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Compression Ratio Learning and Semantic
Communications for Video Imaging

Bowen Zhang , Graduate Student Member, IEEE, Zhijin Qin , Member, IEEE, and Geoffrey Ye Li , Fellow, IEEE

Abstract—It is crucial to improve data acquisition and trans-
mission efficiency for mobile robots with limited power, memory,
and bandwidth resources. For efficient data acquisition, a novel
video compressed-sensing system with spatially-variant compres-
sion ratios is designed, which offers high imaging quality with low
sampling rates; To improve data transmission efficiency, semantic
communication is leveraged to reduce bandwidth requirement,
which provides high image recovery quality with low transmission
rates. In particular, we focus on the trade-off between rate and
quality. To address the challenge, we use neural networks to decide
the optimal rate allocation policy for given quality requirements.
Due to the non-differentiable issue of rate, we train the networks by
policy-gradient-based reinforcement learning. Numerical results
show the superiority of the proposed methods over the existing
baselines.

Index Terms—Compressed sensing, rate-distortion, reinforce-
ment learning, semantic communications.

I. INTRODUCTION

V IDEO imaging systems have become ubiquitous in
robotic systems, enabling mobile robots to perceive the

environment, infer their status, and make intelligent decisions.
The data volume from a high-resolution imaging system can
be pretty large, making it challenging for mobile robots to
store sensed data locally or share it wirelessly for human-robot
interaction. To address this issue, snapshot compressive imaging
(SCI) [1], [2], [3], which captures a set of consecutive video
frames with one single exposure, is promising for realizing
sparse measurements and low requirements on memory,
bandwidth, and power [4]. Due to the limitations of conventional
cameras and communication protocols, data acquisition (i.e.,
sensing) and transmission efficiency in SCI systems are both

Manuscript received 2 October 2023; revised 12 March 2024; accepted 7 May
2024. Date of publication 27 May 2024; date of current version 2 September
2024. This work was supported in part by the National Key Research and
Development Program of China under Grant 2023YFB2904300, and in part
by the National Natural Science Foundation of China (NSFC) under Grant
62293484. The guest editor coordinating the review of this manuscript and
approving it for publication was Dr. Wenbo Ding. (Corresponding author: Zhijin
Qin.)

Bowen Zhang and Geoffrey Ye Li are with the Department of Electrical and
Electronic Engineering, Imperial College London, SW7 2AZ London, U.K.
(e-mail: k.zhang21@imperial.ac.uk; geoffrey.li@imperial.ac.uk).

Zhijin Qin is with the Department of Electronic Engineering, Tsinghua
University, Beijing 100084, China, and with the State Key Laboratory of Space
Network and Communications, Beijing 100084, China, and also with the Beijing
National Research Center for Information Science and Technology, Beijing
100084, China (e-mail: qinzhijin@tsinghua.edu.cn).

Digital Object Identifier 10.1109/JSTSP.2024.3405853

restricted. To be specific, the existing SCI systems capture an
image by exposing photo-sensitive elements for a fixed exposure
time, leading to a fixed temporal compression ratio for all pixels.
Using a fixed compression ratio in SCI systems severely limits
their ability to record natural scenes in a measurement-efficient
way, as natural scenes are usually redundant locally. If
pixels within SCI systems can be generated under different
compression ratios, a video compressive sensing system can
maintain high-quality reconstruction and achieve efficient
sensing. However, such a sensing system not only has special
requirements on the hardware but also requires a pixel-wise
compression ratio assignment policy, which depends on both
the read/shot noise levels and the object/camera motions.

Fortunately, programmable sensors or focal-plane sensor-
processors [5], [6], [7] can vary compression ratios spatially
through pixel-level control of the exposure time and readout
operations. Recent works in deep optics, on the other hand,
demonstrate the superiority of jointly learning optic parameters
and image processing methods for applications in high dynam-
ical range (HDR) imaging [8], video compressive sensing [9],
[10],1 and motion deblurring [11]. Inspired by these pioneering
works, we propose a SCI system with pixel-wise compression
ratios. We focus on minimizing the average compression ratio to
reduce the data volume for an imaging quality requirement. The
developed system gives rise to a necessary trade-off between the
number of measurements and imaging quality at a pixel location.
To tackle this, we train a ratio allocation network to decide
the per-pixel ratio. Concerning rates being non-differentiable,
we design a policy gradient [12], [13] reinforcement learning
(RL)-based framework to optimize the ratio allocation network.

In addition to the sensing efficiency, the transmission effi-
ciency of SCI systems can also be improved. If raw sensed
data from SCI systems is transmitted, generating videos at the
receiver side requires a signal recovery process. The existing
communication systems are designed independently from the
signal recovery process and treat all data equally. As differ-
ent data contribute differently to the signal recovery process,
bandwidth resources should be spent more on essential data. To
address these challenges, semantic communications [14], [15],
[16], [17] are promising solutions. The deep optics and video

1In these deep optic-based works on video compressive sensing, the coded
aperture or the exposure time for generating a snapshot is optimized but the
compression ratio (i.e. the number of measurements over a time window) is
fixed. Unlike these works, we focus on adjusting readout frequencies to achieve
pixel-wise compression ratio.
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Fig. 1. The main points of this work.

reconstruction networks define special message generation and
interpretation processes among transceivers, called semantic
encoders and decoders in semantic communications. Semantic
communication systems are optimized to ensure the interpreta-
tions of the messages through semantic decoders are correct
rather than the delivery of raw sensor data itself. To realize
semantic communications, one potential way is to introduce
task-aware compression [18] for SCI systems and design the
compression methods under the guidance of the video recon-
struction process. However, the channel coding is still designed
separately in this way, while earlier studies on the joint source
and channel coding (JSCC) [19] have demonstrated the benefits
of co-designing the source and channel coding processes. In
this work, we propose an end-to-end semantic communication
framework for SCI systems. We focus on minimising the average
data transmission rate to reduce the bandwidth for a video quality
requirement. The developed system gives rise to an important
trade-off between the number of modulated symbols and the
video recovery quality for a natural scene. To tackle this, we
propose to train a rate allocation network (RAN) to decide the
per-scene transmission rate. The RAN is optimized by policy
gradient reinforcement learning (RL).

