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Abstract— An increased interest in longitudinal neurode-
velopment during the first few years after birth has emerged
in recent years. Noninvasive magnetic resonance imag-
ing (MRI) can provide crucial information about the devel-
opment of brain structures in the early months of life.
Despite the success of MRI collections and analysis for
adults, it remains a challenge for researchers to collect
high-quality multimodal MRIs from developing infant brains
because of their irregular sleep pattern, limited attention,
inability to follow instructions to stay still during scanning.
In addition, there are limited analytic approaches avail-
able. These challenges often lead to a significant reduc-
tion of usable MRI scans and pose a problem for mod-
eling neurodevelopmental trajectories. Researchers have
explored solving this problem by synthesizing realistic
MRIs to replace corrupted ones. Among synthesis meth-
ods, the convolutional neural network-based (CNN-based)
generative adversarial networks (GANs) have demonstrated
promising performance. In this study, we introduced a novel
3D MRI synthesis framework – pyramid transformer network
(PTNet3D) – which relies on attention mechanisms through
transformer and performer layers. We conducted extensive
experiments on high-resolutionDevelopingHuman Connec-
tome Project (dHCP) and longitudinal Baby Connectome
Project (BCP) datasets. Compared with CNN-based GANs,
PTNet3D consistently shows superior synthesis accuracy
and superior generalizationon two independent, large-scale
infant brain MRI datasets. Notably, we demonstrate that
PTNet3D synthesized more realistic scans than CNN-based
models when the input is from multi-age subjects. Potential
applications of PTNet3D include synthesizing corrupted or
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missing images. By replacing corrupted scans with synthe-
sized ones, we observed significant improvement in infant
whole brain segmentation.

Index Terms— Infant brain MRI, MRI synthesis, neural
network, performer, transformer.

I. INTRODUCTION

THE first two years of life after birth mark rapid periods
of postnatal growth and development for the human

brain. The brain structures, functions, and neural pathways
that develop during this time lay the foundation for the
individuals that we will become. An important goal for many
studies of early childhood is to identify early biomarkers
of later cognitive functions, behaviors, or risks. Structural
magnetic resonance imaging (MRI) has become an important
non-invasive approach to investigate brain structural changes
with high spatial resolution. Over the last decade, researchers
have found a modest relationship between brain structure,
cognition, and behavior [1]–[4], suggesting that with improved
methodologies, early imaging biomarkers may be useful in
predicting later risk.

Compared with adults, infant brains have 1) lower contrast-
to-noise ratios due to the relative lack of myelination and
shorter scan times [5]; 2) lower spatial resolution due to the
smaller overall volume of the brain; and most importantly 3)
tissue intensities that change dramatically over the first two
years of life. In addition, given infants characteristics such
as long preparation time (feeding and swaddling to induce
sleep), irregular sleep patterns, and the inability to follow
instructions to keep still, it is often difficult to collect high-
quality multimodal MRI scans for infants [6]. Depending on
the research goal of studies and the choice of MRI processing
pipelines, researchers often prioritize only one modality /
protocol. For example, studies with a focus on newborns
will most likely prioritize the acquisitions of T2 weighted
(T2w) over T1 weighted (T1w) scans if they have chosen
to use the developing human connectome project (dHCP)
structural pipeline [7] or T1w over T2w scans if using the
Infant FreeSurfer pipeline [8]. Obtaining high-quality struc-
tural MRI scans for both modalities (T1w and T2w) may be
impractical. Of note, structural MRI processing (tissue/region
segmentation, surface reconstruction) is the first procedure
for analyzing other MRI modalities, e.g., functional MRI and
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diffusion MRI. Poor quality structural MRI scans can limit the
ability of research to study other MRI modalities. Moreover,
including both T1w and T2w scans into structural analysis
may enhance surface-based morphological measurements by
providing more accurate whole brain segmentation [9]–[11].
Therefore, novel and robust methodologies, which can syn-
thesize missing or corrupted infant MRI scans, can be
very helpful for developmental neuroscience and clinical
research [12].

Previous studies have demonstrated that synthesized single
or multimodal MRIs based on existing high-quality scans,
to some extent, improve biomedical imaging processing pro-
cedures, e.g., segmentation and registration. For example,
replacing corrupted fluid-attenuated inversion recovery MRI
scans with its synthesized version based on corresponding
T1w, T2w, and proton density (PD) scans can yield better
segmentation [13]. Similarly, a previous study has shown that
synthesized T1w scans can replace real T1w scans in inter-
modality and cross-subject brain MRI registration, and this
approach improves registration as compared with only using
real PD scans [14].

Prior to the rise of deep learning (DL), registration-based
and intensity-based transformation methods were prevalent in
this domain. Registration-based methods rely on a group atlas
as well as deformable registration to synthesize images with
different contrast [15]. Although registration-based image syn-
thesis provides promising performance in synthesizing com-
puted tomography and positron emission tomography from
MRI [16], [17], it may not be applicable to infant MRI
synthesis because of 1) lack of an accurate and longitudinal
infant brain MRI atlas; 2) more profound variations in the
infant brain at different ages which may introduce more error
when registering to an atlas. Intensity-based transformation
methods often utilize image analogies, sparse reconstruction,
non-linear regression, as well as neural network to achieve
image synthesis [13], [14], [18]–[22]. However, an earlier
study has concluded that these methods, whether dictionary
reconstruction, random forest regression, or neural network-
based, tend to lose fine details and yield suboptimal results in
synthesis [12].

Given the success of generative adversarial network (GAN)
in image synthesis, translation, and manipulation [23]–[26],
recent studies have attempted to introduce the convolution
neural network (CNN)-based GAN framework into medical
image synthesis and have shown improved performance com-
pared with aforementioned methods [12], [20], [22], [27]–[29].
Recently, the transformer layer, which is a self-attention
and convolution-free architecture, has been introduced to
the computer vision domain and demonstrates outstanding
performance in classification and segmentation in terms of
accuracy and efficiency [30]–[33]. The performer layer is
also introduced and applied to vision tasks [34], [35]; it is
a similar attention-based architecture to the transformer but
with a simplified self-attention and requires less computation
than the transformer.

In this study, we focus on synthesizing infant brain structural
MRIs (T1w and T2w scans) using both transformer and
performer layers. We design a novel 3D framework, inheriting

the U-Net-like as well as multi-resolution pyramid structures
[25], [36], and utilizing performer encoder (PFE), performer
decoder (PFD), and transformer bottleneck to synthesize
high-quality infant MRI. We conduct extensive experiments
based on a large-scale high-resolution infant MRI dataset – the
Developing Human Connectome Project (dHCP) dataset [7] as
well as another longitudinal infant MRI dataset – the Baby
Connectome Project (BCP) dataset [37], and compare our
model’s performance with other methods including pix2pix,
pix2pixHD, and StarGAN [25], [26], [38]. We demonstrate
that our proposed model can synthesize realistic T1w scans
based on T2w scans and vice versa. Compared with CNN-
based models, our framework is superior in various metrics
when validated on the unseen test dataset. More importantly,
our PTNet3D can provide good synthetic results across differ-
ent ages while CNN-based models fail on scans from subjects
<= 6 months old. We also have experimentally shown that
using PTNet3D to synthesize corrupted modality (T1w) based
on good-quality T2w improves dual-channel segmentation
using 3D U-Net.

