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Joint Audiovisual Hidden Semi-Markov
Model-Based Speech Synthesis

Dietmar Schabus, Michael Pucher, and Gregor Hofer

Abstract—This paper investigates joint speaker-dependent au-
diovisual Hidden Semi-Markov Models (HSMM) where the visual
models produce a sequence of 3D motion tracking data that is used
to animate a talking head and the acoustic models are used for
speech synthesis. Different acoustic, visual, and joint audiovisual
models for four different Austrian German speakers were trained
and we show that the joint models perform better compared
to other approaches in terms of synchronization quality of the
synthesized visual speech. In addition, a detailed analysis of the
acoustic and visual alignment is provided for the different models.
Importantly, the joint audiovisual modeling does not decrease the
acoustic synthetic speech quality compared to acoustic-only mod-
eling so that there is a clear advantage in the common duration
model of the joint audiovisual modeling approach that is used for
synchronizing acoustic and visual parameter sequences. Finally,
it provides a model that integrates the visual and acoustic speech
dynamics.

Index Terms—Audiovisual speech synthesis, facial animation,
hidden Markov model, HMM-based speech synthesis, speech
synthesis, talking head.

I. INTRODUCTION

ALKING computer-animated characters are now com-
monplace in entertainment productions such as video
games and animated movies. And with the advent of speaking
personal assistants, virtual agents will become increasingly
important as well. Regardless of the application, speaking
characters require lip motion synchronization to recorded or
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synthetic speech. The quality of this synchronization is impor-
tant to increase immersion in entertainment products while also
being critical to the believability of virtual agents.

State of the art animation for films and also video games is
either done entirely by hand or by employing expensive motion
capturing technology, which requires extensive manual clean
up. Both methods deliver high quality results but are extremely
time consuming and expensive. In particular, the amount of dia-
logue in games has been increasing over the last few years, cre-
ating a need for automatic facial animation methods. Likewise,
talking virtual agents in dialogue systems need to automatically
synchronize their lip motion to synthesized speech to be able to
deliver a believable interaction with the user.

However, speech animation is a complex interdisciplinary
problem that can be divided into two separate tasks; creating
realistic speech dynamics, the rhythm and timing of the articu-
lators and creating realistic deformations on the 3D model, re-
targeting the dynamics to a particular face. Motion capturing is
primarily a means of recording realistic speech dynamics but
the retargeting of the recorded motions to specific deformations
on a 3D model is a separate problem in the computer graphics
field and is out of scope for this paper.

While motion capturing of natural speech can accurately
capture speech dynamics, no dynamic information is available
when using synthesized speech in a dialogue system. Therefore
such systems usually rely only on phonetic information. This
paper is primarily concerned with creating realistic speech
dynamics for synthesized speech. In detail we address the
problem of audiovisual text-to-speech synthesis (TTS), which
is the synthesis of both an acoustic speech signal (TTS in the
classical sense), as well as matching visual speech motion
parameters given some unseen text as input.

The field of visual speech synthesis is fairly well established
and a variety of approaches have been developed since the first
rule based systems [1]. Video-based systems [2], [3] and other
data-driven approaches [4]-[6] have been developed.

The HMM-based visual speech synthesis systems that have
been developed can be broadly categorized into two types:
Image-based systems on the one hand use features derived
directly from the video frames [7], [8] where the resulting
synthesis is supposed to look like a video of a real person.
Motion capture based approaches [9]-[13] on the other hand
derive their features from individual facial feature points
tracked over time. The advantage of these types of features is
that the synthesized motion trajectories can be used to drive
any 3D face. Our system is based on motion-capture data but
the HSMM-based approach is flexible enough to allow for the
synthesis of any type of parameter sequence. Note that our
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goal is to synthesize both audio speech and motion parameters
directly from text, but the models we train can also be used in
the less general manner of [7] and [14] (audio unit alignment
on speech input followed by visual synthesis, using audiovisual
models).

Combining the auditory and visual modalities in one frame-
work requires a synchronous corpus of parametrized facial mo-
tion data and acoustic speech data. We have demonstrated in
previous work how to build such a corpus [15] and that it is
feasible to produce both acoustic speech parameters and an-
imation parameters [16] by a maximum likelihood parameter
generation algorithm [17] from models that were trained on
such a synchronous corpus. In [18] we showed how to gen-
erate visual parameters using a speaker-adaptive approach. The
work described in this paper will describe a joint audiovisual
speaker-dependent HSMM-based approach for generating vi-
sual and acoustic features for different speakers. In statistical
data-driven audiovisual synthesis, commonly separate acoustic
and visual models are trained [7]-[11], [14], sometimes together
with an additional explicit time difference model to correctly
synchronize the two modalities [12], [13]. In contrast, we pro-
pose to train one joint audiovisual model (with acoustic and
visual streams), such that the likelihood of the model gener-
ating the training data is maximized globally, across the two
modalities, during model parameter estimation. This results in
a single duration model used for both modalities, thus elimi-
nating the need for additional synchronization measures. In this
way, we intend to create simple and direct models for audio-
visual speech synthesis, which can cope with most effects of
co-articulation and inter-modal asynchrony naturally through
five-state quin-phone full-context modeling. [13] also argues
that states can capture some inter-modal asynchrony since tran-
sient and stable parts of the trajectories of different modalities
need not necessarily be modeled by the same state, and that
multi-phone context models can capture co-articulation effects.
Notably, an early work on audiovisual HMM-synthesis [19] also
applied joint modeling in our sense, however without investi-
gating its benefits in detail. Also, the current HMM-modeling
techniques and high-fidelity visual parameter acquisition we use
distinguish our work from [19].

