CUT.

For training the MLP, independent synthetic data sets were
generated for training, cross-validation and testing. Each set
was composed of R − length vectors generated under H0 , with
the parameters included in Fig. 8, and Tables VIII and IX. Af-
ter a study of the scenario and targets dynamics, R = 32 and
Rguard = 6 were selected. The training set was composed of
9, 000 patterns, 750 patterns per clutter region (i − A, i = 1...3,
and the 9 subregions defined in region 4 for Tint = 250 ms).
Validation and test sets had the same structure, with 250 and
106 patterns per clutter subregion, respectively. The detection
thresholds estimated for the implemented LR detectors bank,
for a PF A = 10−4 , were used as desired outputs.

The Levenberg-Marquardt optimization algorithm was ap-
plied for MLP training. This algorithm uses the sum of squares
error as objective function and an approximation of the Hes-
sian matrix based on the Jacobian matrix in a Newton based
updating rule [71]. If w̄ = [w1 , ..., wP ] is the vector com-
posed of all the MLP weights and bias, the updating rule in
iteration n is w̄(n + 1) = w̄(n) − (

JT (n) · JT (n) + μI
)−1 ·

JT (n) · e(w̄(n)), where:
– e(w̄(n)) = 1

2

∑Nt r a i n

j=1 e2(j) is the error, being Ntrain the
number of training patterns and e(i) the difference between
the MLP output and the desired one for the i − th pattern
of the training set, in the n − th iteration.

– J(n) is the Jacobian matrix of e(w̄(n)). It’s a Ntrain xP
matrix and the element in row i and column j is calculated
as J[i, j] = ∂e(i)

∂wj
.

– μ is a positive constant that is chosen to guarantee that
the matrix to be inverted is definite positive. If μ = 0 the
updating rule is equal to the Newton’s method one; if μ is
high, the rule algorithm behaves as a gradient descent one
with a small step size. The aim is to shift toward Newton’s
method as quickly as possible. Thus, μ is decreased after
each successful step, and it is increased when a tentative
step would increase the performance function.

For determining the number of hidden neurons, M , MLPs
with M ∈{3, 4, 5, 7} were trained, following a methodology
based on NN growing [72]. Fig. 18 shows the detection thresh-
olds estimated by each MLP, for the Doppler regions defined
for Tint = 250 ms, and a desired PF A = 10−4 . The minimum
estimated mean squared error between the desired and the es-
timated thresholds was obtained for M = 4. Because of that,
M = 4 was elected.

For detection performance evaluation, the time parameters
used in [48] were selected: Tacq = 30 s, Tint = PRI = 250 ms.
Fig. 19 shows the superposition of detectors outputs for the 120
CPIs of an acquisition.
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Fig. 16. Amplitude (dB) of the outputs generated by a square-law envelope detector applied to the CAF output (a). ECA filter, CAF, and an square-law envelope
detector (b). Bank of LR detectors applied to the CAF (c).

Fig. 17. Proposed MLP-CFAR scheme.

Fig. 18. Detection thresholds estimated by MLPs with different number of
hidden neurons for a desired PF A = 10−4 .

PF A was estimated by Monte Carlo simulations for the whole
CAF and Region 4:

1) Whole CAF: ̂PF A = 3.23 · 10−4 for the CA-CFAR;
̂PF A = 1.85 · 10−4 for the bank of LR detectors and the
MLP-CFAR trained for PF A = 10−4 . Estimation error:
1.8%.

2) Region 4: ̂PF A = 3.2 · 10−3 for the CA-CFAR; ̂PF A =
6.97 · 10−4 for the bank of LR detectors and the MLP-
CFAR trained for PF A = 10−4 . Estimation error: 7.71%.

PF As estimated for both detection schemes using the whole
CAF are higher than the desired one. The values estimated for
the LR bank and the MLP-CFAR are closer to the desired ones.

Most of the Doppler regions of the CAF were Gaussian dis-
tributed, because of that, PF A was also estimated in Region 4,
where non-Gaussian models concentrate. In this case, the LR
bank with a MLP-CFAR clearly outperforms the CA-CFAR, as
expected, but the estimated PF A is significantly far from the
desired one. This phenomenon was also observed in [49]: CA-
CFAR detection threshold estimation rule is designed for the
available set of R samples, and an estimation error is expected
that will give rise to an overestimation of the detection thresh-
old that guarantees the required PF A at the expense of a loss
in PD (CFAR losses); the MLP-CFAR was trained to approxi-
mate the detection thresholds required by the LR detectors for
infinite homogeneous regions, so the associated CFAR losses
will be higher. To reduce them, a lower training PF A value was
estimated for determining the desired outputs (thresholds) to
be estimated by the MLP [49]. Table X summarizes the con-
sidered training PF A values and the estimated PF A s for the
whole CAF and Region 4. Finally, the MLP trained for a de-
sired PF A = 10−5 was selected, and the superposition of this
detector outputs for an acquisition are shown in Fig. 20.

