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Joint Sparsity in SAR Tomography
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Abstract—With meter-resolution images delivered by modern
synthetic aperture radar (SAR) satellites satellites like Ter-
raSAR-X and TanDEM-X, it is now possible to map urban areas
from space in very high level of detail using advanced interfero-
metric techniques such as persistent scatterer interferometry and
tomographic SAR inversion (TomoSAR), whereas these multi-pass
techniques are based on a great number of images. We aim at
precise TomoSAR reconstruction while significantly reducing the
required number of images by incorporating building a priori
knowledge to the estimation. In the paper, we propose a novel
workflow that marries the freely available geographic information
systems (GIS) data (i.e., 2-D building footprints) and the joint
sparsity concept for TomoSAR inversion. Experiments on bistatic
TanDEM-X data stacks demonstrate the great potential of the
proposed approach, e.g., highly accurate tomographic reconstruc-
tion is achieved using six interferograms only.
Index Terms—Compressive sensing, GIS, joint sparsity, SAR to-

mography, synthetic aperture radar, TanDEM-X.

I. INTRODUCTION

M ODERN spaceborne synthetic aperture radar (SAR)
sensors, such as TerraSAR-X, TanDEM-X and

COSMO-SkyMed, deliver SAR data with very high spatial
resolution (VHR) of up to 1 m. With these meter resolution
data, advanced multi-pass interferometric techniques such
as persistent scatterer interferometry (PSI) and tomographic
SAR inversion (TomoSAR) allow retrieving not only the 3-D
geometrical shape but also the undergoing motion in the scale
of millimeter of individual buildings [1]–[7]. In particular,
sparse reconstruction based methods [8], [9], like SL1MMER
[10], give robust TomoSAR inversion with very high elevation
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resolution, and can offer so far ultimate 3-D, 4-D and 5-D SAR
imaging [11], [12].
The downside of advanced repeat-pass InSAR techniques

[13]–[20], like PSI and TomoSAR, are their high demand
on data, i.e., typically a stack of 20–100 images over the
illuminated area are required. For instance, it is demonstrated
in [10] that by using even the most efficient algorithms, like
non-linear least squares (NLS) and SL1MMER, a minimum
number of 11 acquisitions are required to achieve a reasonable
reconstruction in the interesting parameter range of spaceborne
SAR. “Reasonable” in this context means that given an average
signal-to-noise ratio (SNR) of 6 dB, the detection rate of double
scatterers with an elevation distance of one Rayleigh resolution
unit reaches at least 90%. However, if we can extract certain
detailed features or patterns of high-rise buildings in SAR
images, the required number of images can be significantly
reduced by incorporating such features as prior for a joint
estimation.
For this purpose, we propose a novel workflow marrying the

globally available (2-D building footprint) GIS data and the
joint sparsity concept for TomoSAR inversion, both of which
have not yet been addressed in the community so far. Within
this workflow, our main contributions are as follows:
• A robust procedure is proposed to use online freely assess-
able 2-D building footprints for extracting detailed high-
rise building features including building masks, orienta-
tion, and iso-height lines (defined in [21]) in SAR image
stacks (see Section III);

• The M-SL1MMER algorithm is proposed to promote joint
sparsity for tomographic inversion of the identified iso-
height pixel groups (see Section IV);

• By means of simulated data, the performance of
M-SL1MMER is systematically evaluated in terms of ele-
vation estimation accuracy, detection and false alarm rate
of separating overlaid double scatterers, and its super-reso-
lution capability. Compared to the single-snapshot sparsity
model, as used in SL1MMER, the superior performance
of the proposed joint sparsity approach is evident for all
above mentioned quantitative metrics (see Section V);

• The first tomographic reconstruction using bistatic
TanDEM-X data stacks is presented. The superior perfor-
mance of M-SL1MMER is demonstrated in practice, e.g.,
highly accurate tomographic reconstruction is achieved
using six interferograms only (see Section VI).

