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Fully-Automated Spike Detection and Dipole
Analysis of Epileptic MEG Using Deep Learning

Ryoji Hirano , Takuto Emura, Otoichi Nakata, Toshiharu Nakashima, Miyako Asai ,
Kuriko Kagitani-Shimono, Haruhiko Kishima , and Masayuki Hirata

Abstract— Magnetoencephalography (MEG) is a use-
ful tool for clinically evaluating the localization of inter-
ictal spikes. Neurophysiologists visually identify spikes
from the MEG waveforms and estimate the equivalent
current dipoles (ECD). However, presently, these analy-
ses are manually performed by neurophysiologists and
are time-consuming. Another problem is that spike iden-
tification from MEG waveforms largely depends on neu-
rophysiologists’ skills and experiences. These problems
cause poor cost-effectiveness in clinical MEG examina-
tion. To overcome these problems, we fully automated
spike identification and ECD estimation using a deep
learning approach fully automated AI-based MEG interictal
epileptiform discharge identification and ECD estimation
(FAMED). We applied a semantic segmentation method,
which is an image processing technique, to identify the
appropriate times between spike onset and peak and to
select appropriate sensors for ECD estimation. FAMED was
trained and evaluated using clinical MEG data acquired
from 375 patients. FAMED training was performed in two
stages: in the first stage, a classification network was
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learned, and in the second stage, a segmentation network
that extended the classification network was learned. The
classification network had a mean AUC of 0.9868 (10-fold
patient-wise cross-validation);the sensitivity and specificity
were 0.7952 and 0.9971, respectively. The median distance
between the ECDs estimated by the neurophysiologists and
those using FAMED was 0.63 cm. Thus, the performance
of FAMED is comparable to that of neurophysiologists, and
it can contribute to the efficiency and consistency of MEG
ECD analysis.

Index Terms— Magnetoencephalography (MEG), epile-
psy, spike detection, dipole analysis, deep learning.

I. INTRODUCTION

MAGNETOENCEPHALOGRAPHY (MEG) is used as
a clinical epilepsy examination to evaluate the local-

ization of epileptic activity. MEG is a useful technique for
evaluating pre-epileptic surgery because it can evaluate the
epileptic focus non-invasively. To determine the epileptic
focus, an equivalent current dipole (ECD) estimation method
is commonly used. ECD estimates the characteristic signal
source by solving the inverse problem [1]. ECD estimation
is widely recognized as an effective method to determine the
epileptic focus [2]–[4]. The general ECD analysis flow is as
follows: first, visual detection of the interictal spikes, then
the estimation of the ECD based on the rise of the spike
waves, and finally, evaluation of the applicability of epilepsy
surgery based on the localization of the ECD cluster formed
by performing this analysis on multiple spikes.

However, visual inspection of spikes and ECD analyses
are time-consuming [5]. Additionally, visual identification
of spikes may vary among neurophysiologists. Automation
of these procedures is time-saving and contributes to the
consistency of the quality of results [6]. Many automated
spike detection algorithms have been proposed for electroen-
cephalography (EEG) [5]. Based on the recent progress in
artificial intelligence (AI), AI-based high-performance detec-
tion algorithms using deep learning, such as convolutional
neural networks (CNNs), have also been proposed [7]–[10].
Conversely, there have been few reports on MEG, including
methods other than deep learning [11]–[14]. Moreover, all of
these EEG and MEG studies have focused on detecting spikes
but never included other algorithms necessary to complete
ECD analysis, including not only detection of spikes but also
determining the optimal time between spike onset and peak,
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selecting the sensors used for ECD analysis, and quantitative
evaluation of the cluster size of ECDs. Importantly, an appro-
priate selection of sensors is recommended before estimating
the ECD [15], [16]. To the best of our knowledge, there is
only one paper mentioning the feasibility of automated ECD
analysis using independent component analysis (ICA) [17].
To date, there are no published papers that used AI for
fully automated ECD analysis. However, full automation is
clinically indispensable in terms of the efficiency of MEG
examination.

Here, we hypothesized that machine learning methods,
including deep learning, can learn more spike patterns than
other methods for spike detection using ICA and threshold
processing [17] and thus can improve performance. Therefore,
we developed an AI-based fully automated spike detection and
ECD analysis of clinical MEG examination (Fully Automated
AI-based MEG Interictal Epileptiform Discharge Identification
and Dipole Estimation: FAMED) for epilepsy that is time-
saving and may contribute to quality control. In this study,
we propose a novel network applying semantic segmentation
for automated ECD analysis. Semantic segmentation is an
image processing task that classifies each pixel of an image
into a class [18], [19], and it is applied to time-series anomaly
detection [20]. We trained the network for time series semantic
segmentation using as many as 406 clinical MEG datasets
for epilepsy with ECDs analyzed by neurophysiologists. As a
result, the proposed deep neural network detected spikes
with high specificity and accurately identified spike timings.
Finally, we discuss the feasibility of the fully automated ECD
analysis using the proposed network.

