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Abstract—The classification accuracy of a brain–computer in-
terface (BCI) frequently suffers from ill-posed and overfitting
problems. To avoid and alleviate these problems, we propose a
method of a multilinear discriminant analysis with constraints
to augment parameter reduction, regularization, and additional
prior information for event-related potential (ERP)-based BCIs.
The method reduces the number of parameters by multilineariza-
tion, regularizes the ill-posedness via subspaces that constrain the
parameter spaces, and incorporates a brain functional connectiv-
ity through the constraints. The experimental results show that the
proposed method improved the classification accuracy rates in a
single-trial ERP processing.

Index Terms—Brain–computer/machine interface (BCI/BMI),
event-related potentials, electroencephalogram (EEG), single-trial
classification, linear discriminant analysis, multilinear algebra.

I. INTRODUCTION

THE decoding of brain activities from an electroen-
cephalogram (EEG) is an important and challenging

technology [1]. One of the applications of EEG decoding
is a brain–computer/machine interface (BCI/BMI). The BCI
uses neurophysiological signals to directly connects a human
brain with an external device. By detecting the brain activities
evoked by certain tasks, the BCI generates an output. The brain
activities include the imagination of muscular movements or
certain other procedures, such as paying attention to external
stimuli [2], [3]. The BCI provides a nonmuscular communica-
tion tool for conveying mental messages or commands to the
external world [3]–[5].
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One of the promising BCI tasks is based on the oddball
paradigm [6], where multiple stimuli (symbols or tones) ap-
pear randomly [2]. The user responds by counting the num-
ber of occurrences of target stimuli or, in psychophysical
experiments with able-bodied users, by clicking buttons. During
the response, slow fluctuations, called event-related potentials
(ERPs) [6], are observed in the EEG. An ERP consists of sev-
eral electrophysiological components, such as P300 and N100.
Detection of these ERP components identifies the stimulus the
user is heeding and indicates the command the user wants to en-
ter. A well-known BCI, called a P300-speller, uses the oddball
paradigm for the input of the alphabet [7], [8]. The main problem
for ERP-based BCIs is the classification of the observed EEG
signals as either target (the user pays attention to the stimulus)
and nontarget (the user does not pay attention to the stimulus). To
solve this, linear discriminant analysis (LDA), as a supervised
dimensionality reduction technique, is used widely [8], [9].

Spatial dense, multichannel, systems for recording ERPs
would improve the accuracy of classifying BCIs. As the number
of electrodes and channels for capturing the brain activities in-
creases, the size of the EEG signal matrices also increases [10].
Because of rearrangement of the EEG signals, the input vectors
in the LDA projection may be large. Because brain patterns de-
pend on the individual subject and measurement environment,
the projections and classifiers need calibration. However, it can
be difficult to obtain a sufficient number of samples (trials)
for calibration, because the recording of larger EEG datasets is
time-consuming and tires the user. When the signal size is large
and the number of the samples is small, the calculations can be
ill-posed or overfitted [11].

To alleviate such problems, unsupervised dimensionality
reduction techniques, such as principal component analysis
(PCA) [11], regularizations [12]–[16], calibrations with data
from different users or sessions [10], [17], [18], and the genera-
tion of artificial signals [13] are often used. For ERP-based BCIs,
regularization using the vector norms [19] or shrunk covari-
ance [9] has been proposed. Additionally, multilinear/multiway
signal processing [20] that manipulates a multidimensional ar-
ray called a tensor, which is typicaly has more than three
“modes” can be applied (a vector is a single-mode tensor and a
matrix is a dual-mode tensor). In the multilinear approach, the
structures of the recorded signals and converted data can be re-
tained. Since the structure provides additional information, mul-
tilinear approaches can be considered to be regularizations [21],
[22]. Moreover, if an alternating optimization for each mode is
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applied [20], [23]–[25], the number of parameters to be opti-
mized can be small. In this way, the multilinear approaches are
less ill-posed. However, multilineary formed LDA (multilinear
discriminant analysis (MLDA)) can be ill-posed and overfitted,
because the dimension of the projection for each mode can be
large, even after multilinearization.

In this paper, we propose a novel MLDA projection with sub-
space constraints that produce regularization, parameter reduc-
tion, and additional prior information transferred from different
datasets. The proposed method is based on uncorrelated MLDA
(UMLDA) [26], which has the advantage of fewer parameters
compared to other MLDA algorithms [27]. To address the known
ill-posed and overfitted problems of MLDA, we regularize the
parameter spaces by subspace constraints. Unlike regularization
techniques that use the vector norm [9], [19], which restricts the
statistics of the parameter vector, our approach restricts the pa-
rameter space to the subspaces where the solution can exist.

For the constraints, the subspaces should ideally include dis-
criminative projections. However, such subspaces are unknown.
Therefore, we propose the use of the functional connectivity of
the brain [28], [29] which represents the synchronization of
two brain regions or time segments. The idea behind the use of
the functional connectivity for the subspace design is that the
projection coefficients for strongly-connective channels or time
segments take similar values.

