
232 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 18, NO. 2, MARCH 2024

ENN: A Neural Network With DCT Adaptive
Activation Functions

Marc Martinez-Gost , Graduate Student Member, IEEE, Ana Pérez-Neira , Fellow, IEEE,
and Miguel Ángel Lagunas , Life Fellow, IEEE

Abstract—The expressiveness of neural networks highly depends
on the nature of the activation function, although these are usually
assumed predefined and fixed during the training stage. Under a
signal processing perspective, in this article we present Expressive
Neural Network (ENN), a novel model in which the non-linear acti-
vation functions are modeled using the Discrete Cosine Transform
(DCT) and adapted using backpropagation during training. This
parametrization keeps the number of trainable parameters low, is
appropriate for gradient-based schemes, and adapts to different
learning tasks. This is the first non-linear model for activation
functions that relies on a signal processing perspective, providing
high flexibility and expressiveness to the network. We contribute
with insights in the explainability of the network at convergence
by recovering the concept of bump, this is, the response of each
activation function in the output space. Finally, through exhaustive
experiments we show that the model can adapt to classification and
regression tasks. The performance of ENN outperforms state of the
art benchmarks, providing above a 40% gap in accuracy in some
scenarios.

Index Terms—Neural networks, adaptive activation functions,
discrete cosine transform, explainable machine learning.

I. INTRODUCTION

FUNCTION approximation is a fundamental problem across
many domains, such as data analysis, control systems and

communications. When the explicit function is not available
but input-output data pairs are, the function can be revealed by
minimizing a criterion loss in a supervised setting. The problem
increases in complexity when the function is non-linear, for
which many signal processing techniques have been developed.

Manuscript received 30 June 2023; revised 16 January 2024; accepted 19
January 2024. Date of publication 1 February 2024; date of current ver-
sion 3 July 2024. This work was supported in part by IRENE, funded by
MCIN/AEI/10.13039/501100011033, under Grant PID2020-115323RB-C31
and in part by Catalan government through the project SGR-Cat under Grant
2021-01207. The guest editor coordinating the review of this manuscript and
approving it for publication was Prof. Maria Sabrina Greco. (Corresponding
author: Marc Martinez-Gost.)

Marc Martinez-Gost is with the Centre Tecnològic de Telecomunicacions
de Catalunya, 08860 Castelldefels, Spain, and also with the Department of
Signal Theory, Communications, Universitat Politècnica de Catalunya, 08034
Barcelona, Spain (e-mail: mmartinez@cttc.es).

Ana Pérez-Neira is with the Centre Tecnològic de Telecomunicacions de
Catalunya, 08860 Castelldefels, Spain, also with the Department of Signal The-
ory, Communications, Universitat Politècnica de Catalunya, 08034 Barcelona,
Spain, and also with ICREA Acadèmia, 08010 Barcelona, Spain (e-mail:
ana.isabel.perez@upc.edu).

Miguel Ángel Lagunas is with the Department of Signal Theory, Communi-
cations, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain (e-mail:
m.a.lagunas@cttc.es).

Digital Object Identifier 10.1109/JSTSP.2024.3361154

For instance, least squares [1], orthogonal function approxi-
mation [2], [3], kernel methods [4] and neural networks [5],
[6], [7], among others. The last decades have suffered an un-
precedented growth in the development of artificial neural net-
works for function approximation due to its empirical success.
The inception of neural networks as universal approximators
boosted its development across many fields and applications,
with different architectures built according to the task and data
types to handle. Nevertheless, the expressiveness of the neural
network is related to the non-linear activation function, which
is usually assumed fixed. An overlooked field of research is
in adaptive activation functions (AAF), where not only the
weights of the neural networks are trained, but the non-linearities
too [8].

In our previous work [9] we introduced the Discrete Cosine
Transform (DCT) to approximate an univariate non-linear func-
tion in a joint communication and computing setting. Further,
in [10] we show how a gradient-based algorithm can be used
to tune the DCT coefficients to approximate a function in a
supervised setting. However, extending the results to multi-
variate functions is not trivial: The number of required pa-
rameters to approximate the function increases exponentially
with the number of input variables, and their corresponding
indexes are unknown when the explicit function is not avail-
able. In other words, it is cumbersome how the top relevant
coefficients can be learnt in a supervised fashion using labeled
data.

In this work we propose to extend the capabilities of the DCT
with a novel neural network model that integrates the DCT to
represent and adapt the activation functions. We call this model
Expressive Neural Network (ENN). We exploit the fact that a
2-layer neural network can theoretically represent any function
and expand the representation capabilities of the network by
adapting the activation functions at each neuron. The advantage
of approximating an univariate function with the DCT is twofold:
A small number of coefficients is required due to its high energy
compaction, and the approximation error is easily controlled
by the magnitude of the disregarded coefficients. In this work
we also show that the DCT coefficients can be learnt using
backpropagation in a supervised fashion and in the same pass as
the standard network linear weights. In this way, the architecture
is no different from a standard feed-forward neural network with
fixed activation functions. From the learning perspective, using
the DCT to model the activation functions brings the following
benefits:

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0003-0070-6807
https://orcid.org/0000-0003-4281-3934
https://orcid.org/0000-0003-3338-244X
mailto:mmartinez@cttc.es
mailto:ana.isabel.perez@upc.edu
mailto:m.a.lagunas@cttc.es

MARTINEZ-GOST et al.: ENN: A NEURAL NETWORK WITH DCT ADAPTIVE ACTIVATION FUNCTIONS 233

� Network size: The number of parameters in the network
grows linear with the number of neurons, which is small
due to energy compaction of DCT.

� Backpropagation: The tuning algorithm can be imple-
mented because the DCT coefficients are real and ordered
in decreasing magnitude. Besides, there exist analytical
closed-form solutions for backpropagation.

� Gradient behavior: The basis functions (cosines) are real
and bounded, which prevents exploding gradients. Like-
wise, since the Fourier representation creates a periodic
function that does not saturate, it also prevents vanishing
gradients.

