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Mini-Batch Semi-Stochastic Gradient Descent
in the Proximal Setting

Jakub Konečný, Jie Liu, Peter Richtárik, and Martin Takáč

Abstract—We propose mS2GD: a method incorporating a
mini-batching scheme for improving the theoretical complexity
and practical performance of semi-stochastic gradient descent
(S2GD). We consider the problem of minimizing a strongly convex
function represented as the sum of an average of a large number
of smooth convex functions, and a simple nonsmooth convex
regularizer. Our method first performs a deterministic step (com-
putation of the gradient of the objective function at the starting
point), followed by a large number of stochastic steps. The process
is repeated a few times with the last iterate becoming the new
starting point. The novelty of our method is in introduction of
mini-batching into the computation of stochastic steps. In each
step, instead of choosing a single function, we sample functions,
compute their gradients, and compute the direction based on this.
We analyze the complexity of the method and show that it benefits
from two speedup effects. First, we prove that as long as is
below a certain threshold, we can reach any predefined accuracy
with less overall work than without mini-batching. Second, our
mini-batching scheme admits a simple parallel implementation,
and hence is suitable for further acceleration by parallelization.
Index Terms—Empirical risk minimization, mini-batches, prox-

imal methods, semi-stochastic gradient descent, sparse data, sto-
chastic gradient descent, variance reduction.

I. INTRODUCTION

I N this work we are concerned with the problem of mini-
mizing the sum of two convex functions,

(1)

where the first component, , is smooth, and the second com-
ponent, , is possibly nonsmooth (and extended real-valued,
which allows for the modeling of constraints).
In the last decade, an intensive amount of research was con-

ducted into algorithms for solving problems of the form (1),
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largely motivated by the realization that the underlying problem
has a considerable modeling power. One of the most popular
and practical methods for (1) is the accelerated proximal gra-
dient method of Nesterov [1], with its most successful variant
being FISTA [2].
In many applications in optimization, signal processing and

machine learning, has an additional structure. In particular,
it is often the case that is the average of a number of convex
functions:

(2)

Indeed, even one of the most basic optimization problems—
least squares regression—lends itself to a natural representation
of the form (2).

A. Stochastic Methods
For problems of the form (1) (2), and especially when

is large and when a solution of low to medium accuracy is suf-
ficient, deterministic methods do not perform as well as clas-
sical stochastic1 methods. The prototype method in this cate-
gory is stochastic gradient descent (SGD), dating back to the
1951 seminal work of Robbins and Monro [3]. SGD selects an
index uniformly at random, and then updates
the variable using —a stochastic estimate of .
Note that the computation of is times cheaper than the
computation of the full gradient . For problems where
is very large, the per-iteration savings can be extremely large,
spanning several orders of magnitude.
These savings do not come for free, however (modern

methods, such as the one we propose, overcome this—more
on that below). Indeed, the stochastic estimate of the gradient
embodied by has a non-vanishing variance. To see this,
notice that even when started from an optimal solution , there
is no reason for to be zero, which means that SGD
drives away from the optimal point. Traditionally, there have
been two ways of dealing with this issue. The first one consists
in choosing a decreasing sequence of stepsizes. However, this
means that a much larger number of iterations is needed. A
second approach is to use a subset (“minibatch”) of indices ,

1Depending on conventions used in different communities, the terms ran-
domized or sketching are used instead of the word stochastic. In signal pro-
cessing, numerical linear algebra and theoretical computer science, for instance,
the terms sketching and randomized are used more often. In machine learning
and optimization, the terms stochastic and randomized are used more often.
In this paper, stochasticity does not refer to a data generation process, but to
randomization embedded in an algorithm which is applied to a deterministic
problem. Having said that, the deterministic problem can and often does arise
as a sample average approximation of stochastic problem (average replaces an
expectation), which further blurs the lines between the terms.
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as opposed to a single index, in order to form a better stochastic
estimate of the gradient. However, this results in a method
which performs more work per iteration. In summary, while
traditional approaches manage to decrease the variance in the
stochastic estimate, this comes at a cost.