The functional connectivity is also unknown, and we need to
estimate it. Usually, the number of training samples is too small
to accurately estimate the functional connectivity in the classifi-
cation problem. We propose the estimation of the functional con-
nectivity by using data collected from different subjects/sessions
that follow the same experimental procedures. The subspaces
are derived from the functional connectivity via graph Fourier
bases [16]. In this way, the proposed constraints let the function-
ally connected coefficients of the projection take similar values.
Although regularization techniques using the vector norm of the
projection [9], [19], [30] are not able to incorporate the structure
of the variables, our approach can provide this function. To eval-
uate the proposed method, we conducted tests with conventional
approaches in single-trial ERP processing setting.

The rest of this paper is organized as follows. Section II briefly
summarizes the mathematical notation and the basics of mul-
tilinear algebra. Related works are reviewed in Section III. We
propose the addition of the subspace constraints to the UMLDA
algorithm in Section IV. Ideas for the subspace design for the
constraints based on functional brain connectivity are intro-
duced in Section V. Section VI presents the experimental results
of single-trial classification of ERPs in the oddball paradigm.
Section VII concludes this paper.

II. BASIC MULTILINEAR ALGEBRA

In this paper, lower-case boldface characters represent vec-
tors (e.g., x and y). Upper-case boldface notation denotes ma-
trices (e.g., X and Y ), and upper-case calligraphic capitals
denote tensors (e.g., X and Y). A tensor is a multidimensional
array represented as X ∈ RI1 ×I2 ×···×IN . This is a tensor with
N modes and the dimension of IN for its nth mode. The ith

element of a vector x is given by [x]i . An entry in the ith row
and jth column of a matrix X is given by [X]i,j . The entry of
the in th index in the n-mode for n = 1, . . . , N of a tensor X is
given by [X ]i1 ,i2 ,...,iN

.
The n-mode vectors of X are defined as the In -dimensional

vectors obtained from X by varying the index in while keep-
ing the other indices fixed. The unfolding [20] of a tensor
X ∈ RI1 ×I2 ×···×IN along the nth mode is represented by an op-
erator denoted by (·)(n) . The matrix transformed by (X )(n) is

denoted as X(n) ∈ RIn ×Īn where Īn =
∏N

i=1,i �=n Ii . The col-
umn vectors of X(n) are the n-mode vectors of X . The n-mode
product of a tensor X with a matrix A ∈ RJ×In is denoted
by X ×n A ∈ RI1 ×···×In −1 ×J×In + 1 ×···×IN . The elements of the
n-mode product of X and A are defined as

[X ×n A]i1 ,...,in −1 ,jn ,in + 1 ,...,iN

=
In∑

in =1

[X ]i1 ,...,in −1 ,in ,in + 1 ,...,iN
[A]jn ,in

. (1)

The n-mode unfolding of the n-mode product can be obtained
by

(X ×n A)(n) = AX(n) . (2)

For convenience, we denote

X
N∏

n=1

×nAn = X ×1 A1 ×2 A2 ×3 · · · ×N AN . (3)

III. RELATED WORKS

A. Linear Discriminant Analysis

LDA is a classical supervised linear projection [11] defined
as

γ = U�x, (4)

where x ∈ RNd is a feature vector to be classified, γ ∈ RNr is
the projected vector, and U ∈ RNd ×Nr is a matrix working as
a projection, given as follows.

Consider the problem in which an observed sample x is clas-
sified into a class ψ out of Nc classes (ψ ∈ {ω1 , . . . , ωNc

}).
Let {x(m ) , ψ(m )}Nm

m=1 be Nm pairs of the observed sample and
its class label in a given training set, where x(m ) ∈ RNd , and
ψ(m ) ∈ {ω1 , . . . , ωNc

}. Let γ(m ) be the projected vector given
as γ(m ) = U�x(m ) . The projection U is found by solving

max
U

∑Nc

c=1 |Ωc |‖γ̄ωc
− γ̄‖2

∑Nm

m=1 ‖γ(m ) − γ̄ψ (m ) ‖2
, (5)

where γ̄ is the mean of the projected vectors given by γ̄ =
1

Nm

∑Nm

m=1 γ(m ) ,γ̄ωc
is the mean of the projected vectors be-

longing to class ωc given by γ̄ωc
= 1

|Ω c |
∑

m∈Ω c
γ(m ) ,Ωc is

a set of sample indices belonging to class ωc given by Ωc =
{m′ | ψ(m ′) = ωc,m

′ = 1, . . . , Nm}, and the operator | · | for a
set gives the number of the elements in the set. We define the
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between-class scatter matrix B as

B =
Nc∑

c=1

|Ωc |(x̄ωc
− x̄)(x̄ωc

− x̄)�, (6)

the total scatter matrix T as

T =
Nm∑

m=1

(x(m ) − x̄)(x(m ) − x̄)�, (7)

and the within-class scatter matrix W as

W = T − B, (8)

where x̄ is the mean vector of x(m ) defined as x̄ =
1

Nm

∑Nm

m=1 x(m ) and x̄ωc
is the mean vector of x belonging

to class ωc defined as x̄ωc
= 1

|Ω c |
∑

m∈Ω c
x(m ) . By the scatter

matrices, the optimization problem in (5) is transformed into

max
U

tr
(
U�BU

)

tr (U�WU)
. (9)

B. Linear Discriminant Analysis Using the Shrunk Covariance

To solve the optimization problem in (9), the generalized
eigenvalue decomposition for B and W can be used. However,
for a high-dimensional feature space with a few samples, the
decomposition is ill-posed. To alleviate this situation, we can use
a regularization technique called shrinkage LDA (sLDA) [31].
For sLDA, the shrinkage total scatter matrix

T̃ = (1 − α)T + ανINd
, (10)

is used instead of the total scatter matrix in (7) to obtain the
within-class scatter matrix in (8), where α is a regularization
parameter to be tuned, and ν is defined as ν = tr(T )/Nd . The
parameter α is tuned analytically or empirically. For analytical
selection, we can use the Ledoit-Wolf estimator [32]–[34]. For
empirical selection, we can use cross-validation. This regular-
ization has been applied to the problem of single-trial classifi-
cation of ERPs [9].