Therefore the main purpose of this paper is to investigate
whether the proposed joint audiovisual modeling approach pro-
vides clear improvements over separate audio and visual mod-
eling. We argue that the main weakness of separate modeling
stems from the difficulty to capture (and even define) clear tem-
poral unit borders for the visual modality. Our analysis shows
that visual-only training yields models which fail to find suitable
borders for some phones when we carry out forced alignment
on our training data. An explicit audio/video lag model used for
modality synchronization, which is trained on such borders (as
in [12], [13]) might still suffer from these problems, even if the
borders in the training data are hand-labeled (as in [20]). Fur-
thermore, the quality of the synthesized trajectories themselves
can be expected to degrade if observation assignment to units is
unclear during training.

On the other hand, there are situations where the targets to
which speech needs to be synchronized are much clearer, like
singing synthesis [21], where explicit lag models have been used
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successfully for synchronizing speech to sheet music (in that
case, the sheet music defines fixed and exact synchronization
target points in time).

We furthermore consider the description of the system we
have built an important part of this work. This system is based on
a state-of-the-art HSMM modeling framework and we use cur-
rent animation-industry-standard motion tracking and character
animation technology for the visual modality. In this regard our
work differs strongly from conceptually related previous work
[8]-{10].

The remainder of this paper is organized as follows: Section I1
describes our data and synthesis systems. Section III provides
an analysis of acoustic and visual alignments using the different
models. In Section IV we evaluate our different models in sub-
jective listening experiments. Section V concludes the paper.

II. SYSTEM DESCRIPTION

In this section, we describe the full pipeline of the system we
propose, including audiovisual data recording (Section II-A),
feature extraction (Section II-B), HSMM training
(Section II-C), synchronization strategies (Section II-D) and
creation of the final animation (Section II-E).

A. Data

Similar to a corpus we have described before [15], we have
recorded four speakers reading the same recording script in
standard Austrian German. This script is phonetically balanced,
i.e., it contains all phonemes in relation to their appearance in
German, and it contains utterances of varying length, to cover
different prosodic features (like phrase breaks, etc.). It amounts
to 223 utterances and roughly 11 minutes total for each of the
speakers.

The recordings were performed in an anechoic, acoustically
isolated room with artificial light only. For the sound record-
ings, we used a high-definition recorder (an Edirol R-4 Pro) at
44.1 kHz sampling rate, 16 bit encoding, and a professional mi-
crophone (an AKG C-414 B-TL). We believe this to be suffi-
cient but necessary quality settings, as it has been shown that
sampling rates higher than the common 16 kHz can improve
speaker similarity in HSMM-based speech synthesis [22].

For the recording of facial motion, we used a commercially
available system called OptiTrack [23]. Using six infrared cam-
eras with infrared LEDs, this system records the 3D position
of 37 reflective markers glued to a person’s face at 100 Hz.
A headband with four additional markers helps to segregate
global head motion from facial deformation. A seventh camera
records 640 x 480 grayscale video footage, also at 100 Hz (syn-
chronized). See Fig. 1 for still images from the grayscale video
showing the marker layout (top), and renderings of the resulting
3D data (bottom). Each recording session was started with a
neutral pose (relaxed face, mouth closed, eyes open, looking
straight ahead). Using this kind of data (recorded or synthe-
sized), the movement of a virtual 3D head can be controlled as
described in Section II-E.

Since our final goal is lip motion synthesis, we have to remove
global head motion from the data. This can be done under the as-
sumption of fixed distances between the four headband markers.
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Fig. 1. Still images from grayscale videos showing facial marker layout (top)
for four different speakers and corresponding renderings of 3D marker data
(bottom).

We choose a reference frame, and compute the transformation
matrix from all the other frames to the reference frame, such
that the four headband markers are in the same position. By ap-
plication of this transformation matrix to all 41 markers in the
respective frame, we can eliminate global head motion, keeping
only the facial deformation in the data.

Furthermore, we have applied a global translation to each
recording session’s data, such that the head is located at the same
position in coordinate space.

B. Visual Feature Extraction

By stacking the z, ¥ and z coordinates of all 41 markers ver-
tically, we obtain 123-dimensional column vectors representing
the shape of the face at a given point in time. Because we are in-
terested in the synthesis of speech articulation motion only, we
have removed the four headband markers, the four markers on
the upper and lower eyelids and the six markers on the eyebrows
from the data, resulting in 81-dimensional feature vectors.

Since there are many strong constraints on the deformation
of a person’s face while speaking, and hence on the motion of
the facial markers, there should be far fewer degrees of freedom
necessary than these 81-dimensional vectors allow. Guided by
this intuition, as well as to de-correlate the components, we have
carried out standard principal component analysis (PCA) on our
data. We are interested in de-correlation because it will allow
us to assume independence between the components and thus
to train diagonal rather than full covariance matrices. The other
reason for using PCA is that the resulting components are sorted
according to their influence on variability in the data, and hence
we can choose to keep only the first £ principal components
instead of the entire 81 dimensions, leading to faster training and
more accurate modeling, but still achieve satisfactory results.
Appendix A provides a detailed description of how we carried
out PCA on our data.

In a recent study [24], we showed that deciding on a value
for & based on objective measures such as the singular values
or the reconstruction error (see also Fig. 10 in Appendix A)
is not straightforward. It is clear that the first dimensions will
always explain most of the variance in the data (by the nature
of PCA), but deciding on a value for £ that will still include
even subtle speech motion might require thorough subjective

evaluations. A subjective experiment in [24] with a speaker-
adaptive setting in mind showed that up to 30 dimensions can be
necessary for robust reconstruction. The optimal value for & for
training and synthesis may be lower than that, and the system
of Bailly et al. [12], [13] for example only uses six degrees of
freedom, based on a thorough investigation using facial markers
and MRI [25]. However, unlike our setup, that study considers
symmetrical facial motion only (as does the audiovisual speech
synthesis system of [12] and [13]), and the choice of degrees
of freedom was based on objective measures alone. For lack
of a tighter bound, we have therefore chosen & = 30 for the
remainder of this paper.

