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Abstract—Terahertz ultra-massive MIMO (THz UM-MIMO) is
envisioned as one of the key enablers of 6G wireless networks, for
which channel estimation is highly challenging. Traditional ana-
lytical estimation methods are no longer effective, as the enlarged
array aperture and the small wavelength result in a mixture of
far-field and near-field paths, constituting a hybrid-field channel.
Deep learning (DL)-based methods, despite the competitive per-
formance, generally lack theoretical guarantees and scale poorly
with the size of the array. In this article, we propose a general
DL framework for THz UM-MIMO channel estimation, which
leverages existing iterative channel estimators and is with prov-
able guarantees. Each iteration is implemented by a fixed point
network (FPN), consisting of a closed-form linear estimator and
a DL-based non-linear estimator. The proposed method perfectly
matches the THz UM-MIMO channel estimation due to several
unique advantages. First, the complexity is low and adaptive. It
enjoys provable linear convergence with a low per-iteration cost
and monotonically increasing accuracy, which enables an adap-
tive accuracy-complexity tradeoff. Second, it is robust to practi-
cal distribution shifts and can directly generalize to a variety of
heavily out-of-distribution scenarios with almost no performance
loss, which is suitable for the complicated THz channel conditions.
For practical usage, the proposed framework is further extended
to wideband THz UM-MIMO systems with beam squint effect.
Theoretical analysis and extensive simulation results are provided
to illustrate the advantages over the state-of-the-art methods in
estimation accuracy, convergence rate, complexity, and robustness.
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I. INTRODUCTION

THE terahertz (THz) band, ranging from 0.1 to 10 THz, is
envisioned as a prime candidate for new spectrum in the

sixth generation (6G) wireless networks [2], [3]. It promises to
support the explosive demand on wireless traffic [4], and lay
the foundation for many emerging applications of 6G, such as
extended reality [5] and edge intelligence [6]. Nevertheless, to
fully unleash the potential of THz bands, the severe spread and
molecular absorption loss must be compensated to enhance the
coverage range. Thanks to the short wavelength, ultra-massive
multiple-input multiple-output (UM-MIMO) systems can be
implemented with thousands of antennas packed within a small
footprint [4]. With THz UM-MIMO, highly-directional trans-
mission can be achieved with advanced beamforming tech-
niques [7], [8], whose design requires accurate estimation of
the high-dimensional channel with low pilot overhead.

As a cost-efficient candidate, the planar array-of-subarray
(AoSA) is celebrated as the most promising architecture of
THz UM-MIMO, in which the antenna elements (AEs) are
assembled into multiple disjoint planar subarrays (SAs) [3],
[9], [10]. The AEs in each SA share a single radio frequency
(RF) chain through dedicated phase shifters, whose spacings
are tiny due to the small wavelength. By contrast, the SAs are
separated by a much larger distance since integrating too many
AEs compactly can reduce the spatial multiplexing gain and
cause difficulties in circuit control and cooling [3], [10]. The
advantages of the planar AoSA include a lower hardware cost
and power consumption. In addition, grouping the AEs into SAs
increases the array gain, while the collaboration between SAs
provides high spatial multiplexing gain [3], [10].

Nevertheless, the planar AoSA architecture also poses several
severe challenges for low-overhead channel estimation. First,
due to the limited RF chains, the received pilot signals are highly
compressed compared with the dimension of the channel, which
makes the problem under-determined. Second, the antenna array
is non-uniform owing to the widely-spaced SAs, while most
previous works only considered uniform arrays. It is difficult to
design a unified algorithm that works for arbitrary array geom-
etry. Most importantly, the enlarged array aperture and short
wavelength of the THz planar AoSAs necessitates near-field
considerations. In general, a dynamic mixture of the far- and
near-field paths coexist and constitute a hybrid-field channel [1],
[11]. Nevertheless, existing algorithms mostly assume a uniform
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array operating in either the far-field or the near-field region, and
thus cannot satisfactorily address the complicated channel con-
ditions in a practical THz UM-MIMO system with planar AoSA.

A. Related Works

Due to the limited number of RF chains, the pilot overhead of
traditional least squares (LS) estimators is very high since they
require the received pilots to have at least the same dimension as
the channel to ensure robust estimation. Prior knowledge of the
channel should be exploited in order to reduce the pilot over-
head. Many compressed sensing (CS)-based algorithms were
investigated to serve the purpose, which can be grouped into
three categories, i.e., sparse reconstruction-based, Bayesian, and
deep learning (DL)-based methods.

The key of sparse reconstruction-based methods is to design
a proper dictionary matrix to represent the channel as a sparse
vector. Once the dictionary is determined, channel estimation
can be transformed into a sparse reconstruction problem and
many off-the-shelf algorithms are readily applicable [12]. For
a uniform array operating in the far field, the channel is sparse
under a discrete Fourier transform (DFT)-based dictionary [13],
which corresponds to sampling the angular domain by uniform
grids. In the near field, the array response is affected by both
angle and distance, which requires sampling both domains via
dedicated grid patterns [14]. Previous works revealed that the
far-field dictionary cannot properly sparsify the near-field chan-
nel, and vice versa [15]. The optimal hybrid-field dictionary is
thus dependent on the portion of path components, whose design
is still an open problem. For a non-uniform array operating in the
hybrid-field mode, e.g., the considered problem, the only option
in the literature is dictionary learning [16], which optimizes
the dictionary using a large site-specific dataset, but the learned
dictionary can generalize poorly on other sites.

Bayesian methods instead depend on the prior distribution
of the channel. If the prior is available, Bayesian-optimal esti-
mation can be achieved by iterative algorithms with affordable
complexity, e.g., the approximate message passing (AMP) and
its variants [17], [18]. However, since the true prior distribution
is unknown in practice, previous works first empirically chose
a base distribution and then updated the distribution parameters
during each iteration via the expectation-maximization (EM)
principle. The chosen prior distributions can be either unstruc-
tured, such as Gaussian mixture [19], [20], Laplacian [21], [22],
or Bernoulli-Gaussian distributions [23], or structured if fine-
grained knowledge of the channel is available, such as hidden
Markov model [24]. As a rule of thumb, matched and structured
priors often offer higher estimation accuracy than unstructured
ones. Nevertheless, the former depends on delicate channel
models with stronger assumptions, which may not be available
for the complicated hybrid-field THz UM-MIMO channel. The
latter can be adopted for arbitrary channel conditions, but may
suffer from an inferior accuracy.

DL-based methods, on the other hand, do not depend on the
structural information of the channel, but rather learn to exploit it
from data, which makes them suitable to handle the complicated
channel conditions in which analytical methods perform poorly.
Existing methods can be categorized as data-driven and model-
driven ones [25]. The former learns a direct mapping from the
received pilots to the estimated full channel or its parameters by

using a pure neural network model [26], [27]. Although being
time-efficient, the performance is often inferior since the infor-
mation contained in the measurement matrix cannot be effec-
tively utilized [28]. By contrast, model-driven DL-based meth-
ods, also known as deep unfolding, are built by truncating an
iterative algorithm into finite and fixed layers and replace the bot-
tleneck modules in each layer with learnable components, which
can offer better performance and interpretability compared with
data-driven methods [28], [29], [30], [31]. Besides channel es-
timation, deep unfolding has also found successful applications
in other physical layer problems, such as data detection and
decoding [32].

Despite their superior performance, existing deep unfolding
methods suffer from multiple crucial drawbacks, which makes
them unsuitable for THz UM-MIMO. First, the scalability is
poor. Training unfolded algorithms entails tracking the inter-
mediate states and gradients per layer, which leads to a huge
memory and computational overhead, and lacks scalability with
large-scale array and deeper layers. Second, the complexity is
high and not adaptive. Different from the classical algorithms
which can support an adaptive number of iterations, unfolded
algorithms emit the estimation after a pre-defined and fixed num-
ber of layers. Third, the reliability is not guaranteed. Although
unfolded algorithms are meant to emulate classical algorithms
which iteratively refine the estimation and output the fixed point
after an adaptive number of iterations, they stop the after the
pre-defined number of layers without theoretical guarantees.
The unfolded algorithm is often oscillating rather than con-
verging [33]. Most importantly, the generalization issue is not
well addressed. A critical drawback of DL-based methods is the
risk of performance degradation in out-of-distribution scenarios,
where the distributions of the channel, measurement matrices,
and noise in the testing environment may differ from those seen
during training. This can frequently happen in THz UM-MIMO
systems due to, e.g., the dynamic portion of hybrid-field paths
and line-of-sight (LoS) blockage. However, these important
issues are largely overlooked in the literature.