II. RELATED WORKS

A. GAN-Based MRI Synthesis

CNN-based GAN is the most prevalent framework in the
image translation and synthesis domain. It utilizes adversarial
training, which uses the discriminator network’s feedback to
generate images similar to the training data. During the train-
ing, two subnetworks: generator and discriminator, are trained
simultaneously. The generator employs a decoder (original
GAN) or an encoder-decoder (conditional GAN) architecture.
The original GAN was proposed to unconditionally generate
images from latent space noise vector [23]. The discriminator
is a classifier trained by the real and synthesized image. The
discriminator has access to the true label during the training.
The generator is trained using the feedback from the discrimi-
nator and aims to “fool” the discriminator and generate images
that cannot be distinguished from real images. The conditional
GAN has been used in various downstream applications, such
as super-resolution, style transfer, sketch-to-image generation,
and image inpainting [26], [38], [39]. However, the training
of a GAN model can be unstable. Stability is improved in a
conditional GAN model as the input is not random noise but
informative images. Other advancements in conditional GAN
include using a unified generator for multi-domain synthesis
and reducing the data required for training a GAN [38], [40].

Inspired by the previous success of conditional GANs in
natural image translation, early studies have explored their
application in medical image synthesis [12], [27]–[29]. Specif-
ically, studies [27], [12] have used a similar framework
in [26] and [25] such as pix2pix and pix2pixHD, respec-
tively, for MRI cross-modality synthesis. Dar et al. [12] has
explicitly shown that GAN-based methods outperform the
previous intensity-based transformation and neural network-
based methods (i.e., Replica and Multimodal) in MRI synthesis
[20], [22]. Reference [29] has utilized a unified generator
extended from the StarGAN [38]. Both [29], [28] have further
introduced supervision on latent features to improve synthetic
results.
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Fig. 1. Self-attention mechanism used in Transformer and a basic
transformer block. Head count (H) is the number of scaled dot-product
attention used in the multi-head attention. N is the number of successively
used transformer blocks.

B. Transformer in Computer Vision Tasks

The transformer is an architecture that solely relies
on self-attention mechanisms (Fig. 1) and is completely
convolution-free [30]. A transformer layer consists of a multi-
head self-attention layer and a fully connected feed-forward
network (multilayer perceptron). A residual connection and
a layer normalization are applied on both components. The
transformer model was originally designed for sequence
processing and is becoming a popular and fundamental archi-
tecture for NLP tasks. Recently, it has been extended to
computer vision tasks, such as image classification, image
segmentation, image generation, and object detection [31],
[35], [41]–[45]. In those applications, the transformer has
demonstrated a great potential to achieve or outperform state-
of-the-art CNN-based networks, largely because of its self-
attention mechanism.

The self-attention mechanism is based on multiplicative
attention through the dot-product of weights and values (of
dimension dv), where the weight matrix is calculated by a
compatibility function of the query with the corresponding key
(of dimension dk = dv ). In practice, queries, keys, and values
are packed together into a matrix Q, K, V, respectively. The
scaled dot-product attention is calculated using (1). Instead
of performing the scaled dot-product attention one time, the
original paper proposed a multi-head attention (MHA) module
[46], which is more beneficial for capturing global dependen-
cies. As shown in Fig. 1, Q, K, and V are linearly projected H
times, by linear projections W Q , W K , and W V . For each head,
the single head attention is calculated in parallel based on Eq.
(2). The final output of MHA is given by the linear projection
W O of the concatenation of head attentions as shown in Eq.
(3) below.

Attention(Q, K , V ) = so f tmax(
QK T

√
dk

)V (1)

headi(Q, K , V ) = Attention(QW Q
i , K W K

i , V W V
i ) (2)

M H A(Q, K , V ) = Concat (head1, . . . , headh)W O (3)

C. Performer Block for Simplified Attention Mechanism

The original transformer model employed a full-rank soft-
max attention. Despite the superior performance of the trans-

Fig. 2. Difference between transformer and performer models. Upper
panel: Transformer block as explained in Eq (4). Lower panel: Performer
block as explained in Eq (5, 6). The red dashed block is first computed to
reduce complexity. The entire green solid block is proposed to approxi-
mate the full-rank self-attention in the upper panel.

former block and its self-attention mechanism, the space and
time complexity of computing the full-rank attention matrix
quadratically grows with the number of tokens L (which is
proportional to image size in vision tasks). To prove this,
we rewrote Eq. (1) by decomposing the softmax into expo-
nential and normalization components, yielding:

Attention(Q, K , V ) = D−1 AV , A = exp(
QK T

√
dk

),

D = diag(A1L). (4)

In Eq. (4), exp(x) is element-wise exponential function, D−1

performs normalization where diag(x) is a diagonal matrix
with the input vector x as the diagonal and 1L is the all-ones
vector of length L. By definition, we have Q, K , V ∈ RL×dk .
Therefore, Eq. (1) and (4) require a time complexity of
O(L2dk) and a space complexity of O(L2 + dk) because A
has to be calculated and stored firstly (Fig.2). The quadratic
complexity limits the application of the original transformer
to large input sequence.

The performer block was proposed to approximate the
regular full-rank softmax attention by Fast Attention Via
positive Orthogonal Random features (FAVOR+) mechanism
[34]. The FAVOR+ replace the regular attention matrix D−1 A
by approximating exp( Q K T√

dk
) through Q�(K �)T . Therefore,

we have:
�Attention(Q, K , V ) = D̂−1(Q�((K �)T V )),

D̂ = diag(Q�(K �)T 1L). (5)

In Eq. (5), we replace the non-linear exp( Q K T√
dk

) with a

linear operation Q�(K �)T so that we can switch the order
of multiplication. As indicated by the brackets in Eq. (5)
and depicted in Fig. 2, we first calculate the (K �)T V . Such
an approximation reduces the time and space complexity to
O(Ld �

kdk) and O(Ld �
k + Ldk + d �

kdk), respectively (Fig.2).
The mapping from Q, K ∈ RL×dk to Q�, K � ∈ RL×d �

k is

achieved by kernel φ : Rdk → R
d �

k+ so that each row in Q� and
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K � is given by φ(qT
i )

T
and φ(kT

i )
T

, respectively (qi and ki

denote rows in Q and K ). The φ is defined by

φ(x)= exp(−�x�2

2 )√
m

(exp(χT
1 x), · · · exp(χT

m x)), m =d �
k . (6)

In Eq. (6), χ1, · · · χm are fixed, non-learnable, and random
orthogonal vectors drawing from an isotropic distribution.

In the original paper, several different configurations for
φ were proposed and compared. We selected the one with
positive and orthogonal feature maps, which provided the
most negligible variance and provable accuracy while approx-
imating the softmax kernel. Interested readers may find more
detailed mathematical proofs and experiments in [34].

