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Abstract— In recent years, there were many suggestions
regarding modifications of the well-known U-Net architec-
ture in order to improve its performance. The central moti-
vation of this work is to provide a fair comparison of U-Net
and its five extensions using identical conditions to disen-
tangle the influence of model architecture, model training,
and parameter settings on the performance of a trained
model. For this purpose each of these six segmentation
architectures is trained on the same nine data sets. The
data sets are selected to cover various imaging modalities
(X-rays, computed tomography, magnetic resonance imag-
ing), single- and multi-class segmentation problems, and
single- and multi-modal inputs. During the training, it is
ensured that the data preprocessing, data set split into
training, validation, and testing subsets, optimizer, learn-
ing rate change strategy, architecture depth, loss function,
supervision and inference are exactly the same for all the
architectures compared. Performance is evaluated in terms
of Dice coefficient, surface Dice coefficient, average surface
distance, Hausdorff distance, training, and prediction time.
The main contribution of this experimental study is demon-
strating that the architecture variants do not improve the
quality of inference related to the basic U-Net architecture
while resource demand rises.

Index Terms— Benchmark, deep learning, medical image
analysis, segmentation.

I. INTRODUCTION

SEGMENTATION of medical images is an important task
frequently preceding other image analysis tasks like detec-

tion and assessment of abnormalities e.g. tumors or lesions.
Given complicated shapes and anatomical variability of inter-
nal organs and abnormalities to be segmented as well as a
huge variety of textures corresponding to different tissues
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and lesions, as generated by different imaging devices, the
segmentation is an extremely difficult problem.

Before the era of deep learning the segmentation problems
were solved using ad hoc approaches such that given any
specific task very specific algorithms and processing pipelines
based on expert knowledge were designed to meet segmen-
tation requirements with respect to its quality. Clearly, such
approaches developed for a specific task were not generaliz-
able to other tasks.

Deep learning was certainly the game changer also in
the area of medical image segmentation. U-Net architecture,
introduced in [1], is an universal segmentation model which
since its introduction has been tested on numerous data sets
in multiple segmentation tasks [2]. The U-Net architecture is
surprisingly simple, given its very good performance. This
simplicity naturally raised the question of whether more com-
plicated architectural variants can improve segmentation accu-
racy without compromising the universality of the modified
architectures.

In recent years, many segmentation architectures have been
introduced and mentioning all of them certainly exceeds the
capacity of a single article. For example, searching for terms
“Segmentation” and “U-Net” in abstracts and titles only in
PubMed returns almost 1000 articles in the last four years.
These articles describe mostly architectures specialized for
very specific problems which unfortunately brings us back to
the pre-deep learning era of ad hoc approaches. Architectures
which are claimed by their authors to be universal and better
than U-Net are not so numerous.

To the best of our knowledge, the most influential examples
of such universal deep medical segmentation models character-
ized by a higher complexity than U-Net are UNet++ [3], UNet
3+ [4], ResUNet [5], CS2-Net [6] or CPFNet [7]. Whether this
higher complexity indicates better performance is by no means
obvious even if the results demonstrated in articles introducing
these architectures appear to support such conclusion.

The main problem with these models is that they were
never compared with U-Net within a unified framework,
which assures that, besides architecture details, other factors
which may influence the final results like data preprocessing,
a learning rate scheduler, loss function selection, data aug-
mentation etc. are kept fixed. For this reason, in spite of
what has been published, it is by no means obvious that
any architectural variants are indeed beneficial for medical
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image segmentation. Without such a fair comparison it is not
clear which architecture should be selected as a first choice
whenever facing a new segmentation problem.

In the manuscript, we are using a unified segmentation
framework nnU-Net [2] to benchmark recent deep medical
segmentation architectures. Because within the framework we
control all aspects of deep models training, unlike all other
studies focused on the comparison of different architectures,
we can separate the effect of a variant of a deep architecture
on overall segmentation quality from the effect of all the other
factors which may also influence segmentation quality.