B. Contributions

In this article, we propose a unified and theoretically sound
DL framework called fixed point networks (FPNs) to tackle
all the critical drawbacks mentioned above, achieving a low-
complexity, adaptive, and robust estimation of the highly com-
plicated hybrid-field THz UM-MIMO channel with a general
non-uniform planar AoSA. Our contributions are as follows.
� To tackle the drawbacks of existing DL-based algorithms,

we propose FPNs as a general framework that constructs
channel estimation algorithms as the fixed point iteration
of a contraction mapping, comprising a closed-form linear
estimator from classical algorithms and a DL-based non-
linear estimator. The estimated channel is the fixed point
of the contraction, which can be efficiently calculated.

� We show the compatibility of FPNs with a wide range of
iterative algorithms along with general design guidelines,
and propose FPN-OAMP, an FPN-enhanced estimator via
orthogonal approximate message passing (OAMP) [18].
The proposed algorithm is applicable to hybrid-field THz
UM-MIMO systems operating in not only the narrowband
mode but also the wideband one with beam squint [34].
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Fig. 1. System model. (a) Planar AoSA geometry of the THz UM-MIMO, in which SAs are denoted by dark blue squares while AEs are denoted by dark golden
squares. (b) Partially-connected hybrid analog-digital combining in the AoSA. The AEs in each SA share the same RF chain through dedicated phase shifters. (c)
A typical hybrid far- and near-field propagation environment. The wavefront is spherical in the near field, while is planar in the far field.

� The theoretical benefits of our proposed method are two-
fold. First, it scales gracefully with the size of UM-MIMO
since the training via one-step gradient requires only con-
stant complexity regardless of the specific number of it-
erations [35]. Second, thanks to the nice properties of
contraction, it can run an arbitrary number of iterations
with a provable linear convergence rate and monotonically
increasing accuracy. This not only ensures the reliability
but also offers an adaptive accuracy-complexity tradeoff.
Simulation results support the theoretical properties, and
show the fastest convergence rate and the state-of-the-art
performance compared to existing iterative estimators.

� Our proposed method also enjoys the empirical benefit of
out-of-distribution robustness. With extensive simulation
results, we confirm that it can enjoy direct generalization
to heavy distribution shifts in the channel, measurement
matrix, and noise with only negligible performance loss.
Notably, our method can also generalize to different array
geometries. For the rare cases where direct generalization
fails, we propose an unsupervised self-adaptation scheme
to enable online adaptation to abrupt shifts.

C. Paper Organization and Notation

The remaining parts of the article are organized as follows. In
Section II, we introduce the system model, the channel model,
and the problem formulation. In Section III, we explain the
motivation and the general ideas behind the proposed FPNs,
and design a specific FPN-enhanced channel estimator based
on OAMP, i.e., FPN-OAMP, and prove the key theoretical
properties. In Section IV, we extend the proposed algorithms
to wideband systems with beam squint effect. In Sections V
and VI, extensive simulation results are provided to illustrate
the advantages of our proposal in both the performance and the
out-of-distribution robustness.

Notation: |a| is the absolute value of scalar a. ‖a‖p and (a)i
are the �p-norm and the i-th element of vector a, respectively.
AT , AH , A†, tr(A), vec(A), �(A), �(A), (A)i,j are the
transpose, Hermitian, pseudo-inverse, trace, vectorization, real
part, imaginary part, and the (i, j)-th element of matrix A,
respectively.B = blkdiag(A1,A2, . . . ,An) is a block diagonal
matrix by aligning A1,A2, . . . ,An on the diagonal. ◦ denotes
the composition of functions.U(a1, a2) is a uniform distribution
over the interval [a1, a2]. CN (μ,R) is a complex Gaussian
distribution with mean μ and covariance R.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider the uplink channel estimation problem for THz
UM-MIMO systems. The base station (BS) is equipped with
a planar AoSA with

√
S ×√S SAs. Each SA is a uniform

planar array (UPA) consisting of
√
S̄ ×
√
S̄ AEs, as illustrated

in Fig. 1(a). The BS has a total of SS̄ antennas. To improve
the energy efficiency, the AoSA adopts the partially-connected
hybrid beamforming [7], [9], as shown in Fig. 1(b). Within
each SA, the AEs share the same RF chain via dedicated phase
shifters. A total of S RF chains are utilized to receive data
streams from multiple single-antenna user equipments (UEs)1.

We define the index s of the SA at the m-th row and n-
th column of the AoSA by s = (m− 1)

√
S + n, where 1 ≤

m,n ≤ √S and 1 ≤ s ≤ S. Similarly, we define the index s̄ of
the AE at the m̄-th row and n̄-th column of a certain SA by
s̄ = (m̄− 1)

√
S̄ + n̄, where 1 ≤ m̄, n̄ ≤

√
S̄ and 1 ≤ s̄ ≤ S̄.

The distances between adjacent SAs and adjacent AEs are
denoted by dsub and da, respectively. As shown in Fig. 1(a), we
construct a Cartesian coordinate system with the origin point
being the first AE in the first SA. Assuming that the AoSA lies
in the x-y plane, then the coordinate of the s̄-th AE in the s-th
SA is given by

ps,s̄ =

⎛
⎝(m− 1)[(

√
S̄ − 1)da + dsub] + (m̄− 1)da

(n− 1)[(
√
S̄ − 1)da + dsub] + (n̄− 1)da

0

⎞
⎠ . (1)

The array aperture of the planar AoSA, denoted by D, equals
the length of its diagonal, and is given by

D = ‖p1,1 − pS,S̄‖2
=
√
2[
√
S(

√
S̄ − 1)da + (

√
S − 1)dsub], (2)

where the distance between adjacent AEs is configured as half
the carrier wavelength λc, i.e., da = λc

2 , while the distance

1The system model for multi-antenna UEs is similar to the single-antenna
case after some proper vectorization. Please see Section V in [13] for details.
However, if the number of antennas at the UEs is comparable to that at the BS,
the dual-side near-field effect needs to be considered [36], which will further
complicate the hybrid-field channel model. Nevertheless, it is still possible to
extend the proposed framework to such a case since the system models are
similar, while the channel distributions can be learned from data. We leave it as
a future direction due to the limited space. Although we have focused on the
uplink channel estimation to illustrate the algorithm, extension to the downlink
channel estimation can be performed in a similar manner as [37].
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Fig. 2. Accuracy of the far-field array response versus the distance rl using
(8) and (9), when S = 4, S̄ = 256, da = λc/2, θl = 0.4π, and φl = −0.7π.

between adjacent SAs is given by dsub = wda (w � 1), since
we mainly consider widely spaced SAs that are typical in THz
UM-MIMO systems [10], [11], [27].

We then introduce the far-field and near-field considerations
in THz UM-MIMO systems. According to the distance from
the RF source to the antenna array, wave propagation can be
divided into the far-field and the near-field regions [11], [13].
As shown in Fig. 1(c), in the far-field region, the wavefront is
approximately planar and the angle of arrival (AoA) at each AE
can be assumed equal. In the near field, however, the planar
wave assumption no longer holds. In such a case, the spherical
wavefront must be considered in channel modeling.

The boundary between the far- and near-field regions is the
Rayleigh (or Fraunhofer) distance, i.e., DRayleigh = 2D2

λc
[38],

which is related to both the carrier wavelength and the array
geometry. Plugging (2) into the expression, we obtain that

DRayleigh =
{√

S(
√

S̄ − 1) + (
√
S − 1)w

}2

λc. (3)

Although λc is small in THz systems, the massive number of
AEs and the widely spaced SAs can still result in a quite large
near-field region. Due to the limited coverage of THz wave,
the far-field and near-field regions typically coexist. The portion
can vary based on the specific system settings. For reference,
DRayleigh in some typical THz UM-MIMO systems with planar
AoSA is illustrated in Fig. 2.

In view of this, we study the general case where the channel
consists of a mixture of far- and near-field paths, i.e., the hybrid-
field condition. In addition, the considered non-uniform planar
AoSA also represents a general class of array geometry for THz
UM-MIMO systems. The method proposed in this work is thus
applicable to a broad range of system settings.

B. Hybrid-Field THz UM-MIMO Channel Model

Due to the limited scattering of the THz wave, the spatial-
frequency channel h̃ ∈ CSS̄×1 between the BS and a specific
UE can be characterized by the superposition of one LoS path
and L− 1 non-LoS paths [13], given by

h̃ =

L∑
l=1

αl(fc)a (φl, θl, rl, fc) e
−j2πfcτl (4)

where fc denotes the carrier frequency, while αl(fc), φl, θl, rl,
a(φl, θl, rl, fc), and τl are respectively the path loss, azimuth
AoA, elevation AoA, distance between the array and the RF
source/scatterer, the array response vector, and the time delay

of the l-th path. In particular, φl, θl, and rl are measured with
respect to the origin of the coordinate system, as shown in
Fig. 1(a).