III. METHODS

A. 3D Pyramid Transformer Net (PTNet3D) for MRI
Synthesis

In this work, we introduce a novel 3D MRI synthe-
sis framework: 3D Pyramid Transformer Net (PTNet3D).
PTNet3D takes high-resolution 64 × 64 × 64 block as input
and its architecture consists of transformer/performer layers,
skip-connections, and a multi-scale pyramid representation.
An overview of our proposed PTNet3D model is depicted in
Fig. 3. Specifically, we exploit the transformer block in the
bottleneck layer to take advantage of its self-attention mech-
anism on latent features (Fig. 4c). Considering its quadratic
time and space complexity, it cannot be directly applied to
the encoding/decoding path because of the higher spatial res-
olution of feature maps. Therefore, we design the performer-
based encoder/decoder, which allows us to approximate full-
rank softmax attention based on FAVOR+ in a linear time
and space complexity (Fig. 4a&b). We adopt the successful
U-shaped structure of U-Net and reshape the output tokens
from each layer for skip connection, aiming to preserve fine
structures of the brain.

Despite the flexibility of running on a high-resolution 3D
image block (643) brought by the performer, it may not be
able to capture global dependencies as well as the transformer
because the performer is not equipped with full-rank attention
[34]. Inspired by some previous studies in traditional com-
puter vision and deep learning tasks [25], [47]–[52], we re-
introduce the pyramid representation to our framework to: 1)
leverage the global information extracted by transformers to
compensate for the potential information loss caused by the
performer; 2) and alleviate the intensive computation need for
high-resolution features. The entire framework operates in two
levels: the original resolution and downsampled resolution (1/4
in x, y, and z axes). The original resolution image goes through
the performer encoder, transformer bottleneck, and performer
decoder. The downsampeld image is unfolded directly and is
fed into the transformer bottleneck to take advantage of its
full-rank attention.

In the following sections, we introduce each component
of our proposed PTNet3D model in detail. We introduced
the performer-based encoder and decoder in Section A.1,
transformer-based bottleneck in Section A.2, pyramid layer
in Section A.3, and model details in Section B.

1) Performer Encoder and Decoder: The most significant
challenges for applying the original transformer model in
vision tasks are computational time and GPU memories when
the input has high spatial resolution, such as in the case of
brain MRIs. To solve this issue, instead of the transformer,
we adapt the performer in our encoding and decoding blocks
and name them as the PerFormer Encoder (PFE) and Per-
Former Decoder (PFD), which are illustrated in Fig. 4. In PFE,
for an input 3D tensor with a size of N × Cin × X × Y × Z ,
we unfold the 3D matrix into a series of tokens using a window
of n by n and a stride S. The resultant tokens are with size
N × 1

S3 XY Z × Cinn3 and are fed into the performer block
(Fig. 2). The output from the performer is then transposed and
reshaped to a size of N×Cout ×X×Y ×Z (Fig. 4a). During the
encoding, the S is often set as 2, n is set as 3. In its counterpart
PFD, the input tensors are first upsampled by a factor of S
through trilinear interpolation and are then concatenated with
the feature maps from the encoding path along the channel
dimension (Fig. 2 and Fig. 4b). The concatenated feature
maps are then fed into the performer block following the same
unfolding process. In the end, a similar transpose and reshape
are performed to form the output. During the decoding, the S
is often set as 2, n is set as 1 (Fig. 4 panel b).

2) Transformer Bottleneck: In the bottleneck, we employ the
original transformer blocks (Fig. 1) as the input feature maps
are already of low spatial size. Such a transformer bottleneck
(Fig. 4c) allows to better capture any global dependencies
across the bottleneck features. The input of transformer bot-
tleneck is a series of tokens formed by an unfolding process
similar to the PFE and PFD. The output from the last PFE
is unfolded with S = 2 and n = 3. After unfolding, a fully
connected layer is applied to linearly project the token from
N × 1

S3 XY Z × Cin to N × 1
S3 XY Z × Cembd , where Cin

equals the channel number from the last PFE multiplied by
n3, and Cembd represents the embedding dimension throughout
the transformer blocks. The embeddings are then fed into M
transformer blocks, in which M is set as 9. Before feeding the
embedded tokens into the transformer blocks, following the
previous studies [30], we add the positional encoding (PE).
PE is proposed simultaneously with the transformer and aims
to provide some information about the relative or absolute
position of the tokens in the sequence. In this work, we utilize
the same sine and cosine functions as the previous study
suggested [30] to generate the positional encoding according
to Eq. (7) and (8), where pos is the position and i is the
dimension. After going through M transformer blocks, the
output is projected, transposed, and reshaped as usual and is
fed into the first PFD as shows in Fig. 2.

P E pos,2i = sin(pos/100002i/Cembd ) (7)

P E pos,2i+1 = cos(pos/100002i/Cembd ) (8)

3) Pyramid Layer: The PFE and PFD reduce the computa-
tion complexity and allow the PTNet3D to operate on high-
resolution 3D blocks. However, performer is theoritecially
less powerful than transformer in terms of capturing global
dependencies as it is approximating the full rank attention
of transformer [34]. Therefore, to avoid the potential infor-
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Fig. 3. Overview of proposed 3D Pyramid Transformer Net (PTNet3D) model. We follow the classic U-shape structure and inherit the skip connection.
We parallelize the conversion at two distinct resolutions and concatenate them before feeding into the transformer bottleneck. The detailed structures
of each component are illustrated in Fig. 4 below. The spatial projection is a fully-connected layer that reduces the channel to output channel number.

mation loss due to performer, we equip the PTNet3D with
a layer that solely relies on transformer blocks with full-rank
attention. Considering the quadratic complexity of transformer
block, we re-introduce the pyramid representation which was
proven to benefit vision tasks in both traditional and deep
learning-based vision tasks [25], [47], [48], [50], [52], [53].
The idea of pyramid representation came from [51], and
authors hypothesized that it mirrors the multiple scales of
processing in the human visual system in a computational-
friendly way. We downsample the image by a ratio of 4 so that
we can apply transformer at this resolution. We demonstrate
that the pyramid layer can be stacked several layers from the
1/4 of the original resolution in the following sections.

B. Model Details

We provided detailed configurations of the propsoed
PTNet3D in this section. As illustrated in Fig. 3, PTNet3D
has 3 PFEs and 4 PFDs. All PFEs have a window with
n = 3 and except for the first PFE which utilizes an s = 1,
others set s as 2 to reduce feature maps’ spatial dimension.
All PFDs set n as 1 and except for the last PFD, others
firstly upsample the input by a ratio of 2 through trilinear
interpolation. Prior to the transformer bottleneck, the output
from the previous layers is unfolded with s = 2 and n = 3.
The input and output channels (Cin and Cout ) for PFEs are
1, 16, 32 and 16, 32, 64 respectively. The pyramid layer first
unfolds the downsampled image with n = 3 and s = 1, and
then linearly projects the unfolded tokens to an embedding
dimension of 64. The projected tokens are then fed into
9 transformer blocks. The output is then linearly projected to
a dimension of 32 and it is thereby reshaped and concatenated
back to the original branch prior to the transformer bottleneck.
The concatenated feature maps are unfolded with n = 3 and
s = 2 and are linearly projected to an embedding dimension
of 256. After going through 9 transformer blocks, resultant
tokens are projected to a dimension of 96 and are feed into the
decoding path. The input and output channels (Cin and Cout )
for PFDs are 192, 64, 32, 17 and 32, 16, 16, 16 respectibely.
The final output of PFDs is linearly projected to 1-channel
and reshaped as an output image.