B. Modern Stochastic Methods
Very recently, starting with the SAG [4], SDCA [5], SVRG

[6] and S2GD [7] algorithms from year 2013, it has transpired
that neither decreasing stepsizes nor mini-batching are neces-
sary to resolve the non-vanishing variance issue inherent in the
vanilla SGDmethods. Instead, these modern stochastic2 method
are able to dramatically improve upon SGD in various different
ways, but without having to resort to the usual variance-reduc-
tion techniques (such as decreasing stepsizes or mini-batching)
which carry with them considerable costs drastically reducing
their power. Instead, these modern methods were able to im-
prove upon SGD without any unwelcome side effects. This de-
velopment led to a revolution in the area of first order methods
for solving problem (1) (2). Both the theoretical complexity
and practical efficiency of these modern methods vastly outper-
form prior gradient-type methods.
In order to achieve -accuracy, that is,

(3)

modern stochastic methods such as SAG, SDCA, SVRG and
S2GD require only

(4)

units of work, where is a condition number associated with
, and one unit of work corresponds to the computation of the

gradient of for a random index , followed by a call to a
prox-mapping involving . More specifically, , where
is a uniform bound on the Lipschitz constants of the gradients

of functions and is the strong convexity constant of .
These quantities will be defined precisely in Section IV.
The complexity bound (4) should be contrasted with that

of proximal gradient descent (e.g., ISTA), which requires
units of work, or FISTA, which requires
units of work3. Note that while all these

methods enjoy linear convergence rate, the modern stochastic
methods can be many orders of magnitude faster than classical
deterministic methods. Indeed, one can have

Based on this, we see that these modern methods always beat
(proximal) gradient descent , and also outperform
FISTA as long as . In machine learning, for instance,
one usually has , in which case the improvement is by a
factor of when compared to FISTA, and by a factor of over
ISTA. For applications where is massive, these improvements
are indeed dramatic.

2These methods are randomized algorithms. However, the term “stochastic”
(somewhat incorrectly) appears in their names for historical reasons, and quite
possibly due to their aspiration to improve upon stochastic gradient descent
(SGD).

3However, it should be remarked that the condition number in these latter
methods is slightly different from that appearing in the bound (4).

For more information about modern dual and primal methods
we refer the reader to the literature on randomized coordinate
descent methods [5], [8]–[18] and stochastic gradient methods
[4], [17], [19]–[24], respectively.

C. Linear Systems and Sketching
In the case when , all stationary points (i.e., points sat-

isfying ) are optimal for (1) (2). In the special case
when the functions are convex quadratics of the form

, the equation reduces to the
linear system , where . Recently,
there has been considerable interest in designing and analyzing
randomized methods for solving linear systems; also known
under the name of sketching methods. Much of this work was
done independently from the developments in (non-quadratic)
optimization, despite the above connection between optimiza-
tion and linear systems. A randomized version of the classical
Kaczmarz method was studied in a seminal paper by Strohmer
and Vershynin [25]. Subsequently, the method was extended
and improved upon in several ways [26]–[29]. The randomized
Kaczmarz method is equivalent to SGD with a specific step-
size choice [30], [31]. The first randomized coordinate descent
method, for linear systems, was analyzed by Lewis and Leven-
thal [32], and subsequently generalized in various ways by nu-
merous authors (we refer the reader to [17] and the references
therein). Gower and Richtárik [31] have recently studied ran-
domized iterative methods for linear systems in a general sketch
and project framework, which in special cases includes random-
ized Kaczmarz, randomized coordinate descent, Gaussian de-
scent, randomized Newton, their block variants, variants with
importance sampling, and also an infinite array of new specific
methods. For approaches of a combinatorial flavour, specific to
diagonally dominant systems, we refer to the influential work
of Spielman and Teng [33].

II. CONTRIBUTIONS
In this paper we equip moderns stochastic

methods—methods which already enjoy the fast rate (4)—with
the ability to process data in mini-batches. None of the primal4
modern methods have been analyzed in the mini-batch setting.
This paper fills this gap in the literature.
While we have argued above that the modern methods,

S2GD included, do not have the “non-vanishing variance”
issue that SGD does, and hence do not need mini-batching
for that purpose, mini-batching is still useful. In particular, we
develop and analyze the complexity of mS2GD (Algorithm 1)
— a mini-batch proximal variant of semi-stochastic gradient
descent (S2GD) [7]. While the S2GD method was analyzed in
the case only, we develop and analyze our method in
the proximal5 setting (1). We show that mS2GD enjoys several
benefits when compared to previous modern methods. First, it
trivially admits a parallel implementation, and hence enjoys a
speedup in clocktime in an HPC environment. This is critical

4By a primal method we refer to an algorithm which operates directly to solve
(1) (2) without explicitly operating on the dual problem. Dual methods have
very recently been analyzed in the mini-batch setting. For a review of such
methods we refer the reader to the paper describing the QUARTZ method [34]
and the references therein.