� Task adaptability: The output non-linearity is automati-
cally adapted depending on the task (e.g., classification or
regression) without changing the loss function.

While we provide a general formulation for multivariate real
functions, we constrain the analysis to bivariate functions. This
allows to visualize the results and intuitively understand how the
network is adapting the activation functions. In this respect, we
recover the concept of bump, which is the non-linear enclosure
that each activation function generates in the output space [11].
The global response of the network corresponds to a weighted
sum of all bumps generated at the hidden layer. This concept
allows to gain insights in how the network decides to exploit the
periodic nature of the DCT model and create the boundaries for
classification problems. In this work we focus on two general
problems of function approximation, namely classification and
regression. In the former there are two hypothesis associated to
a function, this is,H0 when f(x1, x2) < 0 andH1 otherwise. In
regression the goal is to approximate the function f(x1, x2). Our
primary goal is to show the interpretability and expressiveness of
the DCT-based non-linearities in small networks, which is why
we do not consider standard datasets and large models. We leave
these considerations for future work, along with other learning
aspects, such as overfitting. The source code of this study is
openly available on http://github.com/marcmartinezgost/enn.

The main contributions of this article are described in the
following:

1) We define ENN, a novel neural network model with non-
linear AAF that are parameterized by the DCT. This allows
to adapt DCT coefficients in a supervised fashion and learn
specific non-linearities according to the task. This results
in a highly flexible and expressive model.

2) We develop analytical closed-form expressions to adapt
the non-linearities with backpropagation. While we
choose the Least Mean Squares (LMS) algorithm to update
the network parameters, the architecture remains a feed-
forward neural network and any alternative algorithm can
be used.

3) We provide insights in the field of explainable machine
learning (XML). We recover the concept of bump, which
allows to interpret how the non-linearities are adapted and
what is the global response of the neural network. Further-
more, we show how the DCT model helps to dimension the
network width, this is, the number of hidden neurons. Par-
ticularly, the network converges to duplicated activation
functions with opposed linear weights in the output layer.
This is, the network cancels out the information coming

from several neurons when the task does not require that
many parameters.

4) We provide extensive experiments in both classification
and regression setups for which ENN outperforms all
the benchmarks. In classification tasks, ENN outperforms
fixed activation functions up to 40% in accuracy. With
that we show how the expressiveness of network highly
depends on the activation function, without the need of
increasing the size of the network.

The remainder of this article is organized as follows. In
Section II, we present a literature review on neural networks for
function approximation. Fourier models for non-linear represen-
tation are presented in Section III. We present ENN in Section IV
and propose the learning procedure for supervised tasks in
Section V. The simulation results are shown in Section VI and
we conclude the paper in Section VII.

Notation: Lowercase and uppercase bold symbols correspond
to vectors and matrices, respectively; s[m] corresponds to the
m-th entry of vector s; R stands for the set of real numbers and
∇ for the gradient.

II. LITERATURE REVIEW

The universal approximation theorem is a well-known re-
sult in mathematics stating that a 2-layer neural network can
represent any continuous function with an arbitrary number of
neurons [12], [13]. The theory behind neural networks has been
further developed, providing bounds on the number of required
neurons.

In a different line of research, the Kolmogorov-Arnold (KA)
representation theorem shows how a multivariate function can
be represented by functions of only univariate functions [14]:

f(x1, . . . , xn) =

2n+1∑
i=1

Φi

⎛
⎝ n∑

j=1

φij(xj)

⎞
⎠ , (1)

where Φi and φj are termed the outer and inner functions,
respectively. This result seems to be tightly connected to a
2-layer neural network, since the inner functions correspond
to the hidden layer transformation and the outer functions to
the output neuron. What is more, the inner functions do not
depend on the function f to implement, which resembles the
activation functions in neural network architectures. However,
the formulation is not exactly identical: the KA representation
requires n inner functions for each input variable, while a
neural network implements a unique function for each linear
combination of inputs. In this way, although there is an extensive
literature motivating the development of neural networks with
the KA theorem [15], [16], [17], there are still many gaps to be
resolved. What is more, the theorem is not constructive and the
functions in (1) are highly non-linear.

Despite its success in many applications, neural networks
undergo several shortcomings that limit the interpretability of
the results: optimization algorithms are easily trapped in local
minima, convergence heavily depends on initialization and fail
to converge when high non-linearities exist. Usually, each neu-
ron in feedforward neural networks implements a linear combi-
nation and a non-linear mapping. The former is usually trained,

http://github.com/marcmartinezgost/enn

234 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 18, NO. 2, MARCH 2024

while the latter remains fixed. The non-linear activation function
allows to generate non-linear mappings, which increases the
expressiveness of the network. A common choice is the sigmoid
function, although it exhibits well-known issues in its imple-
mentation: since the sigmoid saturates at large magnitudes the
propagated gradients vanish, slowing down the learning process.
The rectified linear unit (ReLU) replaced the sigmoid activation
function because it does not suffer from vanishing gradients and
it is computationally efficient, which results in faster conver-
gence. Despite its popularity, ReLU also experiences several
weaknesses that hinder the learning capacity of the model: the
corresponding neuron can become dead when the output remains
negative for a long time; likewise, the output is unbounded,
which may produce the opposite effect of exploding gradient,
making the network unstable.

Many variations and novel activation functions have been
designed to enhance the performance of neural networks, al-
though this highly depends on the application and the statistics
of the data. In this respect, few authors have tackled the problem
of AAF, in which the non-linear mapping is also trained to
enhance the expressiveness of the network. In [8] the saturation
level and slope of an S-shaped activation function can be tuned
independently, which increases the expressiveness with respect
to the sigmoid function. In a different vein, several authors
proposed to approximate an arbitrary activation function using
cubic splines [18], [19]. Later on, some authors introduced an
activation function as a weighted sum of basis, such as sine,
Gaussian or sigmoid [20], [21]. More recently, the authors in [22]
propose an asymmetric S-shaped activation function, but only
for regression tasks. The issues derived from these perspective
is that they either constrain the geometry of the activation
function, or the parametrization is too complex. In this work we
empirically prove that having pre-specified activation functions
result in suboptimal performance.