C. Datasets

1) Developmental Human Connectome Project—dHCP: We
used 459 paired T1w and T2w high-resolution infant brain

MRI scans from dHCP v1.0.2 data release (0.5 × 0.5 × 0.5
mm3). The structural T1w and T2w scans from dHCP were
collected within one month after birth. The average postmen-
strual age of infants at scan is 40.65 ± 2.19 weeks. More
details about the image acquisition can be found in the original
work [7]. Necessary data exclusion based on quality and data
preprocessing were performed and details as well as example
were provided in the Appendi x A. Afterwards, we split the
data with a ratio of 7:1:2.

2) Baby Connectome Project—BCP: To further evaluate our
model’s performance at different developing ages and differ-
ent datasets, we used the Baby Connectome Project (BCP)
dataset [37]. Image synthesis tasks on longitudinal datasets
are more challenging owing to the varying contrast of the
developing brain. Therefore, we believe that re-evaluating our
PTNet3D on the BCP dataset can further prove its value. BCP
adopted a mixed study design containing both longitudinal and
cross-sectional time points, ranging from birth to 72 months.
The BCP scans have an isotropic resolution of 0.8 × 0.8 ×
0.8 mm3. We employed similar preprocessing and exclusion
to those used in dHCP dataset. We also designed a fair and
rigorous data split to ensure each available age is included in
the training/validation/testing sets. The details can be found in
the Appendi x A.

D. Experiments

1) Model Implementation: We first compared the proposed
PTNet3D with other previously state-of-the-art CNN-based
models, including pix2pix, pix2pixHD, and StarGAN. The
pix2pix model is a U-Net-like model and its generator is an
encoder-decoder that progressively downsampled the feature
maps by a factor of 2 while increasing the dimension of the
feature maps. It does not use any bottleneck layers but uses
a skip connection between the encoder and decoder path. The
pix2pixHD is an advanced version of pix2pix, which utilizes
a residual block as the bottleneck layer’s backbone. It has
two variants: the pix2pixHD-global only employs a single
generator proposed by [54]; the pix2pixHD-local is addi-
tionally equipped with a local enhancer network that works
on high-resolution feature maps [25]. The pix2pixHD-global
employs 9 residual blocks in its bottleneck, and its -local
version utilized 3 and 6 residual blocks in high- and low-
resolution branches, respectively. The StarGAN is an unified
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Fig. 4. Proposed performer encoder (a), performer decode (b), and transformer bottleneck (c). (a): The performer encoder will first unfold the feature
maps into tokens. The channel after unfolding is decided by the input channel Cin and unfold kernel size n. Unfolded tokens are then fed into a
performer layer. The resultant token is lastly transposed and reshaped to a feature map which has been downsampled by a scale of s (stride). In the
encoding path, the unfold kernel size n is usually set as 3, and unfold stride s is usually set as 2. (b): The performer decoder will first upsample
the input feature maps by a factor of s. The upsampled feature maps are then processed as mentioned in the performer encoder, but there is no
stride so the upsampled feature size remains unchanged. In the decoding path, the upsample factor s is usually set as 2. The unfold kernel size n
is usually set as 1 and unfold stride s is usually set as 1. Cin and Cout are changed at different levels of the network. (c): Transformer bottleneck:
The transformer bottleneck utilize the same unfold as the performer encoder. And additional position encoding and linear projection are used prior
to feeding in transformer blocks. The output of M transformer blocks is then transposed and reshaped and fed into the decoding path.

GAN model which enables a multi-domain image translation
within a signle network [38]. We borrowed the implementation
for abovementioned models from their public GitHub repos-
itories. Comparisons of computation cost of different models
were provided in Appendi x B.

2) Training Strategies: The pix2pix series need both adver-
sarial loss (Ladv , Eq. (9)) and other regularization terms to sta-
bilize the training. Therefore, a generator G and discriminator
D are used during the training. We term X as the input source
image, and Y as the target image. For the pix2pix, it utilizes
the Ladv and L1 reconstruction loss (mean absolute error, Eq.
(10), with a weight of 100) as the loss function described
in Eq. (11); for the pix2pixHD, instead of incorporating an
L1 reconstruction loss, it incorporates the L1 loss in the
feature-level (L f eat , Eq. (12), with a weight of 10) with the
Ladv Eq. (13). It should be noted that, for Eq. (12), Di

indicates the output from the i-th layer of the discriminator D.
Specifically, i-th layer is the layer prior to the final patch-level
class prediction and i is set from 1 to 3.

Ladv = EX,Y [logD(X, Y ) + log(1 − D(X, G(X)))] (9)

L M AE = �G(x) − Y�1 (10)

L p = Ladv + 100 ∗ L M AE (11)

L f eat =
∑3

i=1
�Di (X, Y ) − Di (X, G(X))�1 (12)

L pH = Ladv + 10 ∗ L f eat (13)

Unlike the pix2pix series, the StarGAN applies different
adversarial loss and regularization term. StarGAN utilizes two
different discriminators: Dsrc to distinguish real and fake
images, and Dcls for domain class classification. Denoting the
input source image X , source domain class cx , target image
Y , source domain class cy , and generated image G(X, cy), the
StarGAN is trained using Eq. (17):

LadvStar = EX [log(Dsrc (X)]
+ EX,cy [log(1 − Dsrc(X, G(X, cy)))] (14)

Lcls = EX,cx [− log (Dcls (cx | X)]

+ EX,cy [−log(Dcls(cy |G(X, cy))] (15)

Lcycle = ∥∥G(G(X, cy), cx ) − X
∥∥

1 (16)

LStar = LadvStar + Lcls + 10 ∗ Lcycle (17)

PTNet3D also utilizes a hybrid loss function. It uses the
same adversarial loss shown in Eq. (9) with a 3D patch-level
discriminator similar to [25]. It uses a L2 norm on pixel-wise
reconstruction loss and feature-level perceptual loss. In addi-
tion to Eq. (9-11), we also use a 3D ResNet-18 model pre-
trained on Kinetics-400 dataset as the externel discriminator
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[55]. The pretrained ResNet-18 is frozen during training and
only provides supervision in feature-level (Eq. (18)). We term
all the feauture-level regularizations as perceptual loss L Perc,
which is defined as Eq. (19). And the loss function for
PTNet3D is defined as Eq. (21)

L Res Feat =
∑4

i=1
�Resi (Y ) − Resi (G(X))�1 (18)

L Perc = L f eat + L Res Feat (19)

L M S E = �G(x) − Y�2 (20)

L PT Net = Ladv + 10 ∗ L Perc + 100 ∗ L M S E (21)

Five models were separately trained for T1w-to-T2w and
T2w-to-T1w conversions. For T1w-to-T2w conversion, X was
T1w scan and Y was the corresponding T2w scan, and vice
versa. We used the default training strategies for pix2pix seriex
and StarGAN as explained and demonstrated in the previous
studies [25], [26], [38]. Detail training configurations can be
found in the Appendi x B.

