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Abstract— Detecting Out-of-Distribution (OoD) data is
one of the greatest challenges in safe and robust deploy-
ment of machine learning algorithms in medicine. When the
algorithms encounter cases that deviate from the distribu-
tion of the training data, they often produce incorrect and
over-confident predictions. OoD detection algorithms aim
to catch erroneous predictions in advance by analysing the
data distributionand detectingpotential instances of failure.
Moreover, flagging OoD cases may support human readers
in identifying incidental findings. Due to the increased inter-
est in OoD algorithms, benchmarks for different domains
have recently been established. In the medical imaging
domain, for which reliable predictions are often essential,
an open benchmark has been missing. We introduce the
Medical-Out-Of-Distribution-Analysis-Challenge (MOOD) as
an open, fair, and unbiased benchmark for OoD methods
in the medical imaging domain. The analysis of the sub-
mitted algorithms shows that performance has a strong
positive correlation with the perceived difficulty, and that
all algorithms show a high variance for different anomalies,
making it yet hard to recommend them for clinical practice.
We also see a strong correlation between challenge ranking
and performance on a simple toy test set, indicating that
this might be a valuable addition as a proxy dataset during
anomaly detection algorithm development.

Index Terms— Anomaly detection, anomaly localization,
biomedical challenge, out-of-distribution analysis.

I. INTRODUCTION

THE amount of medical images acquired in clinical routine
doubled between 1997 and 2006 and continues to rise

[1], [2]. At the same time, the review and annotation process
for the acquired images is often prohibitively expensive
due to its reliance on the valuable time of domain experts.
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Consequently, computer-assisted diagnosis systems are
becoming more popular in the clinical workflow [3], [4].
However, many of the algorithms used in image analysis are
vulnerable to Out-of-Distribution samples, resulting in wrong
and overconfident decisions [5]–[8]. In addition, physicians
overlook unexpected conditions in medical images, often
termed ‘inattentional blindness’. Indeed, [9] found that 50%
of trained radiologists did not notice a gorilla image rendered
into a lung CT scan when assessing lung nodules.

Out-of-Distribution (OoD) or anomaly detection, two terms
which are used interchangeably in this context, can, trained on
normal or representative data, recognize anomalies that have
not been previously encountered. Therefore, OoD methods
prove useful in situations where classic machine learning
models may fail. By highlighting abnormal regions, anomaly
detection can also guide the physician’s attention to otherwise
overlooked abnormalities in a scan and potentially reduce the
time required to inspect medical images. Circumventing the
need for labeled data, it can also sidestep the time-consuming
labeling process and can therefore quickly be adapted to new
modalities.

However, while there is much recent research on improving
anomaly detection [10]–[18], some of which is focused on the
medical imaging field [19]–[23], a publicly available dataset
and benchmark to compare different approaches is missing.
Thus, currently, it is hard to draw a fair comparison of the
various proposed approaches. While medical imaging still
needs a common benchmark, benchmarks for tabular medical
data [24], [25] as well as natural images, such as default
detection [26] or abnormal traffic scene detection [27], have
recently been proposed.

When designing an OoD detection benchmark in the med-
ical imaging field, various additional aspects must be consid-
ered. First, as is the case in a real-life setting, the types of
anomalies or distribution shifts appearing during application
should not be known beforehand. This often proves an issue
when choosing a dataset and testing it on only one single
pathological condition, because this scenario is vulnerable to
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exploitation: if the type of anomalies occurring in the test
set is known, one could perform fully supervised training on
a separate dataset with the respective annotations (although
this is prohibited by the challenge rules), and thus outperform
other correctly trained anomaly detection approaches. This
would lead to less robust algorithms scoring higher on the
test set, a potentially dangerous outcome when deploying
such algorithms in practice. Furthermore, making the exact
types of anomalies known can cause a bias in the evaluation.
Studies have shown that anomaly detection algorithms tend
to overfit on a given task, if properties of the test set and
types of anomalies are known beforehand [8], [23], [28], [29].
This further hinders the comparability of different algorithms.
Secondly, combining test sets from different sources may also
make it difficult to obtain a clean and meaningful evaluation,
since different sources typically convey distribution shifts with
respect to the training dataset due to large variations across
medical image acquisition protocols.