5Note that the Prox-SVRG method [35] can also handle the composite
problem (1).
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for applications with massive datasets and is the main motiva-
tion and advantage of our method. Second, our results show
that in order to attain a specified accuracy , mS2GD can get by
with fewer gradient evaluations than S2GD. This is formalized
in Theorem 2, which predicts more than linear speedup up to
a certain threshold mini-batch size after which the complexity
deteriorates. Third, compared to [35], our method does not
need to average the iterates produced in each inner loop; we
instead simply continue from the last one. This is the approach
employed in S2GD [7].

III. THE ALGORITHM

In this section we first brieflymotivate themathematical setup
of deterministic and stochastic proximal gradient methods in
Section III-A, followed by the introduction of semi-stochastic
gradient descent in Section III-B. We will the be ready to de-
scribe the mS2GD method in Section III-C.

A. Deterministic and Stochastic Proximal Gradient Methods
The classical deterministic proximal gradient approach [2],

[36], [37] to solving (1) is to form a sequence via

where
. Note that in view of Assumption 1, which we shall

use in our analysis in Section IV, is an upper bound on
whenever is a stepsize parameter satisfying .
This procedure can be compactly written using the proximal
operator as follows:

where

In a large-scale setting it is more efficient to instead consider
the stochastic proximal gradient approach, in which the prox-
imal operator is applied to a stochastic gradient step:

(5)

where is a stochastic estimate of the gradient .

B. Semi-Stochastic Methods
Of particular relevance to our work are the SVRG [6], S2GD

[7] and Prox-SVRG [35] methods where the stochastic estimate
of is of the form

(6)

where is an “old” reference point for which the gra-
dient was already computed in the past, and

is a random index equal to with
probability . Notice that is an unbiased estimate of
the gradient of at :

Methods such as S2GD, SVRG, and Prox-SVRG update the
points in an inner loop, and the reference point in an outer
loop (“epoch”) indexed by . With this new outer iteration
counter we will have instead of , instead of and
instead of . This is the notation we will use in the description
of our algorithm in Section III-C. The outer loop ensures that
the squared norm of approaches zero as (it is
easy to see that this is equivalent to saying that the stochastic
estimate has a diminishing variance), which ultimately
leads to extremely fast convergence.

C. Mini-Batch S2GD

We are now ready to describe the mS2GD method6 (Algo-
rithm 1).

Algorithm 1 mS2GD

1: Input: (max # of stochastic steps per epoch);
(stepsize); (starting point); mini-batch size
2: for do
3: Compute and store
4: Initialize the inner loop:
5: Choose uniformly at random
6: for to do
7: Choose mini-batch of size , uniformly at

random
8: Compute a stochastic estimate of :

9:
10: end for
11: Set
12: end for

The algorithm includes an outer loop, indexed by epoch
counter , and an inner loop, indexed by . Each epoch is
started by computing , which is the (full) gradient of at .
It then immediately proceeds to the inner loop. The inner loop
is run for iterations, where is chosen uniformly at random
from . Subsequently, we run iterations in the
inner loop (corresponding to Steps 6–10). Each new iterate is
given by the proximal update (5), however with the stochastic
estimate of the gradient in (6), which is formed by using
a mini-batch of examples of size . Each
inner iteration requires units of work7.

IV. ANALYSIS

In this section, we lay down the assumptions, state our main
complexity result, and comment on how to optimally choose the
parameters of the method.

6A more detailed algorithm and the associated analysis (in which we benefit
from the knowledge of lower-bound on the strong convexity parameters of the
functions and ) can be found in the arXiv preprint [38]. The more general
algorithmmainly differs in being chosen according to a geometric probability
law which depends on the estimates of the convexity constants.

7It is possible to finish each iteration with only evaluations for compo-
nent gradients, namely , at the cost of having to store

, which is exactly the way that SAG [4] works. This speeds
up the algorithm; nevertheless, it is impractical for big .
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A. Assumptions
Our analysis is performed under the following two

assumptions.
Assumption 1: Function (regularizer/

proximal term) is convex and closed. The functions
have Lipschitz continuous gradients with constant .