In both data acquisition and transmission, the key is to address
the rate-quality trade-off, that is, to characterize the Pareto
frontier. As such, we propose a unified framework based on
policy-gradient RL. Our contributions can be summarized as
follows:
� We introduce a RL-based method for adjusting the pa-

rameters in programmable sensors, which differs from
the existing methods based on differentiable models or
functions [11].

� We build a novel video compressive sensing system with
spatially-variant compression ratios, where the ratio allo-
cation policy is learned through an explicit rate-distortion
function.

� We introduce a RL-based method for the explicit trade-off
between transmission rates and task accuracy in semantic
communications, where the rate allocation policy is trained
jointly with coding modules.

� We propose a semantic communication system for SCI
systems, realizing the co-design of deep optics, data com-
pression, channel coding, and video reconstruction.

For clarity, the primary points of this paper are summarized
in Fig. 1.

II. RELATED WORKS

In this section, we introduce the related works in deep optical
imaging and semantic communications. We also highlight the
differences between our work and existing ones.

A. Deep Optics

Recently, many approaches for end-to-end optimization of
optics and image processing by machine learning have been
developed. For example, Metzler et. al. have proposed to jointly
learn the point spread function and the reconstruction algorithm
to get improved performance in single-shot HDR imaging [8].
Martel et. al. have optimized the shuttering functions with
the reconstruction algorithm end-to-end for HDR imaging and
video compressed sensing [9]. Nguyen et. al. have further pro-
posed to learn the spatially-varying exposure time for motion
deblurring [11]. In coded apertures (CAs)-based SCI, Vargas
et. al. have designed time-varying CAs and spatially varying
pixel shutters by learning. Their methods outperform the exist-
ing SCI systems in compressive light field and hyperspectral
imaging [20]. Bacca et. al. have introduced different learnable
regularizers for CA designs to satisfy special sensing require-
ments, such as the transmittance constraint, the compression
ratio, and the correlation among measurements [21]. Concerning
compression ratio learning, Bacca et. al. [21] focus on the
image-scale compression rate in a multi-shot system. In this
work, the adaptive compression ratio is achieved at the pixel
level in a SCI system.

Despite the fast development, previous works design differ-
ential models and functions for end-to-end optimization, which
requires the measurements to change continuously with the
sensing parameters. Also, a lot of human effort is required in
defining these functions [11], [21]. To address non-differentiable
issues and free people from handcrafted designs, we propose a
policy-gradient-based RL framework.

B. Semantic Communications

Semantic communications have recently attracted wide at-
tention as an effective data transmission method. The data rate
reduction is achieved by jointly optimizing the communication
components with the data interpretation processes at the re-
ceiver. The interpretation can be either the human’s semantic
understanding process [22] or the machine’s task execution
process [23], [24]. The latter case is similar to the earlier
task-oriented communications [25], [26] but semantic com-
munications focus more on the tasks with high-dimensional
output. In semantic communications, a key component is to
adjust the transmission rates with the contents in source data
and the interpretation processes. The research in this field can be
divided into three categories: entropy-based, sparsity-based, and
mask-based. For entropy-based methods, the communication
cost is assigned proportionally to the entropy of the source in the
feature space [27], where the amount of entropy is adjusted by
a rate-distortion function proposed in deep compression meth-
ods [28]. The sparsity-based methods adjust the communication
costs by imposing some sparse regularizers to the data, as the
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Fig. 2. The illustration of spatially-variant compression ratios in video
compressed-sensing.

one based on information bottleneck theory [25]. Mask-based
methods directly adjust the data length by deleting unwanted
data with a binary mask [15], [29]. These mask-based works
use differentiable models to enable the joint training of the mask
generation networks and the transceivers. As an improvement,
we train the mask generation network by policy-gradient RL.
Note that although Q-learning-based RL has been used in [30]
to decide the bandwidth for different video frames, a fixed
amount of communication costs for different video clips has
been assumed in ref [30], while we adjust communication costs
for different video clips according to their contents; therefore, we
consider a larger action space and our reward is a rate-distortion
function.

III. VIDEO COMPRESSED SENSING WITH SPATIALLY-VARIANT

RATIOS

As shown in Fig. 2, the principle of the proposed video com-
pressed sensing system is to vary compression ratios spatially.
In SCI systems with a fixed compression ratio, a fixed number
of measurements will be generated for all spatial locations. In
the proposed system with spatially-variant ratios, some locations
will have more measurements than others. For example, given
four video frames, two snapshots (m1, m2) will be captured
in the current SCI systems with a 1/2 ratio. By contrast, the
proposed systems will generate one result with dense measure-
ments (m1) and three other results with sparse measurements
(m2, m3, m4). Specifically, spatial locations with a 1/4 ratio
will only have measurements onm1 after one readout operation.
Locations with a 1 ratio will have values on all four results
after four readout operations. The ratio map should be jointly
designed with the optics and video reconstruction algorithms to
improve the sensing efficiency. In this section, we will introduce
the details of the proposed system, including the forward model
and the training losses.

A. System Overview

We show the overall pipeline of the proposed sensing sys-
tem in Fig. 3. Denote H and W as the height and width

of video frames. We first generate a compression ratio map,
M ∈ RH×W×1, from a small trainable matrix using a ratio
generation network with one convolution layer, three residual
blocks, and one transposed convolution layer. The spatial size
of the trainable matrix is set to 1/8 of the ratio map. We then simu-
late the capture of a scene,S ∈ RH×W×T , with a programmable
sensor using M and possibly an extra random binary mask,
B ∈ RH×W×T , which is referred to as coded apertures in earlier
works [4], [20]. Sensed data, I , stacked withM , is then fed into a
video reconstruction network to produce a reconstructed video,
V̂ ∈ RH×W×T . Two training losses (L1, L2) are designed to
update the learnable matrix, the ratio generation network, and
the video reconstruction network to improve the reconstruction
quality while at the same time reduce the average compression
ratio.