II. DATA SET
We work with 21 bistatic interferograms acquired by the

German SAR satellites TerraSAR-X and TanDEM-X, with
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Fig. 1. Test Area: (a) Optical image of the test area ©Google; (b) Corresponding SAR intensity map ( and refer to range and azimuth directions, respectively).

cross-track baselines ranging between approximately .
The single-pass characteristic renders atmospherical effects
very small and deformation negligible. For this reason these
datasets are ideal to test our proposed methodology. An optical
image of the test area is shown in Fig. 1(a) while the corre-
sponding SAR mean intensity image is shown in Fig. 1(b).

III. PRIOR KNOWLEDGE RETRIEVAL

In order to retrieve prior information pertaining to building
regions, the 2-D building footprints are downloaded fromOpen-
StreetMap (OSM). Based on the concept of crowd sourcing that
involve crowd or community to effectively and efficiently fulfill
a task at hand, OSMwith around 2million registered users (as of
today and also rapidly growing) is considered to be themost suc-
cessful Volunteered Geographic Information (VGI) project [22],
[23]. The OSM database contains multitude of building foot-
prints represented as polygons with ordered list of nodes/ver-
tices (i.e., pairs of UTM or latitude/longitude coordinates ac-
cording to WGS 84 coordinate system) and is updated every
day. The data are free to download and comes under the open li-
cense Open Data Commons Database License (ODbL). Since it
is a VGI project, the data qualitymay vary from region to region.
To this end, the first investigations regarding OSM data quality
were carried out for roads [24] followed by assessment of other
attributes present in the database e.g., lines [25], polygonal ob-
jects [26] etc. Recently, the building footprints have also been
evaluated for their completeness [27] and correctness [23]. The
analysis of OSM data with surveying datasets reveals fairly pre-
cise positioning accuracies varying within 4 meters [23], [24].
The completeness percentage is already very high for many
cities in Europe and US and is consistently increasing with time.
Available 2-D footprints of the buildings in the city of Las Vegas
are shown in Fig. 2 to give the reader an insight of the ex-
isting database. The high availability of such type of data trig-
gers us to change our perspective of thinking, namely, instead of
using Earth observation (EO) satellite data to build-up sources
of geo-information for open users, we can explore the knowl-
edge provided by social media to support information retrieval

Fig. 2. GIS data (2-D building footprints) of Las Vegas from OSM.

from EO data. In this regard, one mission of this work is to
demonstrate this concept in tomographic SAR reconstruction.

A. Automatic Extraction of Building Mask in SAR Image

The key idea is to make use of the aforementioned online
freely assessable 2-D building footprints to extract detailed high
rise building features including building masks, orientations,
and the iso-height lines in SAR image data stacks. The extracted
information can be further incorporated as a prior knowledge
into the estimation for a more accurate tomographic SAR in-
version. For this purpose, in this section we propose a sophisti-
cated approach that is tolerable to moderate errors in the input
GIS data for automatic extraction of aforementioned high rise
building features in the SAR image data stacks:
• First the available building footprints fromOpenStreetMap
in world (latitude/longitude) coordinates are transformed/
geo-coded into SAR (azimuth/range) imaging coordinate
system. Fig. 3(a) shows the resulting projected reference
polygons overlaid onto the buildings of interest in the cor-
responding SAR image shown in Fig. 1;



1500 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 9, NO. 8, DECEMBER 2015

Fig. 3. Building mask extraction: (a) Reference polygons (shown in red and green polylines) of two buildings in the area of interest overlaid onto the SAR intensity
map after geocoding. Side of the buildings facing the sensor are shown in red while the other side not visible to the sensor in green; (b) After rotation and range-
azimuth shift compensation, the red polylines in (a) are shifted towards the sensor. The yellow dotted lines indicate the maximum range shift of

where as the red dotted lines indicate the obtained by the proposed procedure in Algorithm 1.

• Secondly, due to the side looking geometry, SAR illumi-
nates only one side of the building. Therefore, the com-
plete building footprint of individual buildings is further
segmented into two parts by means of a simple 2-D vis-
ibility test: 1) the part illuminated by the sensor which
will be further used for iso-height pixel extraction (as de-
picted by red polylines in Fig. 3(a)); 2) the part in the
shadow area not visible to the sensor which will not used
in further processing (as depicted by green polylines in
Fig. 3(a));

• Finally, errors in the identified red polylines, caused by in-
accuracies of the input GIS data in both orientation and
translation, are compensated and the mask of individual
buildings is further generated by iteratively shifting the
corrected polylines towards the sensor.