1) Path Loss: In addition to the spread loss, the molecular
absorption loss is non-negligible at the THz band. The path loss
αl accounts for both of them. Assuming that l = 1 denotes the
LoS path and l > 1 denotes the NLoS paths, then

αl(fc) = |Γl|
(

c

4πfcr1

)
e−

1
2kabs(fc)r1 , (5)

where Γl is the reflection coefficient, r1 is the LoS path length,
and kabs is the molecular absorption coefficient [13]. For the LoS
path, Γl = 1. For NLoS paths, Γl is given by

Γl =
cosϕin,l − nt cosϕref,l

cosϕin,l + nt cosϕref,l
e
−
(

8π2f2
c σ2

rough
cos2ϕin,l

c2

)
, (6)

where ϕin,l is the angle of incidence of the l-th path, ϕref,l =
arcsin(n−1t sinϕin,l) is the angle of refraction. Also, nt and
σrough are respectively the refractive index and the roughness
coefficient of the reflecting material [13]. Due to the severe
penetration of the diffused and diffracted rays at THz band,
their contributions are negligible over only a few meters [4].
Therefore, similar to [11], [13], the NLoS path loss model takes
into account the single-bounce reflected rays only.

2) Array Response Vector: As mentioned before, the array
response vector a(φl, θl, rl, fc) ∈ CSS̄×1 differs in the far- and
near-field regions, which are determined by the Rayleigh dis-
tance DRayleigh, and is given by

a(φl, θl, rl, fc) =

{
anear(φl, θl, rl, fc), if rl < DRayleigh,

afar(φl, θl, rl, fc), otherwise.
(7)

For notational brevity, we first construct the array response
matrix. Due to the spherical wavefront, each element of the
near-field array response matrix depends on the exact distance
between each AE and the RF source/scatterer. For the l-th
path, the position of the RF source/scatterer is rltl, where
tl is the unit-length vector in the AoA direction, given by
tl = (sin θl cosφl, sin θl sinφl, cos θl)

T . Therefore, the array
response of the s̄-th AE in the s-th SA is given by

(Anear(φl, θl, rl, fc))s,s̄ = e−j2π
fc
c ‖ps,s̄−rltl‖2 , (8)

where c is the speed of light. The near-field array response
vector is anear(φl, θl, rl, fc) = vec(Anear(φl, θl, rl, fc)). Due to
the planar wavefront in the far-field region, the exact distance
can be approximated by a linear function of the SA and AE
indexes. Therefore, each element of the far-field array response
matrix Afar(φl, θl, rl, fc) is given by

(Afar(φl, θl, rl, fc))s,s̄ = e−j2π
fc
c (pT

s,s̄tl−rl). (9)

where the term (pT
s,s̄tl − rl) in the exponent is the linear approx-

imation of the exact distance ‖ps,s̄ − rltl‖2 obtained by the
first-order Taylor expansion. Afterwards, the relevant far-field
array response vector can also be obtained by vectorization, i.e.,
afar(φl, θl, rl, fc) = vec(Afar(φl, θl, rl, fc)).

In Fig. 2, we plot the accuracy of the far-field array response
versus the distance rl, when S = 4, S̄ = 256, da = λc/2, θl =
0.4π, and φl = −0.7π. Four curves with different SA spacings
and carrier frequencies are drawn for comparison. Depending on
the system settings, the portion of the far- and near-field regions
vary. The Rayleigh distance is shown by a vertical line with
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the same color as the corresponding curve. We can see that the
far-field array response is correct when rl is beyond the Rayleigh
distance DRayleigh. However, the approximation is inappropriate
in the near-field region where rl < DRayleigh. In this case, the
accurate near-field array response must be used.

3) Sparse Channel Representation: For channel estimators
based on sparse reconstruction, the fundamental assumption
is that the spatial channel h̃ can be transformed to its sparse
representation h̄ in the form of h̃ = Fh̄, under an appropriate
dictionary matrixF. Since each SA in the planar AoSA is a UPA
with identical geometry, we could design the overall dictionary
matrix in an SA-by-SA manner. For far-field paths, the array
response in (9) is a linear function of the AE index, and is
insensitive to the distance rl. Therefore, for each SA, one can
use the DFT-based dictionary U to uniformly sample the AoAs
θl and φl, which is constructed by the Kronecker product of two
normalized DFT matrices of size

√
S̄ ×
√
S̄ [16]. The overall

dictionary matrix is then F = blkdiag(U1,U2, . . . ,US) with
each component matrix Us = U. For near-field paths, the array
response in (8) is a non-linear function of the AE index, and is
sensitive to both the AoAs θl, φl and the distance rl. To handle
this, the idea in previous works is to sample both the AoAs and
the distance to construct a higher dimensional angle-distance
domain dictionary matrix [14]. However, for the considered
hybrid-field case, the optimal dictionary is dependent on the
portion of the far-field and near-field paths. The state-of-the-
art solution in the literature is to apply dictionary learning to
optimize the dictionary matrix F using site-specific data [16].

In our simulations, we adopt dictionary learning when com-
paring with the CS-based benchmarks since their performance
is heavily affected by the quality of the sparse representation.
Discussions on the details are deferred to Section V. For the pro-
posed method and the other DL-based benchmarks, we simply
adopt the DFT-based far-field dictionary since their performance
does not rely on the channel sparsity.

C. Problem Formulation

In the uplink channel estimation, the UEs transmit training
pilots to the BS for Q time slots. We assume that orthogonal
pilots are adopted and consider an arbitrary UE without loss of
generality [13], [14]. The received pilot signal yq ∈ CS×1 in the
q-th time slot at the BS is given by

yq = WH
BB,qW

H
RF,q(h̃sq + nq),

= WH
BB,qW

H
RF,qFh̄sq +WH

BB,qW
H
RF,qnq, (10)

where WBB,q ∈ CS×S denotes the digital combining matrix,
WRF,q = blkdiag(w1,q,w2,q, . . .wS,q) ∈ CSS̄×S is the ana-
log combining matrix where the elements of each compo-
nent vector wi,q ∈ CS̄×1 satisfy the constant-modulus con-
straint, sq is the pilot symbol that is set as 1 for conve-
nience, and nq ∼ CN (0, σ2

nI) is the additive white Gaus-
sian noise (AWGN). Since the combining matrices cannot
be optimally tuned without knowledge of the channel, we
consider an arbitrary scenario where WBB,q is set as iden-
tity I and the analog phase shifts in WRF,q are randomly
picked from one-bit quantized angles, i.e., (wi,q)j ∈ 1√

S̄
{±1},

to reduce the energy consumption [28]. The received pilot
signal ȳ = [yT

1 ,y
T
2 , . . . ,y

T
Q]

T ∈ CSQ×1 after Q time slots

of the training pilot transmission is given by ȳ = M̄h̄+ n̄,
where M̄ = [(WH

RF,1F)
T , . . . , (WH

RF,QF)
T ]T ∈ CSQ×SS̄ , and

n̄ = [(WH
RF,1n1)

T , . . . , (WH
RF,QnQ)

T ]T ∈ CSQ×1.
Since deep learning packages require real-valued inputs, we

transform the system model into its equivalent form. Denoting
y = [�(ȳ)T ,�(ȳ)T]T ∈ R2SQ×1, h = [�(h̄)T ,�(h̄)T]T ∈
R2SS̄×1. n = [�(n̄)T ,�(n̄)T]T ∈ R2SQ×1, and

M =

(�(M̄) −�(M̄)
�(M̄) �(M̄)

)
∈ R2SQ×2SS̄ , (11)

the equivalent real-valued system model is given by

y = Mh+ n. (12)

The channel estimation aims to recover the channel represen-
tation h from the measurement y, with the knowledge of the
measurement matrix M. If available, the statistics of the noise n
can also be utilized to enhance the performance. In the following,
we propose FPN-based algorithms to solve the problem. Notice
that (12) is also relevant to the general linear inverse problems
that are prevalent in the physical layer, e.g., detection and de-
coding [25]. The proposed method can also provide inspirations
for DL-based solutions to these problems.