B. Compression Ratio Generation

We consider five kinds of compression ratios for a T -frame
long video clip, i.e., 0, 1/T , 2/T , 4/T , and 8/T . Each pixel in
M takes one of the five discrete values. To decideM , we design
the feature maps generated by the ratio generation network to
have five channels. After applying a Softmax function to the
channel dimension of the feature maps, each channel indicates
the discrete possibility of taking the corresponding ratio. Denote
the feature maps representing the discrete probability distribu-
tions as P ∈ RH×W×5. The final ratio map is sampled using P .

C. Sensor Forward Model With Varying Ratios

The learned ratio map will guide the behaviour of the pro-
grammable sensor. In our systems, we consider that each mea-
surement is read out after an exposure ends and before a new
round of exposure begins. We also assume the generated “signal”
electrons are cleared immediately after each readout operation;
therefore, the signal will integrate from 0 in each exposure. The
exposure time and readout operations under different ratios are
summarised in Fig. 4. From the figure, when the ratio is 2/T ,
each exposure lastsT/2 frame time, generating 2 measurements.
The measurement matrix when the ratio is 2/T , A2/T ∈ R2×T ,
can be written as,

A2/T =
1

T

[
1 · · · 1 1 0 · · · 0 0

0 · · · 0 0 1 · · · 1 1

]
. (1)

The first row indicates the first measurement is the integrated
signal from frame time 1 to T/2 while the second row indicates
the second measurement from time T/2 + 1 to T . Generally
speaking, for a specific ratio, r, the equivalent measurement
matrix, Ar, is of size (rT, T ), with each row representing one
measurement base. The i-th (i = 1, 2, .., rT ) row, [Ar]i:, is a
sparse vector,

[Ar]ij =

{
1/T, if j ∈ [(i− 1)/r, i/r]

0, otherwise
(2)

With the measurement matrices, the sensing process at the spatial
location p with the rp ratio is,

Ip = U(ArpSp), (3)
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Fig. 3. The overview architecture of the proposed video compressed sensing system with spatially-variant ratios.

Fig. 4. The exposure time and readout operations in different compression
ratios.

where Sp ∈ RT×1 is the signal at the spatial location p, ArpSp

denotes the integration process of the incident irradiance over
timeT . In our experiments,S is normalized into [0,1], therefore,
ArpSp is also in [0,1]. U(·) represents the camera exposure
function capturing the noise effects of the camera [11], and Ip ∈
RrpT×1 is sensed data at the location p.

If the random binary masks, B ∈ {0, 1}H×W×T , are used to
modulate the signal [20], the sensing process can be modelled
as,

Ip = U(Arp(Sp ·Bp)), (4)

where · represents element-wise multiplication andBp ∈ RT×1

is the mask at the spatial location p.
Following [11], we consider two kinds of noises, i.e., shot

noise ns ∈ N (0, σs) and read noise nr ∈ N (0, σr) in the cam-
era exposure function. The level of shot noise is proportional
to the signal electrons’ strength. For a signal e in [0,1], σs =√
eσss, where σss is independent of signals. By contrast, the

read noise level is fixed for a camera, depending on the photon
flux. We use the same settings for σss and σr as [11], that is,
σss = 4.95× 10−3 and σr = 7.25× 10−3. With the definition
of noises, U(e) = e+ ns + nr.

From Fig. 4, increasing r will decrease the exposure time;
therefore reducing the signal strength of each measurement.
Since the signal-to-noise ratio (SNR) regarding the read noise is
e/σ2

ss and the SNR regarding the shot noise is e2/σ2
r , reducing

the signal strength also reduces the SNR; therefore, the SNR
of measurements decreases when r is increased, which means,
although more measurements are available as r increases, the
imaging quality may not increase at the same time, as the SNR
of each measurement is decreasing. This phenomenon makes it
challenging to find the optimal M .

D. Video Reconstruction Network

After obtaining I , the next step is to reconstruct the targeted
video using a deep neural network. The overall architecture
of the proposed video reconstruction network is shown in
Fig. 5. Our network consists of three components: an initial
reconstruction stage (IR), a fusion network (FN), and a deep
reconstruction network (DRN) built based on the single-stage
spectral-wise transformers (SST) proposed in [31]. The IR and
FN are introduced to mitigate the influence of spatially-variant
M and B. Specifically, if B is not considered, we get the initial
reconstruction, V̂0 ∈ RH×W×T , in IR by considering (3),

V̂ 0p = AT
rp
(ArpA

T
rp
)−1(Ip), (5)

where V̂ 0p ∈ RT×1 denotes the initial reconstruction results at
the spatial location p, (Arp

AT
rp
)−1 is fortunately a diagonal ma-

trix as defined in Section III-C. By contrast, if B is considered,
we first rewrite (4) as,

Ip = U(ÂrpSp), (6)

where Ârp = Arpdiag(Bp) and B denotes the T × T diagonal
matrix constructed from Bp. In this case, some rows of Ârp
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Fig. 5. The architectural details of video reconstruction network.

may be all zero, making ÂrpÂ
T

rp
non-invertible. Since the row

vectors of Ârp are orthogonal to each other, we reconstruct V̂0

by using the non-zero row vectors of Ârp independently,

V̂ 0p=
rT∑
i=1

[Ârp]i: �=01×T

[
Ârp

]T
i:

([
Ârp

]
i:

[
Ârp

]T
i:

)−1

[Ip]i:+0T×1.