In this regard, the approach depicted in Algorithm 1 is
adopted. After transforming the available building footprints
from world coordinates to SAR imaging coordinate system, we
identify the side of the building footprint facing the SAR sensor
as follows. If we assume that denote the indices of
ordered 2-D footprint vertices of one particular building. Then
any vertex belongs to the side facing the sensor
if and only if its projection onto the line at zeroth range axis
(i.e., line defined as with zero azimuth slope) does not
self-intersect the reference polygon. The range of total number
of vertices belonging to the side visible to the sensor in any
footprint is where . The inequality that
depicts that, if not occluded, at least one side or two vertices of
the building are always visible to the side looking SAR sensor.
Once the vertices facing to the sensor are identified, the step

3 in Algorithm 1 compensates for any positioning inaccuracy in
the OSM footprint of the building in the area of interest. Pos-
sible error in OSM footprint is compensated by adopting the
following sequence of steps:
1) Shift/translate the identified polyline in 2-D sliding

window fashion within the intervals: range shift
and azimuth shift ;

Algorithm 1 Procedure to automatically generate mask (or
ROI) of an individual building

Require: 2-D polygonal footprint vertices in SAR
coordinates of one particular building & SAR image of the
scene.
1: Initialize: and
2: Identify the polyline comprising of out of vertices

belonging to the building side facing the sensor
3: Apply orientation correction and range-azimuth shift

compensation to the identified polyline in order to cope
for any positioning inaccuracy in the OSM footprint of
the building

4: while (1) do
5: Shift/translate (in range direction) the polyline after

orientation correction and azimuth-range compensation
towards the sensor by distance

6: Compute the intensity values along the shifted polyline.
This is accomplished by selecting equally spaced points
along the shifted polyline, and then using nearest
neighbor interpolation to find the intensity value for
each point

7: Take the median of computed intensity values along the
shifted polyline and store the result in a column matrix

8: if then
9: break
10: else
11:
12: end if
13: end while
14: Take approximate derivative of (i.e., calculate

differences between adjacent elements of ), and store
the result in matrix

15: Compute where
denotes the maximum change

point in
16: Use and vertices of the identified

(compensated) polyline facing the sensor to extract
of the particular building
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Fig. 4. Graphical illustration of adjusting polyline length: (a) Black and gray polygons indicate polygons before and after rotation (around centroid depicted as
black star) respectively with circles representing the corresponding vertices. The dotted polylines represent building side not visible to the sensor. It is shown that
after rotation the azimuthal length is changed; (b) The length of the outer (first and last edge depicted in dark gray) edges of the polyline facing the sensor is slightly
extended by distance ( in this work). Intensities (interpolated) over these extended edges are analyzed and first and last extended points (i.e., and )
are respectively replaced by the points on the edges and where the approximate derivative (or change in intensities) is maximum.

2) Within each shift, rotate the polyline between interval
degrees and compute median of intensi-

ties along the rotated polyline (similar to steps 6–7 in
Algorithm 1);

3) The polyline is rotated and shifted with the rotation angle
and the azimuth-range shifts which give the maximum of
computed median intensities (from the previous step);

4) Finally, the rotation causes the change in the azimuthal
length of the polyline which needs to be adjusted (see
Fig. 4(a)). This is accomplished by first slightly extending
the polyline and later adjusting the lengths of the outer (first
and the last) edges of the polyline by analyzing their (in-
terpolated) intensities (same as step 2 except that only the
first and last edge of the polyline is used). Fig. 4(b) graph-
ically illustrates the adjustment procedure.