II. MATERIALS AND METHODS

A. MEG Data and Pre-Processing

MEG data used in this study were recorded as a clinical
examination of epilepsy at Osaka University Hospital from
2010–2019. This study was approved by the Ethics Review
Committee of the Osaka University Hospital (approval num-
ber: 18329–3). A total of 516 MEG examinations related to
epilepsy were recorded during this period. All these data were
analyzed using ECD methods by neurophysiologists engaged
in clinical cases of epilepsy whose years of experience of
epilepsy varied from one year to more than 20 years. In cases
where the years of clinical experience of epilepsy were less
than three years, their analysis results were reviewed by
expert neurophysiologists with more than 10 years of clinical
experience. In addition, all of the MEG data was reviewed
using clinical findings by an expert neurophysiologist (MH)
having 24 years of experience with epilepsy MEG prior to
being included in this study. As a result, a total of 406 MEG
datasets (age: 0–79 years, median value: 18; 197 females
and 209 males) were used in this study. The summary of
406 patients was shown in TABLE I. The type of disease was
extracted based on the information provided in the medical
records. As MEG measurements were performed mainly to
evaluate the location of epileptic activity, focal epilepsy cases
were common. In particular, localization-related epilepsies
such as temporal lobe and frontal lobe epilepsy were the most

TABLE I
CHARACTERISTICS OF PATIENTS USED IN TRAINING AND TEST

common, accounting for 32% of the cases, whereas general-
ized epilepsies such as West syndrome and Lennox–Gastaut
syndrome (LGS) accounted for 9.1%. Thirty-one patients
were measured multiple times over several years, so the total
number of patients was 375. Eighty-six cases out of these
data included no spikes, whereas 320 cases included at least
one spike and its corresponding ECD. The age distribution of
patients was biased towards the younger age group. To train
more diverse waveforms, data selection by epilepsy subtype,
age, sleeping conditions, or medication conditions were not
performed.

The spontaneous-state MEG data were recorded using
a whole-head MEG equipped with 160 axial gradiometers
housed in a magnetically shielded room (MEGvision NEO;
Yokogawa Electric Corporation, Kanazawa, Japan). The mea-
surement conditions were as follows: sampling frequency
of 1000 Hz or 2000 Hz, low pass filter at 100 Hz, 200 Hz
or 500 Hz, high pass filter at 0.1 Hz, notch filter at 60 Hz,
or nothing. The duration of one recording session was either
240 s or 300 s, and multiple sessions were carried out.
During measurement, patients were instructed to keep resting,
but child patients and patients with mental retardation were
not instructed to do so. Instead, child patients were sedated
by intravenous administration of hydroxyzine pamoate and
pentazocine in addition to orally administration of triclofos
sodium or thiopental sodium.

Each data set was registered to the training data set through
preprocessing and window extraction. A bandpass filter with
a 3 Hz and 35 Hz cutoff was applied to all data. Down
sampling from 2000 Hz to 1000 Hz was applied only for
the 2000 Hz data. This preprocessing was performed to
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normalize data and remove noise. The cutoff frequency of
the bandpass filter was used in routine analysis of Osaka
University Hospital and did not immoderately deviate from
the guideline [15]. For data marked as spikes, in other words,
data with added ECD estimation results, a 2048 ms window
(estimated ECD time ± 1024 ms) was extracted and registered
in the spike positive dataset. If ECD analysis was performed
on another spike during this approximately 2-second window,
that spike was excluded from the training data. This was
done to avoid duplication of training data. Simultaneously,
a spike mask as the ground truth of the same window size
was created to train the segmentation network. The mask was
registered 60 ms before and after the ECD estimated time
in the sensor selected during estimation as 1 and sets other
than that as 0. This number was calculated from the duration
of spikes in MEG [21]. Furthermore, we extracted a window
of the same length as the spike-positive data approximately
every 3 seconds from the data where no spikes were detected.
These data were registered as the spike-negative dataset. The
MEG system used in the present study was designed to insert
160 against 234 sensor holders. There were different types of
MEG systems with respect to the number of sensors and sensor
locations. To apply the same model to different types of sensor
configurations for general purposes, we expanded the number
of sensors of the training data to 234 and zero paddings were
applied to the gaps. before window extraction. Finally, the
neurophysiologist (MH) visually reviewed all training data and
excluded atypical spikes (e.g., slow waves, small spikes, sharp
waves, spikes contaminated by artifacts and spikes associated
with seizures). This means that only typical spike waves were
used as training data.

