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Retinal Structure Detection in OCTA Image via
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Abstract— Automated detection of retinal structures,
such as retinal vessels (RV), the foveal avascularzone (FAZ),
and retinal vascular junctions (RVJ), are of great importance
for understanding diseases of the eye and clinical decision-
making. In this paper, we propose a novel Voting-based
Adaptive Feature Fusion multi-task network (VAFF-Net) for
joint segmentation, detection, and classification of RV, FAZ,
and RVJ in optical coherence tomography angiography
(OCTA). A task-specific voting gate module is proposed to
adaptively extract and fuse different features for specific
tasks at two levels: features at different spatial positions
from a single encoder, and features from multiple encoders.
In particular, since the complexity of the microvasculature
in OCTA images makes simultaneous precise localization
and classification of retinal vascular junctions into bifur-
cation/crossing a challenging task, we specifically design
a task head by combining the heatmap regression and
grid classification. We take advantage of three different en
face angiograms from various retinal layers, rather than
following existing methods that use only a single en face.
We carry out extensive experiments on three OCTA datasets
acquired using different imaging devices, and the results
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demonstrate that the proposed method performs on the
whole better than either the state-of-the-art single-purpose
methods or existing multi-task learning solutions. We also
demonstrate that our multi-task learning method general-
izes across other imaging modalities, such as color fundus
photography, and may potentially be used as a general
multi-task learning tool. We also construct three datasets
for multiple structure detection, and part of these datasets
with the source code and evaluation benchmark have been
released for public access.

Index Terms— OCTA, multi-task learning, retina struc-
tures, detection, segmentation, classification.

I. INTRODUCTION

OPTICAL coherence tomography angiography (OCTA) is
a rapid and non-invasive imaging technique that can pro-

duce images containing functional information on retinal blood
vessels and microvasculature [1]. Many studies have demon-
strated that OCTA has advantages over other imaging modal-
ities, in the detection and diagnosis of a variety of diseases of
the eye [2], [3], [4]. Compared to other retinal image modali-
ties, such as color fundus images and fluorescein angiography,
OCTA can provide high-resolution 3D information about the
retinal vasculature. Fig. 1 (A) illustrates a 3D OCTA volume
within a 3 × 3 mm2 fovea-centered field of view.

In general, the retina is composed of inner and outer retinal
layers [5], as shown in Fig. 1 (B). By means of OCTA imaging
technology, such as the RTVue XR Avanti SD-OCT system
(Optovue, Fremont, USA), equipped with AngioVue software
(version 2015.1.0.90), the inner vascular complexes (IVC)
may be further subdivided into superficial vascular complexes
(SVC) and deep vascular complexes (DVC): their maximum
projection of OCTA flow signals, a.k.a. en face images, are
shown in Fig. 1 (C). They allow for a clearer observation of
the vasculature at different depth levels [5].

Fig. 1 (D) demonstrates three typical retinal structures in
OCTA images: retinal vessels (RV), foveal avascular zone
(FAZ), and retinal vascular junctions (RVJ). (Note: cyan color
indicates the vessel crossing points, and yellow indicates the
vessel bifurcations.) The quantification of these structures from
the inner retinal layer by OCTA imaging plays a vital role
in clinical decision-making of many diseases of the eye [6].
For example, morphological changes in the FAZ are closely
related to the conditions of age-related macular degeneration
and glaucoma [4]. It has been shown that the differentiation
of bifurcations from crossings from the retinal vessel map is
beneficial to the disease screening, diagnosis and progression
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Fig. 1. Illustrations of the OCTA en face angiograms and typical retina
structure. (A) 3D OCTA volume. (B) Retinal layer segmentation of inner
and outer retina. (C) The en face of the inner vascular complexes (IVC),
superficial vascular complexes (SVC), and deep vascular complexes
(DVC), respectively. (D) Typical retinal structures: RV, RVJ and FAZ.

understanding. For instance, the number of bifurcations was
used as one biomarker to screen and diagnose Diabetic
Retinopathy (DR) [7]. In addition, the changes in angle of
retinal vessel bifurcations was used in [8] to identify the mac-
ular displacement in OCTA. On the other hand, distinguishing
between bifurcation and crossing can also help 3D vessel
reconstruction in OCTA [9]. However, the existence of cross-
ings usually interferes with the quantification of bifurcation-
related features. More recently, several studies have reported
that the eyes of patients with Alzheimer’s disease show sig-
nificantly reduced retinal vessel density when compared with
healthy controls [10], the demonstration of which demands
accurate RV segmentation performance. To this end, an auto-
mated method to extract various retinal structures from OCTA
has long been deemed desirable.

Existing works for the extraction of retinal structures in
OCTA images have largely adopted a single-task learning
approach [11]. This approach usually designs a specific model
for the detection of a single structure: occasionally, two models
were integrated for detection of multiple structures. However,
in these cases the integration scheme requires several individ-
ual training processes, which may lead to lower efficiency in
terms of memory and computational requirements. A multi-
task learning (MTL) approach provides a potential solution
to address the above-mentioned issues. MTL can perform
multiple tasks simultaneously instead of establishing a set of
independent networks. Compared with the single-task learning
method, MTL not only allows for efficient extraction of mul-
tiple structures, but may also improve the quantification accu-
racy by exploiting the correlation, and complement of different
tasks [12]. Most of these approaches aim to handle multiple
tasks from one model, the backbone needs to be carefully

designed to achieve feature sharing. Moreover, these models
often fail to consider the characteristics of different tasks and
preferences for features. Meanwhile, current MTL works are
usually designed for natural images [13], [14], restricting their
applicability to OCTA images due to the greater challenges in
contrast, anatomical structure and imaging noise.

Most existing studies extract the retinal structure from
an en face image of the IVC [15], [16]. However, relying
on a single 2D image as input does not make good use
of the abundant sub-layer information provided by OCTA
images [17]. Consequently, we propose to use a multi-task
learning approach to perform a joint detection of the RV,
RVJ, and FAZ. This makes available SVC and DVC images as
additional input data, as they can provide the depth-resolved
information on the IVC. On one hand, the retinal vessels
are mainly distributed in the SVC [18], and they can be
extracted more accurately from the SVC since there is less
projection noise. On the other hand, due to less interference by
uncorrelated structures [17], the FAZ is easier to observe and
extract in the DVC. It is worth noting that these different tasks
share some similarities, so their joint learning will benefit each
task individually. For example, due to the shared informative
features, the RV detection may assist the identification of the
RVJ, and a precise boundary of the RV around the macula
contributes to the accurate FAZ segmentation.

In order to further exploit the correlation and complement of
the separate tasks, while taking into account the characteristics
of each task, we use three encoders with shared weights to
extract common feature representations from multiple inputs.
Since each task has different characteristics and preferences
for different inputs, we design a task-specific voting gate
module to perform feature selection and fusion adaptively.
This voting-based strategy allows for feature integration in
both depth and plane dimensions based on the task attributes.
In addition, we specifically design a task head by combining
the heatmap regression and grid classification for the vascular
bifurcation/crossing detection and classification tasks, as the
complexity of the microvasculature in OCTA images makes it
challenging for simultaneous precise localization and classifi-
cation of the RVJ.