From the present study, it follows, in contrast to the con-
clusions of other studies, that introducing additional com-
plexity to the deep segmentation model, compared to U-Net,
does not improve segmentation quality increasing at the
same time resource consumption. The codes of the nnU-Net
modules with re-implemented deep medical segmentation
architectures are available at GitHub: https://github.com/dan-
gut/DL_models_benchmark.

The data sets used in this study are also available in the
public domain:

• https://data.mendeley.com/datasets/zm6bxzhmfz - task 1
• https://data.mendeley.com/datasets/6x684vg2bg - task 2
• https://www.kaggle.com/krzysztofrzecki/bone-marrow-

oedema-data - task 3
• http://medicaldecathlon.com/ - task 4, 5, 6
• https://wiki.cancerimagingarchive.net/display/Public/

LIDC-IDRI - task 7
• https://www.kaggle.com/c/data-science-bowl-2018/data -

task 8
• https://competitions.codalab.org/competitions/17094 -

task 9

II. MATERIALS AND METHODS

A. Materials

The comparison of the performance of deep segmentation
architectures is based on nine data sets. These data sets
were selected so that they span different modalities (com-
puted tomography (CT), magnetic resonance imaging (MRI),
X-rays), different number of input channels, different anatom-
ical regions (head, internal organs, skeleton), different num-
ber of foreground objects to be segmented within an image
(from 1 to 6), and different types of tissues to be seg-
mented (either normal tissues or pathology). Both custom and
open-access data were used in this study. The custom data has
been made freely available. Below these data sets are described
in detail. Note that besides the object of interest background is
always present in all analyzed images and treated as a separate
class which should be correctly recognized in the segmented
image. Table I shows the number of images in the training
and testing sets for each data set.

Data Set 1: The first analyzed data set is a custom data set
comprising of X-rays examinations of lower legs performed
as a part of routine medical service provided by one of
the authors (W.W.) institution. Full-limb X-ray images of
70 randomly selected patients were analyzed. The images
were acquired in anteroposterior projection in a standing

TABLE I
COMPARISON OF USED DATA SET SIZES

position with a computed radiography system Philips Digital
Diagnost40 (Philips Medical Systems). From these images,
rectangular regions corresponding to the left and right hip
joints were manually extracted. These regions of interest
contained a part of a pelvic bone as well as about 1/3 of
the proximal part of a femur. The pixel size of the images
was equal to 0.136 mm. The images were coded with contrast
resolution equal to 1 byte. Boundaries of pelvic and iliac bones
are very clearly visible in X-rays images so they were outlined
manually by one experienced radiologist (W.W.) and served
as ground truth for training segmentation algorithms expected
to segment pelvic and iliac bones as separate objects. From
the data set of 140 hip joint regions of interest 100 single-
channel images were randomly assigned to a training subset
while the remaining 40 single-channel images were assigned
to the testing subset. Further details concerning the data set
can be found in [8].

Data Set 2: The second analyzed data set is a custom
data set comprising of axial slices of abdominal CT scans
performed as a part of a diagnostic procedure aimed at the
detection of stomach cancer. The slices were selected from
full 3D CT abdominal examinations at levels corresponding
to the centers of lumbar vertebral bodies L1 to L4. All
examinations were performed with the use of a helical 80-row
CT scanner Aquilion PRIME 80 (Toshiba America Medical
System, Irvine, CA, USA). The pixel size of the images was
equal to 0.74 mm while the slice thickness was equal to
5 mm. The images were coded with contrast resolution equal
to 2 bytes but, in accordance with DICOM standard, only
12 bits were used to encode signal values with Hounsfield
units. Boundaries of spine, spine muscles, abdominal muscles,
subcutaneous adipose tissue (SAT), and visceral adipose tis-
sue (VAT) were outlined manually by three radiologists under
consensus (initial outlines prepared by I.K. and M.R., verified
by I.K., M.R. and W.W.) and served as ground truth for train-
ing segmentation algorithms expected to segment separately
these regions. Internal organs were also included as separate
regions consisting of all pixels which were within the body
cross-section but were not included within the aforementioned
classes. From the data set of 560 single-channel CT slices
435 images were randomly assigned to a training subset while
the remaining 140 images were assigned to the testing subset.
Further details concerning the data set can be found in [9].