III. FPNS FOR THZ UM-MIMO CHANNEL ESTIMATION

A. Preliminaries of Model-Driven DL

The measurement matrix M will be singular, if the number of
pilots is reduced. Prior information must be exploited in either
the form of regularization or prior distribution to ensure robust
estimation. The former formulates channel estimation as a reg-
ularized LS (RLS) problem, i.e., minh

1
2‖y −Mh‖22 + λR(h),

where λ is a positive scalar and R(h) is a sparsity-inducing
regularizer, e.g., the �1-norm. The RLS can be solved by prox-
imal gradient descent (PGD) or alternating direction method
of multipliers (ADMM) algorithms [39]. The latter formulates
channel estimation as maximum a posteriori (MAP) or minimum
mean squared error (MMSE) inference, which can be tackled
by approximate message passing (AMP) and OAMP [17], [18].
Although these two categories of algorithms have distinct prin-
ciples and purposes, their per-iteration update rules are similar in
form. In particular, they can be divided into the linear estimator
(LE) and the non-linear estimator (NLE), as listed in Table I.
In the table, ρ is the step size, the superscript (t) is the t-th
iteration, Prox(·) denotes the proximal operator [39], W(t) is
the LE matrix of OAMP, and ηt(·) denotes the NLE of OAMP.
The last two will be detailed later in Section III-D. The LE
enforces the estimation to be consistent with the received pilots,
while the NLE ensures that the estimation agrees with the prior
knowledge of the channel. The channel estimation algorithms
can be interpreted as the fixed point iteration of the composition
of the LE and the NLE, which can run an arbitrary number of
iterations until convergence [40]. The estimated channel is then
the stable state of the fixed point iteration, called the fixed point
or equilibrium point.

The LE relies on the received pilot signals, which is known
perfectly, and is easy to construct. However, the bottlenecks
of the above algorithms all lie in the NLEs since their design
requires prior knowledge of the channel, which is difficult to
acquire. Hand-crafted regularizers or priors can only capture
the rough information since they are limited by their analytical
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TABLE I
PER-ITERATION UPDATE RULES FOR REPRESENTATIVE ITERATIVE CHANNEL ESTIMATORS

Fig. 3. Comparison between the general frameworks of existing deep unfolding methods and the proposed fixed point networks (FPNs).

structure. For example, the dictionary matrix may not sparsify
the channel well and can cause energy leakage effects. Similarly,
the empirically chosen base distribution to model the prior can
be mismatched with the true prior distribution.

One natural idea is to replace NLEs with neural networks
and then learn to exploit the prior information of the channel
from data, which becomes well-motivated in theory due to two
seminal works [41], [42]. In [41], the authors found that the
proximal operators in PGD and ADMM could be understood
as MAP estimators of Gaussian denoising problems. In [42],
the authors found that the NLEs in AMP, OAMP and related
algorithms can also be interpreted as Gaussian noise denoisers.
Deep neural networks, known as powerful denoisers, are thus
well-suited to substitute the NLEs, which leads to the thriving
of model-driven DL-based channel estimators [28], [29], [31].

B. Motivations of FPNs

Model-driven DL-based, i.e., deep unfolding-based, estima-
tors suffer from several systematic drawbacks, which make them
unsuitable for THz UM-MIMO. In the sequel, we discuss these
drawbacks and reveal the motivations of our proposal.

Deep unfolding-based estimators are constructed by first trun-
cating a classical iterative algorithm to pre-defined and fixedT
layers, and then substituting each NLE in layer t by a deep
neural network parametrized by θt [28], [29], [31], as illustrated
in Fig. 3. In layer t, the LE is denoted by fLE(·;y) and the
NLE is given by fNLE,θt

(·). The overall update in layer t is the
composition of the LE and the NLE, given by

h(t+1) = fθt
(h(t);y) � (fNLE,θt

◦ fLE)(h
(t);y). (13)

The difference between specific works only lies in the choice of
the base algorithm, which affects fLE(·;y), and the choice of the
neural network, which impacts fNLE,θt

(·). The training process
can be described by an optimization problem, i.e.,

min
Θ={θ1,...,θT }

L(h(T );hgt,y),

s.t. h(T ) = (fθT
◦ · · · ◦ fθ1

)(h(0);y), (14)

where L(·; ·, ·) is the loss function, Θ denotes the collection of
trainable parameters, and hgt denotes the ground-truth channel.
The mapping fθT

◦ · · · ◦ fθ1
defines an explicit neural network

structure with truncatedT layers in forward propagation.

Nevertheless, the accustomed formulation of deep unfolding
can give rise to several critical problems when it is applied to
THz UM-MIMO channel estimation. First, it scales poorly with
the UM-MIMO array. The required gradient in the training, i.e.,
backward, process of (14) is computed using the chain rule, i.e.,
step-by-step gradient, which involves tracking and storing all
the intermediate states h(t) and causes a high space complexity
of O(T ) [35], [43]. For UM-MIMO systems with thousands
of antennas and complicated channel conditions, the training
cost is unaffordable. Second, the reliability is not guaranteed.
Truncating the algorithm to T layers breaks the convergent
nature of classical iterative algorithms. The objective in (14)
only minimizes the estimation accuracy of the final layer h(T ).
Nonetheless, the intermediate state h(t) is not meaningful and
tends to oscillate frequently [33]. Third, the complexity is high
and not adaptive. Owing to the unreliable intermediate states,
deep unfolding algorithms are not adaptive and must be run for
the full T layers, which causes excessive complexity. Lastly,
the generalization ability is poor in simulations, which cannot
handle the changeable channel conditions in THz UM-MIMO.

Given these systematic drawbacks, it is important to rethink
the feasibility of the deep unfolding framework. Some previ-
ous works noticed the complexity issue mentioned above, and
proposed reinforcement learning-based modules to realize early
exit of the unfolding process [30], [44]. Nevertheless, the other
issues still remain open, which motivates us to propose a new
and general framework to solve all these problems and embed
DL into iterative estimators in a theoretically sound manner.

C. General Ideas of FPNs

As mentioned in Section III-A, the estimated channel with
classical iterative algorithms is the stable state of the iteration,
i.e., the fixed point h∗ defined by h∗ = fθ(h

∗;y), where the
subscript θ here indicates that the parameters of the NLEs are
the same in each iteration. If we can construct a DL-involved
mapping fθ(·;y) whose repeated application leads to a fixed
point that corresponds to the estimated channel, then the merits
of classical algorithms will be perfectly preserved. In addition,
the powerful learning capability of deep neural networks can be
exploited at the same time, having the best of both worlds. We
refer to such framework as FPNs, which is formulated by

min
θ
L(h∗;hgt,y), s.t. h∗ = fθ(h

∗;y). (15)
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Let us first suppose that the fixed point h∗ exists and is also
unique. We will discuss how to satisfy this assumption soon.
Then, (15) defines a bi-level optimization problem, where the
inner level requires computing the fixed point of the mapping
fθ(·;y), while the outer level is the minimization of the loss
with respect to the parameters of the NLE neural network θ.
This is drastically different from the constraint in (14) which
prescribes an explicit neural network structure. On the contrary,
the constraint in (15) is rather defining what one wants the
DL-based mapping fθ(·;y) to achieve, other than providing an
explicit structure, as shown in Fig. 3. For example, to get the
fixed point h∗, i.e., the estimated channel, given different pilot
signals y, fθ(·;y) may be executed for different numbers of
times, with different computational graphs. FPNs thus belong
to implicit DL [43], which can extend to an arbitrary number of
iterations until convergence.

To tackle the bi-level problem (15), one common method is
to compute the implicit gradient based on the implicit function
theorem [43], [45], as given in the following proposition.

Proposition 1: Given the fixed point equationh∗ = fθ(h
∗;y)

and the loss function L(h∗;hgt,y), the gradient of the loss with
respect to θ is calculated by

∂L
∂θ

=
∂L
∂h∗

(
I− ∂fθ(h

∗;y)
∂h∗

)−1
∂fθ(h

∗;y)
∂θ

. (16)

Proof: Please refer to Appendix A. �
From (16), we observe that calculating the implicit gradient

only requires the fixed point h∗, without the need of storing any
intermediate states h(t). As a result, the memory complexity
is only O(1) regardless of the number of executed iterations,
which is drastically smaller in comparison to deep unfolding,
i.e., O(T ). However, calculating the matrix inverse in (16) is
very costly given the high dimension of the channel. We turn
to the approximate gradient proposed in [35] to reduce the
computational overhead, given by(̂

∂L
∂θ

)
=

∂L
∂h∗

∂fθ(h
∗;y)

∂θ
≈ ∂L

∂θ
. (17)

This has been proved to be a descending direction of the loss
under mild assumptions and achieved empirical success [35].
In addition, to realize (17) in the DL libraries, e.g., Pytorch,
one only needs to modify a few lines of codes compared to the
standard training procedure [35, Section III]. We refer to this as
one-step gradient, as the backward process only depends on one
addition application of fθ(·;y) at h∗, regardless of how many
iterations it takes to reach the fixed point h∗.