That is, , for all ,
where is the -norm.
Hence, the gradient of is also Lipschitz continuous with the

same constant .
Assumption 2: is strongly convex with parameter .

That is for all and ,

(7)

where is the subdifferential of at .
Lastly, by and we denote the strong

convexity constants of and , respectively. We allow both
of these quantities to be equal to 0, which simply means that
the functions are convex (which we already assumed above).
Hence, this is not necessarily an additional assumption.

B. Main Result
We are now ready to formulate our complexity result.
Theorem 1: Let Assumptions 1 and 2 be satisfied, let

and choose . Assume that
, and that are further chosen so that

(8)

where . Then mS2GD has linear
convergence in expectation with rate :

Notice that for any fixed , by properly adjusting the param-
eters and we can force to be arbitrarily small. Indeed,
the second term can be made arbitrarily small by choosing
small enough. Fixing the resulting , the first term can then be
made arbitrarily small by choosing large enough. This may
look surprising, since this means that only a single outer loop

is needed in order to obtain a solution of any prescribed
accuracy. While this is indeed the case, such a choice of the pa-
rameters of the method would not be optimal—the re-
sulting workload would to be too high as the complexity of the
method would depend sublinearly on . In order to obtain a log-
arithmic dependence on , i.e., in order to obtain linear con-
vergence, one needs to perform outer loops,
and set the parameters and to appropriate values (generally,

and ).

C. Special Cases: and
In the special case with (no mini-batching), we get

, and the rate given by (8) exactly recovers the rate
achieved by Prox-SVRG [35] (in the case when the Lipschitz
constants of are all equal). The rate is also identical to the
rate of S2GD [7] (in the case of , since S2GD was only
analyzed in that case). If we set the number of outer iterations
to , choose the stepsize as ,

where , and choose , then the total work-
load of mS2GD for achieving (3) is units of
work. Note that this recovers the fast rate (4).
In the batch setting, that is when , we have and

hence . By choosing , ,
and , we obtain the rate . This is the
standard rate of (proximal) gradient descent.
Hence, by modifying the mini-batch size in mS2GD, we

interpolate between the fast rate of S2GD and the slow rate of
GD.

D. Mini-Batch Speedup
In this section we will derive formulas for good choices of the

parameter , and of our method as a function of . Hence,
throughout this section we shall consider fixed.
Fixing , it is easy to see that in order for to be

an -accurate solution (i.e., in order for (3) to hold), it suffices to
choose . Notice that the total workload
mS2GD will do in order to arrive at is

units of work. If we now consider fixed (we may try to opti-
mize for it later), then clearly the total workload is proportional
to . The free parameters of the method are the stepsize and
the inner loop size . Hence, in order to set the parameters
so as to minimize the workload (i.e., optimize the complexity
bound), we would like to (approximately) solve the optimiza-
tion problem

Let denote the optimal pair (we highlight the de-
pendence on as it will be useful). Note that if for
some , then mini-batching can help us reach the -solution
with smaller overall workload. The following theorem presents
the formulas for and .
Theorem 2: Fix and and let

If , then and

(9)
where is the condition number. If , then

and

(10)

Note that if , we recover the optimal choice of parame-
ters without mini-batchnig. Equation (9) suggests that as long as
the condition holds, is decreasing at a rate faster
than . Hence, we can find the solution with less overall work
when using a minibatch of size than when using a minibatch
of size .
Equation (9) suggests that as long as the condition

holds, is decreasing at a rate faster than . Hence, we can
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Fig. 1. Complexity of Acc-Prox-SVRG and mS2GD in terms of total work done for , and small ( ; top row) and large ( ; bottom
row) condition number.

find the solution with less overall work when using a minibatch
of size than when using a minibatch of size 1.

E. Convergence Rate
In this section we study the total workload of mS2GD in the

regime of small mini-batch sizes.
Corollary 3: Fix , choose the number of outer iter-

ations equal to

and fix the target decrease in Theorem 2 to satisfy .
Further, pick a mini-batch size satisfying , let the
stepsize be as in (34) and let be as in (33). Then in order
for mS2GD to find satisfying (3), mS2GD needs at most

(11)

units of work, where , which leads to the overall
complexity of

units of work.
Proof: Available in Appendix B-D.