(7)

Following the coarse-to-fine criteria, we further use a shallow
FN to deal with the spatially-variant coded exposures and ratios,
which takes V̂0p

, M , and possibly B as inputs and outputs
the second-level reconstruction results, V̂1 ∈ RH×W×T . The
architecture of FN is shown in Fig. 5.

Next, the DRN takes V̂1 as the input and reconstructs the final
videos, V̂ , by cascading three SSTs [31]. Each SST follows the
design of U-net [32] with an encoder, a bottleneck, and a decoder.
The embedding and mapping blocks are convolutional layers
(conv) with 3 × 3 kernels. The feature maps in the encoder se-
quentially pass through one spectral-wise attention block (SAB),
one conv with stride 2 (for downsampling), one SAB, and one
conv with stride 2. The bottleneck is one SAB. The decoder has
a symmetrical architecture to the encoder. Following the spirit
of U-Net, the skip connections are used for feature aggregation
between the encoder and decoder to alleviate the information
loss from the downsampling operation. The basic unit of SST
is SAB, whose architecture is also shown in Fig. 5. It has
one feed-forward network (FFN), one spectral-wise multi-head
self-attention (S-MSA), and two layer-normalization. Unlike
the original MSA that calculates the self-attention along the
spatial dimension, S-MSA regards each feature map as a token
and calculates the self-attention along the channel dimension,
making it computationally effective. More details of S-MSA are
explained in [31].2

2As the network design of DRN is not the paper’s main focus, we omit some
details here for page limits. Interesting readers can refer to the original paper for
more details.

E. Training Losses

In our system, the optimal ratio map should have a smaller
average ratio to reduce data volume while at the same time offer
high video reconstruction quality; therefore, the problem can
be formulated as a rate-quality (or rate-distortion) trade-off.
As shown in Fig. 3, for the explicit trade-off, we introduce a
L1 based on the rate-distortion theory. A policy-gradient RL
framework is used as “rate” is discrete and non-differentiable.
Besides, the video generation network should ensure the gen-
erated videos are close to the true video (i.e., true label). A L2

based on supervised learning is designed to tackle this. To sum
up, we use L1 and L2 to train the ratio generation parts and the
video reconstruction network, respectively.

Specifically, the learnable matrix and the ratio generation
network are trained by RL. In our system, each spatial location
in P is regarded as an agent, and its action space is the avail-
able compression ratio. We define the reward of each location,
Qp(rp), under action rp according to the rate-distortion trade-off
theory,

Qp(rp) = log(1/||V p − V̂ p||2)− λrpT, (8)

whereV denotes target videos, ||V p − V̂ p||2 denotes the mean-
squared error (MSE) (i.e., distortion) of the reconstructed videos
at spatial location p, rpT denotes the number of measurements
employed at location p, which can also be viewed as the com-
pression rate, λ is an introduced parameter for the rate-distortion
trade-off. Increasing λ will penalize more on the compression
rate, leading to a smaller average compression ratio. With (8),
we can find the rate achieving the best trade-off between the
compression rate and the video reconstruction quality. Although
||V p − V̂ p||2 can only approximately evaluate the effect of
action rp on theV p as the DRN will aggregate information from
neighbouring pixels, it is still the most direct way to evaluate the
action rp.

At the same time, the expected reward, Jp, is the value
function for spatial location p, where the expectation is w.r.t. rp
with probability Pp. Note that, MinL1 = Max

∑
p Jp. Follow-

ing [13], we can approximate the gradient of theJp to parameters
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Fig. 6. The overall framework of task-aware compression methods.

θ in ratio generation parts with samples generated from Pp,

∇θJp = Erp∇θ logPp(rp)×Qp(rp), (9)

where Pp(rp) denotes the probability of the chosen action rp
from the distribution Pp. Note that the update of θ is based
on the average value of ∇θJp from different p. Earlier works
have proved the global convergence of policy gradient RL in
multi-agency situations [33].

On the other hand, the video reconstruction network is trained
in a supervised way based on the MSE between V and V̂ ,

L2 = ||V − V̂ ||2, (10)

IV. EFFICIENT DATA TRANSMISSION IN SCI SYSTEMS

As discussed above, the existing communication systems
focusing on reproducing sensed data are sub-optimal. It is better
to design the compression methods concerning the video re-
construction network (i.e., task-aware compression [18]). After
compressing the original sensor data into compact bit streams,
the transmitter will add parity bits and modulate the streams for
robust transmission over unreliable channels using off-the-shelf
channel coding, such as low-density parity-check (LDPC) code.
The communication cost is the number of modulated symbols
after channel coding and modulation.

Nevertheless, there is an increasing belief in the communica-
tion community that the classic framework based on the Shannon
separation theory needs to be upgraded for joint designs [26]. For
semantic communication systems, jointly optimizing the chan-
nel coding and modulation with the other components may lead
to better video reconstruction quality with fewer communication
resources.

In this section, we will design semantic communication
frameworks for the proposed video compressed-sensing systems
based on task-aware compression and semantic communications
with joint designs. Note that RL-based approaches are not used
in task-ware compression.