C. Audio, Visual and Audiovisual Model Training

For training regular audio speech models, we use the CSTR/
EMIME TTS system training scripts [26] and HTS version 2.1
[27] to train context-dependent, five-state, multi-stream, left-to-
right, Multi-Space Distribution (MSD) Hidden Semi-Markov
Models (HSMMs) [28]. As audio features we use 39+1 mel-cep-
stral features, log FO and 25 band-limited aperiodicity measures,
extracted from 44.1 kHz speech, as it is done in the CSTR/
EMIME system. Speech signals are re-synthesized from these
features using the STRAIGHT vocoder [29]. All features are
augmented by their dynamic features (A and A?) [30]. For each
of the three audio features, the models are clustered separately
state-wise by means of decision-tree based context clustering
using linguistically motivated questions on the phonetic, seg-
mental, syllable, word and utterance levels. State durations are
modeled explicitly rather than via state transition probabilities
(HSMMs rather than HMMs [31]), and duration models are also
clustered using a single decision-tree across all five states. The
feature questions used for the clustering are based on the Eng-
lish question set in the EMIME system [26] with adaptations to-
wards our German phone set. They are listed in [32], except that
we do not use multiple dialects here and that we also included
the PEC/viseme classes of preceding, current, and succeeding
phones (as described below).

In short, for audio-only modeling, we apply the state-of-
the-art CSTR/EMIME HTS system without modifications. For
visual-only modeling, we use the same system but with only
one feature stream for the visual PCA-space features described
in the previous subsection. In order to obtain the same frame
rate as the audio features (5 ms frame shift, i.e., 200 frames per
second), we have up-sampled (interpolated) the visual features
from their native 100 frames to 200 frames per second. Similar
to the cepstral features, they are also augmented by their dy-
namic features and the models are clustered using the same set
of questions. This results in a speaker-dependent text-to-visual
speech system, like we have investigated in previous work
[18]. Furthermore, for joint audiovisual modeling, we merge
the two into a system that trains models for the three audio
features (cepstral, F0, aperiodicity) and the visual features si-
multaneously. This is achieved by adding an additional stream
to the audio-only system, with separate state-wise clustering.
The structure of the audio, visual and audiovisual systems is
shown in Fig. 2.

As we have added an additional non-standard feature to the
well-established HSMM training system, it is of interest to see
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Fig. 2. Overview of a speaker dependent audiovisual speech synthesis system,
which consists of three main components: audiovisual speech analysis, audio-
visual training, and audiovisual speech generation. The corresponding audio-
only system does not include the red parts, and the corresponding visual-only
system does not include the blue parts.

TABLE 1
AVERAGE NUMBER (ACROSS FOUR SPEAKERS) OF LEAF NODES
IN THE CLUSTERING TREES AFTER TRAINING

State

Training Feature 1 2 3 4 5  Total

Mel-cepstral 58 61 69 66 67 320

. Log FO 146 219 241 149 100 856

Audio

Band-Ap 27 34 36 30 25 152

Duration 163

Mel-cepstral 57 63 67 58 61 306

Log FO 164 218 259 164 121 925

Audiovisual ~ Band-Ap 27 31 32 23 27 140

Visual 258 526 551 417 291 2042

Duration 208

. Visual 354 504 418 345 314 1934
Visual i

Duration 312

how the new feature is handled by the system. One potentially
informative parameter for this is the size of the clustering trees.
Table I gives the number of leaf nodes (and hence of distinct
observation probability density functions) resulting from the
audio, audiovisual and visual training procedures, averaged
across the four speakers. The absolute numbers in such a table
of course grow with the size of the training corpus, but we can
observe that the trees for the visual features are substantially
bigger than the ones for the other features, which is still true if
we choose a different dimensionality % to represent our visual
data, as illustrated in Fig. 3 where the number of visual leaf
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Fig. 3. Average number (across four speakers) of total leaf nodes in the visual
clustering trees as a function of visual PCA dimensions kept (k).

nodes is shown as a function of & resulting from audiovisual
training. This is somewhat surprising, given that the visual
parameter trajectories appear to be quite smooth in general (see
Fig. 5 for an example). We interpret this as a strong dependency
on context of our visual data.

We also find that the size of the duration tree of the visual-only
voice model is roughly twice the size of the audio-only duration
tree, and that in the combined audiovisual system we also see
an (albeit smaller) increase in size of the duration tree. Duration
and audiovisual synchronization will be discussed in more de-
tail in Sections II-D and III, but we can already see from these
numbers that duration modeling for the visual features seems to
work differently from the audio features.

In many approaches to (audio-)visual speech processing,
the concept of visemes [33]-[35] or, more generally, Phoneme
Equivalence Classes (PECs) [36] is used. The idea is roughly
that phone(me)s which have similar or even indistinguishable
visual appearance (but which may still be very different in
acoustic terms) are grouped together for visual modeling. It
is easy to integrate this concept into the HSMM modeling
framework, even with the flexibility to use the concept only
partially: By “offering” to the model clustering algorithm ad-
ditional questions that correspond to such groupings of phones
according to their visual properties, the maximum description
length criterion will automatically make use of such PEC ques-
tions when and only when they are useful. To determine to what
degree PECs are beneficial or even necessary for visual speech
modeling in our setting, it is therefore sufficient to simply pro-
vide additional questions alongside the ones mentioned earlier
(e.g., phones and phone groups based on acoustic criteria) and
then to see whether these are used to cluster the data at hand.