In our experiment, the shifting intervals used in compensation
are based on already mentioned 4 m inaccuracy of OSM data
i.e., considering 4m inaccuracy, approx. range and azimuth res-
olution of 0.588m and 1.1 m requires range and azimuth shifts
of atmost pixels and pixels.
After compensating any orientation and/or shifting inaccu-

racies, steps 4 to 13 in Algorithm 1 iteratively shifts the com-
pensated polyline towards the sensor (in range direction only).
Since the tallest building in the city of Las Vegas, the Strato-
sphere Tower, is around 350m, in Algorithm 1 is
set to 595 i.e., maximum building size along elevation appearing
in the SAR image of Las Vegas city, computed as

pixels where 0.588 m is the approx. range resolution. Thus
the polyline is shifted till and the column vector
C stores the median of computed intensity values along each
range shift. Steps 14 and 15 in Algorithm 1 then computes the
maximum change point in the approximate derivative
of C. is then used in step 16 to determine
which describes the polygon surrounding the overlaid pixels of
the same building in the SAR image. To elaborate how

is computed, consider a building having three adjacently con-
nected vertices of the polyline facing the sensor
where—denotes the adjacency (i.e., is adjacently connected
to and , and so on). Assuming that the polyline has been
compensated for rotation and range-azimuth shifts, the
is then simply formed as
where with
(see Fig. 3(b)). Finally, is used to generate the building
mask of an individual building.

B. Pixel Grouping
Based on the extracted masks of individual buildings, pixels

sharing similar heights are then grouped together. This proce-
dure is done in three steps:
1) Iso-height lines will be reproduced by translating the ad-

justed polyline towards both ends of the building mask
with sub-pixel step size;

2) The distance between each pixel and its adjacent iso-height
lines will be calculated;

3) Each pixel will be assigned to the closest iso-height line.
The distance between a pixel and an iso-height line is defined

as the minimum absolute amount of translation (in pixels) to-
wards or away from sensor. Fig. 5 illustrates one exemplary
iso-height line in the cropped intensity image, as well as the
final results of pixel grouping with each group of pixels plotted
with a random color. Note that the color-coding already gives a
rough idea about monotonic height change of the investigated
façades.

IV. JOINT SPARSITY IN TOMOSAR
In this section, we first revisit a data model commonly used in

TomoSAR, as well as the SL1MMER algorithm. Following this,
we extend the SL1MMER algorithm for the multiple-snapshot
case. The extended version exploits joint sparsity and is named
as M-SL1MMER.
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Fig. 5. Illustration of pixel grouping with (a) exemplary iso-height lines, and (b) grouped iso-height pixels color-coded with group indices.

Fig. 6. TomoSAR imaging geometry with an artistic view of TerraSAR-X/
TanDEM-X ©DLR. The satellite flies into the plane and looks to its right.

A. TomoSAR System Model
For a single SAR image, information along the third dimen-

sion, the so-called elevation axis , which is perpendicular to
the azimuth-range plane, is integrated (see Fig. 6). I.e.,
echoes from, e.g., tree crown, building roof, or double-bounce
effects on a balcony sharing the same distance to the sensor, are
mapped onto one single pixel. To reconstruct reflectivity along
and to further separate those different contributions, TomoSAR
utilizes scenes acquired from slightly different viewing angles
to synthesize an elevation aperture (cf. aperture along cre-
ated by steering the radar beam) for full 3-D SAR imaging [28].
A well-established model, which can be found, e.g., in [29], ap-
proximates each pixel value as follows:

(1)

which is essentially the Fourier transform of the reflectivity
function sampled at the spatial (elevation) frequency

, is the elevation extent and is wave-
length. Note that a possible motion term has been neglected
here without loss of generality. For differential SAR tomog-
raphy that takes into account the motion component, the readers
are recommended to consult [17], [30], [31].

Discretizing the continuous reflectivity function in (1) along
elevation into elevation positions , re-
placing integral by sum and taking into account measurement
noise yield the following discrete system model:

(2)

where is the measurement vector with
, is an irregularly sampled Fourier trans-

form matrix with , is the dis-
cretized reflectivity vector with ,
and is additive noise which can be modeled as
a zero-mean circular Gaussian random process. Typically we
have , which renders (2) underdetermined.
Similar to the resolution in azimuth, the Rayleigh resolution
is inversely proportional to the aperture size [2]

(3)

For high resolution spotlight data of TerraSAR-X/
TanDEM-X, is much worse than azimuth and range resolu-
tion (approx. 1.10 and 0.588 m, respectively) due to tight orbit
control and amounts to about 24.9 m for our test data set.