3) Evaluation: To compare models’ performance on
T1w-to-T2w and T2w-to-T1w synthesis tasks, four different
metrics: the structural similarity index (SSIM), peak signal-
to-noise ratio (pSNR), mean absolute error (MAE), and
Fréchet Inception Distance (FID) were calculated on the test
dataset [56]–[58]. We employed these four metrics to evaluate
synthetic results from different perspectives. More detailed
introductions to the metrics can be found in the Appendi x D.

After directly comparing the models’ performance from the
quantitative metrics, we evaluate each model based on the
validity of its synthetic results indirectly. Specifically, using
the same distribution introduced in Section C.1, we trained a
3D UNet which takes concatenated T1w and T2w blocks as
inputs [59] to segment the entire brain into 87 brain regions
based on the labels provided by dHCP studies. We compared
the segmentation maps of real T1w + real T2w with those
of real T1w + synthetic T2w. We hypothesized that the more
valid synthetic scans are, the closer segmentation results are
compared to those of real scans. Three different metrics were
utilized in comparison: Dice score (DSC), average surface
distance, and 95% Hausdorff distance (HD).

4) Ablation Experiments: To further study the PTNet3D
where transformer and performer layers are first introduced
to replace convolutional layers completely in MRI synthesis,
we conducted ablation studies on loss functions, pyramid lay-
ers, and the dimensionality of the input image. We compared
the PTNet3D performance when it was trained by MES loss
(Eq. (20)) solely, by adversarial loss and MSE (with a weight
of 100), and by a combination of adversarial loss, perceptual
loss, and MSE loss together (Eq. (21)). Furthermore, we
compared model performance with different pyramid layers: 0,
1, and 2. For the case of two layers, the second pyramid layer
runs on a resolution of 83, and the output is concatenated back
to the main branch prior to the linear projection in the trans-
former bottleneck. We also evaluated PTNet3D on different
input dimensions. As both transformer and performer layers
take tokens as input, in this ablation experiment, we formed
tokens through unfolding the 3D block (643) and 2D image
(224 × 256). The detailed results can be found in Section IV.

Fig. 5. Visualizations and absolute error maps among existing synthesis
models and our (PTNet3D) model. From left to right columes: real
scan, synthetic results from pix2pix, pix2pidHD-Global, pix2pixHD-Local,
StarGAN, and the proposed PTNet3D. From top to bottom rows: sagittal,
coronal, and axial orientations. We noticed that other models yield a more
extensive error map than the proposed PTNet3D. Red arrows indicated
regions in which our PTNet3D generated more accurate results.

IV. RESULTS

A. Synthesis Results on dHCP Dataset

1) Visual Comparisons: We first visualized synthesized
scans and calculated their absolute error maps between the
original scan and synthesized one from each model (Fig. 5) for
T1w-to-T2w synthesis. Absolute error is calculated between
normalized ground truth and converted scans, ranging from
[0,1] – lower values (white color) indicate minor differ-
ence. From Fig 5., we found that our model produces less
extensive absolute error than the CNN-based models in gen-
eral. Especially, the arrows indicated the region where our
model produced a more realistic synthesis compared to other
methods.

2) Quantitative Results: We quantitatively compared the
results of our proposed PTNet3D model to results of other
CNN-based models using the same high-resolution infant brain
MRI dataset. The mean and standard deviation of SSIM,
pSNR, MAE, and FID were calculated from the test dataset
and were reported in Table 1. PTNet3D outperforms other
models in almost all metrics, except for the FID in T2w-to-
T1w synthesis. In the T1w-to-T2w synthesis scenario, com-
pared to the pix2pix model, our PTNet3D achieves a 2.67%
increase in SSIM, 4.45 dB rise in pSNR, and a 32% reduction
in MAE. Similarly, for T2w-to-T1w synthesis, PTNet3D deliv-
ers a 1.5% increase in SSIM, 1.88 dB rise in pSNR, and an
18% decrease in MAE, when compared to the pix2pix model.

The superior performance of PTNet3D was consis-
tently observed for both T1w-to-T2w and T2w-to-T1w
tasks. We noticed that pix2pixHD-local, Star-GAN, and our
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TABLE I
RESULTS ON DHCP DATASET

PTNet3D have very close FID in T2w-to-T1w synthesis.
However, our PTNet3D has the best performance in SSIM,
pSNR, and MAE, representing higher structural similarities.

B. Synthesis Results on Longitudinal BCP Dataset

The detailed quantitative results from all 5 models were
listed in Table 2. We reported the average SSIM, pSNR, MAE,
and FID from 46 testing scans, which were acquired at differ-
ent ages. We noticed that PTNet3D continues to outperform
all other CNN-based counterparts on the longitudinal BCP
dataset. In addition, we noticed that StarGAN’s performance
significantly drops compared to the performance on dHCP
dataset. Despite its relatively high SSIM, pSNR, and MAE
on T2w-to-T1w synthesis task, StarGAN performed poorly in
FID and failed on T1w-toT2w synthesis tasks.

As introduced before, the longitudinal infant brain MRI
poses a challenge in image synthesis because of the varying
contrasts in rapidly developing brains. To investigate the
possible impact of longitudinal data on synthetic quality and
accuracy, we divided the test subjects into four different age
groups: 0-6 months, 7-12 months, 13-24 months, and >24
months. A comparison of the model’s performance at each
age group was conducted (Fig. 6).

Fig. 6 shows the distributions of SSIM, MAE, and FID
for each model and age group separately. The pSNR is based
on intensity difference as MAE does, so we provided it in
Appendi x C . In the left panel are the longitudinal results
of T1w-to-T2w synthesis, while the right panel illustrates the
T2w-to-T1w synthesis results. Our PTNet3D model consis-
tently yielded higher SSIM, lower MAE and lower FID than
CNN-based models.

Notably, the CNN-based models could not tackle the chal-
lenging longitudinal synthesis, especially when the input scans
were from the 0-6 months group. An example was provided
in Fig. 7. As a comparison, we provided the results from
pix2pixHD-Local – the best CNN-based model (Table 2
and Fig. 6). The synthesized scan from PTNet3D, which is
shown in the top middle, is less noisy, has fewer artifacts,

TABLE II
RESULTS ON BCP DATASET

Fig. 6. Boxplots for T1w-to-T2w synthesis (a, c, and e) and T2w-to-T1w
synthesis (b, d, and f) on multi-age BCP dataset.

and remarkably retains fine structural details. The superior
synthetic quality of PTNet3D is clearer in the zoomed region,
where pix2pixHD-Local loses detail of the cerebral cortex, that
is preserved in the PTNet3D model.
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Fig. 7. An example from a 3-month-old subject. The middle and right
columns are synthesized outputs from PTNet3D and pix2pixHD-Local.
The bottom row is the zoomed view of the region highlighted by the red
box.