Based on the “easy set” in [36], with adaptations towards our
phone set for German, we have added the following six PECs
as possible clustering questions: {p, b, m}, {f, v}, {t, d, s, z},
{k,g,n,1,1,hj,¢ x}, {o,u,y:, 0}, {d,0,Y, ce}.

Assuming that such PECs are useful for modeling the visual
features but not the acoustic ones, these questions should appear
often in the clustering trees for the former and rarely (or not at
all) for the latter, when they are “offered” at all clustering steps
of all features. The percentages of decision tree leaves affected
by PEC questions are given in Table II for the three training pro-
cedures and all features, averaged across four speakers. Here we
consider a leaf “affected” if at least one PEC question was an-
swered affirmatively on the path from the root to the leaf. In line
with the expectations mentioned before, we see that PEC ques-
tions clearly play a more important role in clustering the models
for the visual features than for the acoustic ones, although they
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TABLE 11
AVERAGE PERCENTAGE (ACROSS FOUR SPEAKERS)
OF LEAF NODES AFFECTED BY PEC QUESTIONS

State

Model Feature 1 2 3 4 5  Overall

Mel-cepstral 8.9 6.1 5.8 54 7.6 6.7

. Log FO 7.9 5.9 49 33 49 54

Audio

Band-Ap 1.0 4.2 39 2.6 0.0 2.5

Duration 5.1

Mel-cepstral 9.3 4.8 4.6 1.7 54 5.1

Log FO 8.1 74 7.0 6.0 6.2 7.0

Audiovisual ~ Band-Ap 6.1 33 0.7 22 2.7 29

Visual 131 102 223 262 135 17.3

Duration 12.7

. Visual 139 264 229 267 175 21.9
Visual i

Duration 13.1

are also used for the latter to some extent. PEC questions are es-
pecially relevant for the third (22.3%) and fourth (26.2%) states
of the visual stream. Interestingly, the presence of the visual fea-
tures also has an impact on the duration clustering in this respect
(in addition to making the duration trees larger, as we have dis-
cussed earlier): The duration trees of the visual-only and the au-
diovisual models contain a higher percentage of PEC-affected
leaves than the acoustic-only models.

We conclude from these findings that the addition of clus-
tering questions specifically targeted towards visual features
such as visemes or PECs can be helpful in modeling the visual
modality in this framework.

D. Audiovisual Synchronization Strategies

To achieve the goal of text-to-audiovisual-speech synthesis,
both an acoustic speech signal and a visual speech signal (ani-
mation) need to be created given some input text, and in addi-
tion to being natural or believable individually, the two gener-
ated sequences need to match temporally. With the three trained
models described in the previous subsection available (audio-
only, visual-only and joint-audiovisual, each with its own dura-
tion model), there are several possible strategies that lead to a
combined audiovisual sequence generated for some new input
text.

1) Unsynchronized: The simplest strategy using the sepa-
rately trained models is to synthesize from each model inde-
pendently and then just add the two generated sequences to-
gether. This has the advantage that each model will generate its
sequence “naturally,” i.e., the way that directly emerges from
the training process of the respective model. An important dis-
advantage is that there are no synchronization constraints what-
soever, and the total length of the generated audio and visual
sequences may even differ. We will refer to this method, which
uses two duration models, as unsync for short.

2) Utterance Length (Audio): While still using both dura-
tion models, we can ensure equal sequence length by adjusting
the speaking rate parameter p in the synthesis step [37]. The
state durations of an utterance consisting of K states (i.e., K /5
phones) are given by

da(k) = palk) +p- i (k) for 1<E<K, (1)

where 114(k) and 0% (k) denote the mean and variance of the
audio duration model for state k, respectively. When p is set to
0 for synthesis, we obtain speech in average speaking rate, with
p < 0 we obtain faster and with p > 0 slower speech. We can
synthesize acoustically without constraints (p4 = 0), and then
determine the py required for visual synthesis that will yield the
same utterance length:

K K
Da=Y dalk) = pa(k) 2)
k=1 k=1
.
Dy = 3 nv(k)
R 3)
> o (k)
k=1

where 1y (k) and 0% (k) denote the mean and variance of the
visual duration model for state K.

This will produce an audio and visual parameter sequence
for the utterance which are exactly of the same length, but still
each use their respective duration model. We will refer to this
strategy, which exhibits the “natural” audio duration, as uttlen-
audio for short.

3) Utterance Length (Visual): Symmetrically, by flipping the
roles of audio and visual models, we obtain another strategy
that exhibits the “natural” visual duration, referred to as uttlen-
visual.

4) Audio Duration Copy: In order to achieve tighter synchro-
nization on the phone level, we can decide to use only one of
the two duration models, e.g., the audio duration model for both
audio and visual synthesis. This is equivalent to replacing the
visual duration models and trees with the ones obtained from
audio training. The advantage here is the tighter synchroniza-
tion, a possible disadvantage is that a new duration model is
forced upon the visual system which might not match the visual
feature models. We will refer to this strategy as durcopy-audio.

5) Visual Duration Copy: Likewise, we can replace the audio
duration model with the visual one, which we will call durcopy-
visual.

6) Joint Audiovisual: Finally, the audiovisual voice model
with jointly trained features and with a single audiovisual du-
ration model generates synchronized parameter trajectories im-
plicitly. A priori it is not clear what kind of effect the additional
visual stream will have on the quality of the generated audio
samples. One can imagine that the additional information will
lead to more robust parameter estimation and thus to an im-
provement of audio quality. On the other hand, if the two signals
reveal themselves to be rather inconsistent, a negative effect on
audio quality could arise. We will refer to this strategy as audio-
visual.