A. Task-Aware Compression

1) Architecture: The overall architecture based on deep com-
pression methods is shown in Fig. 6. It is mainly based on the ar-
chitecture used in [18] by substituting the basic feature extraction

unit from convolutional blocks to SABs. Some other changes are
also made for simplicity.3 For sensed data I , we first reshape
its dimension to H ×W × 8, as each spatial location has at
most eight measurements. Zero-padding is used for locations
with fewer measurements. An encoder, ga(·), then takes the re-
shaped sensed data as inputs and generates a latent representation
Y ∈ RH

32×W
32×192, which is given by, Y = ga(I). The features

inside the encoder subsequently go through one embedding
layer (conv3x3), five SAB×4-downsampling×1 pairs, and one
mapping layer (conv3x3). Each downsampling operation will
decrease the spatial size of the features by 1

4 but double the
channel dimension. Y is then quantized to Ŷ by a quantizer.
Next, a hyper-encoder, ha(·), takes Y as input and generates
an image-specific side information Z ∈ R H

128× W
128×192 via Z =

ha(Y ). The channel dimension of the features remains constant
inha. Then, the quantized side information, Ẑ = Q(Z), is saved
as a lossless bitstream through a factorized entropy model and
entropy coding [28]. After that, Ẑ is forwarded to the hyper-
decoder, hs(·), to draw the parameters (μ, σ) of a Gaussian en-
tropy model [28], which approximates the distribution of Ŷ and
is used to save Ŷ as a lossless bitstream. For reconstructing I ,
a decoder, gs(·), operates on Ŷ and generates I by I = gs(Ŷ ).
At last, the reconstructed Î is used for video reconstruction.
Note that gs(·) and ga(·), hs(·) and ha(·) have symmetric
architectures, respectively. More details of deep compression
methods are explained in [18], [28]. 4

2) Training Losses: The goal of task-aware compression is to
minimize the length of the bitstreams required to transmitI with-
out increasing the distortion between V and V̂ , which equals
the trade-off between the source coding rate (i.e. proportional
to the communication cost) and the distortion. This objective
raises an optimization problem of minimizing ||V − V̂ ||2 +
β(−log2PŶ − log2PẐ), where ||V − V̂ ||2 denotes the dis-
tortion of reconstructed videos, −log2PŶ − log2PẐ represents

3As the learned compression ratio is universal to all scenes, the spatial
importance of I should also be independent of the contents of I; therefore,
the side links conditioned on a quality map used in [18] can be safely removed.
Also, instead of estimating the quality map by a task loss function, we directly
change the distortion metric in the training loss of [18] to task loss, which should
be more precise in describing the spatial importance.

4As the deep compression is a well-studied field, we omit some details here
for page limits. Interesting readers can refer to the original papers for more
details.
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Fig. 7. The overall framework of semantic communications with joint designs.

the entropy of Ŷ and Ẑ, which equals to the number of bits
used to encode Ŷ and Ẑ by entropy coding, and β is an
introduced trade-off parameter between coding rate and video
distortion. Increasingβ will reduce the average bit length (i.e. the
communication cost) but increase the distortion of reconstructed
videos.

3) Communication Costs: After obtaining the data compres-
sion systems with different bit lengths by changing β, we can
then estimate the required number of modulated symbols to
transmit these bit streams under different channel conditions.
Specifically, the number of modulated symbols (in complex
numbers) used for transmitting a bitstream depends on the imple-
mented channel coding rate rc (e.g. 1/3, 1/2, 2/3) and modulation
order rm (e.g. 4, 16, 64). Suppose the length of the bitstream
is lb, the length of modulated symbols can be calculated as
ls =

lb
rc log2(rM ) . Another way to evaluate the communication

costs in additive white Gaussian noise (AWGN) channel is to use
the Shannon capacity theorem, ls =

lb
log2(1+snr) if the channel

signal-to-noise (SNR) ratio is snr.

B. Semantic Communications With Joint Design

Although the aforementioned deep compression method
enables the co-design of deep optics, reconstruction algo-
rithms, and source coding, the widely-used entropy coding
method [18], [28] prohibits the co-design of communication-
specific components with deep compression methods. When
entropy coding methods are used, each bit from entropy cod-
ing methods needs to be transmitted error-freely; otherwise,
error propagation will happen in the entropy decoding pro-
cess. This property leaves the communication systems with
no choice but to treat each bit equally and carefully. On the
other hand, semantic communications with joint designs allow
the effect of channel noise to be considered by end-to-end
training.

1) Architecture: As shown in Fig. 7, the framework consists
of three components: semantic coders, a semantic-channel en-
coder (SCE) and decoder (SCD), and a rate allocation network

(RAN). Semantic coders define a unique message generation and
interpretation method between transceivers based on a shared
knowledge base. Semantic-channel coders directly learn the end-
to-end mappings between semantic messages and modulated
symbols. It is also called the joint source and channel coding in
communication systems. The RAN is responsible for controlling
the transmission rates. The rate denotes the number of modulated
symbols required for each S. Different from deep compression
methods that focus on the source coding rate (i.e. bit length)
only, the transmission rates in semantic communications depend
on the source coding rate, channel coding rate, and modulation
order.

Specifically, the deep optic methods are special semantic
encoders, which encode a natural scene, S, into sensed data,
I , in a predefined way. The video reconstruction networks,
which decode the target video, V , from, I , are special semantic
decoders. Sensed data, I , is the semantic message of a scene
to be shared between transmitters and receivers. Note that
conventional communication systems emphasise the accurate
transmission of I . With the semantic decoder (defining I → V ),
semantic communication systems aim to maximize the quality
of V under limited communication costs.

In our framework, the transmitter will use a SCE to encode
I into a predefined maximum number of modulated symbols
(evaluated in real number), X ∈ RH

8 ×W
8 ×48, from which the

rate control techniques will select some symbols to transmit
through noisy channels. 5 We can model this process as,

X = SCE(I), (11)

The SCE is composed of an embedding layer, three consecutive
SAB×4-downsampling×1 pairs, two stacked SAB×1-Conv×1
pairs, and a mapping layer. The size of feature maps after each
operation is shown in Fig. 7.