With the low-cost training procedure at hand, the remaining
problem is how to ensure that the fixed point h∗ = fθ(h

∗;y)
exists and is unique, and how to find the fixed point efficiently.
Before going on, we first introduce two key concepts.

Definition 2 (Lipschitz continuity): A mappingfθ(·;y) is said
Lipschitz continuous if there exists a constant L such that

‖fθ(h1;y)− fθ(h2;y)‖ ≤ L‖h1 − h2‖
holds for any h1,h2 ∈ dom(fθ(·;y)).

Definition 3 (Contraction): A mapping fθ(·;y) is a contrac-
tion mapping if it is Lipschitz with constant 0 ≤ L < 1.

The existence of the fixed point and an efficient way to find
it can be ensured by fixed point theory [40]. As long as fθ(·;y)
is a contraction mapping (no matter what detailed operations it

contains), a simple repeated application of fθ(·;y) will make
h(t) converge in linear rate to the unique fixed point h∗. This
can be formally stated in the following lemma.

Lemma 4 (Banach [40, Th. 1.50]): For any initial value h(0),
if the sequence {h(t)} is generated via the relationshiph(t+1) =
fθ(h

(t);y) and fθ(·;y) is a contraction mapping with Lipschitz
constant L, then {h(t)} converges to the unique fixed point h∗
of fθ(·;y) with a linear convergence rate L.

The above lemma indicates that if one can train a contraction
fθ(·;y) = (fNLE,θ ◦ fLE)(·;y) with DL-based components θ,
then the convergence of FPNs to the unique fixed point h∗ in
linear rate can be theoretically guaranteed. That is to say, we
should control the Lipschitz constant of fθ(·;y). Since the LEs
of classical iterative algorithms are all linear functions of h(t),
their Lipschitz constants can be easily computed. Therefore, we
only need to control the Lipschitz constant of the neural network
component fNLE,θ(·). Given the following lemma, we can work
out the exact requirement of the neural network θ.

Lemma 5 ([46]): The composition of an L1-Lipschitz and an
L2-Lipschitz mapping is L1L2-Lipschitz.

The lemma above helps us identify the required Lipschitz
constant of neural network fNLE,θ(·) to ensure the linear con-
vergence. With such knowledge, we can control the Lipschitz
constant of fNLE,θ(·) during the training process with many off-
the-shelf methods [46]. Note that Lipschitz-continuous neural
networks can also contribute to the adversarial robustness [46],
which is beneficial to the superb out-of-distribution robustness
of FPNs observed in the simulations in Section VI.

In the sequel, we present an example of the FPN-enhanced
iterative channel estimator based on OAMP so as to illustrate
the design guideline. Similar procedures can also be applied to
enhance other iterative estimators, e.g., PGD and ADMM, which
indicates the generality of the proposed FPNs.

D. FPN-OAMP: Enhancing OAMP With FPNs

OAMP is an efficient compressed sensing algorithm to solve
channel estimation problems, which consists of a de-correlated
LE and a divergence-free NLE, as shown in Table I [18]. In
the sequel, we present the specific design of the FPN-enhanced
OAMP algorithm, i.e., FPN-OAMP.

1) Linear Estimator: The LE of FPN-OAMP is similar to the
original one in OAMP, given by

u(t+1) = fLE(h
(t);y) = h(t) +W(t)(y −Mh(t)) (18)

where W(t) is a de-correlated LE matrix. The matrix W(t) can
be built upon the transpose and the pseudo-inverse of M, or the
linear minimum mean square error (LMMSE) matrix [18]. The
first two do not depend on the noise statistics and are the same in
each iteration, which match the FPN framework. While the last
one is the optimal form, it depends on the noise statistics and
requires computing a matrix inverse in each iteration, making it
too complicated for UM-MIMO systems. We choose the pseudo-
inverse LE due to its competitive performance and reasonable
cost. The LE matrix W(t) is given by

W(t) = ηM† =
2SS̄

tr(M†M)
M†, (19)

whereη is the step size to guarantee that tr(I−WM) = 0holds,
such that the LE is de-correlated. That is, the elements of the
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Fig. 4. The structure of one RB. Let the input be x, the output is x+T (x).

NLE input error vector u(t+1) − hgt are mutually uncorrelated
with zero-mean and identical variances [18].

2) Non-Linear Estimator: The NLE in FPN-OAMP ensures
that the estimation is consistent with the prior knowledge of the
channel. We replace the NLE in the original OAMP with neural
networks to learn to exploit the prior knowledge from data. The
NLE in FPN-OANP is given by

h(t+1) = ηt(u
(t+1)) = fNLE,θ(u

(t+1)), (21)

which is a neural network parametrized by θ. Specifically,
fNLE,θ(·) is designed as a ResNet structure with three residual
blocks (RBs) [47]. Before the RBs, u(t+1) is first reshaped
into a tensor form of 2S feature maps of size

√
S̄ ×
√
S̄, each

corresponding to an SA, and then passed through a convolution
(Conv) layer to lift it to 64 feature maps. Each RB is formed
by an identity mapping plus the compositions of 3× 3 Conv
with 64 feature maps and ReLU activation function, as shown in
Fig. 4. After the RBs, we apply two 1× 1 Conv layers with 2S
feature maps, and reshape the output into a vector with the same
size as u(t+1). We adopt layer normalization in each RB for
more stable training [48], which is suitable for recurrent neural
networks, and so as the FPNs.

There are two takeaways in the design of fNLE,θ(·). First,
since the planar AoSA is non-uniform, the relationship of the
channel between inter-SA and intra-SA antennas are different.
Therefore, one should separate the SA channels into different
feature maps, other than using the channel of the whole array as
the input to the neural network. Second, the residual links are
important to make the NLE approximately divergence-free. With
such design, the statistical properties of the original OAMP still
hold well for FPN-OAMP [49]. By contrast, the NLE without
residual links offers much worse performance.

FPN-OAMP is summarized in Algorithm 1, which is de-
signed as the fixed point iteration of the contraction mapping
fθ(·;y) = (fNLE,θ ◦ fLE)(·;y). We then discuss the key the-
oretical properties of FPN-OAMP and the requirements on
DL-based fNLE,θ(·) to ensure that the mapping is a contraction.

E. Key Theoretical Properties

1) Representational Power: The proposed FPNs restrict the
parameters θ of the DL-based NLE fNLE,θ(·) to be identical
in each iteration in order to match the requirements of fixed
point iteration. This initially seems a drawback over existing
deep unfolding methods, which do not require the parameters
to be identical and generally use a different set of parameters
for each layer, i.e., Θ = {θ1,θ2, . . . ,θT }. Nevertheless, the
representational power of FPNs has no notable loss compared to

Algorithm 1: FPN-OAMP for THz channel estimation.
1: Input: Measurement matrix M, received pilot signals

y, weights of the NLE θ, error tolerance ε
2: Output: Estimated THz channel h∗ (fixed point)
3: Initialize: h(0) ← 0, t← 0
4: Fixed point iteration of fθ(·;y):
5: while ‖h(t) − fθ(h

(t);y)‖2 > ε do
6: h(t+1) ← fθ(h

(t);y)
7: t← t+ 1
8: h∗ ← h(t)

9: return h∗

deep unfolding due to the proposition below, even though they
are much cheaper to train [43]. Simulations in Section V also
confirm the advantages of FPNs over deep unfolding.

Proposition 6 ([43, Th. 3]): For a T -layer deep unfolded
network with different parameters per layer, there exist FPNs
that can represent the same network with equivalent depth.

2) Linear Convergence Rate: We provide the proof for the
linear convergence of FPN-OAMP to a unique fixed point h∗
and the requirement on the DL-based NLE fNLE,θ(·).

Theorem 7: The sequence {h(t)} generated by FPN-OAMP
updates fθ(·;y) = (fNLE,θ ◦ fLE)(·;y) converges to a unique
fixed point h∗ with linear convergence rate L if the DL-based
NLE fNLE,θ(·) is a contraction with Lipschitz constant L.

Proof: Please refer to Appendix B. �
We discuss how to train the DL-based NLE fNLE,θ(·) as a

contraction mapping in Section III-F. The linear convergence
property ensures the reliability and efficiency of FPN-OAMP,
which is not available for existing deep unfolded methods. In
addition, since the inference process of FPNs is to find the
fixed point of a contraction, many advanced algorithms for this
purpose, e.g., Anderson acceleration [40], can be adopted to
potentially reach even super-linear convergence.

3) Adaptive Accuracy-Complexity Tradeoff: As a corollary,
the contraction property of FPN-OAMP further indicates that the
gap betweenh(t) andh∗ is monotonically decreasing, according
to the definition of Lipschitz continuity. This indicates that in-
termediate states of FPN-OAMP will be closer to the fixed point
as the fixed point iteration goes. This provides a user-defined
tradeoff between complexity and accuracy, which is valuable in
practical deployment.