C. Uncorrelated Multilinear Discriminant Analysis

UMLDA creates a feature tensor by a tensor-to-vector pro-
jection (TVP) [27] with the elementary multilinear projec-
tion (EMP) [26], [27]. The EMPs for an N -mode tensor
X ∈ RI1 ×I2 ×···×IN projected onto a scalar by N vectors are
defined as

y(X , U) = X
N∏

n=1

×nu�
n , (11)

where U is the set of the EMP vectors defined as U = {un ∈
RIn }N

n=1 . A set of EMPs results in a TVP. A TVP that projects
a tensor X onto an R-dimensional vector y by NR vectors is
defined as

y(X ,Θ) =
[
y(X , U (1)), . . . , y(X , U (R))

]�
, (12)

where U (r) = {u(r)
n ∈ RIn }N

n=1 , and Θ = {U (r)}R
r=1 for later

convenience.

The set of EMPs for UMLDA is obtained as follows. Con-
sider the problem in which an observed sample X is classi-
fied into a class ψ out of Nc classes (ψ ∈ {ω1 , . . . , ωNc

}).
Let {X (m ) , ψ(m )}Nm

m=1 be the set of Nm pairs of the ob-
served sample and its class label in a given training set, where
X (m ) ∈ RI1 ×···×IN , and ψ(m ) ∈ {ω1 , . . . , ωNc

}. Let g(r) be
the vector of the training samples projected by the rth EMP
defined as

g(r) =
[
y(X (1) , U (r)), . . . , y(X (Nm ) , U (r))

]�
. (13)

UMLDA finds the EMPs in such a way that the vectors
{g(r)}R

r=1 are uncorrelated with each other [35]. The optimiza-
tion problem with the constraints of the uncorrelation is given
as [26]

max
Θ

J(Θ) =
∑Nc

c=1 |Ωc |‖ȳωc
− ȳ‖2

∑Nm

m=1 ‖y(X (m ) ,Θ) − ȳψ (m ) ‖2
,

subject to g(r)�g(r ′) = 0, r, r′ = 1, . . . , R, r �= r′,

(14)

where ȳ is the mean of the projected vectors defined as
ȳ = 1

Nm

∑Nm

m=1 y(X (m ) ,Θ), and ȳωc
is the mean of the

projected vectors belonging to class ωc defined as ȳωc
=

1
|Ω c |

∑
m∈Ω c

y(X (m ) ,Θ).
It is difficult to find all of the parameters in (14) simultane-

ously. Therefore, we adopt sequential optimization, which finds
the parameters one by one with respect to the EMP index n [26].
In sequential optimization, after {U (r)}p−1

r=1 are found, U (p) is
obtained under a constraint of {U (r)}p−1

r=1 . By this sequential
solution, the problem in (14), for only the first EMP, is given as

U (1) = arg max
U

J ′(U) (15)

with

J ′(U) =
∑Nc

c=1 |Ωc |‖ȳωc
− ȳ‖2

∑Nm

m=1 ‖y(X (m ) , U) − ȳψ (m ) ‖2
, (16)

where ȳ is the mean of the projected scalar defined as
ȳ = 1

Nm

∑Nm

m=1 y(X (m ) , U), and ȳωc
is the mean of the

projected scalar belonging to class ωc defined as ȳ =
1

|Ω c |
∑

m∈Ω c
y(X (m ) , U). Next, for the pth EMP (p > 1), we

solve (15) with the constraints

U (p) = arg max
U

J ′(U),

subject to g(p)�g(r) = 0, r = 1, . . . p − 1.

(17)

For the above problem, the EMPs (U (1) , . . . , U (p−1)) should
be given in advance for g(1) , . . . , g(p−1) .

The problem in (17) does not have a closed-form solution.
Therefore, we apply an alternating solution over the tensor
mode [26].

IV. UNCORRELATED MULTILINEAR DISCRIMINANT ANALYSIS

WITH SUBSPACE CONSTRAINTS

The proposed subspace-constrained UMLDA (SMLDA) adds
subspace constraints for the parameter spaces to the cost func-
tion of UMLDA in (14). The optimization problem for SMLDA
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is

max
Θ

J(Θ),

subject to g(r)�g(r ′) = 0, r, r′ = 1, . . . , R, r �= r′

u(r)
n ∈ Sn , ∀r,∀n,

(18)

where Sn is a subspace in the parameter space for {u(r)
n }R

r=1 .
As for UMLDA, sequential optimization can be adopted to
solve (18). For sequential optimization, the subproblem for the
pth EMP is

U (p) = arg max
U

J ′(U),

subject to g(p)�g(r) = 0, r = 1, . . . p − 1,

un ∈ Sn , ∀n.