Data Set 3: The third analyzed data set is a custom data set
comprising of coronal oblique slices of MRI examinations of
sacroiliac joints. The imaging plane was parallel to the long
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axis of sacral bone. 3D MRI examinations of 30 sacroiliac
joints were performed as a part of a diagnostic procedure
aimed at the detection of axial spondyloarthritis lesions. All
examinations were performed with the use of a 3.0 Tesla MRI
scanner (Achieva, Philips Healthcare, Amsterdam, Nether-
lands) and an 8-channel phased-array XL-torso body matrix
coil. In this study, only T1-weighted and STIR (short tau
inversion recovery) sequences were included. The pixel size
of the images was equal to 0.75 mm while the slice thickness
was equal to 3 mm. The images were coded with contrast
resolution equal to 2 bytes. Boundaries of all bones (iliac and
sacral bone) were outlined manually by two radiologists under
consensus (initial outlines prepared by I.K., verified by I.K.
and W.W.) and served as ground truth for training segmen-
tation algorithms expected to segment bones as foreground
possibly disconnected region. The 3D images were split into
2D slices and only slices containing manual segmentations
were used for training the segmentation models. From the
data set of 553 single-channel MRI slices 391 images were
randomly assigned to a training subset while the remaining
162 images were assigned to the testing subset. Further details
concerning the data set can be found in [10].

Data Set 4: The data set is a part of the Medical Seg-
mentation Decathlon described there as Task01_BrainTumor.
It includes 3D MRI images from patients diagnosed with
lower-grade glioma or glioblastoma. These data were used
in Brain Tumor Image Segmentation (BraTS) challenge
[11]–[13]. Expert board-certified neuroradiologists approved
standard annotations of tumor sub-regions [14]. Besides back-
ground, the expected result of segmentation should consist of
three classes: edema, non-enhancing tumor and signal enhanc-
ing tumor. This data set is an example of a multi-channel
segmentation problem as at the entrance to the model were
four sequences: FLAIR, T1, T2 and T1 after contrast admin-
istration. The training data set comprised of 388 randomly
selected image tuples while 96 examples were included in the
testing data set. The ground truth segmentations are provided
within this data set.

Data Set 5: The data set is also a part of the Medical
Segmentation Decathlon described there as Task07_Pancreas.
It contains a subset of 3D CT images from patients that under-
gone pancreas masses resection. It is provided by Memorial
Sloan Kettering Cancer Center (New York, NY, USA). From
the original 420 CT scans obtained in this work 281 images
were used [14] of which 225 randomly selected were used
for training and the remaining 56 were used for testing. For
this single-channel data set the expected segmentation should
consist of two classes which are pancreas and cancer.

Data Set 6: The data set is another part of the
Medical Segmentation Decathlon described there as
Task08_HepaticVessel. It consists of 3D CT images of
various liver tumors. It is provided by Memorial Sloan
Kettering Cancer Center (New York, NY, USA). 443 CT
scans were obtained with an exposure time between 500 and
1100 ms. Each CT image was acquired after iodinated contrast
material administration. In this study subset of 303 images
were used [14] of which 243 randomly selected were used
for training and the remaining 60 were used for testing. For

this single-channel data set the expected segmentation should
consist of two classes which are hepatic vessels and hepatic
tumor. The ground truth segmentations are provided within
this data set.