In [48], an ECA filter was applied before the CAF, to reduce
zero Doppler interference; for a desired PF A = 10−6 , the best
detection scheme among those considered provided an estimated
̂PF A = 5.499 · 10−6 , which means a relative error of 44.99%.
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Fig. 19. Superposition of detectors outputs for an acquisition, and a desired
PF A = 10−4 . (a) Conventional CA-CFAR applied to Fig. 16(a). (b) MLP-
CFAR with M = 4, trained with thresholds estimated for PF A = 10−4 , applied
to Fig. 16(c).

TABLE X
̂PF A S FOR MLPS TRAINED FOR DIFFERENT PF A S

Training PF A Whole CAF estimated PF A Region 4 estimated PF A

10−4 1.85 · 10−4 6.97 · 10−4

7 · 10−5 1.84 · 10−4 6.96 · 10−4

5 · 10−5 1.56 · 10−4 6.042 · 10−4

10−5 1.01 · 10−4 4.45 · 10−4

Fig. 20. Superposition of the outputs generated by the MLP-CFAR trained
with thresholds estimated for PF A = 10−5 , applied to Fig. 16(c).

Fig. 21. Tracker outputs for the CA-CFAR (a), and the bank of LR detectors
with the MLP-CFAR (b), for a desired PF A = 10−4 .

Visual inspection of Fig. 20 demonstrates the superior per-
formance of the MLP-CFAR trained for a desired PF A = 10−5 .
Results generated by the tracking system described in [48] are
presented in Fig. 21. The LR detectors bank and the MLP-CFAR
trained for PF A = 10−5 allowed the tracker to confirm a total
of 25 tracks (also confirmed by visual information about non-
cooperative targets), whereas from the CA-CFAR output only
13 tracks were confirmed. Considering the total length of the 25
tracks as a reference (a total of 1,031 points), detection perfor-
mance was characterized as the number of plots generated after
the detection stage divided by 1,031: 51% for the CA-CFAR,
and 79% for the bank of LR detectors and the MLP-CFAR.

IX. CONCLUSION

In this paper, statistical and machine learning signal process-
ing methods are combined as a step towards the automation
of cognitive functionality in passive radars. In cognitive radars,
the feedback from the receiver to the transmitter is a facil-
itator of intelligence; in passive radars, this feedback is not
possible, but an intelligent algorithm capable of selecting the
most suitable IoO among those available in the radar scenario
can be designed and implemented. In any case, the capabil-
ity of radar scenario characterization is a key element, being
clutter of critical relevance. Because of that, a detailed study
of statistical analysis tools and their application to real data
acquired by an operating PR demonstrator is the first task to
be tackled. One of the objectives of this paper is to demon-
strate that the knowledge about the statistical characterization
of the radar returns can be used to design machine learning
based detectors, exploiting the concept of cognition in passive
radars.

The considered case study was the use of a DVB-T based
passive radar for terrestrial traffic monitoring in a semi-urban
scenario. To approximate the Neyman-Pearson detector, a so-
lution based on the LR detector was proposed, considering the
following hypotheses:

1) Ground clutter can be characterized from measurements
to model the likelihood function under H0 .

2) Ground clutter models are expected to present small varia-
tions along time, and these variations can be characterized
to modify the proposed likelihood function under H0 .

3) A Gaussian target is assumed.
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4) The proposed detector uses a single observation, but the
associated CFAR technique uses a set of observations to
estimate the detection threshold.

5) The detection rule discriminant function is expected to be
complex. The capabilities of machine learning techniques
will be exploited for designing a coherent CFAR technique
for the proposed detection scheme.

To accomplish ground clutter characterization, real data ac-
quired by the technological demonstrator IDEPAR, a multichan-
nel DVB-T based PR demonstrator, were analyzed. The selected
scenario was located at University of Alcalá external campus,
a semi-urban environment characterized by the presence of big
buildings, that were expected to generate strong radar returns,
and parking areas. As Doppler resolution is a function of the
integration time, two values were considered for comparison
purposes.

To model the likelihood function under H0 , an exhaustive sta-
tistical analysis was performed throughout all the CAF space,
without applying any pre-processing stage that could alter clut-
ter statistics. ECDF estimations, goodness-of-fit tests, skew-
ness and kurtosis, and correlation properties were analyzed
to determine the most suitable clutter model among a repre-
sentative selection of models proposed in the literature. Re-
sults proved that a Gaussian clutter model could be assumed
for absolute Doppler shifts higher than 40 Hz. In the region
centred in the zero-Doppler, with absolute value of Doppler
shifts lower than 40 Hz, a non-homogeneous characterization
was required. Mixtures of Γs and Gaussians were proposed
for the intensity and the real (imaginary) parts, respectively.
Two mixture components were enough in all cases, but for
the zero Doppler line, where four mixture components were
required.

For formulating the LR detector, the complex samples were
characterized and mixtures of 2D-Gaussians were estimated.
The correlation properties were also analysed, taking into con-
sideration the operation principle of CFAR techniques. Results
proved that CAF samples were uncorrelated along range, mak-
ing the CA-CFAR detector the optimum solution for the Gaus-
sian regions (the most part of the CAF).