(19)

The above problem does not have a closed-form solution
similar to that of UMLDA. Therefore, we apply an alternating
optimization. In an alternating optimization, the problem is di-
vided into N subproblems with respect to the modes. First, we
set the initial values for the parameters. We solve the subprob-
lems in an alternating manner and stop optimizing if the cost
function converges. The subproblem for u

(p)
n in (19) is

u(p)
n = arg max

u

u�B
(p)
n u

u�W
(p)
n u

,

subject to g(p)�g(r) = 0, r = 1, . . . p − 1,

u ∈ Sn ,

(20)

where B
(p)
n is a matrix corresponding to a between-class scatter

matrix for LDA defined as

B(p)
n =

Nc∑

c=1

|Ωc |(z̄(p)
ωc ,n − z̄(p)

n )(z̄(p)
ωc ,n − z̄(p)

n )�, (21)

W
(p)
n is a matrix corresponding to a within-class scatter matrix

for LDA defined as

W (p)
n =

Nm∑

m=1

(z(p,m )
n − z̄

(p)
ψ (m ) ,n

)(z(p,m )
n − z̄

(p)
ψ (m ) ,n

)�, (22)

z
(p,m )
n is the mth sample projected by {u(p)

n ′ }N
n ′=1,n ′ �=n defined

as

z(p,m )
n =

⎛

⎝X (m )
N∏

n ′=1,n ′ �=n

×n ′u
(p)
n ′

⎞

⎠

(n)

, (23)

the mean vector of z
(p,m )
n belonging to ωc is defined as

z̄
(p)
ωc ,n = 1

|Ω c |
∑

m∈Ω i
z

(p,m )
n , and the mean vector of z

(p,m )
n is

defined as z̄
(p)
n = 1

Nm

∑Nm

m=1 z
(p,m )
n . The optimization prob-

lem in (20) has p − 1 + 1 constraints. The first p − 1 con-

straints (g(p)�g(r) = 0, r = 1, . . . , p − 1) are equivalent to the
equations

u�
[
z(p,1)

n , . . . ,z(p,Nm )
n

]
g(r) = 0, r = 1, . . . , p − 1. (24)

As we define H
(p)
n ∈ RIn ×(p−1) as

H (p)
n =

[
z(p,1)

n , . . . ,z(p,Nm )
n

][
g(1) , . . . , g(p−1)

]
, (25)

these p − 1 constraints can be represented in a matrix-vector
form as

u�H (p)
n = 0, (26)

where 0 = [0, . . . , 0]� ∈ Rp−1 . Let H(p)
n be a subspace spanned

by the column vectors of H
(p)
n . The orthogonal complement of

H
(p)
n is denoted by H

(p)
n

⊥
. The p − 1 + 1 constraints of (20)

are equivalent to the constraint

u ∈ V (p)
n =

{
Sn ∩ H(p)

n

⊥}
, (27)

where V
(p)
n is the intersection of Sn and H

(p)
n

⊥
. If V

(p)
n = {o},

there is no space where u can exist, and u has no solution. There-
fore, for SMLDA to have a solution, the problem must satisfy
R ≤ min{I1 , . . . , IN } and rank(Sn ) > 0 for n = 1, . . . , N . In
addition, if rank(Sn ) = In for n = 1, . . . , N , SMLDA is equiv-
alent to UMLDA. Let {v(p)

n,1 , . . . ,v
(p)
n,Nv

} be an orthogonal basis

of V
(p)
n , where Nv = rank(V (p)

n ). The projection vector u can
be formulated by the linear combination

u = a1v
(p)
n,1 + · · · + aNv

v
(p)
n,Nv

= V (p)
n a, (28)

where V
(p)
n ∈ RIn ×Nv is a matrix defined as V

(p)
n =

[v(p)
n,1 , . . . ,v

(p)
n,Nv

], {as}Nv
s=1 are coefficients for the linear combi-

nation, and a ∈ RNv is a vector defined as a = [a1 , . . . , aNv
]�.

The optimization problem in (20) can be translated in finding a
by a change of variables. The approach for finding a is

a = arg max
a

a�B̃
(p)
n a

a�W̃
(p)
n a

, (29)

where B̃
(p)
n and W̃

(p)
n are Nv × Nv matrices defined as

B̃
(p)
n = V (p)

n

�
B(p)

n V (p)
n (30)

and

W̃
(p)
n = V (p)

n

�
W (p)

n V (p)
n . (31)

The solution of (29) is given by generalized eigenvalue
decomposition as follows:

B̃
(p)
n a = λW̃

(p)
n a, (32)

where λ is an eigenvalue. The solution is given as the eigenvector
corresponding to the largest eigenvalue of (32).

The procedure of UMLDA with subspace constraints is sum-
marized in Algorithm 1 as a pseudocode. The pseudocode in-
cludes the procedure for the design of the subspaces presented
in Section V.

V. DESIGN FOR SUBSPACE CONSTRAINTS

In this section, the subspace defined in (18) for SMLDA are
proposed for EEG classification in ERP-based BCIs. The idea
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Algorithm 1: SMLDA with the functional connectivity.