Data Set 7: The seventh data set is the Lung Image Database
Consortium image collection (LIDC-IDRI) [15]. It consists
of 1018 CT images of chests. Some of these images were
collected for patients with lung cancer in which cases there
were lung nodule masks associated with CT examinations.
Basing on the lung nodule masks a bounding box was created
for each nodule. Then, a padding of 32 voxels was added at
each side of the bounding boxes containing nodules and such
enlarged patches were extracted from the CT images. In total
835 patches containing nodules were extracted from CT data
of which 689 patches were used for training and the remaining
ones were used for testing. This data set could not be used
with CS2-Net (as it works only with 2D images) and CPFNet
(due to the size of images, which is too small to allow such
a deep convolution).

Data Set 8: The next data set was provided by the Data Sci-
ence Bowl 2018 segmentation challenge. This data set consists
of nuclei images from different modalities. Images acquired
with different modalities substantially differ in appearance.
In majority of cases nuclei regions are bright at dark back-
ground but there are also images with nuclei regions dark at
bright background. For the segmentation task only the images
with bright nuclei at dark background were selected. In the
original data set each nuclei is assigned a separate label. As the
models examined in this article are not designed for instance
segmentation, all nuclei regions were assigned the same label.
In total 464 images were collected of which 64 were used
as testing set. The ground truth segmentations are provided
within this data set.

Data Set 9: The last data set used in this study was provided
by MICCAI 2017 LiTS Challenge. It consists of 131 CT scans
of which randomly selected 100 cases were used for training.
The remaining cases were assigned to a test set. At the test
time it was found that the size of 8 of the 30 test cases is
too large to complete prediction within nnU-Net framework
(independently on the architecture for which prediction was
run) so finally 23 cases were used for testing. In the ground
truth segmentation, there were two different labels correspond-
ing to liver and lesion volumes. For our segmentation task both
liver and lesions regions received the same label. The ground
truth segmentations are provided within this data set.

B. Architecture Description

Because the influence of non-architectural aspects in seg-
mentation methods could be very impactful, but at the
same time it seems to be underestimated, it is extremely
important that any comparison between architectures are
made under standardized conditions. Recently the hypoth-
esis about the relative importance of non-architectural fea-
tures for the final success of training deep segmentation
models has been stated in [2]. The authors of [2] devel-
oped a unified extensible framework nnU-Net for segment-
ing medical images. The spectacular success of nnU-Net in
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several medical image segmentation challenges [16] made us
decide that all architecture tested in this benchmark study
should be reimplemented as a module of the nnU-Net frame-
work. These reimplementations were based on official code
repositories accompanying the articles which introduced the
tested architectures. The details about extending nnU-Net
framework can be found at github.com/MIC-DKFZ/nnU-
Net/blob/master/documentation/extending_nnU-Net.md

The nnU-Net ensures that all architectures are trained on
images preprocessed in exactly the same way (including
cropping, resampling, and normalization).

Within the nnU-Net framework 5-fold cross validation is
used: each training data set is split into 5 subsets, which
are then used to train five models for each architecture (in
the first training the first subset is used for online validation
and the remaining 4 subsets for model parameters learning,
in the second training the second subset is used for online
validation and the remaining subsets for parameters learning
etc.) Note that this split of data sets is the same for each
architecture. Each of the five cross-validation trainings was
run until convergence on the training subset. During each of
the five trainings the best model on the validation subset was
saved and used later for inference.

During training, it is assured that:
• the data augmentation is exactly the same for all

architectures,
• the optimizer and strategy for changing learning rate is

the same,
• the depth of architectures is adjusted to the data in the

same way for all architectures,
• the deep supervision is applied in the same way using the

same loss,

The inference is also applied in the same way, including
ensemble prediction based on the five trained model, which
enables estimating variance of the segmentation results.

The codes for re-implementation of the architectures ana-
lyzed in this study are available at GitHub. Below we shortly
describe the architectures analyzed in this study. The details
can be found in the original articles, while implementation
details can be found in the codes.