B. MEG Spike Detection Algorithm

We applied a semantic segmentation method, which is
an image processing technique, to identify the appropriate
times between spike onset and peak and to select appro-
priate sensors for ECD estimation. An overall picture of
the learning process is shown in Fig. 1. The weight of the
classification network learned beforehand was transferred to
the segmentation network for detecting spikes, as shown in
Figs. 1(b) and 1(c). We trained the classification network to
improve the learning efficiency of the segmentation network.
We also expected improved performance using transfer weight.
In detail, the classification network is an application of the
26-layer SE-ResNet [22]. We changed the convolution layer
used in the ResBlock to a dilated convolution layer [23]
for the time dimension, and the SE-module was changed to
a scSE-module [24]. We aim to improve the segmentation
performance because of the extraction of the proper time and
spatial features. The DropConnect layer [25] was added to
the ResBlock to improve the generalization performance. The
segmentation network used in the present study was designed
based on DeepUNet [19], which has an encoder–decoder
structure and the same structure for encoders as the classifica-
tion network. The implementation of each model is publicly
available online via CodeOcean.1

1[Online]. Available: https://codeocean.com/capsule/4434883/tree/v1

Two types of augmentation were applied to train the two
networks: (1) random cropping of a 1024 ms window from
a 2048 ms window of each dataset to avoid time dependency
of the spike, and (2) random sensor sorting to avoid sensor
dependency of the spike. We applied these two augmentations
under constant probabilities (80% and 20%, respectively).
We normalized the magnetic flux density by setting the mean
to 0 and the standard deviation to 1 for the 1024 ms window.

We applied the segmentation network to the continuous
measurement data using a sliding window to create a confi-
dence map of the same size as that of the data. The confidence
map represented the probability of spike existence and was
created by applying the sigmoid function to the output of
the segmentation network. This confidence map was used to
identify the appropriate time and sensors for ECD analysis.
Appropriate sensor selection for ECD estimation improves the
signal-to-noise ratio and helps the ECD to best describe the
observed signal [15]. Here, we describe the mathematical basis
of ECD estimation using a spike confidence map. We con-
sidered the automated analysis of the measurement data of
Nt ∈ N (time) points of Ns ∈ N (sensors). We binarized the
confidence map X ∈ R

Ns ×Nt by means of thresholding:

Xb =
{

1, xi j > x0

0, xi j ≤ x0
, (1)

where xi j is j-th confidence value in i-th sensor and x0 is the
threshold about the confidence value. The binarized map is
then summed for each sensor to obtain a 1D confidence map:

w j =
Ns∑

i=1

(Xb)i j (2)

where (Xb)i j is the j-th value in the i-th sensor of Xb.
A Gaussian filter was applied to this 1D map w j to obtain
the candidate spike time:

z j = f (w j ) (3)

where f is the Gaussian filter with kernel size = 120 ms, σ =
15 ms. Spike candidates Tc were determined by detecting the
peaks of z j . The spike times were determined by thresholding
the 1D map w j for each candidate time:

Tspike= {t|wt>w0, t ∈ Tc} (4)

where w0 is the threshold for the number of sensors for
which spikes are observed. At the same time, the sensors were
selected from the binary confidence map. For example, the
sensor selection for the k-th time of candidate times Tspike is
shown below:

Sk = {
i | (Xb)ik = 1, i ∈ {1, 2, . . . , Ns }

}
(5)

Thus, we obtained the time Tspike and the selected sensor Sk

for ECD estimation by processing the output of the segmenta-
tion network as described earlier. Using these post-processing
techniques, ECD analysis was performed fully-automatically.
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Fig. 1. Overview of training process. First, a training dataset was created (a). In this part, Meg raw data were preprocessed for normalization and
removal of noise. Moreover, spike or not-spike labels for classification and spike masks for segmentation were created simultaneously when extracting
time windows. Second, the classification network was trained (b). We designed an architecture based on SE-ResNet [22] for the classification network.
Finally, the segmentation network was trained by transferring the weight in the classification network (c). We designed an architecture based on
DeepUNet [19] regarding the segmentation network. An example of the spike detection result using the segmentation network is shown (d). In this
part, 2D spike confidence map, the output of the segmentation network was superimposed on the waveform.

C. Training and Evaluation Process

We used 5-fold and 10-fold patient-wise cross-validation for
training and evaluating both the classification and segmenta-
tion networks. We evaluated this method in two steps to reduce
the time taken for evaluation. First, we used 5-fold patient-
wise cross-validation for preliminary evaluation of the model.
Then, we used 10-fold patient-wise cross-validation for the
final evaluation of the method. In this cross-validation in a
previous study [9], the dataset was divided into groups. Then,
the data derived from a unique patient were registered into
one of train, validation, or test data, and the machine learning
process was run iteratively with different training, validation,
and test data. The training dataset was used to optimize the
model parameters, the validation dataset for tuning and early
stopping of hyperparameters, and the test dataset to evaluate
the model. We adopted this validation method to evaluate
the generalized performance correctly regarding unseen new
patients. There were individual differences in the medical data.
If the data from a unique patient were divided into train,
validation, and test, the prediction performance would have
been overestimated.

We used three metrics for evaluating the classification
network: (1) the area under the curve (AUC) of the receiver
operating characteristic (ROC) curve, (2) sensitivity, and

(3) specificity for the classification network. We used the
intersection over union (IoU) for the segmentation network.
The IoU value is the area of overlap between the pre-
dicted spike area and the ground truth divided by the area
of union between the predicted spike area and the ground
truth.