In the context of deep learning, several AAF have been
designed as well. In [23] the authors propose a gradient adaptive
piecewise linear activation function as a sum of hinge-shaped
functions. Although they theoretically prove that any piecewise
linear function can be expressed as so, this constrains the func-
tion to be linear at both extremes. In other words, it does not
prevent the neural network from exploding gradients. In [24] an
S-shaped rectified linear activation function is proposed. While
this model can learn non-linear and non-convex representations,
it is not smooth and still constrains the activation to be defined
in a piece-wise fashion. The authors in [25] develop a piece-
wise polynomial form which can approximate any continuous
function. However, the exponential nature of the polynomials
may increase the dynamic range of the parameters, which is a
non-desirable property for gradient-based procedures. In [26],
the ReLU is substituted by an S-shaped activation, which slightly
outperforms the ReLU and its variants in different deep learning
tasks. In [27], [28], [29], [30] different authors propose to model
the activation as a sum of basis functions for deep learning tasks.

There have been also attempts to implement activation func-
tions using Fourier models. In [31] the authors consider a bina-
rized neural network, where tunable parameters only have 1 b.
This makes the activation function to be the step function and,

therefore, the gradient is zero almost everywhere. To make the
model trainable, the step function is approximated with a Fourier
series, which prevents the gradient vanishing effect. Other works
propose numerical solutions to specific mathematical models by
applying Extreme Learning Machines (i.e., feed-forward neural
networks) with Fourier basis functions. In [32], the Fourier series
basis is used to solve the one-dimensional asset pricing model.
In [33] the authors extend the work with a product of trigonomet-
ric functions to cope with the specific multi-dimensional case
that solves the generalized Black–Scholes partial differential
equation. In the same vein of ELM with trigonometric activation
functions is [34], where numerical solution is found to integro-
differential equations for risk theory. However, all these works,
which do not resort to gradient-based backpropagation to work,
are designed to solve specific numerical system of equations.
Conversely, the ENN tries to solve the general problem of
multi-dimensional function approximation.

In the following section we propose a Fourier-based
parametrization for non-linear functions. This is the first ap-
proach to model AAF from a signal processing perspective. The
proposed model does not constrain the shape of the activation
function and keeps the number of trainable parameters low while
circumventing the shortcomings of the previously proposed
non-linear models.

III. FOURIER MODELS FOR NON-LINEAR FUNCTIONS

Consider a scalar univariate function f(x) to be approximated
over the input variable range x ∈ [−1, 1]. One of the most
popular approximations for non-linear systems is the Volterra
model. Given the function representation by the inverse Fourier
transform,

f(x) =
1

2π

∫ ∞
−∞

F (w)ejwx dw, (2)

where w is the frequency variable and F (w) are the Fourier
coefficients, the Volterra model is obtained by using the Taylor
series expansion of the exponential family:

f(x) =
1

2π

∫ ∞
−∞

F (w)

(∞∑
n=0

(jw)n

n!
xn

)
dw

=

∞∑
n=0

(
1

2π

1

n!

∫ ∞
−∞

F (w)(jw)n dw

)
︸ ︷︷ ︸

cn

xn (3)

The building blocks of (3) are power functions of the input
variable, which generate a polynomial approximation. Notice
that the coefficients cn correspond to the n-th derivative at the
origin divided by the factorial of the index. Volterra has not been
widely used in practice because the exponential nature of the
basis functions heavily increase the dynamic range, even when
the input is bounded. Moreover, outside the dynamic range the
approximation is unbounded and cannot be controlled. This hap-
pens because Volterra is a Taylor approximation and it presents
high accuracy near the origin only. Moreover, the coefficients
change with respect to how many are preserved, as the kernels

MARTINEZ-GOST et al.: ENN: A NEURAL NETWORK WITH DCT ADAPTIVE ACTIVATION FUNCTIONS 235

are not orthogonal. All these concerns make this approximation
not suitable for gradient-based learning algorithms [10].

One possible approach to solve these issues is the representa-
tion using a finite number of terms in the Fourier approximation
in (2), which corresponds to the Discrete Fourier Transform
(DFT). Outside the dynamic range of x the function is peri-
odically extended, generating discontinuities at the border. As
a result, the number of coefficients required to approximate the
function is highly sensitive to these discontinuities. To prevent
this phenomenon the function can be extended with even sym-
metry and, then, periodically extended. This smooths out the
edges and its corresponding derivatives, reducing the number of
required coefficients with respect to the DFT. This is known as
the Discrete Cosine Transform (DCT), which has the following
expression:

f(x) ≈
Q∑

q=1

gqFq cos

(
π(q − 1)(2z + 1)

2N

)
, (4)

with z = N
2 (1 + x), g1 = 1/

√
N and gq =

√
2/N otherwise.

The Fq ∈ R are termed the DCT coefficients. Notice that for
functions with odd symmetry, only the odd coefficients are
retained. In general, the quality of approximation is more than
sufficient for Q = 12 (i.e., 6 coefficients in odd functions). For
the sake of brevity, the following definition will be used when
needed:

cosi(x) = cos
(π

2N
(2i− 1) (N(x+ 1) + 1)

)
(5)

In [10] we propose an adaptive design in which the DCT coef-
ficients of (4) are tuned using the LMS algorithm in a supervised
setting to approximate an univariate function. There are plenty
of advantages in using the DCT representation: The required co-
efficients to provide the same quality (i.e., approximation error)
are fewer and these are real and ordered in decreasing magnitude.
Since the basis functions are orthogonal, the approximation error
can be easily controlled by the magnitude of the disregarded
coefficients, and it simplifies the convergence of the learning
procedure. Furthermore, see that the coefficient index appears in
the phase of (4), so the approximation is real and bounded, even
when the input exceeds the dynamic range. All these features
make the DCT an appropriate function approximation, whose
coefficients can be learnt by a gradient-based rule.