This result shows that as long as the mini-batch size is small
enough, the total work performed by mS2GD is the same as in
the case. If the updates can be performed in parallel,
then this leads to linear speedup.

F. Comparison With Acc-Prox-SVRG
The Acc-Prox-SVRG [23] method of Nitanda, which was not

available online before the first version of this paper appeared

on arXiv, incorporates both a mini-batch scheme and Nesterov's
acceleration [1], [39]. The author claims that when ,
with the threshold defined as ,
the overall complexity of the method is

and otherwise it is

This suggests that acceleration will only be realized when the
mini-batch size is large, while for small , Acc-Prox-SVRG
achieves the same overall complexity, , as
mS2GD.
We will now take a closer look at the theoretical results given

by Acc-Prox-SVRG and mS2GD, for each . In partic-
ular, we shall numerically minimize the total work of mS2GD,
i.e.,

over and (compare this with (11)); and compare
these results with similar fine-tuned quantities for Acc-Prox-
SVRG.8
Fig. 1 illustrates these theoretical complexity bounds for both

ill-conditioned and well-conditioned data. With small-enough
mini-batch size , mS2GD is better than Acc-Prox-SVRG.
However, for a large mini-batch size , the situation reverses

8 is the best choice of for Acc-Prox-SVRG and mS2GD, respectively.
Meanwhile, is within the safe upper bounds for both methods.
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because of the acceleration inherent in Acc-Prox-SVRG.9 Plots
with illustrate the cases where we cannot observe any
differences between the methods.
Note however that accelerated methods are very prone to

error accumulation. Moreover, it is not clear that an efficient
implementation of Acc-Prox-SVRG is possible for sparse data.
As shall show in the next section, mS2G D allows for such an
implementation.

V. EFFICIENT IMPLEMENTATION FOR SPARSE DATA

Let us make the following assumption about the structure of
functions in (2).
Assumption 3: The functions arise as the composition of

a univariate smooth function and an inner product with a
datapoint/example for .
Many functions of common practical interest satisfy this as-

sumption including linear and logistic regression. Very often,
especially for large scale datasets, the data are extremely sparse,
i.e. the vectors contains many zeros. Let us denote the
number of non-zero coordinates of by
and the set of indexes corresponding to non-zero coordinates
by , where denotes the th co-
ordinate of vector .
Assumption 4: The regularization function is separable.
This includes the most commonly used regularization func-

tions as or .
Let us take a brief detour and look at the classical SGD algo-

rithm with . The update would be of the form

(12)

If evaluation of the univariate function takes amount
of work, the computation of will account for work.
Then the update (12) would cost too, which implies that
the classical SGD method can naturally benefit from sparsity of
data.
Now, let us get back to the Algorithm 1. Even under the spar-

sity assumption and structural Assumption 3 the Algorithm 1
suggests that each inner iteration will cost
because is in general fully dense and hence in Step 9 of Al-
gorithm 1 we have to update all coordinates.
However, in this Section, we will introduce and describe the

implementation trick which is based on “lazy/delayed” updates.
The main idea of this trick is not to perform Step 9 of Al-
gorithm 1 for all coordinates, but only for coordinates

. The algorithm is described in Algorithm
2.
To explain the main idea behind the lazy/delayed updates,

consider that it happened that during the fist iterations, the
value of the fist coordinate in all datapoints which we have used
was 0. Then given the values of and we can compute the
true value of easily. We just need to apply the prox operator
times, i.e. , where the function

is described in Algorithm 3.
The vector in Algorithm 2 is enabling us to keep track of

the iteration when corresponding coordinate of was updated

9We have experimented with different values for , and , and this result
always holds.

Algorithm 2 “Lazy” updates for mS2GD (these replace steps
6–10 in Algorithm 1)

1: for
2: for to do
3: Choose mini-batch of size , uniformly at

random
4: for do
5: for do
6:
7:
8: end for
9: end for
10:
11: end for
12: for to do
13:
14: end for

Algorithm 3

for do

end for

return

for the last time. E.g. if in iteration we will be updating the 1st
coordinate for the first time, and after we compute and
update the true value of , its value will be set to . Lines
5–8 in Algorithm 2 make sure that the coordinates of which
will be read and used afterwards are up-to-date. At the end of
the inner loop, we will updates all coordinates of to the most
recent value (lines 12–14). Therefore, those lines make sure that
the of Algorithms 1 and 2 will be the same.
However, one could claim that we are not saving any work,

as when needed, we still have to compute the proximal operator
many times. Although this can be true for a general function ,
for particular cases, and ,
we provide following Lemmas which give a closed form ex-
pressions for the operator.
Lemma 1 (Proximal Lazy Updates With -Regularizer): If

with then

where .
Lemma 2 (Proximal Lazy Updates With -Regularizer): As-

sume that with . Let us define and
as follows,
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Fig. 2. Comparison of mS2GD with different mini-batch sizes on rcv1(left) and astro-ph(right).