In addition, we used continuous measurement data to eval-
uate the time points of the detected spikes and the positions of
the estimated ECDs in comparison to the neurophysiologist’s
analysis. To evaluate the detected time points of spikes,
we counted auto-detected spike times for 120 ms before and
after the spike time detected by the neurophysiologists, based
on the method of Ossadtchi et al. [17]. To evaluate the
positions of the ECDs, we measured the distance between
the location of the ECD that was automatically estimated
and that of the nearest ECD that was manually estimated
by the neurophysiologists. ECD clustering was also applied
during the evaluation of the ECD positions, in line with
the typical analysis. The clustering method employed was
DBSCAN [26], which can determine outliers according to the
density of ECDs. We obtained clusters of ECDs estimated by
the neurophysiologists and those by FAMED and performed
the same evaluation as described above in pairs of clusters
where the distance between cluster centers was below the
threshold.
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TABLE II
THE EFFECTIVENESS OF EACH METHOD USED IN THIS STUDY

III. RESULTS

A. Datasets, Training Parameters and Environment

The number of the spike positive data was 5,401 and that of
the spike negative data was 17,776. Thus, the total number of
training data points was 23,177. The average number of spikes
per case was 20 (minimum: 1, maximum: 103). The number of
patients from the spike positive dataset and that from the spike
negative dataset were 268 and 80, respectively. We trained the
classification network and segmentation network using these
data. The conditions for training the classification network
were as follows: the initialization of the parameters was based
on He’s algorithm [27], the maximum number of epochs
was 50, early stopping was applied when an epoch was
over 10, the initial learning rate was 1e-4, the learning rate
reduced on plateau strategy was used, and the optimizer was
based on AdamW [28] with a batch size of 64 (parameter
beta_1,beta_2, epsilon, and weight decay were 0.9, 0.999,
1e-8, and 5e-4). The conditions for training the segmentation
network were as follows: gradient accumulation was applied
every 2 epochs, the batch size was 16, the maximum number
of epochs was 60, early stopping was applied when an epoch
was over 20, and the other hyperparameters were the same as
the classification network. Regarding the loss function of the
training procedure, we used the focal loss [29]. We fixed the
parameters of the encoder of the segmentation network using
the first five epochs. We determined these hyperparameters
using the automated hyperparameter tuning tool optuna [30].
All implementations were performed in Python using Ubuntu
18.04.3 LTS machine with an Intel Core i9-9900K CPU
clocked at 3.60 GHz with 64 GB of RAM with NVIDIA
GeForce RTX 2080 Ti GPU.

B. Classification and Segmentation Performance

First, the effectiveness of the proposed architecture was
evaluated using 5-fold patient-wise cross-validations. We com-
pared the performance of the basic SE-ResNet by adding
the sSE module, changing the convolution layer to dilated
convolution, and applying DropConnect in order. (Adding the
sSE module to SE-ResNet makes it a scSE-module.) For the
segmentation network, we also investigated the effectiveness
of transfer weight of the trained classification network. The
evaluation results are shown in TABLE II. This table shows the
statistics (mean and standard deviation) of each metric that was
calculated for each fold. Regarding the segmentation metric,
we used the median IoU value of spike-positive data in each

Fig. 2. ROC curve and its AUC. The mean value of the result of the 10-fold
patient-wise cross-validation, and its standard deviation are indicated.

fold. The binarizing threshold of the classification network
output was 0.7 (if output values were over 0.7, the input con-
tained spikes). And the binarizing threshold of segmentation
network output to obtain the IoU value was 0.6. The proposed
architecture achieved the highest performance for all metrics
except for specificity in the classification metrics. In addition,
we showed that the proposed architecture could achieve higher
performance by transfer weight.

Then, we evaluated the classification network of the 10-fold
patient-wise cross-validation as shown in Fig. 2. The mean
value and standard deviation of each fold were 0.9868 ±
0.0049, and the AUC of whole folds was 0.9888. When we
used the same binarizing threshold value 0.7, the sensitivity
and specificity were 0.7952 ± 0.0910 and 0.9971 ± 0.0022,
respectively. We compared our method with other recently
published methods using deep learning proposed in previ-
ous studies: 2D-CNN [8], SpikeNet [9], and EMS-Net [14].
As there are differences in the modalities and the way the
networks are applied, the networks were modified to fit to our
dataset, but the concepts of those methods were kept intact to
the extent possible. The results of the comparison are shown in
TABLE III. This table shows the statistics (mean and standard
deviation) of metrics that were calculated for each fold and
patient. Our method achieved the best performance in AUC
and sensitivity and the lowest variability both between folds
and patients. Similarly, the segmentation result of the 10-fold
patient-wise cross-validation was quantitively evaluated using
IoU values with the different thresholds of the confidence map.
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TABLE III
COMPARISON OF THE PERFORMANCE WITH PREVIOUS STUDIES REGARDING THE CLASSIFICATION OF MEG / EEG SIGNALS

The IoU value = 1.0 means that the output of the segmentation
network is completely matched to the segmentation mask.
The median values of IoUs using practical thresholds 0.4,
0.5, and 0.6 were 0.464, 0.446, and 0.310, respectively. Two
examples of segmentation results are shown in Fig. 3. The
left waves show the original wave with the segmentation mask
(green area). The right waves show the corresponding portion
with the output of the segmentation network, where green
colored sensors indicate those selected for ECD analysis by
neurophysiologists. All spikes detected by AI for the test
dataset were reviewed by an expert neurophysiologist (MH).
This revealed that almost all of the false positive detection
consisted of sharp waves, slow waves, or small spike-like
waves (Fig. 3(c) and (d)). Moreover, the false positives did not
include cardiac artifacts, μ waves, humps, and sleep spindles
of children. False negative detection included spikes with a
rather small amplitude, which otherwise might be judged as
small spike-like waves.