5Otherwise, if all the messages are transmitted with the same number of
modulated symbols, it disobeys the Shannon source coding theory saying that
the minimal possible expected length of codewords should be a function of the
entropy of the input word.
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To adjust the communication costs according to the semantic
contents of in the I , the RAN takes X as inputs and generates a
spatially-variant coding rate mapF ∈ RH

8 ×W
8 ×1. Each element

in the spatial location of F indicates how many symbols out
of the 48 symbols in X with the same spatial location will be
kept for transmission. Specifically, F takes four discrete values
f ∈ {1, 2, 3, 4}, and only the first 12f symbols of X in the
channel dimension will be transmitted. The generation of F is
similar to the generation of M in Section III-B. Specifically, the
RAN generates a feature map P F ∈ RH

8 ×W
8 ×4 representing

the discreet probability distribution of taking each value from
{1, 2, 3, 4} and a sampling operation is conducted to generateF .
With F , a mask operation is conducted on X to delete unneces-
sary symbols. The remaining symbols X̂ are then reshaped into
a vectorZ ∈ Rnz×1, wherenz denotes the number of remaining
symbols. Next, power normalization is applied to Z to satisfy
power constraints,

Ẑ =
√
nzZ/||Z||2. (12)

Finally, Ẑ is directly transmitted through wireless environments.
The effect of channel noise on Ẑ can be represented as,

Z̃ = hẐ + n, (13)

where h ∈ CN (0, 1) is multiplicative noise and n ∈
N (0nz×1, σnInz×nz

) is additive noise. In the AWGN channel,
h = 1 and the value of σn depends on the current channel SNR,
which is defined as 10 log10(1/σ

2
n) dB. Simultaneously, each

element of F can be quantized using 2 bits, and the bitstream
from F is of length HW/32 bits and also transmitted. This
is the side information of how many symbols are deleted for
each spatial location, which will be used at the receiver side
to reshape the flattened Z̃ back to the desired shape. Different
from the transmission of Ẑ, the bitstream of F is transmitted
in an error-free way, as in the deep compression methods,
because a minor error in F will make it impossible to reshape
Z̃ correctly.

At the receiver side, X̃ and F are reshaped from Z̃ and
bitstreams, respectively. After concatenation, they are fed into
a SCD with a symmetric architecture to the SCE. This process
can be modelled as,

Ĩ = SCD(X̃, F̃ ), (14)

The recovered sensor data Ĩ is used to generate videos using the
video generation network.

2) Training Losses: In our system, the optimal F should
have a lower average value to reduce the bandwidth requirement
while at the same time offer high video reconstruction quality;
therefore, the problem can be formulated as a rate-quality (or
rate-distortion) trade-off. Different from Section III-E, each
scene has a different rate map depending on its content. Sim-
ilarly, we use L1 and L2 to train the RAN and SCE/SCD,
respectively. Specifically, the RAN is trained based on policy
gradients RL, where X is regarded as the state, F describes
the actions, and each spatial location of F is an agent. Note
that the spatial size of V̂ is 8 times larger than that of F and
X so the action taken at each spatial location of F will have a

strong effect on the reconstruction quality of an 8× 8 area of
V̂ . Considering this, we first define U = (V − V̂ )2 and apply
an 8× 8 average pooling to U , obtaining Ũ ∈ RH

8 ×W
8 ×1. We

then define the reward of location p, Qp
F (fp), under action fp

as,

Qp
F (fp) = log(1/Ũp)− μfp, (15)

where log(1/Ũp) denotes the video reconstruction quality at
spatial location p, fp is the transmission rate at p, μ is an
introduced parameter for rate-quality trade-off. Increasing μ
will penalize more on the transmission rate, leading to fewer
modulated symbols to be transmitted. We adjust the average
communication costs by tuning μ.

At the same time, the expected reward, Jp
F , is the value

function for spatial location p, MinL1 = Max
∑

p J
p
F , and the

gradient of Jp
F to the parameters δ in RAN can be approximated

as,

∇δJ
p
F = Ef∇δ logP

p
F (fp)×Qp

F (fp), (16)

where P p
F (fp) is the probability of taking action fp at the spatial

location p. Note that the update of δ is based on the average
value of ∇δJ

p
F from different locations.

On the other hand, the SCE and SCD are trained in a super-
vised way based on the MSE between V and V̂ ,

L2 = ||V − V̂ ||2, (17)

3) Communication Costs: The communication costs consist
of two parts: the transmission of Ẑ and F . As Ẑ is of shape
nz × 1, the number of complex modulated symbols used to
transmit Ẑ can be denoted as l(1)s = nz/2. On the other hand, the
bitstream length from F , lb, is HW

32 . If the channel coding rate is
rc and the modulation order is rm, the length of the modulated
symbols for F can be calculated as l(2)s = lb

rc log2(rM ) . The total

communication costs are ls = l
(1)
s + l

(2)
s .

V. EXPERIMENTS

In this section, we first demonstrate the superiority of the
proposed video compressed sensing system in terms of sam-
pling rate. Based on the developed sensors, we then evaluate
the performance of different communication systems regarding
communication costs. The PyTorch source code to reproduce
all experiments is at https://github.com/Bowen-zhang96/CRL-
SemCom-VidCI.

A. Video Imaging With Spatially-Variant Compression Ratios

The following experiments are conducted to evaluate the
effectiveness of the method proposed in Section III.

1) Dataset: Following [11], we use the Need for Speed (NfS)
dataset [34] to train the network and evaluate its performance.
The NfS dataset is collected with significant camera motions and
is suitable for representing the scene captured by moving robots’
onboard cameras. The dataset consists of 100 videos obtained
from the internet, of which 80 are used for training and 20 for
testing. Each video is captured at 240 frames per second (fps)
with a 1280× 720 resolution that we centre crop to 256× 256.

https://github.com/Bowen-zhang96/CRL-SemCom-VidCI
https://github.com/Bowen-zhang96/CRL-SemCom-VidCI
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Fig. 8. The performance comparison between learned spatially-variant and
fixed ratios methods in video imaging systems without coded aperture.

For each video, we select 80 random 16-frame-long segments
within the video; Therefore, T = 16 in our experiments. The
images are turned into grey images and normalized to be within
[0,1]. Our inputs and outputs to the end-to-end model are both
16-frame video segments.