In summary, the key contributions of our work are:
• We propose a voting-based adaptive feature fusion

multi-task learning network for retinal structure detection in
OCTA images, which can leverage the rich depth information
of OCTA to obtain highly-accurate results. To our best knowl-
edge, this is the first attempt to carry out the joint learning and
detection of RV, FAZ, and RVJ within a single model with
multiple inputs.

• As the most challenging sub-task, we specifically design
a task head to differentiate the RVJ into bifurcations and
crossings. This may potentially be used to address the problem
of detection and classification of an unknown number of key
points in complex backgrounds across images in different
modalities.

• There are already some OCTA datasets available for RV
segmentation [11], [19] or FAZ segmentation [20], but there
is no publicly available dataset for MTL and detection of
RV, FAZ and RVJ in OCTA. For the first time, we construct
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a publicly-accessible retinal structure detection dataset of
OCTA images, with precise manual annotations of the RV,
RVJ and FAZ. We also give a full evaluation/benchmarking
of RV and FAZ segmentation, and RVJ detection and clas-
sification performance. The code of our method, compara-
tive models, and evaluation tools are publicly available at
https://imed.nimte.ac.cn/ROSE-O.html.

II. RELATED WORKS

We briefly review existing work on automated OCTA image
analysis based on either single- or multi-task learning.

A. Single-Task Based OCTA Image Analysis

1) RV Segmentation: The quantification of retinal vessels
plays a vital role in the study of eye diseases, and sev-
eral specific segmentation methods have been proposed for
detecting retinal vessels in OCTA images. Eladawi et al. [21]
presented a system for segmentation of retinal vessels from
OCTA images based on a Markov-Gibbs random field model.
Mou et al. [22] proposed a channel and spatial attention
network (CS-Net) for curvilinear structure segmentation,
including vessel segmentation in OCTA images. Li et al. [17]
introduced a 3D-to-2D image projection network to achieve
the 2D retinal vessel segmentation from 3D volume data.
(It is worth noting that they also performed the FAZ
segmentation using this method, but the two tasks were
implemented individually rather than through joint learn-
ing.) Giarratano et al. [23] first applied handcrafted filters
and neural network architectures to enhance the vessels, and
obtained the final vessel segmentation results using deep
learning methods. Recently, Ma et al. [11] proposed a coarse-
to-fine network with split attention to segment vessels, and
evaluated it on the public ROSE dataset.

2) RVJ Detection and Classification: The number of bifur-
cations in OCTA images can be used to diagnose diabetic
retinopathy [7], [24]. However, current RVJ detection and
classification studies are all based on color fundus photography
(CFP) [25], [26]. For example, a feature point detection and
classification method based on local and topological analysis
was proposed in [25] for CFP images. Morales et al. [27]
first determined the vessel skeletons using a stochastic water-
shed transformation, and the junction points were detected
by template matching and then classified into crossing or
bifurcation using closed loop check. Zhao et al. [26] proposed
a method using deep neural networks to detect and classify the
retinal vascular junctions in CFP images. The detection and
classification of bifurcations and crossings in OCTA images is
under-studied, due to various challenges such as high vessel
complexity and low capillary visibility.

3) FAZ Segmentation: Many studies have showed that the
shape alteration of the FAZ is related to the onset and
progression of diabetic retinopathy [28], so a method for FAZ
segmentation in OCTA is desired. Díaz et al. [29] proposed a
fully automated system by using a series of morphological
operators to identify and precisely segment the region of
the FAZ. Guo et al. [30] introduced a deep learning network
with an encoder–decoder architecture for FAZ segmentation
from OCTA. Li et al. [31] presented a lightweight U-Net to
segment the FAZ from OCT and OCTA projection maps.

B. Multi-Task Learning and Its Applications in OCTA

Multi-task learning has been broadly used in computer
vision, aiming to improve learning efficiency and prediction
accuracy for multiple tasks [12], [13], [32]. Most MTL meth-
ods focus on two aspects: the design of network architec-
tures [12], [33]; and loss functions to balance the importance
of different tasks [34]. CrossStitch Networks [12] utilized
cross-stitch units to combine multi-task neural activations and
allow features to be shared across tasks. MTAN [32] used
a shared backbone network in conjunction with task-specific
attention modules in the encoder to learn task-specific fea-
tures. PAD-Net [35] introduced a decoder-focused architec-
ture, in which the backbone features are processed by a set
of task-specific heads to produce the prediction for every
task. Kendall et al. [34] used homoscedastic uncertainty to
balance the single-task losses. We refer readers to [13] for the
latest and comprehensive comparisons between different MTL
approaches. The majority of these methods focus on natural
images, taking individual images as input, which restrict
their applicability to medical images with limited contrast
and complex and varied structures and distributions, such
as OCTA images. The success of MTL over natural images
has been unsurprisingly extended to the medical imaging
applications [36], [37]. For example, Liu et al. [38] proposed
a MTL framework for simultaneous brain disease classification
and clinical score calculation. Gao et al. [39] introduced a
feature transfer enabled MTL method for joint detection,
segmentation and classification for breast cancer diagnosis.
He et al. [40] proposed a method for joint learning for two
tasks in parallel in the CT images: the segmentation and
multi-label classification of organs. The study from Amyar et
al [41] introduced a MTL model to jointly identify COVID-
19 patients and segment COVID-19 lesions from chest CT
images. These methods all use a single input, and most of them
consist of a main shared deep CNN architecture and multiple
different task heads, without considering the preferences of
different tasks for features.

Recently, several MTL methods for OCTA image analysis
have been proposed. Peng et al. [15] proposed a framework
for simultaneous segmentation of the FAZ and RV from
OCTA images. They utilized spatial and channel attention
modules to improve segmentation performance. Lin et al. [42]
introduced a joint learning method for FAZ segmentation
and diagnostic classification. They used the detected FAZ to
improve the performance of diagnostic classification networks.
Wang et al. [43] proposed an MTL method for simultaneous
diagnosis and segmentation of choroidal neovascularization in
OCTA images. However, these works are direct applications
of existing MTL methods, and do not exploit the unique char-
acteristics of OCTA images, such as rich depth information.

III. DATASETS

We released an OCTA image dataset for vessel segmenta-
tion, namely ROSE (Retinal OCTA SEgmentation), along side
with our previous work [11]. In order to train a more robust
and widely-applicable retinal structure detection model, for
this work we further constructed three data subsets ROSE-O,
ROSE-Z, and ROSE-H for the RV, FAZ and RVJ detection and
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classification, respectively. The images were acquired using
the three most commonly-used OCT imaging devices world-
wide: Optovue Avanti RTVue XR (Optovue, Fremont, USA),
Zeiss Cirrus HD-OCT 5000 (Zeiss Meditec, Dublin, USA),
and Heidelberg Spectralis OCT2 (Heidelberg Engineering,
Heidelberg, Germany). All the data were collected under the
approvals of relevant authorities and consent of the patients,
following the Declaration of Helsinki.