A. Extension of the DCT to Multiple Input Variables

The extension of the DCT representation to multiple input
variables is not trivial. Consider a bivariate function, which could
be parameterized by a 2-dimensional (2D) DCT as

f(x1, x2) =
N∑

n=1

N∑
m=1

Fnm cosn(x1) cosm(x2)

≈
Q∑

n=1

Q∑
m=1

Fnm cosn(x1) cosm(x2) (6)

Note that this model has the following drawbacks: In general
the number of coefficients grows exponentially with the number
of inputs, M0, as QM0 , as well as the complexity of the DCT;

while the coefficients in the DCT are ordered in decreasing
magnitude, the structure of the indexes is broken in the 2D-DCT.
This is, the location (n,m) of the relevant coefficients changes
with the function of interest; this implies that, unless the function
is known a priori, the indexes (n,m) are unknown and a super-
vised learning procedure is hard to implement. This happens
for instance in classification problems, where the function is
unknown and to be discovered.

In the following we will present ENN, a neural network model
integrating the DCT in a single dimension and whose coefficients
can be trained in a supervised fashion.

IV. DCT-ADAPTIVE ACTIVATION FUNCTIONS

A perceptron (or neuron) is a non-linear processor involving
a weighted sum and a non-linear function. It is described by the
following expressions:

z = a0 +

M0∑
i=1

aixi = aT [1 xT]T (7)

z =
N

2
(z + 1) (8)

ŷ = σ(z) ≈
Q/2∑
q=1

Fq cos

(
π(2q − 1)(2z + 1)

2N

)

=

Q/2∑
q=1

Fq cosq(z) (9)

In (7), x contains M0 inputs and a 1 is appended for the bias
term a0. The normalization in (8) is needed to map the input to
[0, N], assuming the input is confined to [−1, 1]. Nevertheless,
as it will be seen later, the first linear transformation may map
z to a different range, providing expressiveness to the network.
Finally, the non-linear activation function σ(·) is approximated
by the DCT with Q/2 coefficients. Without loss of generality,
gq is assumed to be integrated in the DCT coefficient Fq . In (9)
we assume the non-linearity to have odd symmetry, so that only
the odd coefficients are retained. As it will be explained later
on in Section IV-B and shown empirically in Section VI, this
does not prevent the network from learning only odd activation
functions. A total of M0 +Q/2 + 1 parameters per perceptron
are to be trained, which only represents an increment of Q/2
coefficients with respect to a standard perceptron with a fixed
activation functions. As mentioned in the previous section, Q is
small due to the energy compaction property of the DCT (e.g.,
around Q/2 = 6 coefficients).

Example 1 (Linear discriminant): Assume M0 = 2, we want
to discriminate when x1 > x2. This can be framed as a classifi-
cation problem, for which we can take a = a[0 1 − 1]T , where
a is a positive constant. Then, any odd monotone increasing
function will discriminate the two hypothesis. For the sake of
simplicity, take a = 1 and the non-linearity approximated with
only one coefficient (i.e., F1 = −1). This results in

z = x1 − x2 (10)

236 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 18, NO. 2, MARCH 2024

z =
N

2
(x1 − x2 + 1) (11)

ŷ = − cos

(
π(2z + 1)

2N

)
≈ sin

(π
2
(x1 − x2)

)
(12)

The solution in (12) provides a soft-decision, whereas a hard-
decision would take the sign, i.e., sign(ŷ). While there are
infinite solutions for this example, the proposed scheme only
increases the complexity by one extra coefficient (i.e., F1).
Implementing a linear σ(·) would require many coefficients and
provide no further benefit in terms of performance.

In Example 1 there are infinite minimums, all optimal. Nev-
ertheless, in more complex problems (e.g., high-order discrim-
inants) the expressiveness of a single perceptron is not enough.
In light of the universal approximation theorem, in the following
we will increase the capabilities of the network by including a
hidden layer of several neurons. This model, termed ENN, will
be fully-adaptive as both the linear weights and the activation
functions will be trained in a supervised fashion.

A. Expressive Neural Network (ENN)

As a single layer perceptron limits the capabilities of the
network, we will include another processing layer to increase
its expressiveness. For a general multi-layer perceptron of L
layers, the following expressions show the perceptron signals at
the l-th layer:

zl = AT
l [1 sTl−1]

T (13)

zl =
N

2
(zl + 1) (14)

sl = σl,m(zl) (15)

for l = 1, . . . , L. The first input and last output correspond to
s0 = x and ŷ = sL, respectively. The matrix of linear weights
is Al = [a

(1)
l . . . a

(Ml)
l] and Ml stands for the number of per-

ceptrons at layer l, with M0 being the number of inputs. The
operations in (14) and (15) are performed element-wise. The
AAF in the ENN, this is, the m-th element of (15) is computed
as

sl[m] =

Q/2∑
q=1

F
(m)
q,l cosq(zl[m]), (16)

where F
(m)
q,l corresponds to the q-th coefficient of the m-th

perceptron at the l-th layer. As explicitly shown in (15) and (16)
the activation function is not necessarily the same at each neuron,
although the number of DCT coefficients Q is kept constant
for the whole network. The last activation function could be
substituted by an step function in the classification setup and a
linear for regression. However, this will be maintained so that the
network can self-adapt depending on the nature of the problem.

Fig. 1. A 2-layer perceptron with M1 neurons in the hidden layer.

Fig. 2. Sigmoid function (dashed) and its DCT representation in the [−1, 1]
range (solid).

As opposed to the M0-dimensional DCT in Section III-A,
the proposed model does not require implementing the DCT
in M0 dimensions and can be trained in a supervised fashion.
Furthermore, the number of coefficients grows linearly asM0Q.
Throughout the rest of the paper we assume a two input variable,
namelyM0 = 2, andL = 2 layers. These layers are sequentially
termed hidden and output layer. Fig. 1 shows the architecture of
the two-layer perceptron with M1 neurons in the hidden layer
and expression (17) shown at the bottom of this page, shows the
input-output relationship.