2) Implementation Details: Our model is implemented in
PyTorch. The ratio generation parts are trained with the SGD
optimizer (momentum = 0.9) at a learning rate of 5× 10−3.
The video reconstruction network is trained with the Adam
optimizer at a learning rate of 5× 10−5. The training pro-
cess is as follows: We first fix the ratio at 8/T for all spatial
locations and train the video reconstruction network for 100
epochs. After that, we gradually increase λ in (8) from 5× 10−3

to 0.5 and jointly train the ratio generation parts and video
reconstruction network. For each λ, we train for about 100
epochs. For baselines with a fixed compression ratio, we set
the ratio from 1/T to 16/T and train the video reconstruction
network for 100 epochs in each fixed ratio. Furthermore, we
consider both cases where the binary mask, B, is used or not.
When B is used, it is randomly initialized and fixed during the
experiments.

3) Differentiable-Function-Based Realization: To better un-
derstand the performance of the proposed RL-based framework,
we also considered learning pixel-wise compression ratio by
defining differentiable functions. However, the differentiable
models/functions used in existing methods [11], [21] cannot be
directly used in our sensor framework as the considered problem
is significantly different; therefore, we propose a differentiable-
function-based realization by ourselves, where the function is
designed in a heuristic way. The implementation details are
given in the supplementary material, which can also be found in
https://github.com/Bowen-zhang96/CRL-SemCom-VidCI. We
omit the details here for the page limit.

4) Results Without Binary Mask: We first compare our
methods with its fixed-ratio version when B is not
used. We use the peak signal-to-noise ratio (PSNR),
10 log10(1/MSE(V , V̂ )), as the performance metric, where
MSE(V , V̂ ) = 1

HW

∑H
i=1

∑W
j=1(Vij − V̂ij)

2. The results are

shown in Fig. 8, where r̄ = 1
HW

∑H
i=1

∑W
j=1 Mi,j denotes the

average compression ratio. As shown in Fig. 8, the imaging

Fig. 9. The performance comparison between learned spatially-variant and
fixed ratios methods in video imaging systems with coded aperture.

Fig. 10. The learned ratio maps in a 50× 50 area of an image when B is used.

quality increases along with the growth of r̄ for both methods
until r̄ reaches 0.25 (= 4/T ), where the effects of shot noises
and read noises surpass the growth of the number of measure-
ments. From the figure, the proposed method with learned ratios
has a significant performance gain over the method with a fixed
ratio. For example, when r̄ = 0.0625 (= 1/T ), the learned-ratio
method has nearly 5 dB gain over the fixed-ratio method, demon-
strating the superiority of learning a compression ratio map in
reducing the data volume. Furthermore, we find learning pixel-
wise compression ratios by introducing differentiable models or
RL lead to similar performance in the considered settings. This
further validates the effectiveness of the proposed method. Note
that, compared with differentiable function-based realization,
RL-based methods are promising to free people from heuristic
designs for end-to-end optimization.

5) Results With Binary Mask: We then consider B and show
the performance comparison in Fig. 9. Due to the usage of
binary masks, the system performance of the fixed-ratio method
increases when r̄ = 0.0625 (= 1/T ), showing the positive effect
of coded apertures. However, as usingB will decrease the signal
strength, the performance of the fixed-ratio method decreases as
r̄ increases when compared to the same method without B in
Fig. 8. From the figure, the proposed method with a learned ratio
still has a steady performance gain over the fixed-ratio method,
further proving the effectiveness of compression ratio learning.

6) Learned Compression Ratio Maps: We show the learned
ratio maps when B is used in Fig. 10. As discussed above,
the maps have only five ratio choices, and their colours are
shown in the colour bar. The figure shows that the learned

https://github.com/Bowen-zhang96/CRL-SemCom-VidCI
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Fig. 11. Examples of restored video frames from different sensing methods with different compression ratios.

ratio maps have fixed patterns for a local area and are a mix
of low and high ratios. The patterns are slightly different for
different r̄.

7) Visual Results: Fig. 11 shows the restored video frames
from different methods with different average compression ra-
tios. Each example has two rows. The first rows are the results
whenB is used, while the second is whenB is not used. rfix = 1
or rfix = 2 denote the fixed-ratio method with r̄ = 1 and r̄ = 2,
respectively. radap = 0.81, 1.19, or 1.32 denotes learned-ratio
method with r̄ = 0.81, 1.19, or 1.32, respectively. From the fig-
ure, the frames from the learned-ratio method have more texture
details and less artefact.

B. Semantic Communications for Programmable Sensors

In this subsection, we will first evaluate semantic communi-
cation frameworks based on task-aware compression and joint
design, respectively. After that, we will compare semantic com-
munications with the existing transmission methods.

In the following experiments, we first restore sensor-related
network parameters from the pre-trained models in the previous

subsection and fix them when training the semantic communica-
tion frameworks. We use the sensor network with ravg = 0.156
in Fig. 8. The experiments are called fixed-sensing experiments.
Next, we jointly train the sensing network with the communica-
tion parts, which are called joint-sensing experiments.

1) Channel Condition: We assume the sensor data is trans-
mitted through the AWGN channel with SNR = 10 dB.

2) Implementation Details of Different Semantic Communi-
cation Frameworks: We now describe the implementations of
different semantic communication frameworks in more detail.
� Task-aware compression plus capacity-achieving chan-

nel coding (Compr+Cap): We first convert the sensor
data into bitstreams and then assume the transmission of
the bitstreams can reach Shannon channel capacity. In the
considered channel condition, ls

lb
= 0.289. Note that it is

hard to achieve Shannon capacity in real systems, so its
performance can only be regarded as an ideal reference for
compression methods. We train the compression network
under different β to adjust the average communication
costs. During training, we first set β = 10−7 and gradually
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decrease β to increase the bitstream length. The network
is first trained with the Adam optimizer at a learning rate
of 5× 10−5 for about 50 epochs and then at 5× 10−6 for
another 50 epochs under each β.