The six synchronization strategies are summarized in
Table III. Note that the first three (unsync, uttlen-audio, ut-
tlen-visual) use two duration models whereas the last three
(durcopy-audio, durcopy-visual, audiovisual) each use a dif-
ferent single duration model. Furthermore note that unsync,
uttlen-audio and durcopy-audio produce synthetic speech iden-
tical to what the regular audio-only system would produce.
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TABLE III
SYNCHRONIZATION STRATEGIES FOR AUDIOVISUAL SYNTHESIS

Name Description
unsync unsynchronized separate duration models
uttlen-audio utterance length determined by audio duration model

uttlen-visual utterance length determined by visual duration model

durcopy-audio  audio duration model used for both modalities
durcopy-visual

audiovisual

visual duration model used for both modalities
features trained jointly, audiovisual duration model

same speaker —|

different speaker —

0.0 0.5 1.0 1.5 2.0

seconds

Fig. 4. Boxplots for the differences in utterance length between audio-only and
visual-only synthesized utterances. For 23 test utterances and 4 speakers, the top
boxplot contains all 92 combinations where audio and visual models were from
the same speaker, and the bottom boxplot contains all 276 combinations where
the sequences were synthesized using two different speakers’ models.

The unsync method does not guarantee that audio and visual
sequences have the same length, but since both models are
trained on the same synchronous corpus, the deviation can
be expected to be small, as illustrated in Fig. 4, which shows
boxplots of the difference in length when the same utterance is
synthesized from an audio-only and from a visual-only model
separately. The figure also shows clearly that this difference
is significantly smaller when the two models are from the
same speaker (and thus trained on a synchronous corpus),
suggesting that this synchronization strategy can not work for
mixed-speaker setups, if at all.

The durcopy-audio method is a straightforward choice to
align the borders of both sequences by simply using the borders
predicted by the audio model also for the visual model, applied
for example in [8] and [16].

The uttlen-audio method is interestingly similar to the ex-
plicit lag models of [12], [13]: with uttlen-audio, audio is syn-
thesized independently of the visual features, and a separate vi-
sual duration model predicts the visual phone borders, while
the length constraint ensures equal total length of the two se-
quences. The separate visual model results from several itera-
tions of embedded training on visual-only data. The main dif-
ference is that [12], [13] predict the visual phone borders as a
relative offset to the audio borders, where the offsets are itera-
tively re-estimated based on visual forced alignment.

E. Creating the Final Animation

Our synthesis models generate a sequence of motion tracking
data. The problem of how to animate a talking head automat-
ically from a sequence of parameters is called retargeting. In
this work we used a talking head that is included in our mo-
tion tracking system that employs a pre-defined retargeting pro-
cedure specific to the facial model. In [38], [39] it was shown
how the more general problem of transforming the motions of
one talking head onto another talking head can be performed
through facial motion cloning. But high-quality retargeting still
remains a hard problem for large facial meshes. To exploit the
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full potential of audiovisual speech synthesis it would be nec-
essary to have a retargeting method that is able to deform any
talking head appropriately from the synthesized motion tracking
data. We are able to synthesize high-quality motion tracking
data trajectories but the visual quality of the final animation also
depends on the quality of the retargeting procedure as well as the
visual appearance of the head.

III. ALIGNMENT ANALYSIS

This section analyzes the temporal alignment behavior of the
different models described in the previous section. Although
speech movements and the resulting sounds are synchronous
in general, it is not clear a priori whether the borders between
phones in the visual speech signal should be the same as in
the audio speech signal. For example, at the beginning of an
utterance, anticipatory gestures can begin in the speech move-
ment signal well before any audible sound is produced. Al-
though somewhat unnatural, it is commonplace in audio speech
synthesis (as well as speech recognition) to define sharp bor-
ders between the phones of an utterance and to compensate for
co-articulation effects by employing context-dependent mod-
eling strategies (as it is also done in the HTS system we use).
Given an acoustic model, such phone borders can be found au-
tomatically by forced alignment of the known phone sequence
to some speech data.

We have applied HSMM-based forced alignment via the
HSMMAlign tool from HTS version 2.2 [27] to our training
data using the different models we have trained, in order to
understand the temporal differences between auditory, visual
and joint audiovisual modeling. Given the auditory model and
the auditory data, this produces for each of the 200 utterances
in the training corpus the most likely phone borders that would
make the auditory model generate the speech parameters of this
utterance. Likewise for the visual model and data, as well as
the audiovisual model and data.

Fig. 5 shows an example sentence with the corresponding
forced alignment results. In the first row, the visual-only model
was used to align the visual data, the resulting phone borders are
designated by black vertical lines. For easier interpretation, the
plot shows the Euclidean distances between the central upper
lip and central lower lip markers as well as between the left
and right mouth corner makers, instead of PCA components.
In the third row, the auditory-only model was used to align the
auditory data. Here, the first three cepstral features are drawn in
red in decreasing thickness and FO is drawn in green. The low
flat portions of the F0 signal represent unvoiced parts (undefined
F0). All features have been re-scaled to fit into the same vertical
range. The second row combines all features, and the alignment
was determined using the joint audiovisual model. The bottom
row shows the spectrogram of the utterance. It is apparent that
there is a difference between the three resulting alignments.