B. Expressiveness of Periodic Activation Functions

As it will be shown in the experimental results, the expres-
siveness of the DCT comes from its periodic nature. Fig. 2
shows the sigmoid function and the corresponding DCT rep-
resentation in the [−1, 1] range using Q/2 = 6 coefficients.
While the sigmoid function saturates outside the range, the DCT
approximation offers a periodic infinite non-linearity. This offers
more capacity to the activation function, as the network may

ŷ =

Q/2∑
m=1

F
(1)
m,2 cosm

⎛
⎝a

(1)
2 [0] +

M1∑
k=1

a
(1)
2 [k]

Q/2∑
q=1

F
(k)
q,1 cosq

(
a
(k)
1 [0] + a

(k)
1 [1]x1 + a

(k)
1 [2]x2

)⎞⎠ (17)

MARTINEZ-GOST et al.: ENN: A NEURAL NETWORK WITH DCT ADAPTIVE ACTIVATION FUNCTIONS 237

Fig. 3. Bump generation. Mapping of a linear combination of two inputs over
the response of a non-linear function.

choose to work at an increasing range (e.g., [−1, 0]), decreasing
range (e.g., [−3,−1]), bump range (e.g., [−1, 3]), valley range
(e.g., [−3, 1]), or even with several periods simultaneously (e.g.,
[−5, 3]). Imposing odd symmetry in the DCT representation
does not constrain the resulting activation function to be odd.
This Fourier model for non-linearities is the first one to provide
such flexibility to activation functions, which is not possible with
a fixed non-linearity not implemented with the DCT.

To understand how the non-linear activation function maps the
input to the output space, we use the concept of bump. Consider a
single neuron with M0 = 2. Notice that all input pairs satisfying
the following equality are mapped to the same non-linear output
σ(c):

a0 + a1x1 + a2x2 = c, (18)

where c is a constant value. Fig. 3(a) shows how expression (18)
corresponds to a line in the input space. Fig. 3(b) shows the
mapping σ(c) along with the limits of the function in dashed
lines, that correspond to extreme values of c. Fig. 3(c) shows
how all input pairs with σ(c) are mapped in the output space.
The bump is generated by evaluating all the input data pairs
through the linear transformation and the non-linear mapping.

V. SUPERVISED LEARNING

A. Backpropagation Rules

Consider a dataset D, consisting of (xi, yi) ∈ D, where the
former is a M0-sized vector training sample and the latter is
the associated reference (i.e., label in classification, or function
value in neuromorphic computing). Given yi and ŷi, the error can
be computed and propagated throughout the network to adjust
the learnable parameters. We assume the loss to be the mean
squared error (MSE),

ε2 = (yi − ŷi(xi))
2, (19)

for both classification and regression problems. Notice in (19)
we explicitly write the output as a function of the input data.
Given a learnable parameter w, the chosen algorithm to update
it is LMS. The update rule at a given iteration corresponds to

w ← w − μ∇ε = w − με

(
− ∂ỹ

∂w

)
, (20)

this is, the parameter is updated by the product of the error by the
instantaneous gradient of the output with respect to the param-
eter. The hyperparameter μ is the step size, which controls the
convergence speed of LMS. We choose the simplest algorithm
to learn the parameters in the neural network because the focus

of this work is on the model, not on the training algorithm.
In this respect, the experimental results show that even using
the instantaneous gradient, LMS converges to a minimum and
outperforms state-of-the-art models. Thus, the LMS may be
replaced by any other algorithm to speed up convergence, which
is out of the scope of this work. Due to the same reason, we do
not include the iteration index in the parameter updates.

For the 2-layer architecture in Fig. 1, there are 2 set of
parameters per layer that need to be updated, namely, the DCT
coefficients and the weights from the linear transformation.
Starting at the output, the DCT coefficients of the layer l = 2
are updated as

Fm,2 ← Fm,2 + με
∂ỹ

∂Fm,2
= Fm,2 +

4α1

Q
ε cosm (z2) , (21)

form = 1, . . . , Q/2. The superscript in the parameter is omitted
because there is only one perceptron at the output. In general,
the step size is modeled as twice the mismatch α1 divided by the
power of the corresponding input. Since theQ/2 cosines used to
approximate the non-linearity are orthonormal, the total power
is Q/2. This exhibits another advantage of this parametrization
as the power remains always constant.

In order to update the linear weights from the output layer, the
backpropagation procedure allows to propagate the error across
the network with respect to previously computed derivatives,
which makes it a very efficient algorithm. Therefore, these are
updates as

a2[k]← a2[k] + με
∂ỹ

∂a2[k]
= a2[k] + με

∂ỹ

∂z2

∂z̃2
∂a2[k]

= a2[k]− 2α3

P1
ε
π

2
s1[k]

Q/2∑
m=1

Fm,2(2m− 1) cosm(z2),

(22)

for k = 0, . . . ,M1, and P1 = sT1 s1. The superscript has also
been suppressed in this case. Accordingly, the DCT coefficients
in the first layer are updated as

F
(k)
q,1 ← F

(k)
q,1 + με

∂ỹ

∂F
(k)
q,1

= F
(k)
q,1 + με

∂ỹ

∂z2

∂z2
∂s1[k]

∂s1[k]

∂F
(k)
q,1

= F
(k)
q,1

− 4α

Q
ε
π

2
a2[k] cosq(z1[k])

Q/2∑
m=1

Fm,2(2m−1) sinm(z2),

(23)

for q = 1, . . . , Q/2 and k = 1, . . . ,M1. And the linear combi-
nation of the first layer is updates as

a
(k)
1 [m]← a

(k)
1 [m] + με

∂ỹ

∂a
(k)
1 [m]

= a
(k)
1 [m] + με

∂ỹ

∂z2

∂z2
∂s1[k]

∂s1[k]

∂z1[k]

∂z1[k]

∂a
(k)
1 [m]

= a
(k)
1 [m]+

238 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 18, NO. 2, MARCH 2024

2α4

P0
ε
π2

4
a2[k]s0[m]

Q/2∑
p=1

Fp,2(2p− 1) sinp(z2)

Q/2∑
q=1

F
(k)
q,1 (2q − 1) sinq(z1[k]), (24)

for m = 1, . . . ,M0, k = 1, . . . ,M1, and P0 = sT0 s0. Without
loss of generality, s0[0] = s1[0] = 1, which correspond to the
bias terms in the linear combination at each layer. Notice that in
all the update rules, the derivative exists and inherits the periodic
nature of the cosine transform.