• ROSE-O contains 117 images which were captured
using the Optovue Avanti RTVue XR with AngioVue software
(Optovue, Fremont, USA): the images have a resolution of
304 × 304 pixels. The SVC, DVC and IVC angiograms
of each participant were obtained using the device. In order
to ensure a fair comparison, we followed the setting in [11]
when dividing the dataset for training and testing, i.e., the
dataset was split into 90 images for training and 27 images
for testing. The training set contains 20 AD subjects and
10 healthy controls and the test set contains 6 AD subjects
and 3 healthy controls.

• ROSE-Z was acquired using Zeiss Cirrus HD-OCT
5000 with AngioPlex software (Zeiss Meditec, Dublin, USA).
It consists of 126 OCTA images from 42 subjects (15 with
diabetic retinopathy, 2 with Alzheimer’s disease and 25 healthy
controls), and each subject had their SVC, DVC and IVC
en face scans. All en face images cover a field of view of
3 × 3mm2 centered at the fovea with 512 × 512 pixels.
The dataset was randomly split at subject level. 5-fold cross-
validation was used to evaluate the models on this relative
small dataset.

• ROSE-H consists of 60 en face images from 20 eyes
(8 with choroidal neovascularization and 12 healthy controls)
acquired using the Heidelberg Spectralis OCT2 (Heidelberg
Engineering, Germany). All cover a field of view of 3 × 3mm2

centered at the fovea with 304 × 304 pixels. Each subject
had their SVC, DVC and IVC en face. All the images in the
ROSE-H dataset were used for testing only in our experiments
to assess the generalizability of different methods over images
captured using a device from another manufacturer.

For all the datasets, three well-trained imaging experts man-
ually labeled the RV, FAZ, and RVJ (including the differenti-
ation between bifurcations and crossings) in the IVC images,
then two senior ophthalmologists with more than 15 years’
clinical experience reviewed and refined the annotations. Their
consensus was finally defined as ground truth for the purpose
of this study. FAZ is the fovea devoid of capillaries in the
macula that can be described as a dark area without vessels
at its center [44]. During the annotation process, we followed
the following criteria: FAZ is defined as the largest closed
loop surrounded by capillaries in the fovea of the macula
in OCTA. The FAZ should contain as few high-intensity
signals as possible, and its boundaries should be as close as
possible to the surrounding capillary plexus. According to the
previous study [45], the blood vessels were defined as pixels
having decorrelation values above the threshold level of noise.
Therefore, we labeled the pixels with significantly higher pixel
values than the FAZ area as blood vessels. Meanwhile, since
the vessels and capillaries are continuous structures, according
to the suggestion of the ophthalmologists, we treated the

isolated points as noise and then excluded them. Based on
the previous study [46], the classification of the intersections
of the vessel map may be broken down into two categories:
(i) the bifurcation – different blood vessel segments are from
one blood vessel tree, and (ii) the crossing – two blood vessels
overlap due to the projection of a 3D human eye to a
2D en face image. The vessels separated in 3D space may
intersect in the en face image obtained through maximum
projection. Therefore, if four or more vessel segments meet
at a point, it is considered a crossing. Fig. 1 (D) illustrates
sample manual annotations of RV, RVJ, and FAZ respec-
tively. ROSE-O has been released for public access. Note that
ROSE-O and ROSE-1 released in [11] have the same samples.
Their difference lies in that in addition to the annotation of
vessel segments, ROSE-O also contains the new annotations
of FAZ and bifurcations/crossings. ROSE-Z and ROSE-H are
newly collected datasets.

IV. PROPOSED METHOD

In this section, we detail our proposed VAFF-Net, includ-
ing its architecture, a specific task head for detection and
classification of RVJ, and the loss function for its end-to-end
training.

A. Architecture

The overall architecture of the proposed network is illus-
trated in Fig. 2. Our VAFF-Net includes three main compo-
nents: the feature extraction module, the voting gate module
(VGM), and the task head. The purpose of our model is to
extract multiple retinal structures simultaneously using inputs
containing depth information. The input of VAFF-Net is three
enface projections including IVC, SVC and DVC. Through
the feature extractor and three task heads, we can obtain RV,
FAZ and RVJ detection results simultaneously. The feature
extraction module consists of three feature extractors, which
correspond to the three input en face angiograms, i.e., IVC,
SVC and DVC. We apply ResNet-50 [47] as feature extractors,
in which the first 7 × 7 convolutional layer is replaced
by a 3 × 3 convolution with the same padding to ensure
that the output size of the voting gate module is consistent
with the size of the input image. In our implementation, three
extractors share weights except the first convolutional layer,
in order to limit the number of learnable parameters. Due to the
different inputs and the independence of the first layer, these
three encoders are able to extract different features, despite
our strategy in sharing weights later.

The voting module contains three independent task-specific
voting gate modules, each corresponding to a task and adap-
tively learning how to perform feature selection and fusion.
The VGM consists of multiple 3 × 3 convolutional layers
with batch normalization (BN) and ReLU activation, the final
convolutional layer with a sigmoid operator is used to map
the features into the form of probability with 3 channels
that can be utilized as the gate to select features. The VGM
for each task ∈ {RV , F AZ , RV J } takes the concatenation
of the output of the first layer from the three encoders as
input, and the corresponding output {Gtask} is the learned
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Fig. 2. The architecture of our VAFF-Net, consisting of the feature extraction module, the voting module and the task head.

voting gate, which can select features at two levels: features
from different layer slabs en face images, and features at
different spatial locations from an encoder. The former takes
into consideration that the importance of the features obtained
from the three en f ace images is different for each task. For the
latter, we may utilize the following spatial characteristics: the
FAZ segmentation task focuses on the macular area; the RVJ
detection task relies on the location of the intersecting vessels,
and the vessel segmentation task requires greater attention to
the edges of the vessels.

After having obtained the voting gate {Gtask} for each
task, the multi-scale fused features {Fi } (i ∈ {1, 2, 3})
from three encoders are multiplied with {Gtask} (task ∈
{RV , F AZ , RV J }) respectively, and a summation is per-
formed to obtain the integrated feature map {Mtask} for the
corresponding task. These operations can be formulated as:

Mtask =
n∑

i=1

Gi
task ◦ Fi , (1)

where n is the number of feature channels,
{
Gi

task

}
indicates

the i th channel of voting gate {Gtask}, and ‘◦’ denotes the
element-wise multiplication. The task-specific feature map
{Mtask} is then fed into the corresponding task head to obtain
the final task-specific result.