The base model architecture - U-Net - consists of two
paths (Fig.1): left contracting - encoder and right expanding
- decoder. The encoder consists of stacked layers of base
blocks with either a max-pooling operator or stride convolution
used for reducing dimensionality. The nnU-Net implemen-
tation of U-Net uses strided convolutions. Decoder utilizes
transposed convolution operator for increasing dimensionality
of the image. Characteristic to U-Net are skip connections
between corresponding encoder and decoder layers which are
concatenated with output from the previous decoder layer [1].

A variant of U-Net was also considered such that for
each U-Net base block there is a residual block processing
the data in parallel to this base block. The output of the
residual connection is added to the output of the base block.
We decided to include ResUNet [5] in this benchmark study
motivated by the success of residual connections - based
models (ResNet) in classification tasks.

Fig. 1. Visualisation of U-Net architecture.

Fig. 2. Visualisation of UNet++ architecture.

The next two architectures: UNet++ and UNet 3+ are
U-Net variants in which basic skip connections between the
same levels of encoding and decoding parts are replaced
by more (UNet++) or less (UNet 3+) complex pattern of
skip connections between different levels of encoding and
decoding paths of the models. These models were included in
this study to test whether skip connection pattern influences
segmentation accuracy.

UNet++ [3] architecture is similar to the U-Net, however,
it introduces dense skip connections and aggregating blocks,
not present in the original U-Net architecture. These aggre-
gating blocks are aimed at aggregating features at varying
semantic scales (Fig.2). Like in U-Net, there are direct skip
connections between respective layers of encoder and decoder
parts. Besides these basic skip connections, there are also
skip connections from the encoder to aggregating blocks and
other skip connections from aggregating blocks to either other
aggregating blocks or decoder layers. The aggregating blocks
concatenate features from different scales and then apply
convolutions to them before passing them further. The number
of aggregating blocks is proportional to the square of the
network depth.

UNet 3+ [4] is also based on the U-Net. The skip con-
nections of U-Net are kept in UNet 3+. Like UNet++,
UNet 3+ applies some dense pattern of skip connections
but, in contrast to UNet++ there are no aggregating blocks
(Fig. 3). The aggregation of features at different semantic
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Fig. 3. Visualisation of UNet 3+ architecture.

Fig. 4. Figure present architecture of CS2-Net.

scales is accomplished by basic concatenation of features from
different layers possibly preceded by appropriate rescaling.
Note that the dense skip connections of UNet 3+ are aimed
at aggregating features at all scales, that is, there are skip
connections even between the top and the bottom layers of
encoder and decoder.

CS2-Net in comparison to U-Net modifies the bottleneck of
the network, introducing a self-attention mechanism between
the encoder and decoder section. It utilizes two attention mech-
anisms (Fig. 4): spatial attention (SAB) and channel attention
(CAB) [6]. In the original paper of [6] basic convolutional
blocks of U-Net are replaced by residual convolutional blocks
but here we focus only on the influence of the attention
mechanism on the overall architecture performance. Note that
CS2-Net, due to the design of its attention block, can be
applied only to 2D images (or 2D slices of 3D images).

CPFNet [7] is another segmentation model based on the
encoder-decoder model which utilizes feature aggregating
blocks. In contrast to the UNet 3+, the features are passed
upwards from layers of the encoder (Fig. 5). While passing
upwards the feature tensors are upscaled and then aggregated
in GPG blocks before passing them further to the layers of
the decoder. In contrast to the U-Net, the features passed to
decoder layers are added to features computed by these layers.
According to [7] the purpose of the GPG module is to provide
decoder layers with a more global image context. Another
feature of CPFNet architecture is a scale-aware pyramid fusion
module replacing the bottleneck of U-Net aimed at fusing
multi-scale context information at a high level. Note that
CPFNet, in contrast to the previous models, has a fixed depth.

Fig. 5. Architecture of CPF-Net. G denotes GPG blocks and S denotes
scale-aware pyramid fusion module.