Input: {X (m ) , ψ(m )}Nm
m=1 : the training samples,

{T (m )}Na
m=1 : the complementary data.

Parameters: R: the reduced dimension, {Dn}N
n=1 : the

dimensions of the subspaces.
Output: Θ = {u(r)

n }N,R
n=1,r=1 : the EMPs.

{Design of the subspaces}
for n = 1, . . . , N do

Calculate An using {T (m )}Na
m=1 by (33)

Obtain Sn from the graph Fourier basis of L̄n by (45)
end for
{SMLDA}
for p = 1, . . . , R do

Initialize {u(p)
n }N

n=1 .
Calculate {g(r)}p−1

r=1 by (13).
Set the index of the iteration as k = 0.
repeat

for n = 1, . . . , N do
k ← k + 1.
Calculate H

(p)
n by (25).

Calculate an orthogonal basis {v(p)
n,1 , . . . ,v

(p)
n,Nv

} of

Sn ∩ H
(p)
n

⊥
.

Obtain a by solving (29) as the largest generalized
eigenvector of (32).
Obtain u

(p)
n by calculating (28).

Calculate the cost as Ck ← J ′(U (p)) defined
in (15).

end for
until Ck − Ck−1 is sufficiently small.

end for

behind the subspaces is to incorporate brain functional connec-
tivity into SMLDA. In Section V-A, functional connectivity is
defined as an adjacency matrix estimated from the data observed
in different experimental subjects/sessions. In Section V-B, we
introduce the method for deriving a subspace from the adjacency
matrix.

A. Adjacency Matrix of Functional Connectivities

The functional connectivity of the brain is an important con-
cept in cognitive neuroscience [36], [37]. In general, functional
connectivity represents the synchronization of two different
brain regions or time segments. Therefore, functional connec-
tivity can represent the functional structure of the brain. In this
study, the functional connectivity between two optimization pa-
rameters is obtained from a signal set that is different from the
training set. The signal set is obtained from recordings of ex-
perimental subjects/sessions that are different from those in the
testing set. We call the signal set the “complementary data.”

Although the EEG signals are given as a matrix (channel
by time), we use the tensor form to represent the signals for
generality. The complementary data, composed of Na signals,
are denoted as {T (m ) ∈ RI1 ×···×IN }Na

m=1 . We assume that the
signals in the complementary data are in the same format (size)

as those in the testing set. The ith row and jth column of the
adjacency matrix for the nth mode (n ∈ {1, . . . , N}) are defined
as

[An ]i,j =

{
0, i = j,

Cχ(t(i)
n , t

(j )
n ), otherwise,

(33)

for i, j = 1, . . . , In , where Cχ is an operator that measures the

χ-type connectivity between two input vectors, t
(l)
n ∈ RNp is

the vector composed of the l elements in the nth mode of the
complementary data given by

[
t(l)
n

]

(m−1)N̄n +k
=

[
T

(m )
(n)

]

l,k
, (34)

for k = 1, . . . , N̄n and m = 1, . . . , Na , N̄n =
∏N

n ′=1,n ′ �=n In ′ ,
and Np = NpN̄n .

We propose two types of operators, Ccorr(·, ·) and Cmi(·, ·)
as follows.

1) Normalized Correlation: The operator that estimates the
normalized correlation from the input vectors is defined as

Ccorr(q1 , q2) =
q̃�

1 q̃2

‖q̃1‖‖q̃2‖
, (35)

where q̃1 and q̃2 are the centered samples given by q̃i = qi −
1

Np

∑Np

m=1[qi ]m , i = 1, 2.

2) Mutual Information: The mutual information is a mea-
sure of the joint dependence of two random variables. In this
study, we assume Gaussian random variables with the param-
eters estimated from the input vectors. The definition of the
mutual information of two variables is given as

I(Q1 ;Q2) =
∫

Q 2

∫

Q 1

p(q1 , q2) log
p(q1 , q2)

p(q1)p(q2)
dq1dq2 . (36)

The operator for the mutual information Cmi(q1 , q2) is given
as I(Q1 ;Q2) with the probability distributions estimated from
the input vectors, q1 and q2 . The joint probability distribution
p(q1 , q2) and the marginal probability distributions, p(q1) and
p(q2), are assumed to be Gaussian:

p(q1 , q2) = N (q1 , q2 | μ,Σ) (37)

and

p(qi) = N (qi | μi, σ
2
i ), i = 1, 2. (38)

The maximum likelihood estimate of the parameters in (37)
and (38) is given by

μ̂i =
1

Np

Np∑

m=1

[qi ]m , i = 1, 2, (39)

Σ̂ =
1

Np

Np∑

m=1

(zm − μ̂)(zm − μ̂)�, (40)

and σ̂2
i = [Σ̂]i,i , where μ̂ = [μ̂1 , μ̂2 ]�, and zm = [[q1 ]m ,

[q2 ]m ]�. Using the estimated parameters, the operator giving
the mutual information is reduced to

Cmi(q1 , q2) =
1
2

log
σ̂2

1 σ̂2
2

|Σ̂|
. (41)
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B. Subspace by a Graph Fourier Basis

An adjacency matrix represents a graph having edges and
nodes. The eigenvectors of the graph Laplacian, which can be
derived from the adjacency matrix, are called the graph Fourier
basis [38]. The ith and jth elements of the eigenvector corre-
sponding to the small eigenvalues take similar values if the ith
and jth nodes are strongly connected (the corresponding edge
weight is large). These eigenvectors corresponding to the small
eigenvalues can be called smooth vectors across the graph [16].
We employ the feature of the graph Fourier basis to obtain
the subspaces constraining the optimized parameters that are
smooth across the functional connectivities.