TABLE I
SUMMARY OF DATASETS USED FOR EXPERIMENTS

and let . Then the value of
can be expressed based on one of the 3 situations described
below:
1) If , then by letting , the operator can

be defined as

if ,
if .

2) If , then the operator can be defined as

if ,
if .

3) If , then by letting , the operator can
be defined as

if ,
if .

The proofs of Lemmas 1 and 2 are available in Appendix C.
Remark: Upon completion of the paper, we learned that sim-

ilar ideas of lazy updates were proposed in [40] and [41] for on-
line learning and multinomial logistic regression, respectively.
However, our method can be seen as a more general result ap-
plied to a stochastic gradient method and its variants under As-
sumptions 3 and 4.

VI. EXPERIMENTS

In this section we perform numerical experiments to il-
lustrate the properties and performance of our algorithm. In
Section VI-A we study the total workload and parallelization
speedup of mS2GD as a function of the mini-batch size . In
Section VI-B we compare mS2GD with several other algo-
rithms. Finally, in Section VI-C we briefly illustrate that our
method can be efficiently applied to a deblurring problem.

In Sections VI-A and VI-B we conduct experiments with
and of the form (2), where is the lo-

gistic loss function:

(13)

These functions are often used in machine learning, with
, , being a training dataset

of example-label pairs. The resulting optimization problem (1)
(2) takes the form

(14)

and is used in machine learning for binary classification. In these
sections we have performed experiments on four publicly avail-
able binary classification datasets, namely rcv1, news20, cov-
type10 and astro-ph11.
In the logistic regression problem, the Lipschitz constant of

function is equal to . Our analysis assumes
(Assumption 1) the same constant for all functions. Hence,
we have . We set the regularization parameter

in our experiments, resulting in the problem having
the condition number . In Table I we summa-
rize the four datasets, including the sizes , dimensions , their
sparsity levels as a proportion of nonzero elements, and the Lip-
schitz constants .

A. Speedup of mS2GD
Mini-batches allow mS2GD to be accelerated on a computer

with a parallel processor. In Section IV-D, we have shown
in that up to some threshold mini-batch size, the total work-
load of mS2GD remains unchanged. Fig. 2 compares the best
performance of mS2GD used with various mini-batch sizes
on datasets rcv1 and astro-ph. An effective pass (through the
data) corresponds to units of work. Hence, the evaluation of
a gradient of counts as one effective pass. In both cases, by
increasing the mini-batch size to , 4, 8, the performance
of mS2GD is the same or better than that of S2GD
without any parallelism.
Although for larger mini-batch sizes mS2GD would be obvi-

ously worse, the results are still promising with parallelism. In
Fig. 3,we show the ideal speedup—one that would be achiev-
able if we could always evaluate the gradients in parallel in

10rcv1, covtype and news20 are available at http://www.csie.ntu.edu.tw/cjlin/
libsvmtools/datasets/.

11Available at http://users.cecs.anu.edu.au/xzhang/data/.
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Fig. 3. Parallelism speedup for rcv1(left) and astro-ph(right) in theory (unachievable in practice).

Fig. 4. Comparison of several algorithms on four datasets: rcv1(top left), news20(top right), covtype(bottom left) and astro-ph(bottom right). We have used
mS2GD with .

exactly the same amount of time as it would take to evaluate a
single gradient.12.

B. mS2GD vs Other Algorithms
In this part, we implemented the following algorithms to con-

duct a numerical comparison:
1) SGDcon: Proximal stochastic gradient descent method

with a constant step-size which gave the best performance
in hindsight.

2) SGD+: Proximal stochastic gradient descent with variable
step-size , where is the number of effec-
tive passes, and is some initial constant step-size.

3) FISTA: Fast iterative shrinkage-thresholding algorithm
proposed in [2].