To enhance the stability of the convergence, the power of
each input, namely P0 and P1, can be computed with a damping
effect. For instance,

P0 ← βPo + (1− β)sT0 s0 (25)

at each iteration. The α parameter is set smaller in the output
layer, which intuitively reduces the propagation of artifacts to
previous layers during training.

B. Initialization and Training Procedure

The ENN trains all parameters at every backpropagation step,
this is, both AAF and linear weights. The AAF are initialized
as linear functions, which has shown to provide the best per-
formance. In the hidden layer, the linear weights are initialized
to generate bump diversity. As seen in Fig. 3, linear weights
can be interpreted as the orientation of the activation functions
(or bump) in the output space. For instance, with M1 = 4 the
linear weights are initialized to [0, 0, 1], [0, 1, 0], [0, 1,−1] and
[0,−1, 1]. This helps in practice to start the learning process
with bumps in different orientations. Finally, the output layer
is initialized with linear weights in a uniform distribution in
[−0.5, 0.5]. This allows to constrain the dynamics and shows
that the convergence does not depend on the initialization.

Regarding the LMS setup, for the non-linearities we set α1 =
10−3 in the hidden layer and α2 = 10−4 in the output layer. For
the linear weights we set α3 = 5 · 10−3 in the hidden layer and
α4 = 5 · 10−5 in the output layer. We keep the step-size constant
for all neurons in the same layer. The damping parameter is set to
β = 0.999 for both layers. Under the assumption that the error
between parameters is uncorrelated, this LMS configuration
guarantees that

6α1 + 6α2 + α3 + α4 ≈ 0.01 < 0.1, (26)

where the right hand side is an upper bound on the error at
convergence. Notice that the convergence speed at the output
layer is lower than at the hidden layer, which grants an adequate
gradient propagation.

VI. EXPERIMENTAL RESULTS

In the following we will test the ENN for both binary classifi-
cation and regression problems. As benchmarks, we will test
also the following models, in which they all have the same
architecture and differ in the activation functions:

� ReLU: It uses a fixed non-trainable ReLU, this is, σ(z) =
max {0, z}.

� Sigm: It uses a fixed non-trainable sigmoid activation func-
tion. Notice that the output saturates for an input of large
magnitude.

� F-DCT: It uses a fixed non-trainable sigmoid activation
function, but modeled with the DCT. Thus, the function
does not saturate and it is periodic.

Although not an odd function, we include the ReLU be-
cause it is the standard activation function in current neural
networks. The Sigm model is also included to compare it with
F-DCT and assess the gains of a periodic activation function.
We acknowledge that the benchmarks have significantly less
parameters than the ENN and they will exhibit lower learning
capabilities. However, the scope of this work is to show the
expressiveness through the adaptability of non-linear functions
instead of increasing the width of the architecture. We constrain
the number of neurons because we work on interpretability and
want to provide a signal processing perspective to the problem.

All models are built withM1 = 6 neurons in the hidden layer,
and ENN with Q = 12 parameters in all the non-linearities and
N = 512 samples. However, recall that only Q/2 coefficients
are different from zero because we impose odd symmetry. These
are initialized to approximate the identity function. Notice that
the output activation function in ReLU and Sigm has to be
specifically selected to be either sigmoid in classification or
linear (i.e., identity) in regression. Conversely, the ENN will
automatically adapt it to approach the required function, which
is an advantage of this model with respect to the benchmarks.

For both classification and regression problems, a synthetic
dataset is generated. All samples come from independent uni-
form distributions in the [−1, 1] range for each input variable.
The train and test sets contain 800.000 and 50.000 samples,
respectively.

A. Classification

Table I shows the different classification problems that have
been evaluated. It displays the ideal decision map along with
the order of the discriminant. The metric chosen to compare the
different models is the test accuracy, this is, the percentage of
correctly classified samples in the test set.

As expected, the complexity of the problem increases with the
order of the discriminant. As seen in Example 1, a single neuron
is sufficient to implement a linear discriminant, which results in
an excellent performance for all models in (P1). With no surprise,
for quadratic (P2) and cubic (P3) discriminants all models are
capable of finding the appropriate boundary. However, ENN
attains almost an excellent performance. This may be claimed
due to the larger number of parameters in the proposed model
with respect to the benchmarks. When moving to high-order
classification problems is when the non-adaptive models are
not capable of providing a satisfactory solution. Conversely, the
ENN model manages to find a local minimum with high accuracy
and with very consistent results for a wide variety of problems.

Fig. 4 shows the AAF for (P7). Notice that only one of the
activation functions has been adapted, namely Fig. 4(b), which

MARTINEZ-GOST et al.: ENN: A NEURAL NETWORK WITH DCT ADAPTIVE ACTIVATION FUNCTIONS 239

TABLE I
ACCURACY FOR DIFFERENT BINARY CLASSIFICATION PROBLEMS

Fig. 4. AAF in the hidden layer for (P7).

exploits the periodic nature of the DCT. The corresponding
bumps are shown in Fig. 5, where we clearly confirm that the
other AAF have a dynamic range around [−0.5, 0.5], which
results in zero bumps and, thus, in non-active neurons. The
global response of the ENN is shown in Fig. 6(a). This is
obtained by adding the bumps weighted by the corresponding
linear weights of the output layer and, finally, applying the
output AAF. As expected, the output AAF for classification
problems is an approximation of the step function and it is
shown in Fig. 10(a). Since there is only one neuron active,
the global response corresponds to the step (or sign) function
applied to the bump in Fig. 4(b). Notice, however, that there
is a flip between the bump and the global response, which
happens because the corresponding linear weight of the output
layer is negative. The fact of constraining the model to Q = 12
coefficients makes it infeasible to generate an ideal step function
in the output layer. Nevertheless, this solution is steeper than a
standard sigmoid function, which reduces the error at data close

Fig. 5. Bumps corresponding to the AAF in Fig. 4.