C. Segmentation of 87 Brain Regions Using Synthesized
Scans

Furthermore, we evaluated the validity of synthesized scans
on real-world application – infant whole brain segmentation.
We used the same dHCP dataset and followed the same data
partition as Section A. To perform the segmentation task,
we built a dual-channel 3D UNet model (detailed configu-
rations in the Appendi x E). After training on 291 pairs of
multimodal MRI scans (T1w and T2w) and labels, we seg-
mented six different sets of test scans, which contained real
T1w and real T2w or real T1w + synthesized T2w. Each
above synthesizer generated a unique pair of real T1w and
synthesized T2w.

Segmentation accuracy using synthesized scans was eval-
uated by three metrics, including the Dice, Average Sur-
face Distance (ASD), and 95% Hausdorff Distance (HD95),
listed in Table 3. We noticed that PTNet3D outperforms
other methods in all metrics, providing the closest perfor-
mance to using real scans. We can conclude that PTNet3D
synthesized more realistic scans based on the segmentation
results.

Compared to pix2pixHD-Local, 87 out of 87 segmented
regions from the derivative scans of PTNet3D are closer to
those from real scans (significantly higher Dice at an FDR
adjusted p value of 0.05, see Appendi x F).

We further provided visualization of segmentation results in
Fig. 8. For simplification, only segmentation maps from real
scans, PTNet3D, and pix2pixHD-Local were provided. Com-
pared to those using the real scans, PTNet3D and pix2pixHD-
Local both performed well on segmenting white matter and
gray matter. However, using the synthesized scans from
PTNet3D generated more reliable segmentation, especially for
small-to-medium structure regions. As highlighted in Fig. 8,
using pix2pixHD-Local as the synthesizer led to an inaccurate
segmentation of the brain stem and the ventral lateral nucleus
within thalamus (the top row), a false negative segmentation
of thalamus, and ambiguous boundary between parietal and
occipital frontal lobe (middle row and bottom row).

TABLE III
SEGMENTATION RESULTS USING DIFFERENT SYNTHESIZER

Fig. 8. Segmentation maps from distinct inputs. Left to right: real/true
scans, synthesized scans by PTNet3D, synthesized scans by pix2pixHD-
Local. From top to bottom: axial view, sagittal view, coronal view. Red
circles indicate the region where synthesized scans by PTNet3D yield
segmentation results that are closer to those from real scans.

D. Ablation Studies

To evaluate the contribution of each component in the
proposed PTNet3D, we conducted ablation studies by com-
paring the synthetic results of PTNet3D under different con-
figurations. Specifically, we investigated the influence of each
component of the loss function; we justified the effectiveness
of the proposed pyramid structure; we compared the proposed
PTNet3D to its 2D variant. The detailed experiments and
results can be found below.
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TABLE IV
DHCP T1W-TO-T2W SYNTHESIS RESULTS USING DIFFERENT LOSS

FUNCTIONS

TABLE V
DHCP T1W-TO-T2W SYNTHESIS RESULTS USING DIFFERENT

PYRAMID LAYERS

1) Contribution of Adversarial and Perceptual Losses: We
first conducted an ablation study on the choice of loss
functions. Three different configurations were compared, and
results were provided in Table 4. A previous study suggested
that adversarial training (adversarial and perceptual losses) can
not only improve image quality in terms of high-frequency
components but also will improve intensity-based metrics such
as SSIM [28]. However, we noticed that our PTNet3D could
be directly and efficiently trained with MSE and achieve
very high performance in intensity-based metrics. Nonetheless,
only using MSE will lead to resultant scans, which are over-
smooth and lack high-frequency components. Incorporating
adversarial loss and perceptual loss will yield the optimal
FID score and best visual quality without scarifying intensity
restoration accuracy too much.

2) Contribution of Pyramid Layer: As introduced before,
we assume utilizing transformers directly at downsampled
image will take advantage of the full-rank attention to avoid
potential information loss caused by the performer. We con-
ducted an ablation experiment on removing the pyramid layer,
adding one or two pyramid layers to justify the effectiveness of
the proposed pyramid layer. We only stacked pyramid layers
up to two because of resolution limitation. Taking a 643 block
as the input, the lowest spatial resolution of main branch is
83, while the third pyramid layer will run at a resolution
of 43. The results were concluded in Table 5. Compared to
removing pyramid layers, adding one pyramid layer running at
a 163 resolution improved all metrics. This improvement was
consistently observed when two pyramid layers were utilized.
We believe these results suggest the pyramid layer benefits the
PTNet3D by directly applying transformers at different scales,
especially with respect to capturing global dependencies. After
downsampling the image from 643 to 83, the local structural
details are barely preserved in the input of the second pyramid
layer, but it still improves the synthesis performance. The
pyramid layer might provide such an improvement as long
as it runs at a reasonable resolution.

TABLE VI
DHCP T1W-TO-T2W SYNTHESIS RESULTS USING 2D AND 3D

PTNETS

Fig. 9. Feature maps from the decoding path of different models.
a), PTNet_2D, b), PTNet3D, c), pix2pixHD-Global. ∗The checkboard
artifact in panel b. is caused by stitching and doesn’t indicate failures.

3) 2D and 3D Comparison: Lastly, we conducted an ablation
study between the proposed PTNet3D and our previous 2D
variant [60]. The results were listed below. The PTNet3D
taking 3D blocks as input outperformed the 2D variant. This
finding is in alignment with several previous studies using
CNN-based model [28], [29]. Similar to CNN-based model,
PTNet3D also benefits from the 3D information within the
input.

E. Visual Comparisons of Models’ Feature Maps

We further visualized and compared internal feature maps
from pix2pixHD-global and PTNets. Fig. 9 a) panel showed
feature maps from the decoder path of PTNet-2D with a matrix
size of 56 × 64; b) panel showed stitched feature maps from
the PTNet3D decoder with a matrix size of 56 × 64 (the
original size is 16 × 16, and we stitched feature maps from
16 neighboring blocks to form this one); and c) panel displayed
feature maps from pix2pixHD-global with a matrix size of
56 × 64. It is remarkable that the transformer-based network
generated more structured activations given the same input.
The transformer-based PTNet3D model is able to detect very
fine structural details (e.g., edges, textures) and significantly
enhances the feature richness compared with the CNN-based
pix2pixHD. We also noticed that the PTNet3D almost pro-
vided rich and meaningful activation at each channel while the
pix2pixHD generated zero-value activation at some channels.
We speculate that such a remarkable difference in feature maps
may account for the improved quality of synthesized MRI
scans.