Corollary 8: Given the sequence {h(t)} generated by FPN-
OAMP updates fθ(·;y)with Lipschitz constantL < 1 and fixed
point h∗, then ‖h(t+1) − h∗‖2 ≤ L‖h(t) − h∗‖2 holds.

F. Offline Training and Online Self-Adaptation

The loss function we use, i.e., L(h∗;hgt,y), is the weighted
sum of two different terms, given by

L(h∗;hgt,y) = Lmain(h
∗;hgt) + γLaux(h

∗;y), (22)

where Lmain(h
∗;hgt) is the supervised main loss, Laux(h

∗;y) is
the unsupervised auxiliary loss, and γ is the hyper-parameter
balancing these two terms. For both the main and auxiliary

Lmain(h
∗;hgt) =

1

n

n∑
i=1

(‖hgt,i − fθ(h
∗
i ;yi)‖1

‖hgt,i‖1

)
, Laux(h

∗;y) =
1

n

n∑
i=1

(‖yi −Mfθ(h
∗
i ;yi)‖1

‖yi‖1

)
. (20)
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loss functions we utilize the normalized mean absolute error
(NMAE) criteria, since it results in better performance and
robustness compared to the normalized mean squared error
(NMSE) loss according to the analysis in [50]. The expressions
of the two terms are given in (20) shown at the bottom of this
page. We leth∗ andhgt denote a batch of estimated/ground-truth
channels, while h∗i and hgt,i denote a specific sample in that
batch.

The offline training process is standard despite the use of the
one-step gradient instead of the step-by-step gradient of the chain
rule. In addition, we append a safeguarding step to ensure that
the DL-based NLE, i.e., fNLE,θ(·), in FPN-OAMP is contractive
by checking the approximate Lipschitz constant over the current
batch of data after each weight update, i.e.,

L̂ =
∑n

i=1 ‖fNLE,θ(h
∗
i+δi)−fNLE,θ(h

∗
i)‖2∑n

i=1 ‖δi‖2
, (23)

where δi denotes a small random perturbation. If L̂ > 1 is found,
i.e., the contraction property does not hold, we normalize the
weight θ according to L̂, similar to [1]. Nevertheless, this is
almost never violated in our experiments, indicating that the
training process itself encourages the contraction property.

Although FPN-OAMP can directly generalize to almost all
the tested distribution shifts in Section VI, it is still important
to design an online self-adaptation scheme in case that direct
generalization fails. Our scheme is inspired by [51] with two
steps. First, include an unsupervised auxiliary loss Laux(h

∗;y)
at the offline training stage. Second, at the online deployment
stage, if potential performance drop is detected,2 fine-tune the
model based on the offline-trained parameters using the auxiliary
loss for the one particular received pilot signal y. The overhead
of one iteration of the online fine-tuning is roughly equal to
doing one additional forward propagation, which is quite cheap.
In practice, we find that around 5 iterations of fine-tuning is often
enough. Notice that the online self-adaptation is only a backup
option, since direct generalization can already handle most cases
of distribution shifts.

G. Complexity Analysis

We analyze the complexity based on the real-valued sys-
tem model (12). The complexity of the LE in FPN-OAMP
is dominated by matrix-vector product, given by O(4S2S̄Q),
because the LE matrix W(t) is the same in each iteration
and can be pre-computed and cached. The complexity of the
NLE in FPN-OAMP depends on the number of floating point
operations (FLOPs) of the neural network, which is constant and
denoted by c. To reach an ε-optimal precision of the fixed point,
FPN-OAMP requires only O(log 1

ε ) iterations due to linear
convergence. The overall complexity isO(log 1

ε (4S
2S̄Q+ c)),

which scales linearly with the number of antennas. To illustrate
the complexity straightforwardly, we provide the running time in
Section V.

2In our recent work [49], we propose a preliminary method to realize this
goal. However, detailed discussion on this is out of the scope of this article.

IV. EXTENSION TO WIDEBAND SYSTEMS

Consider a wideband THz UM-MIMO orthogonal frequency
division multiplexing (OFDM) system3 with the same BS array
as in Section II. We consider K subcarriers over a bandwidth of
B at the center frequency fc. For an arbitrary UE, the real-valued
equivalent of the received signal at the k-th subcarrier, y[k] ∈
R2SQ×1, can be obtained in a similar manner as the narrowband
case based on (12), i.e.,

y[k] = Mh[k] + n[k], (24)

where k = 1, 2, . . . ,K is the subcarrier index at frequency
fk = fc + (k − 1− K−1

2 )BK , and M ∈ R2SQ×2SS̄ is the mea-
surement matrix defined in Section II. It is irrelevant to the
subcarrier index k since the analog combiner is shared across
different subcarriers [7]. Similar to h in the narrowband case,
the channel vector at the k-th subcarrier, i.e., h[k] ∈ R2SS̄×1,
can be generated by replacing fc with fk in (4). However, the
gaps among the carrier frequencies fk are fairly large owing
to the huge available bandwidth B at the THz band, making
the array response a(φl, θl, rl, fk) fairly frequency-selective.
Even for the same multipath component, the beam power can
still vary considerably at different subcarriers, which leads to
the spatial wideband effect, or beam squint effect [34]. As a
result, the combining gain or the effective signal-to-noise-ratio
(SNR) is also unequal across subcarriers given that the analog
combiner is shared [13]. This renders a key difference between
narrowband and wideband channels. We then discuss how to
extend the proposed framework to wideband systems.

A. Narrowband Dataset

The most direct way is to employ the narrowband FPN-OAMP
algorithm (trained for the central frequency fc) to solve the chan-
nel estimation problem at each subcarrier k in a parallel manner.
For practical implementation, this can be easily achieved by
increasing the testing batch size to the number of subcarriers.
This method directly reuses the narrowband estimator without
retraining thanks to the strong generalization capability. This
method ignores the correlation between different subcarriers.
Nevertheless, the performance is still competitive thanks to the
strong generalization ability.

B. Wideband Dataset

The second method also deals with the wideband channel
estimation problem through K parallel subproblems. The key
difference is that the network is trained using the wideband
dataset, which covers all subcarriers, by treating the narrowband
channel at each subcarrier as a separate training sample. After
training, the inference procedure is the same as above. This
can exploit the correlation among different subcarriers during
training to tackle beam squint.

3Another promising alternative to OFDM is single-carrier frequency domain
equalization [13], to which the proposed method can also be easily extended.
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TABLE II
KEY SYSTEM PARAMETERS

V. SIMULATION RESULTS

A. Simulation Setup

We first consider the narrowband systems, while extension to
the wideband systems is discussed at the end of this section.
The main system parameters and their values are listed in
Table II [13]. To model the hybrid-field channel conditions, the
scatterer distance rl is set as a uniformly distributed random
variable, spanning both the far-field and near-field regions. We
adopt the NMSE between the estimated and the ground-truth
channel as the performance metric, which is averaged over the
testing dataset. The following six benchmarks are compared:
� LS: Least squares estimation.
� OMP: Sparse reconstruction-based method with the or-

thogonal matching pursuit algorithm [13], [14].
� OAMP: Bayesian estimation via OAMP algorithm with

the LMMSE LE, and Bernoulli-Gaussian prior [18].
� FISTA: Sparse reconstruction-based method with the fast

iterative soft thresholding algorithm [52].
� EM-GEC: Bayesian estimation via EM-assisted general-

ized expectation consistent signal recovery with Gaussian
mixture prior [22].

� ISTA-Net+: state-of-the-art deep unfolding method based
on the iterative soft thresholding algorithm [31], [53].

Both ISTA-Net+ and the proposed FPN-OAMP are imple-
mented by using Pytorch and trained for 100 epochs using
the Adam optimizer. We set γ = 0.3 in (22), and use a batch
size of 128 and an initial learning rate of 0.001. The learning
rate is reduced by half after every 30 epochs. The training,
validation, and testing datasets respectively consist of 80000,
5000, and 5000 samples. The SNR levels of the training and
validation samples are randomly drawn from 0 to 20 dB. We
observe that mixed-SNR training only causes a small drop in
performance compared to dedicated-SNR training. Therefore,
only a single set of parameters is trained. Due to the limitation
of deep unfolding methods, ISTA-Net+ should be truncated to a
finite number of layers. When training and testing ISTA-Net+,
weset this number as 15, since a further increase can offer only
negligible gain. When training the FPN-OAMP, we set the error

Fig. 5. NMSE comparison at different SNR levels.

tolerance ε as 0.01 and the maximum number of iterations as
15 for fair comparison with ISTA-Net+. At the testing stage,
one can run FPN-OAMP for an arbitrary number of iterations
until convergence. The training of FPN-OAMP takes only 50
minutes to complete and consumes less than 1.5 GB of memory
on Nvidia A40 GPU.