B. Task Head for RVJ Detection and Classification

The task for detection of keypoints on human body in
computer vision usually involves detecting a number of key-
points that is known in advance [48]; but the number of RVJs
varies from one subject to another. Furthermore, the RVJs are
small targets covering only a few pixels, and the bounding
box-based approaches for object detection [49], [50] usually
have difficulty in achieving satisfactory performance on the
RVJ detection task. In consequence, we consider that the RVJ

Fig. 3. Overview of the task head for RVJ detection and classification.

detection and classification impose a greater challenge to this
multi-task learning framework.

In order to address these issues, we introduce a task head
with two branches, that combines heatmap regression and grid
classification for the detection and classification of bifurcations
and crossings. We split this relatively complex task into two
simple ones: heatmap regression is utilized to locate the RVJs,
and the grid classification branch is used to distinguish the
bifurcations and crossings. Fig. 3 shows the architecture of
the proposed RVJ detection and classification head.

The input of the RVJ head is the output of the feature
extractor reweighted by VGM of RVJ, i.e., {MRV J } mentioned
in Sec. IV-A. The feature map {MRV J } for RVJ detection is
first fed into a convolutional block, which consists of two
3 × 3 convolutional layers with BN and ReLU activation
functions. The last convolutional layer with the sigmoid activa-
tion function obtains the locations of all the junctions through
the heatmap output of 1 channel. Another branch also takes
{MRV J } as input: it divides the image into an S × S grid, and
for each grid cell predicts 3 class probabilities (i.e., containing
bifurcation, containing crossing, and background only) and
1 confidence score. These predicted values are encoded into
an S × S × 4 tensor. The confidence score indicates
how confident the model is that the grid contains an RVJ,
and can be used to select a threshold during final processing.
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As the model focuses on the prediction of grid types only, and
does not need to predict the coordinates of the bounding box,
we believe that our method may achieve better performance
compared to the bounding box-based one [26], as evidenced
in Sec. VI.D. In our implementation, we set each grid cell
as 8 × 8, and the final prediction of this branch is thus a
38 × 38 × 4 tensor for an image with an input of 304 × 304.
The output of one branch is a heatmap of all the junctions,
and the output of the other branch is the category of the
junction contained in each grid. We obtain the final predictions
by combining the results of the two branches. The size of
the grid is a hyperparameter. For the input of 304 × 304,
we empirically found that the grid size of 8 × 8 is appropriate,
so as to ensure that there is at most one bifurcation/intersection
in a grid as much as possible. The size of the grid can be
adjusted according to the size of the input image.

C. Loss Function

For an N-task problem with task losses L1, L2, …, and LN ,
the total loss function is expressed as:

LT otal =
N∑

n=1

λnLn, (2)

where λn is the weight of task-specific loss Ln . We use
the standard binary cross-entropy (BCE) loss for both the
RV and FAZ segmentation tasks. Given a prediction map
Ŷ and corresponding ground truth Y , the standard binary
cross-entropy loss is LBC E(Ŷ , Y ). Therefore, the training
losses for RV and FAZ segmentations are LBC E (ŶRV , YRV )
and LBC E (ŶF AZ , YF AZ ), respectively.

The training loss in the RVJ detection task consists of
heatmap prediction loss and grid classification loss. We gen-
erate the ground truth for heatmap regression and grid clas-
sification based on the annotated pixel coordinates of the
RVJs, where the heatmap is generated using a Gaussian
kernel with a standard deviation of 2.5. The heatmap regres-
sion branch is trained using the mean squared error (MSE)
loss: LM S E (Ŷmap, Ymap). For the grid classification branch,
the training loss includes classification and confidence score
errors. Since many grid cells do not contain any junction
objects, this would push the confidence scores of those cells
towards zero, thus overpowering the gradients from the cells
that contain junctions. This leads to model instability, causing
the training process to diverge early [51]. To this end, we use
the hyperparameters λA and λB to balance the loss of grids
containing and not containing junction objects. The loss func-
tion for the grid classification branch is thus as follows:

L(Ŷgrid , Ygrid ) = λA

S2∑

i=1

�A
i (Ci − Ĉi )

2

+ λB

S2∑

i=1

�B
i (Ci − Ĉi )

2

+
S2∑

i=1

∑

c∈classes

(pi (c) − p̂i(c))
2, (3)

where �A
i denotes if the junction object appears in grid i , and

�B
i otherwise. Ci and Ĉi denote the ground truth and prediction

confidence scores of grid i , respectively. pi (c) and p̂i(c)
denote the ground truth and prediction probability of class
c for grid i . The hyperparameters λA and λB are empirically
set as 5 and 1, respectively. The performance of the multi-task
learning model is heavily dependent on the relative weighting
between the losses in different tasks. In our implementation,
we selected the Dynamic Weight Average (DWA) [32] for all
the multi-task learning methods, and the default setting was
employed to train our model.

V. EXPERIMENTAL RESULTS

In this section, we describe the implementation details,
evaluation metrics, and experimental results.

A. Implementation Details

The proposed network was implemented using Python in
the PyTorch package. All experiments were carried out on a
workstation containing two NVIDIA GeForce GTX 3090 with
a memory of 24GB. The Adam optimizer with recommended
parameters was used to optimize the model, and the batch
size was set as 4. The total number of epochs was set
to 1000 for network training. The initial learning rate was
5 × 10−5 and gradually decayed to zero after 1000 epochs
using a Cosine annealing scheduler. Data augmentations were
conducted during all the training stages, including random
horizontal flip, vertical flip, rotation of the image by an angle
from −10◦ to 10◦ around its center, and gamma transformation
with a range of (0.7, 1.9). All the images were normalized
from [0, 255] to [0, 1] before being fed into the model.

B. Evaluation Metrics

We use three metrics to evaluate the RV and FAZ segmen-
tation performances:

• Dice coefficient (DICE) = 2 × TP / (2 × TP + FP + FN);
• Balance-Accuracy (BACC) = (TP / (TP + FN)) + (TN /

(TN + FP)) / 2;

For the detection and classification of RVJs, the following
metrics are calculated:

• Recall (RE) = TP / (TP + FN)
• F1-score = (2 × PR × RE) / (PR + RE)

where TP, FP, TN, and FN denote true positive, false positive,
true negative, and false negative. TPR is the true positive rate,
and TNR is the true negative rate. Our method locates the
junctions at single-pixel level, but considering that the location
of a junction is not restricted to a single pixel, and the width
of the blood vessel intersection in OCTA images is usually
more than 5 pixels, the tolerance was also set to 5 following
the evaluation setting of previous studies [26], [52].

C. Results

We compare the proposed method with the state-of-the-
art ones on RV and FAZ segmentation, and RVJ detection
and classification, for the single-purpose methods, and the
multi-task learning approaches over all the three tasks. It is
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Fig. 4. The detection results of different methods on a randomly selected case from ROSE-O and ROSE-H respectively. Top to bottom for one
case: the results of RVJ detection and classification, RV segmentation, and FAZ segmentation, respectively.

important to note that since our model requires SVC, DVC
and IVC as input, for fair comparison we concatenated these
three images as input for all the methods.