Note that CPFNet due to the design of its multi-scale context
fusion blocks, can be applied only to 2D images (or 2D slices
of 3D images).

The U-Net variants selected in this study cover a broad
spectrum of possible architecture modifications. Because two
architectures are designed only for 2D images, we used 2D
variants of all architectures in all tasks, except task 7. It means
than for tasks involving 3D data, 3D images were split into
sequences of 2D slices and these 2D images were used as
model inputs. In the case of task 7, which also involves 3D
data, we used 3D variants of architectures (except CS2-Net
and CPFNet, designed only for 2D) to check their performance
for at least one data set.

C. Metric Description

Metrics that were used for evaluation of performance of
trained models:

The number of trainable parameters: The number of
trainable parameters was compared as a measure of the com-
plexity and information capacity of each model.

Training time: The mean time of the training epoch for
each model was evaluated.

Prediction time: The mean time required to perform a
single prediction was measured for each model.

Sørensen–Dice coefficient (DC): The Dice similarity coef-
ficient is a statistical method for determining how similar two
sets of data are. It is defined by the equation:

QS = 2 ∗ |X ∩ Y |
|X | + |Y | , (1)

where X and Y are two sets, |X | and |Y | are numbers of
element in each set, X ∩ Y is intersection of this sets [17].

Surface Dice coefficient (SDC): Classical volumetric DC
may not give complete insight into quality of segmentation as
it doesn’t take into consideration the distance from misplaced
regions to the segmentation surface. To deal with this issue we
used also surface Dice coefficient [18], which allows to assess
overlap of two surfaces (at a specified tolerance level, here
set to 1). Details of implementation can be found in original
article.

Mean surface distance (MSD): Mean surface distance is a
measure of distance between points (pixels) p of one surface
S to another surface S� (here ground truth segmentation and
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Fig. 6. Value of loss function on validation set during training.

predicted segmentation). Defined as:

MSD = 1

nS + nS �

⎛
⎝

nS∑
p=1

d(p, S�) +
nS�∑

p�=1

d(p�, S)

⎞
⎠, (2)

where d(p, S�) stands for the distance of point p to sur-
face S� defined as minimum of Euclidean norm: d(p, S�) =
minp�∈S �

∣∣∣∣p − p�∣∣∣∣
2 As distances of surface S to S� (ground

truth to prediction) and S� to S (prediction to ground truth)
are not symmetric, the higher of these two values was used
for evaluation of models.

Hausdorff distance (HD): The average Hausdorff distance
between two finite point sets X and Y is defined:

dH (X, Y ) = max(sup(d (x, Y ))
x∈X

+ (sup(d (X, y))
y∈Y

, (3)

where sup represents the supremum, inf the infimum, and
d (x, Y ) = inf y∈Y d(x, y) [19].

To compute the aforementioned quality metrics we
used python surface-distance package (https://github.com/
deepmind/surface-distance).

Using the five models trained for each architecture with
5-fold cross validation, five predictions for each architecture

were collected for each testing image. Then, based on these
multiple predictions, the standard deviation of each quality
metrics has been also estimated for each architecture and each
testing image. The standard deviations of quality metrics were
then averaged for each architecture over all testing images.

Friedman test was used to test whether there is a difference
between the segmentation quality measures computed for the
six different architectures. The assumed significance level
was equal to 0.05. Whenever the Friedman test indicated a
statistically significant difference between models, Nemenyi
post hoc tests were run to discover differences between
models on a pair-wise basis. Further details concerning
application of Friedman and Nemenyi’s tests in Machine
Learning can be found in [20]. We implemented statistical
testing procedures in Python using scipy.stats (https://docs.
scipy.org/doc/scipy/reference/stats.html) and scikit-posthocs
(https://scikit-posthocs.readthedocs.io/en/latest/posthocs_api/)
packages.