C. FAMED Performance

A total of 268 clinical cases were used to evaluate ECD
locations. For each case, we applied FAMED using the
model trained with the dataset that did not contain its data.
We applied the segmentation network to the time windows of
1024 ms, which were cut out every 256 ms. The outputs of
the segmentation network from these overlapped time windows
were averaged to create spike confidence maps for the entire
measured data. By applying the process using formulas 1–5
to this map, the candidate time points and the sensors at the
time points used for ECD analysis were selected. Here, we set
the thresholding values in section II-B as x0 = 0.6, w0 = 40.
The sets of candidate timepoints and sensors obtained were
used for subsequent automated ECD estimation. Regarding the
automated ECD estimation, we mimicked the workflow of rou-
tine manual ECD analysis and applied the following process to
exclude artifacts and false positives [31]. First, we performed
ECD estimation at 15 timepoints before and after 7 ms of the
detected candidate time point and excluded those ECDs with
Goodness of Fit (GoF) < 0.95 and an ECD intensity smaller
than 50 nAm, or larger than 400 nAm. When the distance
between each remaining ECD position and its center of gravity
did not exceed 2 cm, the point with the highest intensity among
the candidate points was adopted as the point at which the

final ECD estimation should be performed. We set each of
the parameters described above concerning the results of the
segmentation performance and previous studies [31]–[33]. The
parameters for applying DBSCAN clustering were set to eps
as 0.03, and minPts as 4. The threshold for the inter-cluster
distance was set to 1.5 cm. In other words, if the distance
between the neurophysiologist-estimated ECD cluster and the
FAMED-estimated ECD cluster was less than 1.5 cm, both
were evaluated as detecting the same cluster. These clustering
parameters were empirically determined.

The evaluation results at the time of the automatically
detected ECDs are shown in Fig. 4. This figure shows a
histogram of the difference in time between the spikes detected
by the AI and the neurophysiologists in the range of the
neurophysiologists’ detected time ±120 ms. In this range,
spikes detected by FAMED within ±50 ms, ±30 ms, ±15 ms
were 95.5%, 83.0%, and 51.1%, respectively. Out of the
268 spike positive cases, FAMED was able to detect at least
one spike in 89.8% of the cases. In addition, we evaluated the
time difference between the spike peak and the time detected
by FAMED (Fig.5). Overall, it can be seen that the ECD
estimation was performed near the peak of the spike. The
percentage of spikes analyzed before their peaks was 65.3%.

We also evaluated the false positives using the continuous
data that the neurophysiologists determined no spikes. A total
of 2,137 min of MEG data was evaluated. We calculated the
number of false positives per minute per patient as well: 75%
of the values were lower than 0.1, and the average was 0.036.

We evaluated the accuracy of ECD localization. The cumu-
lative ratio of the distance between the ECDs estimated
by FAMED and the nearest neighborhoods estimated by
neurophysiologists are shown in Fig. 6. Out of 268 spike
positive cases, there were 111 cases in which the FAMED
and neurophysiologists determined the same clusters. There
were 27 cases in which the FAMED did not detect any ECDs.
A total of 130 cases were excluded by clustering. Here, 13,
31, 34, and 52 cases did not form a cluster based on the neu-
rophysiologist’s analysis, FAMED analysis, both analysis, and
both analysis without clusters coinciding, respectively. ECD
clusters were consistent with the neurophysiologists’ analysis
in 111 cases. These cases included 37 cases (33.3%) of
localization-related epilepsy, 21 cases (18.9%) of age-related
epilepsy, 18 cases (16.2%) of congenital brain malformation,
15 cases (13.5%) of epilepsy suspected epilepsy, and 10 cases
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Fig. 3. Examples of timepoints and sensors selected by the segmentation network of FAMED. In the waves of (a) and (b), the green waves represent
the timepoints and sensors selected by neurophysiologists. The other colored waves represent the output of FAMED segmentation network. The
more certain the spike is, the more the color changes from black to blue to red. The IoU values of (a) and (b) were 0.588 and 0.778. Waves of
(c) and (d) represent false positives. These data were selected from the spike-negative dataset (see Fig. 1), which was confirmed as no spikes by
the expert neurophysiologist (MH). Each false positive detection shows: (c) sharp wave, and (d) slow wave.

Fig. 4. Difference in time of spikes between FAMED and neurophysiol-
ogists.