A bank of LR detectors was implemented for the non-
Gaussian region. Their output magnitude was compared with the
output magnitude of the CAF and the combination of an ECA
filter and the CAF, demonstrating the superior performance of
the bank of LR detectors for clutter rejection.

Finally, the CFAR technique based on a MultiLayer Percep-
tron (MLP) proposed in [49] was generalized for designing a
single neural network for estimating the detection thresholds to
be applied to the output of the bank of LR detectors. A sin-
gle MLP with 64 inputs, one hidden layer with four neurons,
and one output is able to provide the required thresholds for
guaranteeing the desired PF A throughout all the CAF.

Presented results are expected to provide a deeper knowledge
about the impact of ground clutter components on the detection
of low Doppler shift targets. The proposed bank of LR detectors
based on Gaussians mixtures is quite easy to implement and
adapt to potential clutter changes. The MLP-CFAR can be easily

retrained thanks to its simplicity and the possibility of generating
synthetic data. On the other hand, the proposed solution could
be used as a reference in future designs.
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[32] U. Güntürkün, “Toward the development of radar scene analyzer for cog-
nitive radar,” IEEE J. Ocean. Eng., vol. 35, no. 2, pp. 303–313, Apr. 2010.

[33] A. Farina, Optimised Radar Processors. Stevenage, U.K.: Peregrinus, 1987.
[34] V. Pidgeon, “Bistatic cross section of the sea,” IEEE Trans. Antennas

Propag., vol. AP-14, no. 3, pp. 405–406, May 1966.
[35] C. Hightower, D. M. Maeschen, and C. A. Sanders-Foster, “Bistatic clutter

phenomenological measurement/model development,” SRS Technolo-
gies, Irvine, CA, USA, DARPA Order No. 5462, 1987.

[36] R. Larson et al., “Bistatic clutter measurements,” IEEE Trans. Antennas
Propag., vol. AP-26, no. 6, pp. 801–804, Nov. 1978.

[37] H. D. Griffiths et al., “Measurement and modelling of bistatic radar sea
clutter,” IET Radar Sonar Navigat. Spec. Issue Radar Clutter, vol. 4, no. 2,
pp. 280–292, 2010.

[38] M. Malanowski, R. Haugen, M. S. Greco, D. W. O’Hagan, R. Plsek, and
A. Bernard, “Land and sea clutter from FM-based passive bistatic radars,”
IET Radar, Sonar Navigat., vol. 8, no. 2, pp. 160–166, Feb. 2014.

[39] J. Brown et al., “VHF airborne passive bistatic radar ground clutter
investigation,” in Proc. IET Int. Conf. Radar Syst., 2012, pp. 1–5.

[40] M. Pola, P. Bezousek, and J. Pidanic, “Model comparison of bistatic radar
clutter,” in Proc. Conf. Microw. Techn., 2013, pp. 182–185.

[41] A. D. Maio, G. Foglia, N. Pasquino, and M. Vadursi, “Measurement and
analysis of clutter signal for GSM/DCS-based passive radar,” in Proc.
IEEE Radar Conf., 2008, pp. 1–6.

[42] A. D. Maio et al., “Measurement and comparative analysis of clutter for
GSM and UMTS passive radar,” IET Radar, Sonar Navigat., vol. 4, no. 3,
pp. 421–423, 2010.

[43] W. Al-Ashwal, K. Woodbridge, and H. Griffiths, “Analysis of bistatic sea
clutter—Part I: Average reflectivity,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 50, no. 2, pp. 1283–1292, Apr. 2014.

[44] W. A. Al-Ashwal, K. Woodbridge, and H. D. Griffiths, “Analysis of
bistatic sea clutter—Part II: Amplitude statistics,” IEEE Trans. Aerosp.
Electron. Syst., vol. 50, no. 2, pp. 1293–1303, Apr. 2014.

[45] R. Palam, M. Greco, P. Stinco, and F. Gini, “Analysis of sea spikes in
NetRad clutter,” in Proc. 11th Eur. Radar Conf., Oct. 2014, pp. 109–112.

[46] R. Palam, M. S. Greco, P. Stinco, and F. Gini, “Statistical analysis of
bistatic and monostatic sea clutter,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 51, no. 4, pp. 3036–3054, Oct. 2015.

[47] M. Ritchie, A. Stove, K. Woodbridge, and H. Griffiths, “NetRad: Monos-
tatic and bistatic sea clutter texture and doppler spectra characterization at
s-band,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 9, pp. 5533–5543,
Sep. 2016.

[48] P. Jarabo-Amores et al., “IDEPAR: A multichannel DVB-T passive
radar technological demonstrator in terrestrial radar scenarios,” IET Radar,
Sonar Navigat., vol. 11, pp. 133–141, 2017.

[49] D. Mata-Moya, N. del Rey-Maestre, V. M. Peláez-Sánchez, M.-P.
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sity of Alcalá, Alcalá de Henares, Spain, in 2005. She
was an Assistant Professor from 1997 to 2003, a Lec-
turer from 2003 to 2008, and an Associate Professor
since then, with the Department of Signal Theory and
Communications, University of Alcalá. She has au-
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