III. RESULTS

The training curves for all architectures are shown in Fig. 6.
In the figure the loss function values for only validation sets are
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TABLE II
NUMBER OF TRAINABLE PARAMETERS

TABLE III
MEAN TRAINING TIME PER EPOCH IN SECONDS (STANDARD DEVIATION IS GIVEN IN BRACKETS)

TABLE IV
MEAN PREDICTION TIME IN SECONDS (STANDARD DEVIATION IS GIVEN IN BRACKETS)

shown for clarity. All models were trained until convergence
on the training set. During the training the models which
achieved the best results on validation sets were saved and
used for inference on testing sets.

Apart from the ultimate performance of the model, one
of its crucial features which were evaluated in this study is
the number of trainable parameters and the time required to
train it. The more trainable parameters a particular model uses
the more information capacity of the model is. The number
of trainable parameters in each architecture is compared in
Table II. It is slightly dependent on the size of the input images
and varies from less than 18 million for UNet 3+ to over
86 million for UNet++. On the other hand, there is no direct
relation between the number of trainable parameters and the
GPU memory allocated by the framework during the training.
In all cases the allocated memory was around 10GB.

A higher amount of additional connections and complexity
of neural network strongly influences the number of operations
required during training and prediction. It further affects the
efficiency expressed as the execution time of a single training
epoch (Table III) and the time of a single prediction (Table IV).
In both metrics, CS2-Net and U-Net achieved very similar
results and were clearly faster than other architectures. In terms
of training time on average CPFNet, UNet 3+, UNet++ and

ResUNet were respectively 1.53, 3.37, 3.50 and 1.48 times
slower. In the case of the prediction time, the differences are
even greater and the average slow-down factor was equal to
2.29, 7.87, 3.65 and 1.56 respectively. It means UNet 3+
required almost 3.5 times more time during training and then
almost 8 times more time for each prediction.

Regardless of complexity and time efficiency the ultimate
goal of deep learning model is to achieve high performance
understood as the ability to correctly segment the image. The
Dice coefficient (DC), surface Dice coefficient (SDC), mean
surface distance (MSD) and the Hausdorff distance (HD) were
calculated for each prediction from the test set made by all
architectures, taking into account the division into individual
classes in each of the tasks. Tables V to VIII show the medians
as well as interquartile range of segmentation quality metrics.

Generally, for task 1, 2, 3, and 8 architectures performed
quite good in terms of all quality metrics (for example, the
median of DC was higher than 0.9 for all cases, with the
differences between architectures not exceeding 0.01). For
tasks 7 and 9 the performance was good in terms of some
metrics but mild in terms of other metrics, for example DC for
Task 9 was high (0.95), but surface DC was small (about 0.7).
All models had similarly mild performance for edema and
enhancing tumor classes of Task 4 and in Task 7, with median
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TABLE V
MEDIAN DICE COEFFICIENT (INTERQUARTILE RANGE IS GIVEN IN BRACKETS)

TABLE VI
MEDIAN SURFACE DICE COEFFICIENT (INTERQUARTILE RANGE IS GIVEN IN BRACKETS)

DC above 0.8 (with UNet 3+ performing slightly worse than
other models). In the remaining 5 cases (non-enhancing tumor
class of Task 4, task 5, and task 6) the performance of the
models was poor and the differences between quality metrics
were larger.

Statistical significance of the results found for the differ-
ent architectures was first evaluated with the Friedman test.
Given 19 classes in nine tasks and 4 segmentation quality
metrics, 76 Friedman tests were run. Using the assumed
0.05 significance level, the null hypothesis about no difference

between the architectures was rejected in 66 out of these
76 cases, which means that in terms of some quality metrics
a performance of at least one of the six architectures was
different (either better or worse) than the performance of the
other architectures. To discover these differences Nemenyi
post hoc tests were run (a single post hoc test corresponding
to each rejected null hypothesis). Note, that post hoc tests are
less powerful than the original tests which means that they may
indicate no statistical difference between architectures even if
the original test indicated such a difference. Post hoc tests
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TABLE VII
MEDIAN AVERAGE SURFACE DISTANCE IN PIXELS (2D) OR VOXELS (3D) (INTERQUARTILE RANGE IS GIVEN IN BRACKETS)