B. The SL1MMER Algorithm
To solve (2), an algorithm called SL1MMER, which stands

for Scale-down by L1 norm Minimization, Model selection,
and Estimation Reconstruction, has been proposed to achieve
promising super-resolution power while guaranteeing the effi-
ciency [8], [10]. SL1MMER has been originally designed for
TomoSAR in urban areas, under the assumption that there are
only a few dominant scatterers (phase centers) along elevation
axis within each azimuth-range pixel [2]. I.e., has merely
non-zero entries with typically . As its name suggests,
this algorithm consists of the following three main steps.
1) Scale-Down by Norm Minimization: To exploit the

sparse prior on , we solve the following -regularized least
squares problem

(4)
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where is a hyperparameter balancing model error and the
sparsity of . (4) is known to deliver robust elevation estimates

of dominant scatterers. Therefore, by identifying the most
significant entries in and choosing certain columns of ac-
cordingly, the dimension of the original problem in (2) can be
downscaled by a large factor. However, solving (4) is prone to
amplitude bias due to the norm relaxation. Moreover, out-
liers might appear when the required mathematical conditions
of are not fully fulfilled as most of the engineering problems
do [32]. These make the next two steps necessary.
2) Model Selection: The initial estimate from (4) may con-

tain artifacts, which falsifies its sparsity level. In order to detect
and remove them, the goodness of fit of amodel should be penal-
ized by its complexity, so that overfitting of data can be avoided.
Model selection can be regarded as the following optimization
problem

(5)

where is the likelihood function of given the
estimates of unknown and , is the penalty term
for model complexity. Various alternatives of have been
devised for different needs, e.g., Bayesian information criterion,
Akaike information criterion, minimum description length, to
name a few [33]. By choosing one specific criterion suitable for
the given datasets, (5) is then solved as a combinatorial problem
over a pre-defined range of . Likewise, the most likely po-
sitions of non-zero elements in will hereby be estimated,
which further shrinks . This leaves only one last step to cor-
rect amplitude bias.
3) Parameter Estimation: At this stage, we have a much

slimmer sensing matrix . This renders (2)

(6)

where , and is the sum of measure-
ment noise and the error introduced by model selection. Since
(6) is now overdetermined, it can be solved with ordinary least
squares (OLS)

(7)

where denotes pseudoinverse.
Within the framework of SL1MMER, sparse reconstruction

and OLS join forces to incorporate both robust identification of
scatterers’ elevation positions and accurate amplitude estima-
tion. Other advantages of SL1MMER over conventional para-
metric and non-parametric methods have been discussed in [8]
and its theoretical limits in terms of estimation accuracy, super-
resolution power and the required minimum number of acquisi-
tions for a reasonable reconstruction have been investigated in
[10].

C. The M-SL1MMER Algorithm

We extend the SL1MMER algorithm to M-SL1MMER for
themultiple-snapshot case. Assume that by applying themethod
described in Section III, we have already detected pixels
along an iso-height line. We further assume that within each
pixel, there is a dominant scatterer located on a building façade.

Hence, those scatterers should reside at the same height or
elevation position. For each pixel, we have, similar to (2),

(8)

. If the iso-height line stretches principally
in azimuth direction, we expect to vary little among all con-
cerned pixels. For this reason, we define

. By using the identical degree of discretization along
elevation axis, we can rewrite (8) as

(9)

where is the measurement matrix with
snapshots, is the unknown discretized re-
flectivity matrix, and accounts for both additive noise and
possible model error. (9) is again an underdetermined system
with which has infinitely many solutions. Since we as-
sume that all the snapshots have one contribution from the same
height on a façade, the non-zero entry positions in the columns
of are aligned in a row-wise fashion. This property of signals
is also referred to as joint sparsity. Indeed, there can be more
non-zero rows related to ground, lower infrastructures, building
roof, etc. Still, the number of non-zeros rows of is very lim-
ited. To incorporate this prior, can be estimated by solving the
following -regularized least squares problem [34],

(10)

where denotes the Frobenius norm, and the mixed norm
promotes joint sparsity with being

the row of . It has been shown in [35] that the probability
of successful recovery increases with the number of snapshots.
Note that different polarimetric channels or neighboring pixels
were used in a similar way in [36], [37].
After solving (10), model selection and parameter estimation

will be performed individually for each pixel as the SL1MMER
algorithm does.