(9.0%) of encephalitis. The rest included others with few cases.
The median nearest-neighbor distance per case was 0.63 cm
for ECDs with clustering and 0.84 cm for ECDs without
clustering. The proportion of ECDs analyzed by FAMED that
met the nearest neighbor distance of less than 1 cm was 72.9%
with clustering and 59.7% without clustering.

We also compared the difference in profiles of ECD
clusters by FAMED between focal and non-focal epilepsy
using spike positive cases (TABLE IV). For focal epilepsy,
we used data from localization-related epilepsy, brain tumors,

Fig. 5. Difference in time between the spike peak and the time detected
by FAMED. The red line represents the averaged spike waveform.

and cerebrovascular malformations, whereas for non-focal
epilepsy, we used data from West syndrome and LGS cases.
We excluded from this analysis cases with fewer than four
ECDs analyzed by neurophysiologists (43 focal epilepsy cases,
2 non-focal epilepsy cases). In both epilepsy types, there were
cases where FAMED could not detect the ECD cluster. The
cause of this was FAMED detected only a few ECDs. The
cluster size in focal epilepsy is significantly smaller than in
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Fig. 6. Cumulative plot of difference in ECD location between FAMED
and neurophysiologists. The red line and area show the median and
quartile range of all results of FAMED. Those in blue show the results
with ECD clustering of FAMED.

TABLE IV
COMPARISON OF AUTOMATED ANALYSIS RESULTS FOR FOCAL AND

NON-FOCAL EPILEPSY

non-focal epilepsy. We obtained the cluster size by fitting
ECDs to a volume of 95% equal probability ellipsoid assum-
ing a multivariate normal distribution. Furthermore, in focal
epilepsy, the GoF and Confidence Volume of ECD were
compared with the neurophysiologist’s results (TABLE V).
Both values were higher in automated analysis than in the
neurophysiologist’s analysis.

The linear regression equation for processing time of the
FAMED was 0.8 × (# detected spikes) + 32.9 sec (R2 =
0.986). Since the most time-consuming part of whole FAMED
processing is ECD estimation, the processing time depends on
the number of detected spikes. If FAMED detected 100 spike
candidates, we predicted FAMED processing with 112.9 sec.

D. Representative Clinical Cases

Representative clinical results of FAMED are shown in
Fig. 7. In case Fig.7 (a), the patient was a 23-year-old man
who had intractable epilepsy and was diagnosed with left
temporal lobe epilepsy with hippocampal sclerosis. Note that
FAMED analysis showed a clear focal cluster in the left
temporal lobe (Fig. 7 (a) upper images), which was consistent
with that of a neurophysiologist (Fig. 7 (a) lower images).
The patient underwent selective amygdalohippocampectomy.
In case Fig. 7 (b), the patient was an 8-year-old girl who
had focal onset epilepsy coexisted with autism spectrum disor-

TABLE V
COMPARISON IN ECD BETWEEN NEUROPHYSIOLOGISTS

AND FAMED REGARDING FOCAL EPILEPSY

der and suspected multiple sclerosis. The neurophysiologist’s
analysis showed only a right frontal cluster consisted of high
amplitude spikes (Fig. 7 (b) lower images), but FAMED
detected not only a right frontal cluster but also a left frontal
cluster consisted of spikes smaller than those in the right side
(Fig. 7 (b) upper images). The numbers of spikes detected by
spike detection of FAMED were 398 on the right side and
132 on the left. Out of these spikes, 45 spikes on the right
side and 52 on the left were used for ECD clustering under
the condition of GOF > 0.95. Comparison of detected spikes
between neurophysiologists and FAMED are shown in Fig. 8
and Fig. 9.

We developed graphical user interfaces (GUIs) for FAMED
to display the results concisely but necessarily and sufficiently
to help neurophysiologists quickly and accurately diagnose
them. The examples of FAMED GUIs showing the results of
cases Fig.7 (a) and Fig. 7 (b) are shown in Fig. 10. FAMED
detects spikes, estimates ECDs, and evaluates ECD clusters,
which neurophysiologists usually analyze in the diagnosis of
epilepsy.

IV. DISCUSSION

We aimed to develop a fully automated spike detection
and ECD analysis using deep learning to minimize the effort
and time consumption required for epileptic MEG analyses,
and to evaluate its feasibility using a large clinical dataset
obtained from a single institution. As a result, we developed a
fully automated spike detection and ECD clustering analysis
using deep learning (FAMED). Furthermore, we demonstrated
that the performance of FAMED is comparable with that
of neurophysiologists by training FAMED with as many as
348 patients’ data. This is the first reported study to demon-
strate fully automated spike detection and ECD clustering
analysis of epileptic MEG. Here, we discuss the performance
and clinical significance of FAMED, in particular, its potential
to automate the skilled and time-consuming work of neuro-
physiologists.