In order to quantify this temporal alignment difference
between the three models, we have computed the alignments
for all 200 utterances for all four speakers. Then, to assess
the degree of agreement between any two models, we have
computed the time percentage of each utterance where the two
alignments agree. For an utterance consisting of the phone se-
quence (p1, p2, - - -, P ), We compute the agreement percentage
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The bottom row shows the corresponding spectrogram.
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Fig. 6. Boxplots for matching percentage per utterance for audio and audiovi-
sual models (top), visual and audiovisual models (middle) and audio and visual
models (bottom).

between two models A, B € {audio, visual, audiovisual}
for that utterance as

n

. Z max(0, min(e,, a,e, p)— max(b,, 4,0, 58))

i=1
4)
where b,, x and e,, x denote the beginning and the end of
phone p; as determined by HSMMAlign using model X . Note
thate, 4 = e,  p is simply the total length of the utterance.
The resulting matching percentages of all 800 utterances are
shown as boxplots in Fig. 6. The degree of agreement between
the auditory and the audiovisual models is much higher (me-
dian 89.84%) than between the visual and audiovisual models
(median 62.93%) and between the auditory and visual models
(median 59.21%). The utterance in Fig. 5 is a typical example in
this regard (a-av-match 89.31%, v-av-match 62.66%, a-v-match
58.88%).
We have also computed the matching percentages for any two
methods for each individual phone. The percentage is calculated
as the amount of time that both alignments consider as being part

100

of the phone divided by the average of the two phone lengths,
formally

max(0, min(e,, 4,e,, 5) — max(b,, 4,0y, B))

%((epi,A —bp,.a)+ (epi,B - bpi-,B))

)

Fig. 7 shows the results grouped by phones (i.e., central
phones of the respective quin-phone full-contexts). Apart from
the overall better match between auditory and audiovisual
(Fig. 7(a)) compared to the two other pairs (Fig. 7(b) and (c)),
which is also shown by Fig. 6, it can be seen in these plots that
the bottom 12 phones in Fig. 7(b) and (c) are the same, and in
almost the same order (by median). These 12 phones show a
particularly large mismatch between the visual alignment and
both the auditory and the audiovisual alignment, which suggests
that for these phones [3,7, n, t, 1, d, g, |, R, ¢, h, i:] the training
procedure in the visual-only case determined strongly different
phone borders from the other two cases. A possible explanation
for this is that these phones do not produce prominent effects
in the visual feature trajectories, which seems intuitive: since
our visual features consist of tracked markers on the lips and
face only (and not, e.g., motion features of the tongue or other
intra-oral articulators), phones that do not have a strong effect
on the movement of the lips and jaw are difficult to capture in
the visual feature space. The consonants [?, n, t,d, g, |, R, ¢, h]
are all mainly defined by intra-oral articulation—in contrast
to, e.g., the consonants [f, p, b, m, [ ], which have a strong
effect on lip motion and accordingly appear close to the top in
Fig. 7(b) and (c). Likewise, it can be argued that the vowels [,
1, ii] exhibit rather indistinct lip motion, whereas diphthongs
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Fig. 7. Boxplots for matching percentage per phone. (a) Auditory and audiovisual. (b) Visual and audiovisual. (¢) Auditory and visual.

and rounded vowels can be expected to yield more character-
istic trajectories.

IV. EVALUATION

In order to assess the quality of the various models and syn-
chronization strategies described in Section II, we have car-
ried out a subjective evaluation experiment with 21 non-expert
subjects (13 female, 15 male, aged 20 to 37, mean age 26.5)
using a web-based experimental setup. For this experiment, 10
held-out test utterances from our recordings were synthesized
using all methods and synchronization strategies and all of our
four speakers. The evaluation consisted of an acoustic-only and
an audiovisual part.!

A. Acoustic Evaluation

To investigate the effect on quality of the audio synthesis
of the joint-audiovisual system by adding an additional visual
stream, we have evaluated the different methods in a pair-wise
comparison listening test. In each comparison, the listeners
heard two audio samples from two different methods, but
containing the same utterance from the same speaker. After
hearing each sample as many times as they liked, they were
asked to decide which of the two they preferred with respect
to overall quality. No preference (a “tie”’) was also an option.
Four methods for synthesizing audio were compared in this
test: audio, which represents the regular audio-only system
(and hence the synchronization strategies unsync, uttlen-audio
and durcopy-audio), audiovisual, which represents the audio

IExample stimuli for all parts of the evaluation are available on http://userver.
ftw.at/~schabus/jstsp2013

TABLE IV
EVALUATION RESULTS FOR THE ACOUSTIC PART

Compared Methods wins ties  sig.
recorded audio 76 : 3 1 ®
recorded audiovisual 77: 1 2
recorded durcopy-visual 79 : 1 0
audio audiovisual 19 : 11 50

audio durcopy-visual 44 : 6 30 ®
audiovisual : durcopy-visual 43 : 2 35

generated from the joint-audiovisually trained model, dur-
copy-visual, which represents audio synthesized with the visual
duration model (used in the synchronization strategy of the
same name), and original recorded speech (recorded).?2 All
possible comparisons were heard twice by different listeners.
The results are given in Table IV, where the “winning” scores
and the number of ties are listed for each method pair. In the last
column, the symbol “*” indicates statistical significance of the
score difference according to Bonferroni-corrected Pearson’s
x2-tests of independence with p < 0.01.

Recorded audio was perceived as better than synthetic speech
from any of the methods, and audio synthesized using the vi-
sual duration model (durcopy-visual) was perceived as worse
than everything else. The small difference between audio and
audiovisual (19 vs. 11) is not statistically significant (p > 0.42)
and their similarity is also reflected in the large number of “ties”
(50). We interpret these results to indicate that the additional vi-
sual stream in the joint audiovisual training has no significant

2We did not include the audio from the synchronization strategy uttlen-visual,
because it is barely if at all distinguishable from audio, due to the small absolute
values of p in our experiments.
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Fig. 8. Mode of speech motion presentation in the first and second (expert)
evaluations. Example videos are available on http://userver.ftw.at/~schabus/
jstsp2013. (a) Raw marker data. (b) Data-controlled 3D head.

effect (neither positive nor negative) on the quality of the gen-
erated acoustic speech signals.