TABLE VIII
MEDIAN HAUSDORFF DISTANCE IN PIXELS (2D) OR VOXELS (3D) (INTERQUARTILE RANGE IS GIVEN IN BRACKETS)

for 66 rejected null hypotheses and 6 architectures returned
990 p-values. To visualize the results of post hoc tests in Fig. 7
we show the differences between quality metrics for U-Net and
the competing architectures plotted against the p-values of post
hoc tests. Positive values of differences for Dice coefficient or
surface Dice coefficient for some architecture mean that the
performance of this architecture was worse than that of U-Net
in terms of either Dice coefficient or surface Dice coefficient.
Analogously, negative values of differences for mean surface
distance or Hausdorff distance for some architecture mean that
the performance of this architecture was worse than that of

U-Net in terms of either mean surface distance of Hausdorff
distance. Clearly, there is no systematic pattern in the figure,
that is, neither architecture is consistently better nor worse than
U-Net. If some architecture is better than U-Net in some task,
it is worse in other tasks. Moreover, even if some architecture
is better in terms of some metric than U-Net, the difference
in the quality metric may be of no domain significance.

The variability of standard deviation over predictions is
consistent with the results reported above, that is, the different
architecture variants do not lead to a better performance in
terms of e.g. decreased standard deviations over predictions
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Fig. 7. P-value of post hoc test (comparing to UNet) versus difference of median of metric (comparing to UNet) for different architectures.

made by multiple trained models. For this reason these results
are not included here.

IV. DISCUSSION

Since the publication of the U-Net architecture in 2015,
there were many propositions on how to improve its per-
formance. The various modifications were compared in this
study on nine different segmentation tasks to find out whether
there are architectures that are consistently better than others
and guaranteeing the best general effectiveness. In this study,
the unified nnU-Net framework was used to compare the six
selected architectures on a fair basis ensuring that the final
results depend only on the architectural detail but not on other
factors like data preprocessing, data split into training and
testing sets or training strategy. Note, that in accordance with
nnU-Net design, the depth of U-Net architecture is always
fit to the data before model training according to some rules
described in [2]. To ensure a fair comparison, the same depth
as computed for U-Net was then used for all the other archi-
tectures (besides CPFNet which, by its definition uses fixed
depth). In general, it follows from our study that in terms of
segmentation quality measures neither of the analyzed models
did consistently outperform the classical version of U-Net.

Note that the data sets used in this study can be split into
two subsets. For tasks 1, 2, 3, and 8 the segmentation quality
metrics are quite high, such that these deep segmentation
models can be likely used in clinical practice for diagnostic
tasks. While there could be statistically significant differences
between segmentation results, as indicated by Friedman’s test,
these differences are so small that they are of no domain
significance. For remaining tasks at least one of the seg-
mentation quality metrics is at most mild and, certainly, not
good enough to use these models for diagnostic purposes. For
these tasks the differences between models in the terms of
any quality metrics, are bigger, which may, potentially, lead
to a false conclusions about superiority of one model over
another one. As indicated by Nemenyi post hoc tests such
conclusions are not supported by the data (for example, due
to high variance, differences between median DC of even 10%
are not statistically significant, which clearly means that such
a difference need not to prove that any of the models is better
than others).

Looking at the very similar performance of models the most
important factor during the choice of the model is its time and
memory efficiency. Complex architectures such as UNet 3+
or UNet++ can be even 3.5 times slower during the training



GUT et al.: BENCHMARKING OF DEEP ARCHITECTURES FOR SEGMENTATION OF MEDICAL IMAGES 3241

and almost 8 times slower during prediction than the classical
version of U-Net, without any performance improvement.
Looking at these performance metrics, classical U-Net and
CS2-Net are certainly the best choices.
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