The subspace for the nth mode Sn , with the adjacency matrix
given by (33), is obtained as follows. The graph Laplacian is
defined as

Ln = Dn − An , (42)

where Dn is a diagonal matrix whose diagonal elements
are given by [Dn ]i,i =

∑In

k=1[An ]i,k . The normalized graph
Laplacian is also defined as

L̄n = D
− 1

2
n LnD

− 1
2

n . (43)

The orthonormal basis of Sn satisfies

L̄ns(i)
n = λis

(i)
n . (44)

The indices of the eigenvalues and the corresponding eigen-
vectors are determined in such a way that 0 = λ1 ≤ λ2 ≤ · · · ≤
λIn

. Using the eigenvectors, the subspace is designed as

Sn = Span{s(1)
n , s(2)

n , . . . , s(Dn )
n }, (45)

where Dn is the dimension of Sn and is a parameter of SMLDA.

VI. EXPERIMENTS

We conducted classification experiments of single-trial ERPs
to evaluate the performance of the proposed SMLDA projec-
tion. The SMLDA method was compared with LDA, including
a dimensionality reduction by PCA; common spatial pattern
(CSP) spatial filter [9]; xDAWN spatial filter [39], LDA with
the shrunk covariance matrix, and UMLDA.

A. Data Description

Five datasets were used. The information is summarized in
Table I.

1) DATASET-A/B/C: In the BCI experiments, 16 persons
participated in the recording of the datasets. These datasets con-
sisted of EEG signals with P300-based BCI responses evoked
by auditory, visual, and audiovisual stimuli. Detailed informa-
tion about these datasets is presented in [40]. The main problem
of these datasets has been the classification of the EEG signals
as either target (class 1) or nontarget (class 2) stimuli. The elec-
trodes were placed at Cz, CPz, POz, Pz, P1, P2, C3, C4, O1, O2,
T7, T8, P3, P4, F3, and F4 in the International 10/20 System,
referenced to the active electrodes installed at the earlobes.

2) DATASET-D: In the second series of BCI experiments,
12 people (23.6 ± 1.7 years; two females) participated in the

TABLE I
SUMMARY OF DATASETS

DATASET

A B C D E

Stimulus Audio Visual Audiovisual Visual Visual
Task Spelling Spelling Spelling TCRT1 Spelling
# subjects 16 16 16 11 10
# channels 16 16 16 64 8
fs

2 [Hz] 512 512 512 512 256

1TCRT stands for two-choice response task.
2fs stands for the sampling frequency.

Fig. 1. The electrode arrangement for DATASET-D.

recording of the dataset. The EEG recordings were conducted
at Toyohashi University of Technology, Aichi, Japan. The ex-
periment was approved by the Committee for Human Research
of Toyohashi University of Technology, and all participants
gave written informed consent. The subjects performed the two-
choice response time (TCRT) task without receiving feedback
about the accuracy of their responses [41]. For visual stimuli,
square and circle symbols were presented randomly on an LCD
display every 1.5 ± 0.1 s. We instructed the subjects to click the
left button when a circle appeared, and to click the right button
when a square appeared. For each subject, the button assign-
ment was random. A single session consisted of 310 stimulus
presentations. Two sessions were conducted for each subject.

The probability of the occurrence of each symbol varied be-
tween the two sessions. In one of the sessions, the probability
of presentation of a circle was 70%, and that of the square was
30%. In the other session, the probability of occurrence of the
circle was 30%, and that of the square was 70%. The stimuli
with probabilities of 70% and 30% were called standard and
odd, respectively. The subjects did not know which symbol cor-
responded to the standard or odd stimulus. The main problem
for this dataset was to classify the EEG signals as either standard
(class 1) or odd (class 2) stimuli. We recorded the EEG signals
using a Biosemi ActiveTwo system. The electrodes covered the
whole head (Fig. 1), referenced to the active electrodes installed
at the earlobes.
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3) DATASET-E: As an experiment with a public dataset,
the dataset provided by g.tec medical engineering GmbH was
used [42]. The dataset consisted of EEG signals with a P300-
Speller evoked by visual stimuli. Detailed information about this
dataset is presented in [42]. The main problem of this dataset
has been the classification of EEG signals as target (class 1) or
nontarget (class 2) stimuli. The electrodes were placed at Fz,
Cz, P3, Pz, P4, PO7, Oz, and PO8.

B. Classification Procedure

The ERP signal for each trial was segmented from 100 to
800 ms after the stimulus onset to create features. In order to
remove trials contaminated by muscular artifacts related to eye
blinks or other movement, a threshold of 80 μV was used for
the EEG amplitude. After the removal of artifacts, the num-
ber of samples for each subject in DATASET-D was reduced to
less than 100. Therefore, we removed data from the classifica-
tion experiment, and the count of the subjects for DATASET-D
was 11. A Butterworth bandpass filter whose passband was
0.1–15 Hz was applied. We down-sampled the ERP feature to
an effective sampling frequency of 32 Hz.