D. Cramér-Rao Lower Bounds (CRLB) for Elevation
Estimates
The Cramér-Rao lower bound (CRLB) of elevation estimates
for the single-scatterer case has been derived in [38] as

(11)

where is the standard deviation of . Given an SNR of 3 dB,
the CRLB is approx. 1.11 m with all 21 acquisitions.
In urban environment, due to the side-looking geometry of

SAR, multiple scatterers are often mapped onto one azimuth-
range pixel. The fact that closely spaced scatterers will interfere
with each other renders a degraded estimation accuracy of in-
dividual scatterers [12]. In the interest of super-resolution, the
CRLB for elevation estimate of the scatterer has
been derived in [10] as

(12)

where

(13)
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is the interference factor depending on which is the elevation
distance between two scatterers normalized w.r.t. the Rayleigh
resolution unit [10]. is equal to one (meaning no interference)
when two scatterers are far apart, i.e., , greater than one
when two scatterers are closely spaced and increasing
with decreasing .

V. PERFORMANCE EVALUATION USING SIMULATED DATA

In general, as an extension of SL1MMER,M-SL1MMER has
the same basic principle. However, instead of exploiting spar-
sity in a single snapshot, M-SL1MMER uses multiple snapshots
of iso-height pixels identified in SAR images (with the help
of supporting OSM data). Since M-SL1MMER makes use of
more measurements than SL1MMER, we naturally expect it to
achieve better performance.
In this section, the performance of the proposed

M-SL1MMER algorithm, including elevation estimation
accuracy, detection rate and false alarm rate of separating
overlaid scatterers, and its super-resolution capability, is
evaluated using simulated data.
We simulate façade-ground interaction of two scat-

terers spaced by decreasing elevation distances, which is a
well-known TomoSAR benchmark test [2], [8]. Note that we
only work in the super-resolution regime, i.e., the elevation dis-
tance between façade and ground is no larger than the Rayleigh
resolution . Four scenarios are taken into account with the
number of measurements and in
[dB] because:
• As mentioned above, eleven is the minimum required
number of measurements for a reasonable reconstruc-
tion in the interesting SNR range of spaceborne SAR if
SL1MMER is used [10];

• In case of two scatterers, six is the number of unknowns,
namely the amplitude, phase and elevation position of each
scatterer;

• SNR of 3 dB and 10 dB are usually considered as the lower
and upper bound of persistent scatterers, respectively [39].

For each façade-ground interaction with a given elevation dis-
tance, we independently generate snapshots, which
is an average case for the test buildings in Fig. 5. The true el-
evation of simulated façade and ground is shown as two solid
line segments w.r.t. their normalized elevation distance in
Fig. 7, respectively. In addition, we show for the case
the evolution of CRLB, which increases with decreasing eleva-
tion distance of two interfering scatterers in the super-resolu-
tion regime, as implied by (12) and (13). The dashed lines mark
true elevation with interferograms, denoted as

, while we plot true elevation with
interferograms, denoted as , as dotted lines. We
will show that M-SL1MMER using interferograms and
snapshots approaches the latter bound, which can be achieved
by SL1MMER given interferograms.
We solve the - and -regularized least squares prob-

lems independently, and then follow the SL1MMER procedures
to perform model selection and parameter estimation. is
chosen adaptively, which depends on , and the noise level
of observations [34]. The results are shown in Figs. 8 and 9 with
elevation estimates of façade and ground plotted w.r.t. their