A. Performance of Spike Detection

Most previous studies on AI-based automated analysis of
MEG or EEG spikes focused on classifying whether the data
was epileptic or not, or whether the data included spikes or
not, but did not focus on spike time determination and sensor
selection, which is required for ECD analyses. This is insuf-
ficient to completely replace time-consuming and laborious
works required for the present human-based manual MEG
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Fig. 7. Comparison of ECD localization between the neurophysiologist’s analysis (upper images) and the automated analysis using FAMED (lower
images). The ECDs within the same cluster are shown by the same color. The cluster with the most numerous ECDs is shown in red. White-colored
ECDs represent noise ECDs judged by the DBSCAN algorithm. In case (a), FAMED analyses showed a clear ECD cluster consistent with that by a
neurophysiologist. In case (b), neurophysiologist’s analysis showed only a right frontal cluster but FAMED pointed out not only a right frontal cluster
but also a left frontal cluster.

analysis. Both accurate spike time detection to identify the
time from the onset to the peak of a spike waveform and
appropriate sensor selection are indispensable to accurately
calculate the equivalent current ECD. In this study, we success-
fully developed a method to identify the accurate spike time
and select the appropriate sensors by introducing a network
for semantic segmentation. Semantic segmentation has been
reported to be used to automatically extract road areas from
visual information of an on-vehicle camera or to extract brain
tumor areas from brain MR images [18], [19]. We designed
the network to successfully extract the appropriate sensors
that include a spike waveform using the time-series signals
recorded from MEG sensors as input data to the network.

In this study, we applied scSE-module, dilated convolution
and DropConnect for spike detection. These methods were

originally proposed mainly for image analysis. However, they
were effective in improving the spike detection performance
as well as the task for images, as shown in TABLE II. The
scSE-module was considered to contribute to the acquisition
of spatio-temporal features of spikes. Dilated Convolution
is a method to learn a wider range of features. Learning
not only the spikes but also the temporally longer features
before and after the spikes improved accuracy in spike clas-
sification and detection. Regarding DropConnect, we reduced
the sensitivity of the classification metrics; however, it was
effective for segmentation. Moreover, we showed that the use
of the transfer weight further improved the performance of
the segmentation network. As a result, these modifications
improved the performance in IoU, which is a measure of
segmentation performance. This indicates that the proposed
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Fig. 8. Comparison of spike detection between neurophysiologist and FAMED in case (b) of Fig 7. Arrows above each signals show the detections
of spikes. Only right-side sensors are shown. The upper image shows spike detection by the neurophysiologist. The lower image shows the spike
detection by FAMED for the same spikes in the upper image.

Fig. 9. Comparison of ECD locations between neurophysiologist and
FAMED in case (b) of Fig 7. Blue points show the ECDs detected by the
neurophysiologist, while orange points show those detected by FAMED.
The green points show ECDs that both neurophysiologist and FAMED
detected.

architecture can improve the reproducibility of the neurophys-
iologists’ analysis. The performance of our method was equal
to or better than that of previous studies on spike classifier
learning (Fig. 2, TABLE III). Furthermore, the spike time
discrimination performance of FAMED was comparable to that
of neurophysiologists (Fig.4).

We aimed to develop FAMED with high specificity and
sufficient sensitivity. In terms of diagnostic significance in the
clinical practice of epilepsy, specificity is prior to sensitivity.
Of course, false positive detection of spike-like waveforms,
such as cardiac artifacts, μ waves, humps, and sleep spin-
dles of children, should be minimized. False positive diag-
nosis of epilepsy should be avoided because the diagnosis
leads to a disadvantage to patients by unnecessary long-term

administration of anti-epileptic drugs. In addition, we must
not detect all spikes in the data, but only part of the spikes
sufficient to quantitatively evaluate spike location and clus-
tering. We suggest that learning using the results of neuro-
physiologists’ analyses resulted in high specificity (0.9971)
and sufficient sensitivity (0.7952) required for ECD analyses.
This also most likely contributed to minimizing the false
positive detection of cardiac artifacts, μ waves, humps, and
sleep spindles of children as epileptic spikes. In the evaluation,
FAMED was able to detect one or more spikes in 89.8% of
the 268 spike positive cases. In addition, the average number
of false positives per case in unit time (minutes) was 0.036.

B. Performance of ECD Localization and Clustering

The times of the spikes detected by FAMED were consistent
with those by the neurophysiologists. Spikes detected by
FAMED were slightly before the spike peak time. This may
reflect the fact that neurophysiologists usually perform ECD
analysis at rising slope to spike peak. In fact, there are many
cases where the location of the ECD is almost the same at
the rise and the peak. FAMED reliably learned and followed
the clinical heuristics of the neurophysiologists. Regarding
ECD localization, FAMED showed comparable performance
to neurophysiologists. The evaluation of ECD location showed
a performance of 0.63 cm. This was the assessment of the
distance between ECDs detected by neurophysiologists and
those by FAMED under the condition of applying ECD
clustering.