4) SAG: Proximal version of the stochastic average gradient
algorithm [4]. Instead of using , which is ana-
lyzed in the reference, we used a constant step size.

5) S2GD: Semi-stochastic gradient descent method proposed
in [7]. We applied proximal setting to the algorithm and
used a constant stepsize.

12In practice, it is impossible to ensure that the times of evaluating different
component gradients are the same.

TABLE II
BEST CHOICES OF PARAMETERS IN MS2GD

6) mS2GD: mS2GD with mini-batch size . Although a
safe step-size is given in our theoretical analyses in The-
orem 1, we ignored the bound, and used a constant step
size.

In all cases, unless otherwise stated, we have used the best
constant stepsizes in hindsight.
Fig. 4 demonstrates the superiority of mS2GD over other al-

gorithms in the test pool on the four datasets described above.
For mS2GD, the best choices of parameters with are given
in Table II.

C. Image Deblurring
In this section we utilize the Regularization Toolbox [42]13

We use the blur function available therein to obtain the orig-

13Regularization Toolbox available for Matlab can be obtained from http://
www.imm.dtu.dk/pcha/Regutools/.
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Fig. 5. Original (left) and blurred & noisy (right) test image.

Fig. 6. Comparison of several algorithms for the de-blurring problem.

inal image and generate a blurred image (we choose following
values of parameters for blur function: , ,

). The purpose of the blur function is to generate a
test problem with an atmospheric turbulence blur. In addition,
an additive Gaussian white noise with stand deviation of
is added to the blurred image. This forms our testing image as
a vector . The image dimension of the test image is 256
256, which means that , 536. We would not ex-
pect our method to work particularly well on this problem since
mS2GD works best when . However, as we shall see, the
method's performance is on a par with the performance of the
best methods in our test pool.
Our goal is to reconstruct (de-blur) the original image by

solving a LASSO problem: . We have
chosen . In our implementation, we normalized the
objective function by , and hence our objective value being
optimized is in fact , where

, similarly as was done in [2].
Fig. 5 shows the original test image (left) and a blurred image

with added Gaussian noise (right). Fig. 6 compares the mS2GD
algorithm with SGD+, S2GD and FISTA. We run all algorithms
for 100 epochs and plot the error. The plot suggests that SGD+
decreases the objective function very rapidly at beginning, but
slows down after 10–20 epochs.
Finally, Fig. 7 shows the reconstructed image after ,

60, 100 epochs.

VII. CONCLUSION

We have proposed mS2GD—a mini-batch semi-stochastic
gradient method—for minimizing a strongly convex composite

function. Such optimization problems arise frequently in inverse
problems in signal processing and statistics. Similarly to SAG,
SVRG, SDCA and S2GD, our algorithm also outperforms ex-
isting deterministic method such as ISTA and FISTA. More-
over, we have shown that the method is by design amenable
to a simple parallel implementation. Comparisons to state-of-
the-art algorithms suggest that mS2GD, with a small-enough
mini-batch size, is competitive in theory and faster in practice
than other competing methods even without parallelism. The
method can be efficiently implemented for sparse data sets.

APPENDIX A
TECHNICAL RESULTS

1) Lemma 3 (Lemma 3.6 in [35]): Let be a closed
convex function on and , then

.
Note that contractiveness of the proximal operator is a stan-

dard result in optimization literature [43], [44].
Lemma 4: Let be vectors in and

. Let be a random subset of of size ,
chosen uniformly at random from all subsets of this cardinality.
Taking expectation with respect to , we have

(15)

Following from the proof of Corollary 3.5 in [35], by ap-
plying Lemma 4 with , we have the
bound for variance as follows.
Theorem 4 (Bounding Variance): Let
. Considering the definition of in Algorithm 1, condi-

tioned on , we have and the variance
satisfies,

(16)

APPENDIX B
PROOFS

A. Proof of Lemma 4

As in the statement of the lemma, by we denote expec-
tation with respect to the random set . First, note that



KONEČNÝ et al.: MINI-BATCH SEMI-STOCHASTIC GRADIENT DESCENT IN THE PROXIMAL SETTING 251

Fig. 7. Reconstruction of the test image from Fig. 5 via FISTA, SGD+, S2GD and mS2GD after , 60, 100 epochs (one epoch corresponds to work
equivalent to the computation of one gradient.).