Fig. 6. Global response of the ENN for two classification problems.

Fig. 7. AAF in the hidden layer for (P8).

to the boundary and increases the accuracy. From this experiment
we can also conclude that another advantage of ENN is that it
allows to model the network width, this is, the required number
of hidden neurons. In other experiments we found out that the
ENN generates pairs of identical bumps but with opposite sign in
the output linear weights. This means that the network neglects
the information that comes from these two branches. See that
this is impossible for the non-adaptive models, which have a
very small accuracy even with 6 neurons.

Fig. 7 shows the AAF for (P8), along with the corresponding
bumps in Fig. 8. As expected, the ENN exploits the periodic na-
ture of the DCT and different orientations to generate diversity.
Notice that there is almost no drop in accuracy between (P5)

240 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 18, NO. 2, MARCH 2024

Fig. 8. Bumps corresponding to the AAF in Fig. 7.

Fig. 9. Output decision map of (P8) for each of the models.

Fig. 10. Output AAF for classification and regression.

and (P8), although the latter is more complex. This is due to
the expressiveness of the DCT, which allows to generate several
peaks per bump. In other words, by allowing the activation to be
non-monotone it reuses non-linearities to approximate the ring
and both circles still with 6 neurons. Fig. 6(b) shows the global
response of the network and Fig. 9 shows the different decision
boundaries for the different models. Despite the accuracy of
the non-adaptive models in Table I being around 80%, the
quality is very poor and only the ENN boundary recovers the
ideal map. The output activation function converges to the same
configuration for all classification problems and it is shown in
Fig. 10(a).

B. Regression

The network can also be trained for regression problems, this
is, to approximate a function. Particularly, we compute bivariate
scalar functions. Table II shows the MSE achieved by the four
different models for three different experiments. While it may
be impractical to implement a sum or product with a neural
network as the model itself contains many sums and products,

TABLE II
MSE IN REGRESSION TASKS

Fig. 11. Bumps for the regression problem (x2
1 + x2

2)/2.

these experiments allow to test the learning capabilities of the
ENN with respect to the benchmarks.

As expected, the gap in performance with respect to the
benchmarks is larger in the second and third problem, since
these are non-linear problems. Fig. 11 shows the different bumps
for the regression problem (x2

1 + x2
2)/2. Since the function is

symmetric around the center, the ENN chooses to work with
non-periodic ranges of the non-linearities. In fact, all bumps
correspond to flat surfaces that curve toward the edges. Recall
that the curvature of the bump is undetermined as it also depends
on the linear weights of the output layer. In fact, the weights
of neurons 2, 4 and 6 are negative, meaning that all bumps
are convex functions, as they need to be to generate a convex
function.

Regarding the output activation, it is adapted to the learning
task and different from classification. As seen in Fig. 10(b)
the activation function approaches a linear function for all re-
gression problems. The function is not perfectly linear because
we constrain the system to Q = 12 coefficients. We underline
the idea that in a non-adaptive setting one needs to choose
the last non-linearity according to the task. This represents an
improvement with respect to non-adaptive models as it is general
enough to encompass different tasks.

C. Effect of the Number of Coefficients

Increasing the number of coefficients Q in the DCT repre-
sentation theoretically provides more expressiveness to the net-
work. However, in practice, increasing the number of trainable
parameters hinders the convergence of the algorithm because
there are more local minima. Fig. 12 shows the output AAF for
Q = {12, 20}. Increasing the number of coefficients allows to
create a steeper transition, reducing the number of errors around

MARTINEZ-GOST et al.: ENN: A NEURAL NETWORK WITH DCT ADAPTIVE ACTIVATION FUNCTIONS 241

Fig. 12. Output AAF in classification for different Q values.

the boundary. Doing so increases the Gibbs effect, although it
produces no harm to the learning process because those samples
are far from the boundary and always correctly classified as
either 1 or −1.

VII. CONCLUSION

In this article we have presented ENN, a novel neural net-
work model with adaptive activation functions. Under a signal
processing motivation we use the DCT to design the non-linear
functions, whose coefficients can be trained using backprop-
agation. Specifically, the ENN is able to adapt the activation
functions for classification and regression problems. We provide
insights in the interpretability of the network by recovering the
concept of bump, this is, the response of each neuron in the
output space. Through extensive experiments we determine that
the expressiveness of a neural network highly depends on the
activation function. Particularly, the key strength of ENN is
the periodic nature of the DCT, providing high accuracy for a
wide range of non-linear classification problems. In some cases
outperforming state-of-the-art non-adaptive activation functions
up to 40% in accuracy.

REFERENCES

[1] S. Chen, C. F. N. Cowan, and P. M. Grant, “Orthogonal least squares
learning algorithm for radial basis function networks,” IEEE Trans. Neural
Netw., vol. 2, no. 2, pp. 302–309, Mar. 1991.

[2] S.-S. Yang and C.-S. Tseng, “An orthogonal neural network for function
approximation,” IEEE Trans. Syst., Man, Cybern., Part B., vol. 26, no. 5,
pp. 779–785, Oct. 1996.

[3] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet de-
composition,” in Proc. IEEE 27th Asilomar Conf. Signals, Syst. Comput.,
1993, pp. 40–44.

[4] O. L. Mangasarian and E. W. Wild, “Nonlinear knowledge in kernel
approximation,” IEEE Trans. Neural Netw., vol. 18, no. 1, pp. 300–306,
Jan. 2007.

[5] S. Liang and R. Srikant, “Why deep neural networks for function approx-
imation?,” in Proc. 5th Int. Conf. Learn. Representations, 2017.