As a result of the above preprocessing procedures, the feature
set of each BCI trial for DATASET-A, -B, and -C was represented
by a matrix with a size of 16 × 23. In DATASET-D, the feature
matrix size was 64 × 23. In DATASET-E, the matrix size was
8 × 23. For the LDA projection, we vectorized the signal ma-
trices. To alleviate the ill-posedness caused by the dimension of
the vectors, which were generally larger than the number of the
training samples, we applied dimensionality reduction by PCA
before obtaining the LDA projection. The projection is denoted
by PCA + LDA.

For the LDA projection with the shrunk covariance matrix, the
regularization parameter α in (7) was selected empirically. This
projection is denoted by sLDA. The extraction of the logarithm
signal powers [9] of the CSP-filtered signals, followed by the
projection with LDA, is denoted by CSP + LDA. The projection
with the xDAWN spatial filter, followed by the projection with
LDA, is denoted by xDAWN + LDA. In this projection, the
spatial filtered signals were vectorized. For the UMLDA and
SMLDA projections, we did not vectorize the feature matrices.
The EEG features were processed as two-mode tensors (the first
and second modes corresponded to the time and spatial domains
(channels), respectively).

The complementary data for SMLDA consisted of the data
recorded with subjects that were different from the tested ones.
For example, when we tested Subject 1, the complementary
data consisted of the data from Subject 2, Subject 3, ..., and
Subject 16 in DATASET-A. SMLDA with the subspaces using
Ccorr is denoted by SMLDAc, and that using Cmi is denoted by
SMLDAm.

The parameters for each method were tuned with the training
samples. For the tuning, a nested leave-one-out cross-validation
was adopted. The reduced dimension in the PCA + LDA pro-
jection was chosen out of {1, 2, . . . , 100}. The regularization
parameter α for sLDA was chosen out of {0.01, 0.02, . . . , 1}.
The number of CSP filters for CSP + LDA was chosen out

Fig. 2. Grand-averaged EEG potentials [μV] at each time index in DATASET-
D. The potential decreases as the color changes from red to blue (see the colorbar
below the figures).

of {1, 2, . . . , 50}. The number of xDAWN spatial filters for
xDAWN + LDA was chosen out of {1, 2, 3, 4}. The dimensions
of the subspaces for the spatial and time domains (D1 and D2)
in the SMLDA projection were chosen out of {1, 2, . . . , 15}.
The reduced dimension R in SMLDA and UMLDA was chosen
out of {1, 2, . . . , 5}.

The vectors projected by LDA, sLDA, UMLDA, and SMLDA
were classified by Bayes’ rule [43] using a Gaussian distribution:

ĉ = arg max
c∈{class 1,class 2}

N (y | mc ,Σc)p(c), (46)

where y is a projected sample (scalar or vector), mc and Σc are
estimated as the sample mean and covariance of the projected
samples in the training sets belonging to class c, and p(c) is
estimated as p(class 1) = p(class 2) = 0.5.

We randomly removed some samples, so that the numbers of
samples for two classes were the same. Because the numbers
of trials were different for each subject, we randomly selected
100 samples (50 samples per class) for the training sets, and
the remaining samples were used to evaluate the classification
accuracy. We validated the classification accuracy by repeating
the selection for the training and testing samples 100 times. The
classification accuracy rates were given as the average over the
repetitions.

C. Results

Fig. 2 shows the EEG potentials in DATASET-D, averaged
over all trials (grand average), on topographical maps. Poten-
tial fluctuations related to the events are observed at 193 ms
(Fig. 2(a)) and 380 ms (Fig. 2(d)) in the parietal area. The
early component is considered to be N100, reflecting the atten-
tion to the event, and the late component is considered to be
P300 that is modulated by the probability of the event in the
oddball paradigm [44]. The grand-averaged EEG waveforms
in DATASET-D are shown in Fig. 3. Differences between the
classes are observed between 200 ms and 300 ms and, and at
380 ms. The time range from 250 ms to 300 ms shows a signif-
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Fig. 3. Grand-averaged EEG potentials observed at Pz in DATASET-D. The
asterisks in the figure indicate the results of a t-test at each time index
(∗: p < 0.01).

Fig. 4. Adjacency matrices with the normalized correlation operator Ccorr .

Fig. 5. Adjacency matrices with the mutual information operator Cm i .

icant difference (p < 0.01) between the two classes. This com-
ponent is considered to be N200 (or the mismatch negativity)
and P300 (especially its subcomponent P3a) [45], [46].

The adjacency matrices are represented in Figs. 4 and 5.
They were obtained from all of the experimental recordings
(all subjects) of DATASET-D. Figs. 4(a) and 5(b) show that
the functional connectivities are high if the optimization pa-
rameters (time segments) are close in the temporal domain.
The functional connectivities in the spatial (channel) domain
(Figs. 4(b) and 5(b)) also show that the connectivity is high be-
tween pairs of channels of the electrodes that were located at a
close distance. Moreover, the connectivity among the electrodes
in the frontal and parietal areas are high. Fig. 6 shows the vec-
tors in the graph Fourier basis given by the graph Laplacian of
the adjacency matrix shown in Fig. 5(a). These vectors are the
eigenvectors corresponding to some of the smallest eigenvalues
obtained in (44). The lines in Fig. 6 correspond to the indices of
the eigenvalues. Because the functional connectivities between

Fig. 6. Representatives of first five bases in the graph Fourier transform with
Cm i in the temporal mode.