1) Methods for Comparison: Single-task methods Since RV
and FAZ segmentation are both dense prediction tasks, the
state-of-the-art medical image or OCTA image segmentation
methods were selected for comparison over both tasks, includ-
ing U-Net [53], U-Net++ [54], CE-Net [55], OCTA-Net [11],
TransUNet [56] and UTNet [57]. In addition, FARGO [15],
a multi-task method for RV and FAZ segmentation, was also
selected. For RVJ detection, we compared our model with
two representative methods: an RCNN-based method [26] and
a multi-instance heatmap regression method [52], which are
referred to as RB-Net and HR-Net, respectively.

Multi-task methods We also compared our method
with four state-of-the-art MTL ones: UberNet [58], Cross-
stitch [12], MTAN [32], and MTI-Net [59]. For fair compar-
ison, all these MTL methods employed the same task head,
proposed in Section IV.

2) Subjective Comparisons: Fig. 4 shows the detection
results of RAJ, RV and FAZ using different approaches over
two randomly selected OCTA images from the ROSE-O and
ROSE-H respectively. The top rows for ROSE-O and ROSE-H
in Fig. 4 show the RVJ detection and classification results.
It may be observed that MTI-Net performs better in RVJ
detection when compared with MTAN and UberNet, as indi-
cated in the representative patches. However, MTI-Net still
suffers from the misclassification issue - it falsely identifies
a bifurcation as a crossing (indicated by the red arrow).
In contrast, our VAFF-Net method has shown its superiority
in both the detection and classification tasks.

The middle rows for ROSE-O and ROSE-H in Fig. 4
illustrate the RV segmentation results. The benefit of the
proposed method for RV segmentation may be observed from
the representative regions (indicated by the red arrows). It may
be seen that the competing methods achieved relatively poor
performance in regions with low contrast - they preserve fine
vessels poorly. In contrast, the proposed VAFF-Net yields
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TABLE I
THE DETECTION RESULTS OF RV, FAZ, AND RVJ OVER DIFFERENT DATASETS USING SINGLE- AND MULTI-TASK LEARNING APPROACHES

more visually informative results, and is able to detect thinner
vessels more completely.

The FAZ segmentation results are shown in the bottom
rows for ROSE-O and ROSE-H in Fig. 4. Compared to other
methods, it may be seen that our method displays less tendency
to over- (green area) and under-segmentation (red area). That is
because our method can make effective use of the DVC image
via the VGM module: the DVC reveals the boundary of the
FAZ more clearly than the other slabs, while it is difficult for
the competing MTL methods to achieve this.

3) Quantitative Comparisons: In order to demonstrate the
superiority of the proposed method on different tasks, the
quantitative results obtained by both single- and multi-task
learning methods are shown in Table I. Overall, the proposed
VAFF-Net achieves promising RV and FAZ segmentation, and
RVJ detection and classification results when compared with
either single- or multi-task learning approaches.

For example, our method gives the best RV segmentation
performance over the ROSE-O dataset, and the second best

over ROSE-H - only 0.47% lower than OCTA-Net. This is
because OCTA-Net was specifically designed for vessel seg-
mentation in OCTA images, and the two-stage network is able
to extract finer vessel structures. For the FAZ segmentation,
our method achieves significantly higher performances over
the ROSE-O and ROSE-Z datasets, with the single exception
that the accuracy is 1.18% lower than that of U-Net++. For
the RVJ detection and classification, our method achieves the
best performance over all the three datasets, except on the
ROSE-Z, where the RE of the RVJ detection is lower than
that of RB-Net. This is because it sacrifices the accuracy
of the RVJ classification for a higher detection accuracy. On
the ROSE-O and ROSE-Z datasets, the transformer achieved
results comparable to CNNs-based methods. However, the
transformer-based approach performed worse than the state-of-
the-art CNN-based ones (e.g. OCTA-Net) on ROSE-H, which
means that such methods are less capable of generalisation.
This is because it has a large number of parameters, and
training such a model with good generalization capabilities
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TABLE II
EFFECTIVENESS ANALYSIS OF THE VGM IN VAFF-NET OVER THE ROSE-O DATASET

requires large-scale datasets. However, the datasets used in our
task are relatively small and thus may lead it to overfitting.

While noting that the ROSE-H dataset was used for testing
only in our experiments, we also see that our method pro-
duces higher performances in RV segmentation in DICE and
RVJ classification in F1-score than those over ROSE-O and
ROSE-Z. This may imply that the vascular presentation in
ROSE-H (or in images acquired using the Heidelberg Spec-
tralis OCT2 system) is more visible than in either ROSE-O or
ROSE-Z.

It may be observed that there is a large discrepancy between
DICE and BACC scores in Table I for the FAZ segmentation
over ROSE-H. This is caused by the domain gap and the
relevant metrics, which are also considered as a critical issue
in medical imaging. It is very worth noting that in order
to verify the generalizability of our method, we used the
ROSE-O for training, but the ROSE-H for testing. As shown
in Fig. 4, large domain gap may be observed, especially in the
FAZ area. In this case, all the methods show relatively larger
fluctuation in performing the FAZ segmentation. This means
that the segmentation includes relatively more false positives
(FPs) as over-segmentation and false negatives (FNs) as under-
segmentation. While TN is much larger than either FN or FP
and TP is relatively small, these FPs and FNs influence DICE
more significantly than BACC.

4) Comparison of the Parameter Size: In addition, we com-
pare the parameter size of our model against those of state-
of-the-art MTL methods: UberNet (41.37M), Cross-stitch
(65.50M), MTAN (44.79M), MTI-Net (94.29M), and VAFF-
Net (34.73M). The number in the bracket indicates parameter
size. We can observe that our VAFF-Net has a much smaller
size than all the other MTL methods. This is because our
method not only shares parameters between the encoders, but
the task-specific VGMs may select features for each task from
the common ones, avoiding the need to extract features for
each task individually.

VI. DISCUSSIONS

In this section, we carry out more experiments to demon-
strate the importance of the proposed VGM and task head in
detection of multiple retinal structures. We also illustrate the
detection performance of the proposed VAFF-Net over color
fundus images to show its generalizability.

A. Effectiveness of the VGM and Its Visualization

The task-specific voting gate modules may adaptively learn
how to perform feature fusion for different tasks. Specifically,

TABLE III
PERFORMANCES OF THE PROPOSED VAFF METHOD WITH SINGLE-

AND MULTI-INPUT OVER THE ROSE-O DATASET

the VGM learns weights according to the inputs for the selec-
tion of the features from different en face images. To investi-
gate the effectiveness of the VGM for each task, we replace
the adaptive weighting of VGM with maximization (MAX),
minimization (MIN), averaging (AVG) and summation (SUM)
operations, respectively. Table II shows the results over the
ROSE-O dataset. It may be seen that adaptive weights of the
VGM achieve the best results on all the tasks when compared
with the other operations, by rather a large margin.