F. Application—Prevent Data Exclusion in Downstream
Tasks by Synthesizing Corrupted Scans

To showcase the potential utility of our PTNet3D, we first
quantitatively demonstrated how corrupted scans could affect
downstream processing and analysis. We take the segmentation
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TABLE VII
SEGMENTATION RESULTS UNDER DIFFERENT RATIOS OF CORRUPTED

OR SYNTHESIZED SCANS

as an example, which is an important step towards both
volume-based and surface-based analysis of brain regions.

Using the test dataset introduced in Section IV.C, we first
randomly sampled 5%, 10%, 15%, 20%, and 25% of good
quality T2 scans in the original test dataset. Next, we added
random motion artifacts to these scans. Then we investigated
how these corrupted scans might affect segmentation results
and how synthesized ones using PTNet3D could attenuate the
problem.

Random motion artifacts were introduced using approaches
developed in previous studies [60], [61]. Details and examples
of motion artifact injection were provided in Appendi x G.
These datasets which contain different ratios of corrupted
scans were fed into the pre-trained segmentation model
described in Section IV.C. The average dice score, mean
surface distance, and mean 95% HD across 87 regions were
reported in Table 7.

Table 7 shows that the segmentation performance will
continue to deteriorate as more corrupted scans are included.
Average Dice for 87 brain regions fell 5% when the ratio of
corrupted scans rose to 25%. In the same scenario, we also
noticed a 215% and 194% increase in the ASD and HD95,
respectively. Contrary to this, when replacing corrupted scans
with synthesized scans using our PTNet3D, the average Dice
only dropped by 1%. Meanwhile, mean ASD and HD95 only
increased by 15% and 6%, respectively.

Fig. 10 shows an example of how PTNet3D can improve
segmentation. From the error map. it is evident that the
corrupted T2w scan impairs the segmentation, especially at
the boundary between white matter and gray matter. These
errors could be further propagated if surface-based analysis
is performed on such masks. These corrupted scans are typi-
cally excluded to prevent inaccurate surface analysis, which
will reduce the data availability. From Table 7, results of

segmenting synthesized scans were significantly better than
those of segmenting corrupted scans. It was also very close to
segmenting good-quality scans. Therefore, we conclude that
our proposed PTNet3D can be used to synthesize MRI scans
to surrogate the corrupted ones. This will avoid data exclusion
in downstream tasks and allow for larger sample size in infant
MRI brain studies.

V. DISCUSSIONS

In this work, we introduced a novel 3D MRI synthesis
framework – PTNet3D – specifically for infants and tod-
dlers. The convolution-free PTNet3D first introduces per-
former and transformer together into brain MRI synthesis
task. We compared its performance with other state-of-the-
art CNN-based models on two independent and large-scale
infant MRI datasets. The results of extensive experiments show
that PTNet3D consistently outperforms other models. More
importantly, PTNet3D is able to tackle the challenging task
of synthesizing longitudinal infant scans, which have different
tissue contrast and appearances at each age. It performs consis-
tently well on the longitudinal BCP dataset. In contrast, other
CNN-based models fail to synthesize good quality scans for
infants under 6 months. We also found that our PTNet3D could
extract more structured and richer features than CNN-based
models. This may partially explain its superior performance.

Our PTNet3D solves the intensive computation requirement
for the attention-based transformer block by incorporating a
novel performer block that approximates the full-rank attention
mechanism by FAVOR+. This allows the processing of 643

high-resolution image blocks. PTNet3D is also equipped with
a pyramid layer. This allows it to avoid information loss caused
by performer blocks by taking advantage of the pyramid
representation of images, which has been proven to benefit
vision tasks in the past. To provide insights into the early
stages of application of transformer in MRI synthesis tasks,
we conducted extensive ablation studies on the loss functions,
number of pyramid layers, as well as 2D/3D comparisons.
We found that unlike CNN-based models introduced in previ-
ous studies, PTNet3D could achieve exceptional performance
in intensity-based metrics by using only L2 loss. After incor-
porating adversarial loss and perceptual loss – two important
components in CNN-based GAN model training, PTNet3D
avoids over-smooth results and yields more realistic scans with
rich high-frequency components. In addition, in agreement
with previous studies, we found that pyramid layer and 3D
input effectively improve the performance of PTNet3D.

In addition to the direct comparison using quantitative
metrics, we conducted indirect comparison among PTNet3D
and other methods by comparing segmentation results on
synthesized scans. The results indicate that synthesized scans
from PTNet3D are more reliable than CNN-based models.

Moreover, we demonstrated an important use for PTNet3D –
avoiding data exclusion by replacing corrupted scans with syn-
thesized ones. PTNet3D will offer developmental researchers a
valuable tool to investigate the developing brain. Longitudinal
MRI studies that investigate brain development from infancy
to toddlerhood may suffer from substantial data loss, with
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Fig. 10. Using PTNet3D in real world application. Two concatenated
inputs (good-quality T1w + corrupted T2w, good-quality T1w + syn-
thesized T2w) are fed into a dual-channel 3D UNet. The bottom panel
visualizes the segmentation maps from different inputs. From left to right:
segmentation from corrupted scans, ground truth released by dHCP
study, and segmentation from synthesized scans.

many infant MRI datasets having either a T1w or T2w scan,
but not both. This may, for example, present a significant
challenge for the recently launched Healthy Brain and Child
Development Study [63], which aims to enroll >10,000 sub-
jects. Considerable data loss could hinder within- and between-
subject analysis, which is critical for modeling neurodevel-
opmental trajectories. We demonstrated that PTNet3D offers
an approach to address these incomplete datasets maximizing
their utility with minimal loss of quality.

Though we have demonstrated that PTNet3D performed
better than CNN-based counterparts on the large-scale dHCP
dataset and the longitudinal BCP dataset, we cannot ignore
several limitations in this work. First, we noticed that the
quality of MRI synthesis from the BCP dataset was not as
high as that from the dHCP dataset. This drop in quality
might be attributed to, 1) pulse sequence differences between
dHCP and BCP during MRI acquisitions, 2) dynamic and large
brain tissue contrast shifts as the brain is developing, and 3)
a relatively small sample size at each age in BCP dataset.
To increase the stability and accuracy of multimodal infant
MRI synthesis, future work should focus on a few important
aspects: 1) increasing the sample size of high-quality infant
MRI scans at each time point especially the-first-year scans; 2)
incorporating the age as a domain classification label into the
adversarial training framework; 3) exploring other potential
variants of PTNet3D to further improve synthesis accuracy.
Further studies can also extend PTNet3D to other modalities,

Fig. 11. Examples of data inclusion and exclusion. Scans (a-d) were
included during model development, and (e-h) were excluded. Scan (a)
has the best quality while (b) and (c) are slightly worse than a. And scan
(d) has minor artifacts (circled region) and was not excluded since it is
acceptable. Scans (e-h) were excluded because of their unacceptable
qualities.

ages, and species of medical images. We provide public access
to our code via GitHub: https://github.com/XuzheZ/PTNet3D.