� Task-aware compression plus LDPC plus QAM
(Compr+LDPC): The bitstreams from task-aware com-
pression methods are transmitted through LDPC channel
coding and quadrature amplitude modulation (QAM) mod-
ulation. Following [15], we should use 16QAM and 2/3
LDPC for AWGN channels with SNR = 10 dB. In this
case, ls

lb
= 0.376.

� Semantic communications without RAN (Sem-
Com+noRAN): In earlier task-oriented communica-
tions [26], the RAN is not implemented and all source
data is transmitted with the same communication costs.
We also delete the RAN in the proposed framework and
demonstrate its performance as a reference. To adjust the
communication costs, we change the channel dimension
of X in (11) from 16 to 48. The network is trained for
about 50 epochs at a learning rate of 5× 10−5 and then
for 50 epochs at 5× 10−6 under each dimension of X .

� Semantic communications (SemCom): This is the pro-
posed end-to-end semantic communication framework
with rate control. We train the network under different μ in
(15) to adjust the average transmission rate. The training
consists of two steps: we first set f = 4 for all locations
and train the SCE/SCD for about 80 epochs. After that,
we set μ = 1e− 3 and gradually increase it to decrease
communication costs. The RAN is trained with the SGD
optimizer, and the other parts are trained with the Adam
optimizer at a learning rate of 5× 10−5 for 50 epochs
and 5× 10−6 for another 50 epochs under each μ. For
joint-sensing experiments, we transmit the first 6f symbols
of X rather than 12f for different f. Also, exploration
strategies are used when sampling f . Specifically, the
sampling probability is set to 0.6PF + 0.4p̂, where we
set p̂(1)=p̂(2)=p̂(3)=p̂(4)=0.25 to encourage the RAN
to explore more on other actions so that the SCE/SCD can
perform well on all actions.

3) Comparison of Semantic Communications in Fixed-
Sensing Experiments: We show the performance comparison of
different semantic communication methods in the fixed-sensing
experiment in Fig. 12, where l̄s denotes the average number
of modulated symbols ls used for the video clips in the test
dataset. From the figure, the ‘Compr+LDPC’ performs slightly
better than ’SemCom+noRAN’. At the same time, the proposed
‘SemCom’ method outperforms these methods to a relatively
large extent, showing the advantage of jointly designing the
channel coding and modulation. It also demonstrates the ef-
fectiveness of directly implementing the rate-distortion trade-
off on the modulated symbols through the proposed RAN.
Furthermore, the proposed ’SemCom’ has a similar perfor-
mance to ’Compr+Cap’, showing that semantic communications
with joint designs are promising ways to approach Shannon
capacity.

4) Comparison of Semantic Communications in Joint-
Sensing Experiments: The performance comparison of different

Fig. 12. The performance comparison among different semantic communica-
tion frameworks in fixed-sensing experiments.

Fig. 13. The performance comparison among semantic communication frame-
works in joint-sensing experiments.

semantic communication methods in the joint-sensing experi-
ment is shown in Fig. 13. From the figure, SemCom performs
significantly better than ‘Compr+LDPC’ and even surpasses the
’Compr+Cap’ in large l̄s cases, further proving the benefits of
joint designs. However, we cannot conclude that semantic com-
munications can surpass Shannon capacity, as the performance
of ’Compr+Cap’ depends on our implementation of task-aware
compression methods.

5) Implementation of Conventional Communication Meth-
ods: Here, we explain how sensed data is transmitted in conven-
tional communication systems and introduce their implementa-
tion details.
� Transmit sensed data by joint source and channel cod-

ing (Sensordata+JSCC): In conventional communication
systems, the most straightforward way is to transmit raw
sensed data directly, regardless of its usage. We should
apply source and channel coding to raw sensed data to
simulate this process. Recent works on deep JSCC [19]
have shown that training a network for joint source and
channel coding can perform better than using standardized
image compression methods and channel coding. There-
fore, we followed its design and built a deep network sim-
ilar to SCE/SCD to transmit the raw sensor. The network
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Fig. 14. The performance comparison among different transmission methods.

is optimized by the mean-squared error (MSE) between
original and reconstructed sensed data. The reconstructed
sensed data is then used to generate the target video.

� Transmit reconstructed video by H.264 video coding
plus LDPC plus QAM (Video+H.264+LDPC): Another
choice is to reconstruct the video first via a locally de-
ployed video reconstruction network and then transmit the
reconstructed video. In this way, the computational-costive
reconstruction network needs to be run at the transmitter.
We use H.264 [35] for video source coding, LDPC for
channel coding, and QAM for modulation to transmit the
video.

6) Comparison of Semantic Communications With Conven-
tional Communication Systems: The performance comparison
between semantic and conventional communication systems is
shown in Fig. 14. From the figure, Sensordata+JSCC performs
the worst because important data for video reconstruction net-
works does not get targeted protection during transmission.
Video+H.264+LDPC performs better than Sensordata+JSCC
as the videos have been reconstructed at the transmitter side.
However, this method is still not as effective as SemCom,
which shows we can achieve efficient transmission of sensor
data without running a time-consuming and resource-costly
reconstruction algorithm at the transmitter side.

VI. CONCLUSION

In this work, we propose a policy-gradient RL-based frame-
work for rate-quality trade-off in SCI systems. The proposed
framework can address the non-differentiable problem of “rate”
and enable end-to-end optimization of rate allocation and video
recovery networks. We first apply our framework in a novel
video imaging system to learn the optimal per-pixel compression
rate. The experiments show that learning ratios can significantly
improve sensing efficiency. Next, we apply the framework in
semantic communications to learn the optimal per-video trans-
mission rate. The experiments demonstrate that the proposed
framework can significantly improve transmission efficiency.
We conclude that the proposed RL-based framework is universal
and can be extended to many other rate-distortion problems in
real-world applications.
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