We then introduce the choice of the dictionary F. For deep
learning based methods (i.e., ISTA-Net+ and FPN-OAMP), we
adopt the DFT-based dictionary as introduced in Section III. For
other benchmarks where the quality of the sparse representation
is important, we resort to dictionary learning to enhance their
performance [16]. The dictionary F is obtained by an �1-sparse
coding problem over the training dataset, i.e.,

min
F,h1,h2,...,hn

1

n

n∑
i=1

(
1

2
‖ȟi − Fhi‖22 + λ‖hi‖1

)
, (25)

where C is the constraint set of the dictionary, i.e., C �
{F ∈ R2SS̄×2SS̄ , s.t. ‖(F):,j‖22 ≤ 1, ∀j = 1, 2, . . . , 2SS̄}, n is
the number of samples, and λ is a hyper-parameter [16]. In the
objective, ȟi = [�(h̃i)

T ,�(h̃i)
T]T ∈ R2SS̄×1 is the real-valued

equivalent of the spatial channel h̃i ∈ CSS̄×1. To solve the
problem efficiently, we use the algorithm proposed in [54].

B. Superior In-Distribution Performance

In Fig. 5, we present the NMSE comparison at different SNR
levels. It demonstrates that our proposed FPN-OAMP outper-
forms all five benchmarks by a large margin. Compared with
its base algorithm OAMP, the performance gain of FPN-OAMP
is as large as 10 dB. This indicates that the CNN components
of FPN-OAMP can effectively extract and exploit the structures
of the complicated hybrid-field THz UM-MIMO channel. It is
worth noting that, although we have augmented the CS-based
benchmarks with dictionary learning, their performance still
has a notable gap compared to DL-based ones. In addition,
FPN-OAMP always outperforms the deep unfolding method,
ISTA-Net+.

In Figs. 6 and 7, we compare the NMSE evaluated at differ-
ent numbers of iterations/layers4, when the SNR is 5 dB and
15 dB, respectively. LS and OMP are not plotted since they
do not produce intermediate results. In both cases, the proposed
FPN-OAMP converges rapidly within 5 iterations. Furthermore,
the performance of FPN-OAMP at the second iteration is already

4The term iteration is used when the algorithm we refer to can extend to an
arbitrary depth, e.g., FPN-OAMP. By contrast, the term layer is adopted when
the algorithm is truncated to a pre-defined and fixed depth, e.g., ISTA-Net+.
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Fig. 6. NMSE at iteration/layer t (SNR = 5 dB).

Fig. 7. NMSE at iteration/layer t (SNR = 15 dB).

Fig. 8. Convergence of the FPN-OAMP in terms of fixed point residual (left)
and NMSE (right).

better than the final performance of all benchmarks. It is also
observed that the accuracy of all methods, except ISTA-Net+,
increases consistently with the number of iterations. The insta-
bility of ISTA-Net+ is mainly because it is truncated to a fixed
number of layers, and only the final performance is optimized
during training, with no control of the intermediate states. Due
to such instability, to maintain competitive performance, ISTA-
Net+ must use a fixed number of layers during both training and
testing. By contrast, the proposed FPN-OAMP is adaptive in the
number of iterations and has much more stable performance.

C. Linear Convergence Rate

In Fig. 8, we evaluate the convergence of the proposed
FPN-OAMP in terms of fixed point residual (left) and NMSE
(right). Fixed point residual is given by E{‖h(t) − h∗‖/‖h∗‖}.
In the left figure, the fixed point h∗ is obtained by running
FPN-OAMP for 200 iterations, well beyond that during training,
i.e., 15 iterations. The curves are all linear before reaching
convergence, which verifies the linear convergence rate proved
in Theorem 7, and also justifies the safeguarding strategy in
Section III-F. We also observe that the fixed point residual is

Fig. 9. NMSE versus running time (SNR = 5 dB).

monotonically decreasing, which agrees with Corollary 8. This
eliminates the need of tricky stopping criteria. The difference
norm ε or the running time budget can serve as good stopping
criteria with theoretical support. In the right plot, it is observed
that the NMSE converges after 2-5 iterations. The number
of iterations required is slightly larger at higher SNR levels.
We run the algorithm for a much larger number of iterations
compared with the training stage, to confirm that it can extend
to an arbitrary number of iterations.

D. Adaptive Accuracy-Complexity Tradeoff

In Fig. 9, we compare the NMSE versus the running time
when the SNR is 5 dB. The CPU running time is tested on
Intel Core i7-9750H, while the GPU time is tested on Nvidia
A40 GPU. The recorded running time contains only the online
inference stage, while the time consumption of the offline stage,
e.g., dictionary learning and DL training, is not included. As can
be seen, the proposed FPN-OAMP always costs the least time to
converge — only a few milliseconds even when tested on CPU.
The per-iteration running time of FPN-OAMP is as low as that
of the first-order optimization method FISTA, but it converges
much faster with far better performance. Additionally, it is ob-
served that, for any given running time budget, FPN-OAMP can
always achieve a significantly better performance compared with
all benchmarks. Furthermore, unlike deep unfolding methods,
e.g., ISTA-Net+, which requires a fixed number of layers and
therefore a fixed time budget, the running time of FPN-OAMP
is adaptive. By adjusting the error tolerance ε or the running
time budget, a user-defined tradeoff between complexity and
accuracy can be readily achieved. This unique advantage is very
important since the latency requirement and the computational
capability may often vary in practical deployment.

E. Extension to Wideband Systems

In Fig. 10, we compare the NMSE performance at different
SNR levels for the wideband case. Besides the settings in Sec-
tion V-A, the wideband system utilizes OFDM modulation with
bandwidthB = 15GHz andK = 32 subcarriers [13]. We adopt
the HITRAN database to generate the frequency-dependent
molecular absorption loss kabs [11], [55]. For FPN-OAMP with
the narrowband dataset, we directly utilize the same narrowband
channel estimator at the center frequency fc. For the wideband
dataset-based approaches, we train the network using the same
mixed-SNR training strategy as in Section V-A. Simulation
results show that both the narrowband and wideband variants
of FPN-OAMP can significantly outperform ISTA-Net+. In
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Fig. 10. NMSE comparison at different SNR levels in wideband THz UM-
MIMO systems.

TABLE III
OOD GENERALIZATION UNDER NOISE DISTRIBUTION SHIFTS

addition, we observe that the narrowband variant is directly
applicable to the wideband systems without notable performance
loss, which demonstrates the strong generalization capability
of FPN-OAMP over different frequency bands, even with the
existence of beam squint.

VI. ROBUST OUT-OF-DISTRIBUTION PERFORMANCE

Distribution shifts, i.e., the case where the distributions of
the training and testing data differ, are prevalent in practical
deployments and may cause serious performance degradations
for DL-based channel estimators. This is the notorious out-of-
distribution (OoD) problem. The distribution shifts related to
channel estimation can be grouped as
� Noise distribution shifts in n,
� Channel distribution shifts in h,
� Measurement distribution shifts in M.
With extensive simulations, we show the strong generalization

capability of FPN-OAMP to all these distribution shifts. For
the rare cases where direct generalization fails, we verify the
effectiveness of the online self-adaptation scheme.

In the sequel, the source distribution by default refers to the
same simulation setup described in Section V-A. In the tables
below, we only list the particular configuration that is different
in the source and target distributions. The rest configurations are
kept unchanged. By in-distribution, we refer to the case where
the model is trained and tested both on the target distribution. The
training procedure on the target distribution dataset is exactly the
same as that described in Section V-A. By OoD, we mean that
the model is trained on the source distribution but tested on the
target distribution. The performance is also averaged over 5000
testing samples.

A. Noise Distribution Shifts

In the first two rows of Table III, we study the influence of
noise level shifts. For noise levels that are either lower or higher
than the training configuration, the OoD performance is close
to the in-distribution one. This demonstrates that the proposed

TABLE IV
OOD GENERALIZATION UNDER CHANNEL DISTRIBUTION SHIFTS

FPN-OAMP is robust in face of noise level shifts, although it
does not use any information of the noise statistics. Besides, we
can further reduce the performance loss by enlarging the training
SNR range based on practical needs.