If we let , we can thus write

where in the last step we have used the bound
.

B. Proof of Theorem 1

The proof is following the steps in [35]. For convenience, let
us define the stochastic gradient mapping

then the iterate update can be written as .
Let us estimate the change of . It holds that

(17)

14Note that this quantity is never computed during the algorithm. We can use
it in the analysis nevertheless.

Applying Lemma 3.7 in [35] (this is why we need to assume
that ) with , , , ,

and , we get

(18)

and therefore,

(19)

In order to bound , let us de-
fine the proximal full gradient update as14

. We get

Using Cauchy-Schwarz and Lemma 3, we conclude that

(20)
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Further, we obtain
. By

taking expectation, conditioned on 15 we obtain

(21)

where we have used that
and hence 16. Now, if we substitute
(16) into (21) and decrease index by 1, we obtain

(22)

where

(23)

and . Note that (22) is equivalent to

(24)

Now, by the definition of in Algorithm 1 we have that

(25)

By summing (24) for , we get on the left hand side

(26)

and for the right hand side we have:

(27)

Combining (26) and (27) and using the fact that ,
we have

15For simplicity, we omit the notation in further analysis
16 is constant, conditioned on

Now, using (25), we obtain

(28)

Strong convexity (7) and optimality of imply that
, and hence for all we have

(29)

Since and , by combining (29)
and (28) we get

Notice that in view of our assumption on and (23), we have
, and hence

where .
Applying the above linear convergence relation recursively with
chained expectations, we finally obtain

.

C. Proof of Theorem 2
Clearly, if we choose some value of then the value of will

be determined from (8)(i.e. we need to choose such that we
will get desired rate). Therefore, as a function of obtained
from (8) is

(30)

Now, we can observe that the nominator is always positive and
the denominator is positive only if , which
implies (note that

). Observe that this condition is stronger than the one in
the assumption of Theorem 1. It is easy to verify that

Also note that is differentiable (and continuous) at any
. The derivative of is

given by
. Observe that is defined and contin-

uous for any . Therefore there have to be some stationary
points (and in case that there is just on ) it will be the global
minimum on . The FOC gives

(31)

If this and also then this is the optimal choice
and plugging (31) into (30) gives us (9).
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Claim #1: It always holds that . We just need to
verify that

which is equivalent to
. Because both sides are

positive, we can square them to obtain the equivalent condition

Claim #2: If then . The only detail
which needs to be verified is that the denominator of (10) is
positive (or equivalently we want to show that
. To see that, we need to realize that in that case we have

, which implies that
.

D. Proof of Corollary 3
By substituting definition of in Theorem 2, we get

(32)

where . Hence, it follows that if , then
and is defined in (9); otherwise, and is defined
in (10). Let be the base of the natural logarithm. By selecting

, choosing
mini-batch size , and running the inner loop of mS2GD
for

(33)

iterations with constant stepsize

(34)

we can achieve a convergence rate

(35)
Since if and only if if and
only if , we can conclude that
. Therefore, running mS2GD for outer iterations achieves
-accuracy solution defined in (3). Moreover, since in general

, , it can be concluded that

then with the definition , we derive

so from (11), the total complexity can be translated to
. This result shows that we can reach

efficient speedup by mini-batching as long as the mini-batch
size is smaller than some threshold , which finishes
the proof for Corollary 3.

APPENDIX C
PROXIMAL LAZY UPDATES FOR AND -REGULARIZERS

A. Proof of Lemma 1
For any we have

, where . Therefore,

B. Proof of Lemma 2
Proof: For any and ,

if ,
if ,
otherwise,

if ,
if ,
otherwise.

where , and
. Now, we will distinguish several cases based on :

1) When , then , thus
by letting , we have that: if , then

if , then
and if , then

if ,
if & ,
if & ,

if ,
if .

2) When , then ,
, thus we have that

if ,
if .

3) When , then , thus by
letting , we have that: if , then

if ,
if & ,
if & ,

if ,
if ;

if , then ; if , then
.

Now, we will perform a few simplifications: Case (1). When
, we can conclude that . More-

over, since the following equivalences hold if
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, and
, the situation simplifies to

if ,
if ,
if ,

if ,
if ,

where . For Case (3), when , we can
conclude that , and in addition, the
following equivalences hold when :

which summarizes the situation as follows:

if ,
if ,
if ,

if ,
if .
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