[6] S. Yang, T. Ting, K. Man, and S.-U. Guan, “Investigation of neural
networks for function approximation,” Procedia Comput. Sci., vol. 17,
pp. 586–594, 2013.

[7] S. Ferrari and R. Stengel, “Smooth function approximation using neu-
ral networks,” IEEE Trans. Neural Netw., vol. 16, no. 1, pp. 24–38,
Jan. 2005.

[8] C.-T. Chen and W.-D. Chang, “A feedforward neural network with function
shape autotuning,” Neural Netw., vol. 9, no. 4, pp. 627–641, 1996.

[9] M. M. Gost, A. Pérez-Neira, and M. A. Lagunas, “DCT-based air interface
design for function computation,” IEEE Open J. Signal Process., vol. 4,
pp. 44–51, 2023.

[10] A. Pérez-Neira, M. Martinez-Gost, and M. A. Lagunas, “Adaptive function
approximation based on the DCT,” in Proc. IEEE Int. Conf. Circuits, Syst.,
Commun. Comput., 2023, pp. 224–231.

[11] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed.
New York, USA: Wiley, 2001.

[12] K. Hornik, “Approximation capabilities of multilayer feedforward net-
works,” Neural Netw., vol. 4, no. 2, pp. 251–257, 1991.

[13] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, “Multilayer feedforward
networks with a nonpolynomial activation function can approximate any
function,” Neural Netw., vol. 6, no. 6, pp. 861–867, 1993.

[14] A. Kolmogorov, “The representation of continuous functions of many
variables by superposition of continuous functions of one variable and
addition,” Doklady Akademii Nauk SSSR, vol. 114, pp. 953–956, 1957.

[15] R. Hecht-Nielsen, “Kolmogorov’s mapping neural network existence the-
orem,” in Proc. IEEE Int. Conf. Neural Netw., 1987, pp. 11–14.

[16] J. Schmidt-Hieber, “The Kolmogorov-arnold representation theorem re-
visited,” Neural Netw., vol. 137, pp. 119–126, 2021.

[17] M. Nakamura, R. Mines, and V. Kreinovich, “Guaranteed intervals for
Kolmogorov’s theorem (and their possible relation to neural networks),”
Interval Comput., vol. 3, pp. 183–199, 2004.

[18] P. Campolucci, F. Capperelli, S. Guarnieri, F. Piazza, and A. Uncini,
“Neural networks with adaptive spline activation function,” in Proc. IEEE
8th Mediterranean Electrotechnical Conf. Ind. Appl. Power Syst., Comput.
Sci. Telecommun., 1996, pp. 1442–1445.

[19] L. Vecci, F. Piazza, and A. Uncini, “Learning and approximation capabil-
ities of adaptive spline activation function neural networks,” Neural Netw,
vol. 11, no. 2, pp. 259–270, Mar. 1998.

[20] S. Xu and M. Zhang, “Justification of a neuron-adaptive activation func-
tion,” in Proc. IEEE-INNS-ENNS Int. Joint Conf. Neural Netw. IJCNN,
Neural Comput.: New Challenges Perspectives New Millennium, 2000,
pp. 465–470.

[21] S. Xu and M. Zhang, “A novel adaptive activation function,” in Proc. IEEE
Int. Joint Conf. Neural Netw., 2001, pp. 2779–2782.

[22] G. S. da S. Gomes, T. B. Ludermir, and L. M. Almeida, “Neural networks
with asymmetric activation function for function approximation,” in Proc.
IEEE Int. Joint Conf. Neural Netw., 2009, pp. 980–987.

[23] F. Agostinelli, M. Hoffman, P. Sadowski, and P. Baldi, “Learning activation
functions to improve deep neural networks,” in Proc. 3rd Int. Conf. Learn.
Representations, 2014.

[24] X. Jin, C. Xu, J. Feng, Y. Wei, J. Xiong, and S. Yan, “Deep learning with
s-shaped rectified linear activation units,” in Proc. 30th AAAI Conf. Artif.
Intell., 2016, pp. 1737–1743.

[25] L. Hou, D. Samaras, T. Kurc, Y. Gao, and J. Saltz, “ConvNets with smooth
adaptive activation functions for regression,” in Proc. 20th Int. Conf. Artif.
Intell. Statist., vol. 54, 2017, pp. 430–439.

[26] D. Li and Y. Zhou, “Soft-root-sign: A new bounded neural activation
function,” in Proc. Pattern Recognit. Comput. Vis., 2020, pp. 310–319.

[27] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation
functions,” in Proc. 6th Int. Conf. Learn. Representations, 2018.

[28] F. Manessi and A. Rozza, “Learning combinations of activation functions,”
in Proc. IEEE 24th Int. Conf. Pattern Recognit., 2018, pp. 61–66.

[29] S. Qian, H. Liu, C. Liu, S. Wu, and H. S. Wong, “Adaptive activation
functions in convolutional neural networks,” Neurocomputing, vol. 272,
pp. 204–212, 2018.

[30] M. Varshney and P. Singh, “Optimizing nonlinear activation function for
convolutional neural networks,” Signal, Image Video Process., vol. 15,
no. 6, pp. 1323–1330, Sep. 2021.

[31] S. Lee, H.-Y. Kwak, and J.-S. No, “Effect of the period of the fourier
series approximation for binarized neural network,” in Proc. IEEE Int.
Conf. Artif. Intell. Inf. Commun., 2022, pp. 262–265.

[32] J. Yang and M. Ma, “The numerical solution of one-dimensional discrete
asset pricing model based on the improved trigonometric extreme learning
machine,” J. Comput. Sci., vol. 63, 2022, Art. no. 101809.

[33] M. Ma, J. Yang, and R. Liu, “A novel structure automatic-determined
Fourier extreme learning machine for generalized Black–Scholes partial
differential equation,” Knowl.-Based Syst., vol. 238, 2022, Art. no. 107904.

[34] T. Zhou, X. Liu, M. Hou, and C. Liu, “Numerical solution for ruin
probability of continuous time model based on neural network algorithm,”
Neurocomputing, vol. 331, pp. 67–76, 2019.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