APPENDIX

A. Data Preprocessing and Exclusion

To remove outliers with extremely high intensities, each
volume was normalized to [0,1] by its minimum intensity
value and 99.95 percentile maximum intensity value. The
dHCP scans have a matrix size of 290 × 290 × 203 and was
cropped to 224 × 256 × 202 by removing background. The
original matrix size of BCP is 208 × 300 × 213. The BCP
scans underwent the same preprocessing as dHCP scans did,
including cropping, padding, and normalization. The resultant
matrix size is 224 × 256 × 210.

The quality of skull-stripping and co-registration was
assessed by a senior MRI technician. We excluded paired
scans with motion/scanner artifacts, poor skull stripping, or co-
registration problem. In total, we included 416 paired T1w and
T2w scans from dHCP and 231 paired T1w and T2w scans
from age of 2 months to 34 months from BCP. We provide
some example scans in Fig. 11.

For the BCP dataset, 156 scans were used for training;
29 scans were used for validation, and the remaining 46 scans
were used for testing by partially random sampling. The data
split was randomly generated based on the following rules: 1)
The ratio of training, validation, and testing datasets is 7:1:2;
2) All scans were randomly sampled to three partitions based
on the ratio; 3): At least one scan per age was guaranteed to
be distributed to each partition; 4) No significant distribution
difference across three groups. The exact age distribution can
be found in Fig. 12.

In addition, to make sure the age distribution is balanced in
the training set, we applied data augmentation for the training
scans while the distribution of validation and testing scans
remain unchanged. For the data augmentation, a 3D rotation
along the x-y axis was applied. Given the maximum frequency
of scans at 24 months of age (n = 25), for other ages with
M scans, we randomly sampled one scan from that age and
applied rotation by 25◦

n−M × X , X = 1, 2, . . . n − M. After
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TABLE VIII
ALL MODELS’ DETAILS

data augmentation, each age had 25 scans in the training set,
resulting in 625 scans.

B. Training Configurations

We provided comparisons of computational cost in Table 8.
For a fair comparison, all models were first trained at a fixed
learning rate 2e−4 for 5 epochs then another 5 epochs at a
linearly decreasing learning rate (to 0) on the dHCP dataset.
Similarly, on the BCP dataset, all models were trained for
3 epochs at a fixed learning rate and another 3 epochs at
a linearly decreasing learning rate because there were more
scans. After training, the model with the highest Structural
Similarity Index Measure (SSIM) on the validation dataset was
selected for comparison on the testing dataset. All experiments
were trained on an GeForce RTX 2080 TI with 11GB memory
and an NVIDIA Titan RTX GPU with 24 GB memory. The
entire framework was implemented in PyTorch, and publically
available on GitHub ( https://github.com/XuzheZ/PTNet3D).

C. Synthetic Results at Different Time Points on BCP
Dataset

We provided the distributions of pSNR for each model and
age group separately in Fig. 13. Our PTNet3D consistently
shows the best performance.

D. Introduction to the Evaluation Metrics

We employed four metrics to evaluate synthetic results
from different perspectives. The MAE and pSNR assess the
image quality from the accuracy of tissue intensity restoration
between the synthetic and real scans. SSIM is correlated to the
quality perception of the human visual system in the perspec-
tive of distortion and degradation of structural information.
Although MAE, pSNR, and SSIM are widely used in previous
image synthesis tasks, they might ignore the high-frequency
components that also play a critical role in visual perception.
FID evaluates the performance of GANs in terms of visual
similarity and is more consistent with human judgment than
the Inception Score. The detailed mathematical justification
can be found in the original studies [56]–[58].

Fig. 12. Age distribution of the BCP dataset that is used for training,
validation, and testing.

Fig. 13. Boxplots for T1w-to-T2w synthesis (a) and T2w-to-T1w
synthesis (b) on multi-age BCP dataset.

In our study, we normalized the ground truth and synthe-
sized volumes to the same intensity range [0,1]. SSIM and
PSNR were calculated using Eq. (22) and Eq. (23), to be
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Fig. 14. Boxplots for regional Dice score on synthesized dHCP scans by PTNet3D and pix2pixHD-Local.

Fig. 15. Visualization of original T2w scans (left) and generated motion-
corrupted T2w scans (right). From top to bottom: sagittal, coronal, and
axial. The left bottom number indicates different subjects.

noted that, in Eq. (22) and Eq. (23), X and Y represented
volume instead of slice; μ indicated mean intensity; σ was
standard deviation; σXY was the covariance between X and

Y ; positive constant C was used to prevent division by zero.
The MAE was also calculated on a volume basis. FID can
only be calculated on 2D slices, so we calculated subject-wise
FID by taking the average FID scores from three orientations
(i.e., sagittal, coronal, and axial).

PSN R (X, Y ) = 10log10

(
1

M SE (X, Y )

)
(22)

SSI M (X, Y ) = 2μXμY + C1

μ2
X + μ2

Y + C1

2σX σY + C2

σ 2
X + σ 2

Y + C2

σXY + C3

σXσY + C3

(23)

E. Detail Configurations of 3D Dual-Channel UNet for
Whole Brain Segmentation

We used vanilla 3D UNet with the following parameters:

1. Encoding Conv block: {GroupNormalization
(num_groups = 8), Conv3D layer (input_channel,
output_channel), ReLU} + {GroupNormalization
(num_groups = 8), Conv3D layer (output _channel,
output_channel), ReLU}

2. Layers of Encoding Conv block: 4
3. Pooling layer used in the encoding path: 3D max pooling

with stride = 2, kernel size =2
4. Input channels for each encoding block: 2, 32, 64, 128
5. Output channels for each encoding block: 32, 64, 128,

256
6. Bottleneck: N/A
7. Decoding Conv block: {GroupNormalization

(num_groups = 8), Conv3D layer (input_channel,
output_channel), ReLU} + {GroupNormalization
(num_groups = 8), Conv3D layer (output _channel,
output_channel), ReLU}

8. Layers of Encoding Conv block: 3
9. Upsampling layer: 3D nearest interpolation upsampling

10. Input channels for each decoding block: 384, 192, 96
11. Output channels for each decoding block: 128, 64, 32
12. Final Conv block: Conv3D (32,88)
13. Input 3D patch size: 128 × 128 × 128
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F. Dice of 87 Segmented Regions on Synthesized Scans

We reported regions with significant higher Dice score while
using PTNet3D to synthesize the T2w MRI rather than using
pix2pixHD-Local in Fig. 14. Reader can find the correspond-
ing brain region of each tag number in the publication of dHCP
study [7].

G. Generation of Motion-Artifacted Scans

Following the previous studies [60], [61], we generated
random motion-corrupted scans with these parameters: random
rotation (−7.5, 7.5) degrees, random translation (−7.5, 7.5)
mm, and the number of transformations: 6. The randomization
follows a uniform distribution. We randomly chose 4 subjects
and provided visualizations of injecting motion artifacts in
three orientations (i.e., sagittal, coronal, and axial) (Fig. 15).
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