As explained initially in Sec. IV, our model can adaptively
learn the VGMs in order to select feature maps obtained
from different encoders for each task. To better understand the
mechanism of our approach, we show in Fig.5 the intermediate
output (attention map) of the VGMs for each task in terms of
different en face angiograms. Brighter color (yellow) indicates
increasing weight in performing feature selection, indicating
the greater impact on the relevant task. For more accurate
observation, the VGMs of different tasks pay different atten-
tions to the importance of features from different encoders and
spatial locations. For example, in the FAZ segmentation task,
the VGM pays more attention to the macular center region of
the DVC, which is also in line with the clinical findings that
the DVC image is better able to reveal the FAZ region [5].
In the case of the RV segmentation, the SVC reveals many
more highlighted vessels than the DVC, as the SVC slab
has particularly rich vascular structure. The above findings
indicate that the VGMs are able to select features adaptively
for different tasks, allowing the model to share similar features
among them while still taking into account the characteristics
of each task.

B. Effectiveness of Multiple en face Inputs

All existing automated methods for extracting the multiple
retina structures use the en face image of the IVC only [15],
[16], [42]. We stated in Sec. I that a proper use of the depth
information of different retinal layers in an OCTA image,



3978 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 41, NO. 12, DECEMBER 2022

TABLE IV
THE RESULTS OF RV SEGMENTATION AND RVJ DETECTION AND CLASSIFICATION USING DIFFERENT SINGLE- AND

MULTI-TASK LEARNING APPROACHES OVER THE DRIVE DATASET

Fig. 5. Attention maps of the proposed VGM over SVC, DVC, and IVC
in terms of different detection tasks.

i.e., IVC, SVC, and DVC, may conduce to a more accurate
RV, RVJ and FAZ detection. In this subsection, we compare
the detection performances when utilizing the IVC only, with
multiple en face as input: we define these two approaches as
single-input, and multi-input, respectively.

Table III shows the performance of the proposed VAFF-Net
with different inputs over the ROSE-O dataset. It may be
observed that multi-input outperforms single-input in all
the detection tasks, which demonstrates that the multi-input
method can play an important role in multi-task learning for
the extraction of the structures from OCTA images. For exam-
ple, multi-input exhibits a large advantage over single-input
by increases in DICE and ACC of about 5.5% and 3.5% on
the vessel segmentation task, indicating that the use of the
depth-resolved information is of benefit to the detection task.

C. Performance on Color Fundus Image

Although our VAFF-Net is designed for the analysis of
OCTA images, it can also be used as a general multi-task
learning tool for the analysis of images in different modal-
ities. In the following experiment, the DRIVE dataset was
employed. It includes 40 images with a resolution of
584 × 565 pixels. The groundtruth of vessel and vessel
junctions are provided in [60]. We discuss the capability of our
VAFF-Net in detection of RVs and RVJs from color fundus
images.

In this experiment, we set three identical color fun-
dus images as the input of our model. The VAFF-Net in
this instance can be formulated as the model ensemble
method [61]. The three encoders may be regarded as different
subnetworks to obtain different features. The VGMs can
adaptively weight and fuse the outputs of different subnet-
works for different tasks. In order to ensure the parameter
diversity of different encoders, we adopt different parameter
initialization strategies for the first convolutional block of
different encoders, namely random initialization, Xavier ini-
tialization [62], and He initialization [63]. The voting module
fuses the informative features for different tasks in an adaptive
way.

Tables IV shows the quantification results of different
methods for the RV segmentation, and RVJ detection and
classification tasks. As may be seen, our model outperforms
both single-task and other MTL methods in all the metrics
on the RV segmentation, and RVJ detection and classification
tasks, with the single exception that the recall of the RVJ
detection is 2.35% lower than that of HR-Net. This finding
further reveals the capability of our VAFF-Net in detecting
RV and RVJ from color fundus images in different modality.

D. Effectiveness of Junction Head

As aforementioned, the design of a task head for the
RVJ detection task is one of our contributions. In order to
demonstrate the superiority of the proposed junction head,
we set the following experiment over the DRIVE dataset.

We first applied the encoder of ResNet50 as the backbone,
and then compared the proposed junction head with two
other state-of-the-art heads: RB-Net head [26] and HR-Net
head [52]. As may be seen in Table V, RB-Net head performs
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TABLE V
THE PERFORMANCE OF DIFFERENT METHODS FOR RVJ DETECTION

AND CLASSIFICATION TASK OVER THE DRIVE DATASET

better than HR-Net head in the RVJ classification, but worse
than HR-Net head in the RVJ detection. This is mainly due
to the fact that RB-Net locates an RVJ by predicting the
bounding-box, and thus has a lower localization accuracy,
because the RVJ is a small target that covers only a few pixels
in an OCTA image. In contrast, HR-Net distinguishes cross-
ings from bifurcations by predicting a two-channel heatmap,
allowing it to obtain a better detection performance compared
with RB-Net (68.93% vs. 55.88% for F1-score). However, the
number of the crossings is usually fewer than that of the bifur-
cations in OCTA images, which makes the model tend to under
predict crossings, resulting in worse classification performance
(62.82% vs. 68.98% for F1-score). This is because the error
of falsely predicting a crossing as a bifurcation will be higher
than the error when no RVJ is predicted at all. Since our
method combines the advantages of the other two methods,
it achieves the best performance in both the detection and
classification of RVJs.

VII. CONCLUSION

In this work, we have proposed a novel method for detection
of retinal structures in OCTA images. Many studies have
demonstrated that the quantification of the retinal structures
obtained in OCTA images plays a vital role in the quantitative
study and clinical decision-making of ophthalmopathological
and neurodegenerative diseases. To this end, we proposed an
end-to-end multi-task learning method for the joint segmen-
tation, detection and classification of retinal vessels, foveal
avascular zone and retinal vascular junctions in OCTA images.
The method exploits the layered structure information to
promote each individual task. We argue that these tasks
share some similarities: we therefore first employed three
encoders that share weights (except the first convolution layer)
to extract relevant features from different inputs. However,
since the characteristics of each task also differ in some
aspects, we designed the task-specific voting gate modules to
adaptively choose favored features from the different encoders.
This voting-based feature integration strategy can automati-
cally select features at two levels according to respective task
requirements: 1) features from different layer en face images;
and 2) features at different spatial locations from an encoder,
which is also important for each task.

In addition to the new detection method, we further con-
structed three OCTA datasets for the detection task of multiple
retinal structures, and the experimental results show that our
VAFF-Net outperforms on the whole both the state-of-the-
art single-purpose methods and earlier multi-task learning
methods. In addition, we also demonstrated that our model can
be used as a general multi-task learning tool for the analysis of

images in other modalities, which was validated over a color
fundus image dataset. In future, we will extract the biomarkers
from the segmented retinal vessels and FAZ and the detected
RVJs in the given OCTA images and associate them with
relevant eye-related diseases. It is also our intention to perform
accurate 3D vessel reconstruction and feature quantification
directly from 3D OCTA volumetric data in future.