Fig. 7. Representatives of first six bases of the graph Fourier transform with
Cm i in the spatial mode.

successive time segments are high, the bases are similar to those
of Fourier transform. Fig. 7 shows the vectors in the basis of the
graph Fourier transform given by the adjacency matrix of Fig. 2.
As shown in Fig. 2, the synchronization of the parietal area in
the grand-averaged potential would affect the high coefficients
of the parietal area in Fig. 7(b) and (c).

The obtained classification accuracies are shown in Fig. 8, and
their averages are listed in Table II. The classification perfor-
mance of UMLDA for DATASET-A, -B, -C, and -D is lower than
that of the other methods discussed in this paper. On the other
hand, the classification accuracy for DATASET-E with a lower
number of channels, is similar to PCA + LDA and sLDA. This
means that UMLDA has an overfitting problem for DATASET-
A, -B, -C, and -D. This suggests that the reduction of the opti-
mization parameters by multilinearization is not good enough
to solve the overfitting problem in our experimental setting. By
using subspace constraint to solve the problem, the proposed
methods (SMLDAc and SMLDAm) increase the classification
accuracy by 3–4% on average.

Fig. 9 shows the projection vectors for the first (temporal)
mode in the first EMP (u(1)

1 ) of SMLDAm. The projections
are given by 100 samples of Subject 1 in DATASET-D. The
lines in Fig. 9 correspond to the numbers of the dimension
of the subspace D1 . We observe that the projection vector is
smooth in the temporal domain with a small dimension of the
subspace. The coefficients (D1 = 6) around 200 ms are higher
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Fig. 8. Results of the classification accuracy rates. The x and y axes in each panel show the classification accuracy rates [%] of the tested method. The circles,
triangles, pentagons, squares, and stars represent the classification accuracy of DATASET-A, -B, -C, -D, and -E, respectively. The symbols with the black edges
show the averages of the classification accuracy rates of each dataset. The text labels at the top left and bottom right are the averages of the classification accuracy
rates of all subjects for each method.

TABLE II
RESULTS OF THE CLASSIFICATION ACCURACY RATES [%] AVERAGED OVER

THE SUBJECTS IN EACH DATASET

Method DATASET Ave.1

A B C D E

PCA + LDA 61.00 60.95 61.15 58.50 63.91 61.05
sLDA 61.28 61.11 60.92 57.53 63.28 60.86
CSP + LDA 59.84 60.09 59.93 55.78 65.53 60.07
xDAWN + LDA 61.23 61.26 61.30 56.66 67.35 61.42
UMLDA 56.69 55.86 56.12 54.33 64.63 57.14
SMLDAc 64.41 64.43 64.36 62.36 67.17 64.48
SMLDAm 64.54 64.72 64.61 61.60 70.70 65.03

1This column shows the averages over all subjects in all datasets.

Fig. 9. Representatives of the SMLDAm projections in the temporal mode.

than those for the other time ranges. This feature corresponds
to the difference observed in the grand-averaged waveforms in
Fig. 3. This suggests that the projection in the temporal domain
captures the temporal features.

Fig. 10 shows the projection vectors for the second (spatial)
mode in the first EMP (u(1)

2 ) of SMLDAm. In Fig. 10(b), the

Fig. 10. Representatives of the SMLDAm projections in the spatial mode.

coefficients for the projection have large amplitudes for the
channels located in the parietal area of the brain. This suggests
that the ERPs are extracted by the projection with the subspace
constraints, because the major ERPs obtained in the oddball
paradigms for BCIs, such as the P300 and N200 components,
are distributed in the parietal cortex [46].

VII. CONCLUSION

We developed a supervised dimensionality reduction method
with UMLDA and the subspace constraints for the parameter
spaces. For the subspace constraints, we proposed a subspace
design method using the functional connectivity estimated
with the complementary data recorded in the experimental
subjects/sessions. Our results have shown that the proposed
method could improve the classification accuracy of ERP-based



1304 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 10, NO. 7, OCTOBER 2016

BCIs. The proposed subspace constraints may also be applied to
other neurotechnology classification problems. As an example,
they could be applied to linear classifiers and projections,
such as the CSP method [47] that has been widely used in
BCI paradigms based on motor imagery [3], [16]. Moreover,
SMLDA can be applied to tensors with more than three modes
(e.g., the time–frequency spectrum obtained from a wavelet
transform [48]). Additionally, the proposed method can be
combined with spatial filters, such as the CSP and xDAWN,
which return the filtered signals in a matrix form.

One of the limitations of SMLDA is that the number of pa-
rameters is large, because it has the parameters of the reduced
dimension R and the dimensions of the subspaces for each mode
{Dn}N

n=1 . However, the results of our experiment suggest that
the appropriate parameters can be found by a cross-validation.
Moreover, although we assumed that the locations of the elec-
trodes were the same for all subjects and the resulting functional
connectivities among the electrodes, the true locations actually
differed among the subjects. For this problem, methods for ob-
taining functional connectivity that do not depend on the precise
positions, such as [49], shall be applied.
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