B. Audiovisual Evaluation

In order to evaluate the audiovisual models and in partic-
ular the temporal alignment quality of the different synchroniza-
tion strategies described in Section II-D, we compared rendered
videos consisting of synthesized facial motion and synthesized
speech in the second part of the experiment. Similar to [40], to
focus on evaluating the quality of the generated marker motion
rather than the quality of the retargeting procedure or the appear-
ance of the 3D head model, we have decided to present the raw
synthesized marker motion to the subjects, i.e., renderings of the
27 points moving in 3D space, with some supporting lines added
for orientation as shown in Fig. 8(a). The inner lip contours were
added automatically based on a fixed distance between the outer
lip markers and six corresponding points that define the inner
lip. Even though this method does not necessarily produce all
lip closures, it only generates correct lip closures. Note that in a
setup with marker motion retargeting to a 3D head, these lines
are not needed and all speech motion, including closures and lip
compression, is computed based on the marker positions alone
by the retargeting procedure.

In each pair-wise comparison in this part of the experi-
ment, the subjects saw two videos from two different methods
containing the same utterance from the same speaker. After
watching each video as many times as they liked, they were
asked to decide which of the two had better synchronization
between acoustic speech and visible speech movement. No
preference (a “tie”’) was also an option. We have chosen to
ask specifically for synchronization quality, rather than testing
more generally for intelligibility and naturalness as it was done
in the LIPS 2008/2009 challenges [41].

In this test, we compared all synchronization strategies de-
scribed in Section II-D, as well as recorded speech and mo-
tion data, against each other. The results are given in Table V,
where the “winning” scores and the number of “ties” are listed
for each method pair. In the last column, the symbol “+” indi-
cates statistical significance of the score difference according to

TABLE V
EVALUATION RESULTS FOR THE AUDIOVISUAL PART

Compared Methods wins ties  sig.
recorded : audiovisual 32: 5 3 ®
recorded . durcopy-audio  25: 7 8 ®
recorded : durcopy-visual 32: 6 2 %
recorded : uttlen-audio 24: 9 7 *
recorded : uttlen-visual 26: 8 6 %
recorded : unsync 25 : 11 4 ®
audiovisual : durcopy-audio 9:17 14
audiovisual : durcopy-visual 18 : 8 14
audiovisual : uttlen-audio 10 : 10 20
audiovisual : uttlen-visual 11:20 9
audiovisual : unsync 9:14 17
durcopy-audio : durcopy-visual 11 : 9 20
durcopy-audio : uttlen-audio 6:11 23
durcopy-audio : uttlen-visual 10 : 12 18
durcopy-audio : unsync 12:12 16
durcopy-visual : uttlen-audio 6:21 13 *
durcopy-visual : uttlen-visual 6:18 16 #
durcopy-visual : unsync 8:19 13
uttlen-audio : uttlen-visual 8:14 18
uttlen-audio . unsync 11: 9 20
uttlen-visual ~ : unsync 9: 9 22

Bonferroni-corrected Pearson’s x?-tests of independence with
p < 0.05.

The results in Table V confirm that recorded speech and
recorded speech movements were perceived to be synchro-
nized significantly better than any generated stimuli, and that
durcopy-visual was perceived as having worse synchronization
than the two wuttlen methods. In particular, the audiovisual
method only performed differently from the recorded condition
but not from any other method. We expected the audiovisual
method to be perceived as having the closest synchronization
between the visual and the audio stream. However, there are
several possible reasons for the absence of such a perceived
synchronization:

* The utterances in the evaluation were short (4—7 words),
randomly selected held-out test sentences from our
recorded data. Longer sentences rich in phones that ex-
hibit prominent lip motion (as identified in Section III)
might show stronger differences between the methods.

* The decision to present animated raw marker data rather
than an animated 3D head model controlled by this data
might have been a counter-productive one.

» The test subjects were non-experts recruited on the web,
who might have only reported very obvious differences,
resulting in “washed-out” results for the more subtle
differences.

To further test the synchronization, an additional evalu-
ation was carried out with subjects judging “challenging”
utterances, which were longer (12—-17 words), semantically
unpredictable but syntactically correct utterances, rich in
audiovisual “landmarks,” synthesized following the four syn-
chronization strategies audiovisual, uttlen-audio, uttlen-visual
and durcopy-audio. We do not have recordings of these utter-
ances and we excluded the durcopy-visual strategy because of
its bad performance in the first evaluation. We also excluded
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Fig. 9. Excerpts of synthesized audiovisual trajectories for one of the “challenging” utterances from different synthesis strategies: uttlen-visual (top), audiovisual
(middle) and durcopy-audio (bottom). The plots show the Euclidean distance between the central upper lip and central lower lip markers (thick blue line), the
Euclidean distance between the left and right mouth corner markers (thin blue line), the first three cepstral features (red, with decreasing thickness) and FO (green).
The different features have been re-scaled to fit into the same vertical range. Some feature landmark correspondences are indicated by cyan dashed lines.