REFERENCES

[1] A. H. Kashani et al., “Optical coherence tomography angiography:
A comprehensive review of current methods and clinical applications,”
Prog. Retinal Eye Res., vol. 60, pp. 66–100, Sep. 2017.

[2] P. Zang et al., “DcardNet: Diabetic retinopathy classification at multiple
levels based on structural and angiographic optical coherence tomogra-
phy,” IEEE Trans. Biomed. Eng., vol. 9294, no. 6, pp. 14–17, Jun. 2020.

[3] C. B. Robbins et al., “Characterization of retinal microvascular and
choroidal structural changes in Parkinson disease,” JAMA Ophthalmol.,
vol. 27710, pp. 1–7, Feb. 2020.

[4] K. K. W. Cheng et al., “Macular vessel density, branching complexity
and foveal avascular zone size in normal tension glaucoma,” Sci. Rep.,
vol. 11, no. 1, pp. 1–9, Dec. 2021.

[5] J. P. Campbell et al., “Detailed vascular anatomy of the human retina
by projection-resolved optical coherence tomography angiography,” Sci.
Rep., vol. 7, no. 1, pp. 1–11, Mar. 2017.

[6] R. F. Spaide, J. G. Fujimoto, N. K. Waheed, S. R. Sadda, and
G. Staurenghi, “Optical coherence tomography angiography,” Prog.
Retin. Eye Res., vol. 64, no. 9, pp. 1–55, May 2018.

[7] H. S. Sandhu et al., “Automated diagnosis of diabetic retinopathy
using clinical biomarkers, optical coherence tomography, and optical
coherence tomography angiography,” Amer. J. Ophthalmol., vol. 216,
pp. 201–206, Aug. 2020.

[8] T. Akahori et al., “Macular displacement after vitrectomy in eyes with
idiopathic macular hole determined by optical coherence tomography
angiography,” Amer. J. Ophthalmol., vol. 189, pp. 111–121, May 2018.

[9] S. Yu et al., “3D vessel reconstruction in OCT-angiography via depth
map estimation,” in Proc. IEEE 18th Int. Symp. Biomed. Imag. (ISBI),
Apr. 2021, pp. 1609–1613.

[10] J. Chua et al., “Retinal microvasculature dysfunction is associated with
Alzheimer’s disease and mild cognitive impairment,” Alzheimer’s Res.
Ther., vol. 12, no. 1, pp. 1–13, 2020.

[11] Y. Ma et al., “ROSE: A retinal OCT-angiography vessel segmentation
dataset and new model,” IEEE Trans. Med. Imag., vol. 40, no. 3,
pp. 928–939, Mar. 2020.

[12] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert, “Cross-stitch net-
works for multi-task learning,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2016, pp. 3994–4003.

[13] S. Vandenhende, S. Georgoulis, W. Van Gansbeke, M. Proesmans,
D. Dai, and L. Van Gool, “Multi-task learning for dense prediction
tasks: A survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 47, no. 7,
pp. 1–20, Jul. 2021.

[14] J.-J. Liu, Q. Hou, and M.-M. Cheng, “Dynamic feature integration
for simultaneous detection of salient object, edge, and skeleton,” IEEE
Trans. Image Process., vol. 29, pp. 8652–8667, 2020.

[15] L. Peng, L. Lin, P. Cheng, Z. Wang, and X. Tang, “Fargo: A joint
framework for FAZ and RV segmentation from OCTA images,” in
Proc. Int. Workshop Ophthalmic Med. Image Anal. Cham, Switzerland:
Springer, 2021, pp. 42–51.

[16] Z. Liang, J. Zhang, and C. An, “Foveal avascular zone segmentation of
OCTA images using deep learning approach with unsupervised vessel
segmentation,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), Jun. 2021, pp. 1200–1204.

[17] M. Li et al., “Image projection network: 3D to 2D image segmen-
tation in OCTA images,” IEEE Trans. Med. Imag., vol. 39, no. 11,
pp. 3343–3354, Nov. 2020.

[18] D. An, P. Yu, K. B. Freund, D.-Y. Yu, and C. Balaratnasingam,
“Three-dimensional characterization of the normal human parafoveal
microvasculature using structural criteria and high-resolution confocal
microscopy,” Investigative Opthalmol. Vis. Sci., vol. 61, no. 10, p. 3,
Aug. 2020.

[19] M. Li et al., “IPN-V2 and OCTA-500: Methodology and dataset for
retinal image segmentation,” 2020, arXiv:2012.07261.

[20] A. Agarwal, J. B. Janarthanam, R. Raman, and V. Lakshminarayanan,
“The foveal avascular zone image database (FAZID),” in Proc. SPIE,
vol. 11510, Aug. 2020, pp. 507–512.



3980 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 41, NO. 12, DECEMBER 2022

[21] N. Eladawi et al., “Automatic blood vessels segmentation based on
different retinal maps from OCTA scans,” Comput. Biol. Med., vol. 89,
pp. 150–161, Oct. 2017.

[22] L. Mou et al., “CS-Net: Channel and spatial attention network for
curvilinear structure segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer, 2019,
pp. 721–730.

[23] Y. Giarratano et al., “Automated segmentation of optical coherence
tomography angiography images: Benchmark data and clinically relevant
metrics,” Transl. Vis. Sci. Technol., vol. 9, no. 13, p. 5, Dec. 2020.

[24] N. Eladawi et al., “An OCTA based diagnosis system based on a
comprehensive local features analysis for early diabetic retinopathy
detection,” in Proc. IEEE Int. Conf. Imag. Syst. Techn. (IST), Oct. 2018,
pp. 1–6.

[25] D. Calvo, M. Ortega, M. G. Penedo, and J. Rouco, “Automatic detection
and characterisation of retinal vessel tree bifurcations and crossovers
in eye fundus images,” Comput. Methods Programs Biomed., vol. 103,
no. 1, pp. 28–38, Jul. 2011.

[26] H. Zhao, Y. Sun, and H. Li, “Retinal vascular junction detection and
classification via deep neural networks,” Comput. Methods Programs
Biomed., vol. 183, Jan. 2020, Art. no. 105096.

[27] S. Morales, V. Naranjo, J. Angulo, A. G. Legaz-Aparicio, and
R. Verdú-Monedero, “Retinal network characterization through fundus
image processing: Significant point identification on vessel centerline,”
Signal Process., Image Commun., vol. 59, pp. 50–64, Nov. 2017.

[28] R. B. Rosen et al., “Earliest evidence of preclinical diabetic retinopathy
revealed using optical coherence tomography angiography perfused cap-
illary density,” Amer. J. Ophthalmol., vol. 203, pp. 103–115, Jul. 2019.

[29] M. Díaz, J. Novo, P. Cutrín, F. Gómez-Ulla, M. G. Penedo, and
M. Ortega, “Automatic segmentation of the foveal avascular zone in oph-
thalmological OCT—A images,” PLoS ONE, vol. 14, no. 2, Feb. 2019,
Art. no. e0212364.