In the third row of Table III, we examine the noise type
shifts. We adopt the α-stable distribution to model the impulsive
noise [56], [57], which is defined by the stability parame-
ter 0 < α ≤ 2, the skewness parameter −1 ≤ β ≤ 1, and the
dispersion parameter γ > 0. Since the α-stable noise has no
limited variance, the normal SNR definition becomes invalid.
We alternatively use the generalized SNR (GSNR) defined as
the ratio of the signal power and the dispersion parameter γ
[56]. For evaluation, we let α = 1.7, β = 0.2, and set γ as
such that the GSNR equals 15 dB. The result shows that the
FPN-OAMP model trained with AWGN can directly generalize
to the impulsive noise case.

B. Channel Distribution Shifts

In Table IV, we present the OoD generalization performance
of the proposed FPN-OAMP under channel distribution shifts.
The results in this table are all tested when the SNR is 15 dB,
and the noise distribution type is AWGN.

In the first row, we consider the influence of LoS blockage,
which may frequently occur in THz UM-MIMO systems due to
the high penetration loss [3]. The channels in the source distribu-
tion all consist of one LoS and four NLoS paths, while the chan-
nels in the target distribution only consist of four NLoS paths,
where the NLoS scatterer distance rl follows rl ∼ U(10, 25) m.
The result shows that the performance drop is less than 0.2 dB,
suggesting that LoS blockage almost has no negative effect on
our proposed FPN-OAMP.

In the second and third rows, we check the effect of the
number of paths. The results suggest that breaking away from
the original number of paths will cause nearly no detriment to
the performance of FPN-OAMP.

In the fourth and fifth rows, we study the influence of field
mismatch. To model the near-field only channel, we set the
source/scatterer distance as rl ∼ U(10, 20) m, which is within
the Rayleigh distance. We instead set the distance beyond the
Rayleigh distance, as rl ∼ U(20, 30) m, to model the far-field
only channel. The performance drop is smaller than 0.1 dB, again
demonstrating the robustness of FPN-OAMP.

From the sixth to the eighth row, we show the effects of SA
spacing mismatch. In the source distribution, the SA spacing
is set as dsub = 56λc, while in the target distribution, it is
changed to dsub = 4λc, 36λc, 76λc, respectively. The change in
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Fig. 11. CDF of the OoD performance of ISTA-Net+ and FPN-OAMP under
measurement distribution shifts when the under-sampling ratio ρ = 50%.

TABLE V
OOD GENERALIZATION AND SELF-ADAPTATION UNDER MEASUREMENT

DISTRIBUTION SHIFTS

array geometry will also affect the Rayleigh distance, which
becomes 1.44 m, 10.40 m, and 33.12 m, respectively. The array
geometry mismatch can also causes the side effect of field
mismatch. In such a complicated OoD setting, the performance
of FPN-OAMP is still robust. We further study the effect of
mismatched AE spacing. As [3] pointed out, if plasmonic-based
antennas are adopted, the AE spacing can be much smaller than
the conventional choice of λc/2. In view of this, in the target
distribution, we set the AE spacing as λc/5. The OoD NMSE is
very close to the in-distribution one, suggesting that FPN-OAMP
is also robust to AE spacing mismatch.

In the last row, we check the effects of array uncertainty.
We follow [16] and focus on antenna gain miscalibration. For
a perfect array, the antenna gains are equal. For miscalibrated
array, 20% (205) randomly picked antennas are set as 1 + eg
times the normal antenna gain with eg ∼ N (0, 0.2), while the
rest 80% (819) antennas remain unchanged. The result suggests
that FPN-OAMP is robust to array uncertainty.

C. Measurement Distribution Shifts

In Fig. 11 and Table V, we present the OoD generalization
and/or self-adaptation performance of FPN-OAMP under mea-
surement distribution shifts. The results are all tested when
the SNR is 15 dB, and the noise distribution type is AWGN.
Recall that the measurement matrix M is determined by the
pilot combiners WRF,q , and the dictionary F, as in Section II.

Since ISTA-Net+ and FPN-OAMP are both trained using
a single realization of the random measurement matrix, it is
important to examine whether the trained model can directly
generalize to other different realizations. In Fig. 11, we present
the cumulative distribution function (CDF) of the performance
of such kind of OoD generalization when the under-sampling
ratio ρ is fixed as 50%. To plot the CDF, the model is tested using
1000 realizations of the measurement matrix that are different
from the one used in the training stage. For each realization

of the measurement matrix, the NMSE performance is averaged
over 5000 testing samples. As a reference, we also plot a vertical
line to show the in-distribution performance. It can be observed
that the OoD performance drop of ISTA-Net+ can be as large
as 1 dB. By contrast, the performance drop for the proposed
FPN-OAMP is almost negligible.

In the first three rows of Table V, we examine the mismatch in
the under-sampling ratio ρ = SQ

SS̄
, which is affected by the pilot

lengthQ. In the source distribution, the under-sampling ratio ρ is
set as 50%, while in the target distribution, it is changed to 70%,
30%, and 10%, respectively. We find that when ρ is enlarged
to 70%, the OoD performance remains unaffected. By contrast,
when ρ is decreased to 30% and 10%, the OoD performance
drops drastically. These results suggest that FPN-OAMP can
handle more received pilots but cannot directly generalize to
the case where fewer pilots are transmitted than expected. In
addition, we find that online self-adaptation can close 91% and
98% of the performance gap caused by the lower under-sampling
ratios for the cases of ρ = 30% and 10%, respectively, demon-
strating its effectiveness. Note that self-adaptation is mainly in-
tended to handle abrupt changes in the environment. Doing this
for every testing sample is not economical. If compatibility with
different pilot length is required, one can train FPN-OAMP with
the lowest allowed pilot length, since the model can generalize
to the cases where more pilots are transmitted.

In the last row of Table V, we further study how the shift
in the resolution of the pilot combiner affects the performance
of FPN-OAMP. In the source distribution, the elements of
the pilot combiner are picked from one-bit quantized angles,
while in the target distribution, they are instead drawn from
infinite-resolution angles. The result shows that pilot combiner
resolution shift causes almost no OoD performance drop.

VII. CONCLUSION

In this article, we proposed FPNs, a unified and theoretically
sound framework, to design scalable, low-complexity, adaptive,
and robust DL-based channel estimation algorithms for THz
UM-MIMO systems. The unique benefits of FPNs over the
prevailing deep unfolding methods are established with firm
theoretical supports. In addition to the general framework, a
specific FPN-enhanced algorithm based on OAMP, i.e., FPN-
OAMP, is also proposed. Extensive simulation results in a typical
hybrid-field THz UM-MIMO system with planar AoSA are
presented to demonstrate the significant gains of the proposed
method in terms of various key performance indicators. Fur-
thermore, FPN-OAMP exhibits strong robustness to distribution
shifts and can directly generalize or self-adapt to a wide range of
out-of-distribution scenarios, which makes it an ideal candidate
for practical deployment.

APPENDIX A
PROOF OF PROPOSITION 1

The fixed point equation is h∗ = fθ(h
∗;y), where h∗ can be

viewed as an implicit function related to θ. We denote h∗ as
h∗(θ) when we treat it as an implicit function. By implicitly
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differentiating both sides with respect to θ, we get
∂h∗(θ)
∂θ

=
∂fθ(h

∗(θ);y)
∂θ

=
∂fθ(h

∗;y)
∂h∗

∂h∗(θ)
∂θ

+
∂fθ(h

∗;y)
∂θ

.

(26)
where the second equality is due to the chain rule. Rearranging
the terms above, we reach that

∂h∗(θ)
∂θ

=

(
I− ∂fθ(h

∗;y)
∂h∗

)−1
∂fθ(h

∗;y)
∂θ

. (27)

By using the chain rule again, we have the desired result, i.e.,

∂L
∂θ

=
∂L
∂h∗

∂h∗(θ)
∂θ

=
∂L
∂h∗

(
I− ∂fθ(h

∗;y)
∂h∗

)−1
∂fθ(h

∗;y)
∂θ

.

(28)

APPENDIX B
PROOF OF THEOREM 7

We begin by showing that the Lipschitz constant of the LE in
FPN-OAMP, i.e., fLE(h

(t);y) = (I− ηM†M)h(t) + ηM†y,
equals 1. Since fLE(h

(t);y) is an affine mapping, its Lipschitz
constant is the spectral norm, i.e., the largest singular value,
of the matrix (I− ηM†M), given by maxi(1− ηλi(M

†M)),
where λi(·) denotes the i-th largest eigenvalue of a matrix.
Because the non-zero eigenvalues of M†M and MM† = I
are the same, the eigenvalues of M†M equal either 0 or 1.
Therefore, we can obtain that the Lipschitz constant of the LE
equals 1. According to Lemma 5, the Lipschitz constant of
fθ(·;y) = (fNLE,θ ◦ fLE)(·;y) is the same as that of fNLE,θ(·),
i.e., L. Further applying Lemma 4 yields the desired result.
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