TABLE VI
EVALUATION RESULTS USING “CHALLENGING” UTTERANCES

experts non-experts
Compared Methods wins ties sig. wins ties sig.
audiovisual  : durcopy-audio 15:5 5 =« 25:24 16
audiovisual  : uttlen-audio 17:3 5 = 34:22 9
audiovisual ~ : uttlen-visual 17:4 4 =% 31:23 11
durcopy-audio : uttlen-audio 10:8 7 31:15 19 =
durcopy-audio : uttlen-visual ~ 10:8 7 30:18 17
uttlen-audio  : uttlen-visual 5:6 14 18:25 22

unsync because of the strong similarity of this method to the two
uttlen methods. We applied the synthesized marker motion to a
3D head model via retargeting and created rendered animation
sequences from these (see Fig. 8(b) for an example frame). 13
non-expert subjects and 5 expert subjects (speech technology,
phonetics) took part in this evaluation (9 female, 9 male, aged
22 to 58, mean age 33.9). Otherwise the experimental setup
was identical to the first evaluation. The results are given in
Table VI.

For these “challenging” utterances, the experts perceived the
audiovisual method to produce significantly better speech/mo-
tion synchronization than the other methods, which show no
significant difference among each other. For the non-expert
subjects, on the other hand, the only significant difference is
between ducropy-audio and uttlen-audio. This suggests that
the audiovisual method produces improved synchronization,
but some subtle differences are not consciously perceived by
the non-expert subjects, although a clear trend in favor of the
audiovisual method is also visible for the non-experts.

Fig. 9 shows excerpts of synthesized trajectories for one of
the “challenging” utterances. The top part of the figure illus-
trates the uttlen-visual strategy. Although identical total utter-
ance duration is ensured, the two duration models generate dif-
ferent phone durations within the utterance, resulting in a clear
misalignment of some feature “landmarks,” as indicated in the
figure by dashed cyan lines. The middle part of the figure il-
lustrates the joint audiovisual strategy. The single audiovisual
duration model provides better alignment of the same feature
“landmarks”. It is quite obvious that this causes a perceptible
improvement over the uttlen-visual method. The bottom part il-
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lustrates the durcopy-audio method. Overwriting the visual du-
ration model with the audio one guarantees alignment of the
phone borders, resulting in good alignment also of the feature
“landmarks”. However, forcing the visual system to use prede-
fined durations can result in artificial contraction or stretching
of phones, leading to unnaturally fast or slow movement, as vis-
ible in the stretched [p] phone between second 4 and 4.5. As the
expert evaluation has shown, this leads to a perceptible inferi-
ority of this synchronization strategy to the audiovisual method.

V. CONCLUSION

In this paper we showed that joint audiovisual speech syn-
thesis improves the quality of the visual speech compared to
other synchronization approaches. In our first evaluation we saw
no differences between audiovisual modeling and other syn-
chronization approaches, except for the recorded data which
was always better than the models. Concerning acoustic syn-
thesis quality, all models except audiovisual performed worse
than acoustic modeling only.

During an additional evaluation with visually challenging
utterances, the audiovisual model performed significantly better
than other synchronization approaches when judged by expert
listeners. In addition, the analysis of the state-alignments,
produced by the different models, showed objective differences
in audiovisual alignment between the proposed approaches. In
summary the proposed integrated speaker-dependent audiovi-
sual approach allows for joint modeling of visual and acoustic
signals while maintaining high-quality acoustic synthesis re-
sults with improved audiovisual synchronization over other
methods.

A few questions have remained open, mainly because they
were not in the main focus of this paper, which we deem
interesting for future work. For example, we have seen in
Section II-C that the concept of visemes/PECs seems appli-
cable also to joint audiovisual modeling. However, a more
extensive investigation including subjective evaluations would
be required for a deeper understanding of this topic. Subjective
evaluations might also be necessary to decide on an optimal
value for the dimensionality of the visual parameters. Fur-
thermore, as we have recorded data from multiple speakers,
we would like to investigate mixed-speakers setups and joint
audiovisual speaker adaptation. On a broader scale, we see
the problem of fully automatic speech motion retargeting as
an important remaining challenge for the field of 3D audio-
visual speech synthesis, especially concerning lip closures and
non-rigid lip deformations. Finally, many applications of au-
diovisual speech synthesis (e.g., video games, animated films,
conversational agents) require believable conversational and
emotional synthetic speech, which is still an open challenge for
acoustic and even more so for audiovisual speech synthesis.

APPENDIX
PRINCIPAL COMPONENT ANALYSIS VIA
SINGULAR VALUE DECOMPOSITION

For each speaker, we construct a matrix M of size 81 x n of
all frames of all utterances of that speaker stacked horizontally,
subtract the sample mean column vector 4+ from each column of
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Fig. 10. Average (across four speakers) Root Mean Squared Error (RMSE) of
four-fold cross validation PCA reconstruction of visual parameters with varying
dimensionality (k).

M to obtain a normalized M, and compute the Singular Value
Decomposition (SVD):

M=U.-%.vT (6)
We are solely interested in the matrix U of size 81 x 81, whose
columns are the bases of the principal component space, sorted
by decreasing eigenvalues. We can project a frame column
vector = into principal component space by multiplying U7
from the left (UT - x), and back into the original space by
multiplying U” s inverse from the left. Since U is orthogonal,
we have (UT) ! = (UT)T = U and thus

x=U- (U z), (7)
and if U denotes the matrix containing only the first £ columns
of U, then

= Uy (UL 2), ®)
where the quality of the approximation improves with in-
creasing value of k.

So we can carry out SVD on the data M of a speaker, choose
a value for £ < 81 and project the data into a smaller (k-dimen-
sional) subspace using U;'. Then, HSMM training and synthesis
can be performed using this more compact and de-correlated
representation of the speaker’s data. Synthesized utterances can
be projected back into the full 81-dimensional space using Uy,
and by re-adding the sample mean x we finally obtain the cor-
responding synthesized facial marker movement.

The influence of k£ on the quality of the approximation is
shown in Fig. 10, which shows the reconstruction error as a
function of % from a four-fold cross-validation setup, averaged
across four speakers.
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