[30] M. Guo, M. Zhao, A. M. Y. Cheong, H. Dai, A. K. C. Lam, and Y. Zhou,
“Automatic quantification of superficial foveal avascular zone in optical
coherence tomography angiography implemented with deep learning,”
Vis. Comput. Ind., Biomed., Art, vol. 2, no. 1, pp. 1–9, Dec. 2019.

[31] M. Li, Y. Wang, Z. Ji, W. Fan, S. Yuan, and Q. Chen, “Fast and robust
fovea detection framework for OCT images based on foveal avascular
zone segmentation,” OSA Continuum, vol. 3, no. 3, pp. 528–541, 2020.

[32] S. Liu, E. Johns, and A. J. Davison, “End-to-end multi-task learning
with attention,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 1871–1880.

[33] C. Ahn, E. Kim, and S. Oh, “Deep elastic networks with model selection
for multi-task learning,” in Proc. IEEE/CVF Int. Conf. Comput. Vis.
(ICCV), Oct. 2019, pp. 6529–6538.

[34] R. Cipolla, Y. Gal, and A. Kendall, “Multi-task learning using
uncertainty to weigh losses for scene geometry and semantics,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 7482–7491.

[35] D. Xu, W. Ouyang, X. Wang, and N. Sebe, “PAD-Net: Multi-tasks
guided prediction-and-distillation network for simultaneous depth esti-
mation and scene parsing,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 675–684.

[36] J. De Fauw et al., “Clinically applicable deep learning for diagnosis and
referral in retinal disease,” Nature Med., vol. 24, no. 9, pp. 1342–1350,
2018.

[37] Y. Guo et al., “An end-to-end network for segmenting the vasculature
of three retinal capillary plexuses from OCT angiographic volumes,”
Biomed. Opt. Exp., vol. 12, no. 8, pp. 4889–4900, 2021.

[38] M. Liu, J. Zhang, E. Adeli, and D. Shen, “Joint classification and regres-
sion via deep multi-task multi-channel learning for Alzheimer’s disease
diagnosis,” IEEE Trans. Biomed. Eng., vol. 66, no. 5, pp. 1195–1206,
May 2018.

[39] F. Gao, H. Yoon, T. Wu, and X. Chu, “A feature transfer enabled multi-
task deep learning model on medical imaging,” Exp. Syst. Appl., vol. 143,
Apr. 2020, Art. no. 112957.

[40] T. He, J. Hu, Y. Song, J. Guo, and Z. Yi, “Multi-task learning for
the segmentation of organs at risk with label dependence,” Med. Image
Anal., vol. 61, Apr. 2020, Art. no. 101666.

[41] A. Amyar, R. Modzelewski, H. Li, and S. Ruan, “Multi-task deep
learning based CT imaging analysis for COVID-19 pneumonia: Clas-
sification and segmentation,” Comput. Biol. Med., vol. 126, Nov. 2020,
Art. no. 104037.

[42] L. Lin et al., “BSDA-Net: A boundary shape and distance aware joint
learning framework for segmenting and classifying OCTA images,” in
Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. Cham,
Switzerland: Springer, 2021, pp. 65–75.

[43] J. Wang et al., “Diagnosing and segmenting choroidal neovascularization
in optical coherence tomographic angiography using deep learning,”
Invest. Ophthalmol. Vis. Sci., vol. 62, no. 8, p. 2159, 2021.

[44] N. Eladawi et al., “Early diabetic retinopathy diagnosis based on local
retinal blood vessel analysis in optical coherence tomography angiog-
raphy (OCTA) images,” Med. Phys., vol. 45, no. 10, pp. 4582–4599,
Oct. 2018.

[45] P. L. Nesper et al., “Quantifying microvascular abnormalities with
increasing severity of diabetic retinopathy using optical coherence
tomography angiography,” Investigative Opthalmol. Vis. Sci., vol. 58,
no. 6, pp. BIO307–BIO315, Oct. 2017.

[46] B. Dashtbozorg, A. M. Mendonça, and A. Campilho, “An automatic
graph-based approach for artery/vein classification in retinal images,”
IEEE Trans. Image Process., vol. 23, no. 3, pp. 1073–1083, Mar. 2013.

[47] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[48] T. Xu and W. Takano, “Graph stacked hourglass networks for 3D
human pose estimation,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR). Cham, Switzerland: Springer, Jun. 2021,
pp. 483–499.

[49] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
real-time object detection with region proposal networks,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2016.

[50] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, “CenterNet:
Keypoint triplets for object detection,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2019, pp. 6569–6578.

[51] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788.

[52] Á. S. Hervella, J. Rouco, J. Novo, M. G. Penedo, and M. Ortega, “Deep
multi-instance heatmap regression for the detection of retinal vessel
crossings and bifurcations in eye fundus images,” Comput. Methods
Programs Biomed., vol. 186, Apr. 2020, Art. no. 105201.

[53] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in Proc. Int. Conf. Med.
Image Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer,
2015, pp. 234–241.

[54] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “UNet++: A
nested U-Net architecture for medical image segmentation,” in Proc. 4th
Int. Workshop, DLMIA. Cham, Switzerland: Springer, 2018, pp. 3–11.

[55] Z. Gu et al., “CE-Net: Context encoder network for 2D medical image
segmentation,” IEEE Trans. Med. Imag., vol. 38, no. 10, pp. 2281–2292,
Oct. 2019.

[56] J. Chen et al., “TransUNet: Transformers make strong encoders for
medical image segmentation,” 2021, arXiv:2102.04306.

[57] Y. Gao, M. Zhou, and D. N. Metaxas, “UTNet: A hybrid transformer
architecture for medical image segmentation,” in Proc. Int. Conf. MIC-
CAI. Cham, Switzerland: Springer, 2021, pp. 61–71.

[58] I. Kokkinos, “UberNet: Training a universal convolutional neural net-
work for low-, mid-, and high-level vision using diverse datasets and
limited memory,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jul. 2017, pp. 6129–6138.

[59] S. Vandenhende, S. Georgoulis, and L. Van Gool, “MTI-Net: Multi-scale
task interaction networks for multi-task learning,” in Proc. Eur. Conf.
Comput. Vis. Cham, Switzerland: Springer, 2020, pp. 527–543.

[60] S. Abbasi-Sureshjani, I. Smit-Ockeloen, E. Bekkers, B. Dashtbozorg,
and B. T. H. Romeny, “Automatic detection of vascular bifurcations and
crossings in retinal images using orientation scores,” in Proc. IEEE 13th
Int. Symp. Biomed. Imag. (ISBI), Apr. 2016, pp. 189–192.

[61] X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, “A survey on ensemble
learning,” Frontiers Comput. Sci., vol. 14, no. 2, pp. 241–258, 2020.

[62] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proc. 13th Int. Conf. Artif. Intell.
Statist., 2010, pp. 249–256.

[63] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rec-
tifiers: Surpassing human-level performance on ImageNet classifica-
tion,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015,
pp. 1026–1034.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