Fig. 7. Normalized true elevation of simulated façade and ground (solid
lines), as well as the CRLB of normalized elevation estimates, both w.r.t. nor-
malized true elevation distance . Dashed lines: CRLB with baselines;
dotted lines: CRLB with baselines.

normalized true elevation difference . Each dot depicts mean
value of all estimates, with error bar indicating its standard devi-
ation. In each subplot, the two solid line segments mark the true
elevation for façade and ground, respectively, while the dashed
and dotted lines denote true elevation , which is the
same as in Fig. 7. Missing points suggest that detection rate is
below 25%. Note that we define detection for the case when not
only two scatterers are separated, but also their estimates should
be bounded by of their true elevation. For
, the elevation estimates with both methods are still somewhat

comparable, despite the fact that joint sparsity model leads to
much smaller variance and slightly better super-resolution capa-
bility. SL1MMER performs in particular worse with smaller
and lower SNR. On the contrary, even for the case , rea-
sonable elevation has been reconstructed withM-SL1MMER. It
is worth mentioning that M-SL1MMER with interferograms
and snapshots is equivalent to SL1MMER with mea-
surements in relation to the standard deviation of elevation es-
timates, although the mean values slowly drift away from the
true elevation due to the increasing interference between two
scatterers.
In Fig. 10, the detection rate is provided for the case

w.r.t. normalized true elevation distance . The red
and blue colors denote M-SL1MMER and SL1MMER, respec-
tively. The solid and dashed lines illustrate the results with

dB and 3 dB, respectively. If we define elevation
resolution to be the minimum distance between façade and
ground required to achieve at least 50% detection rate, then
the resolution of M-SL1MMER is approximately one tenth of
Rayleigh resolution better than the one of SL1MMER, given



ZHU et al.: JOINT SPARSITY IN SAR TOMOGRAPHY FOR URBAN MAPPING 1505

Fig. 8. Reconstructed elevation of simulated façade and ground with , : (a) dB with M-SL1MMER, (b) dB with
SL1MMER, (c) dB with M-SL1MMER, and (d) dB with SL1MMER respectively. Each dot has the sample mean of all estimates as its
value and the corresponding standard deviation as error bar.

Fig. 9. Reconstructed elevation of simulated façade and ground with , , (a) dB with M-SL1MMER, (b) dB with
SL1MMER, (c) dB with M-SL1MMER, and (d) dB with SL1MMER, respectively. Each dot has the sample mean of all estimates as its
value and the corresponding standard deviation as error bar.

an SNR of 10 dB before. We also analyzed w.r.t.
for two typical elevation distances or 0.4, i.e., when
two scatterers are spaced by one or two fifths of Rayleigh
resolution. The results are shown in Fig. 11(a). Moreover, false
alarm rate is illustrated in Fig. 11(b) as a function of
for M-SL1MMER (red) and SL1MMER (blue), respectively. In
this context, we simulate only one scatter and define false alarm
for the case when two scatterers are detected. These analyses
confirm the fact that M-SL1MMER outperforms SL1MMER
in all respects significantly. For the case , the gain of
using multiple snapshots regarding and is comparable
to the case of .

VI. PRACTICAL DEMONSTRATION USING TANDEM-X DATA

In this section, M-SL1MMER is applied to the TanDEM-X
data mentioned in Section II. The results are compared to
those obtained using SL1MMER. Figs. 12–14 show the recon-
structed and color-coded elevation of the two test buildings
in Fig. 5, overlaid with intensity. From Fig. 12 to Fig. 14, 21,
11 and 6 interferograms are used, respectively. The separated
scatterers, from left to right estimated using M-SL1MMER and
SL1MMER and from top to down of first and second layer, are
illustrated respectively.

Fig. 10. Detection rate w.r.t. normalized true elevation distance be-
tween façade and ground, for the case . Red solid: dB
with M-SL1MMER, blue solid: dB with SL1MMER, red dotted:

dB with M-SL1MMER, blue dotted dB with SL1MMER,
respectively.
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Fig. 11. Detection rate and false alarm rate w.r.t. , for the case . (a) for with M-SL1MMER (red solid), with
SL1MMER (blue solid), with M-SL1MMER (red dotted), and with SL1MMER (blue dotted), respectively. (b) with M-SL1MMER (red),
and SL1MMER (blue), respectively.