We aimed to develop a method that was applicable for both
focal and non-focal epilepsies and that differentiates them.
ECD clusters were detected in over 70% cases of focal and
non-focal epilepsy each. However, the size of ECD clusters of
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Fig. 10. Graphical user interface (GUI) of FAMED showing necessary
and sufficient results of a ECD analysis. A. ECD cluster information.
(Cluster size: Volume of 95% equal probability ellipsoid assuming a
multivariate normal distribution from the ECD coordinates. CoodinateSD:
standard deviation of each ECD location. Direction SD: standard devia-
tion of each ECD direction. GoFAverage: average value of GoFs. Sphere
skewness: Deformation of the probability ellipsoid compared to a sphere).
B. Representative sensor time course. C. Sensor time course used in
ECD estimation. D. MRI image with the ECDs. E. Topographic map at
spike time of B and C. This figure corresponds to the case in Fig. 7(b).

focal epilepsy was sufficiently small (TABLE IV). Therefore,
FAMED was able to clearly separate cases for focal epilepsy
and non-focal epilepsy. In focal epilepsy, both the GoF and the
Confidence Volume were better than in the neurophysiologists’
analysis. FAMED used about 60 sensors to calculate ECD,
fewer than in the neurophysiologists’ analysis (TABLE V).
This indicates that FAMED detects the ECD pattern more
accurately and thus, obtained more stable results by using a
more appropriate sensor selection method for ECD analysis
than neurophysiologists.

As shown in the case of temporal lobe epilepsy with hip-
pocampal sclerosis (Fig. 7(a)), ECD localization by FAMED
was consistent with that of the neurophysiologist. In Fig. 7(a),
a cluster of multiple posteriorly directed ECDs was localized
in the temporal lobe. This is a typical finding observed in
temporal lobe epilepsy with hippocampal sclerosis. In addi-
tion, as shown in a case of focal onset epilepsy coexisted
with autism spectrum disorder and suspected multiple sclerosis
(Fig. 7(b)), FAMED detected two ECD clusters in the right
and left frontal lobe. FAMED could analyze spikes derived
from the ECD cluster in the right frontal lobe with the quality
equal to or greater than that of the neurophysiologist (Fig. 8,
Fig. 9). As shown in Fig. 10, smaller but distinct spikes

derived from the ECD cluster in the left frontal lobe were
missed by a neurophysiologist. These spikes were confirmed
as true positives by two neurophysiologists (MH and KS).
In this patient, the MRI showed a white matter lesion in
the left frontal lobe, and the small spikes were consistent
with this anatomical abnormality. Regarding the numbers of
right and left spikes, those of spike detection of FAMED
were consistent with the retrospective visual inspection by
the neurophysiologist rather than those of ECD clustering of
FAMED. This is most probably because the number of right
spikes used for ECD clustering was considerably decreased
by high GOF (> 0.95) to accurately evaluate ECD location.
This implies it might be better to use the spike count of spike
detection of FAMED to evaluate spike frequency and to use
the spike location of ECD clustering of FAMED to evaluate
spike location.

C. Clinical Significance of Automated Analysis

First, AI-based automated analyses free from human-based
manual analyses contribute to saving neurophysiologists’ time-
consuming and laborious efforts, thereby improving the cost-
effectiveness of MEG examination. Visual inspection of spikes
and manual ECD analyses by neurophysiologists are time-
consuming and laborious [5]. It takes several hours to complete
these procedures. This time-consuming manual procedure is
one of the biggest problems regarding the cost-effectiveness
of clinical MEG examination. FAMED fully automatically
completes all these procedures in approximately two min
in the case of MEG data with 100 spikes. This may help
institutions increase the amount of MEG examination and help
neurophysiologists minimize the time spent on MEG analyses.
The cost-effectiveness of MEG examination is expected to
dramatically improve.

Second, AI-based automated analyses free from human-
based manual analyses contribute to both consistency and
independency, which are important requirements for clinical
examinations. AI-based analyses are consistent independent
of institutions or neurophysiologists, although human-based
manual analyses depend on the experience and ability of
neurophysiologists. In addition, neurophysiologists use not
only MEG data but also frequently refer to various other
information such as clinical symptoms, neuroimaging (MRI,
PET, etc.), and EEGs when they inspect MEG waveforms to
detect epileptic spikes. However, reference to other clinical
information deteriorates independence as a clinical examina-
tion. In this respect, FAMED uses only MEG data independent
of other clinical information. Taking consistency and inde-
pendency into consideration, AI-based automated analyses are
superior to human-based manual analyses if the performance
is equal to that of standard neurophysiologists.

D. Limitations and Perspectives

We demonstrated that automated ECD analysis by FAMED
is feasible as an alternative to manual ECD analysis by neuro-
physiologists. However, the present study has some limitations.
The MEG data were obtained from a single institution. It is
not clear whether the performance of FAMED is maintained
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across other institutions. As recommended in [34], a multi-
institutional study with larger data sets under different clinical
conditions is needed. This may contribute to establishing the
universality of the performance of FAMED, independent of
differences in institutions.

V. CONCLUSION

In this study, we developed a fully automated spike detec-
tion and ECD cluster analysis using deep learning with
a semantic segmentation network, FAMED. FAMED was
shown to be a potential alternative to neurophysiologists’
manual and time-consuming analysis in the clinical situa-
tion, contributing to saving neurophysiologists’ efforts and
improving the cost-effectiveness and quality consistency of
MEG examination.
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