Fig. 12. Reconstructed and color-coded elevation of the two test buildings
using 21 interferograms, visualized in two layers, overlaid with intensity.
From top to down: first and second layer, respectively; from left to right:
M-SL1MMER and SL1MMER, respectively.

At the top of the test buildings, reflections from building
roof and façade are overlaid. In these practical examples, dom-
inating scattering from roof (dark red) can be seen in the first
layer, whereas the corresponding parts of façade (light red) are

Fig. 13. The same results as Fig. 12, but using 11 interferograms.

visible in the second layer. We do not expect many reflections
from lower structures though, due to the large slope of the
shell-like roof in front of the test buildings. It is evident that
M-SL1MMER (left) using joint sparsity model significantly
outperforms SL1MMER (right). In particular, when ,
i.e., using extremely small number of scenes, the second layer
estimated using SL1MMER (lower right plot of Fig. 14) is
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Fig. 14. The same results as Fig. 12, but using 6 interferograms only.

Fig. 15. Elevation distance between first and second layer with . Left:
M-SL1MMER; right: SL1MMER.

deteriorated by false alarms while M-SL1MMER still achieves
reasonable results (lower left plot of Fig. 14).
Due to the significantly improved estimation accuracy,

M-SL1MMER reconstructs some interesting details which

Fig. 16. Optical image of the left test building in Fig. 15 ©Google.

was not accessible so far. For a practical demonstration, we
calculated elevation distance between first and second layer
for the double-scatterer case, which is shown in Fig. 15. The
red parallelogram marks the area where facade and roof are
overlaid, cf. Fig. 16. At the far-range side of this area, the
elevation distance amounts to approximately 22.60 [m] (cyan).
Accordingly, the width of the roof can be calculated to be
18.27 [m], which agrees, up to the decimeter level, with what
we estimated from the 3-D building model of Google Earth.
Besides, the yellow parallelogram marks an area where the
elevation distance between separated overlaid scatterers stays
more or less constant. While comparing the SAR amplitude
image to the optical one in Fig. 16, a plausible explanation is
that two neighboring windows in the diagonal direction exem-
plified as and , are superimposed. As can be counted
from Fig. 16, the number of windows per floor adds up to 20,
whereas there are only 10 extraordinarily bright pixels in the
SAR amplitude image. However, this speculation needs to be
further verified using SAR simulation tools providing a highly
precise building model.

VII. CONCLUDING REMARKS

In this paper, a novel framework is proposed which can
achieve precise TomoSAR reconstruction while significantly
reducing the required number of images. The core idea is the
exploitation of joint sparsity in iso-height SAR pixel groups
that can be identified with the support of online available
GIS data—2D building footprints. Experiments using bistatic
TanDEM-X data stacks demonstrate the great potential of the
proposed approach.
A few additional remarks might be helpful for further use of

our results:
• The approach we proposed for grouping iso-height pixels
can also be used for all other estimators that support mul-
tiple-snapshot (also referred to as multi-look) estimation,
like NLS, MUSIC, etc.;
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• Our experiments are performed over Las Vegas where GIS
data of moderate quality are available. For test areas with
relatively poor 2-D footprint data, the benefit of the pro-
posed approach that refines the iso-height lines of each
building using, e.g., SAR intensity map, could be even
more evident;

• In the cities where GIS data are not available, one can use
the 2-D footprint reconstructed using a preliminarily re-
trieved TomoSAR point cloud [40] to alternately improve
the TomoSAR estimation procedure;

• The proposed M-SL1MMER is a general spectral esti-
mator, even though we applied it here for tomographic
reconstruction;

• In our work, the mixed norm is introduced to promote
the joint sparsity prior. Depending on the applications, this
constraint can be relaxed by replacing with norm
with ;

In the future, we will extend the proposed M-SL1MMER for
higher dimensional spectral estimation problems, e.g., differen-
tial tomographic SAR reconstruction using mixed single- and
multi-pass monostatic data stacks.
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