In this work, we put forth the Medical-Out-of-Distribution-
Analysis-Challenge (MOOD) as a standardized dataset and
benchmark for anomaly detection. We propose two different
tasks. In one task, we analyze sample-wise (i.e. patient-
wise) anomalies, thus detecting OoD samples. Examples of
anomalies in this task are previously unseen pathological
conditions or any other condition not apparent in the training
set. These phenomena can pose a problem for supervised algo-
rithms. Robust identification of such cases could, for example,
allow physicians to distrust results obtained from supervised
algorithms or prioritize manual inspection of certain patients.
As a second task, we propose a pixel-level analysis, i.e.,
predicting an anomaly score for each individual pixel, thereby
highlighting regions with abnormal conditions in the image
and providing further guidance to the physician.

To solve the previously described issues, we have provided
two separate datasets containing over 500 scans each: one
brain MRI-dataset and one abdominal CT-dataset. This enables
a sound comparison of the generalization capabilities of sub-
missions to be drawn across different anatomies and modali-
ties. The training set was selected as a subset of scans in which
no anomalies were identified. The remaining scans (some
containing anomalies) were assigned to the test set. Thus,
some scans in the test set did not contain anomalies, while
others contained naturally occurring anomalies. In addition
to the natural anomalies, we also added synthetic anomalies
with different structures (e.g. a tumor or an image of a gorilla
rendered into the brain scan [9]). We thus covered a wide
variety of different anomalies which enabled the weaknesses
and strengths of the methods to be analyzed using different
factors (i.e. type, size, contrast, and others). Finally, we orga-
nized an international open challenge for a controlled and
fair comparison of different algorithms (as recently similarly
proposed by [27]). As a whole, this work effects a standardized
comparison of anomaly detection approaches in a variety of
both real-life and simulated cases. The following sections
describe the data used in the challenge and the challenge setup.
In Section IV the submitted approaches are described by the
participants and the results are presented in Section V, which
are discussed in Section VI.

II. DATA

The challenge encompasses two datasets one brain
MRI-dataset and one abdominal CT-dataset. The training set
comprises hand selected scans of patients with no apparent
anomalies or patients with common anatomical or pathological
variations.

To prevent overfitting on the (types of) anomalies present
in our test set, the test set was kept confidential at all times.
As in reality, the types of anomalies should not be and were not
known beforehand, to prevent a bias towards certain anomalies
in the evaluation. Some scans in the test set did not contain
any anomalies, while others contain naturally occurring or
synthetic anomalies.

A. Datasets
Challenge participants were required to use the same algo-

rithm/approach for both challenge datasets, but, individual
hyperparameters and training on each dataset was allowed.
Furthermore, we calculated the scores and ranking separately
for each dataset, and combined the ranking using a consensus
ranking.

1) Brain: Training and test cases both show MRI images
of a human brain. The brain dataset is based on the HCP
dataset [30], contains 3T MR imaging data from healthy young
adult participants (ages 22-35). All participants were scanned
on the same equipment and using the same protocol. The data
was processed following the pipeline given in [30].

2) Abdominal: Training and test cases both show CT images
of human abdominal tracts. For the study, male and female
patients aged 50 years or older scheduled for a screen-
ing colonoscopy and which had not had a colonoscopy in
the past 5 years were scanned at 15 study centers [31].
CT colonographic images were acquired using standard bowel
preparation, stool and fluid tagging, mechanical insufflation,
and multi-detector row CT scanners (with 16 or more rows).
Consequently, these images may contain polyps, however,
these were not considered abnormal (due to the training
distribution) and only cases with severe or rare naturally
occurring anomalies were considered to be abnormal.

B. Challenge Preprocessing
We applied the same additional challenge-specific pre-

processing for both datasets. The transformations were crop-
ping, intensity shift and resampling. Since all patients within
the same dataset were preprocessed using the same para-
metrization of our pipeline, there was no distribution shift
here between the training and test cases. To prevent cheating
(in this and future editions1), we will not disclose the exact
details of our preprocessing and intentionally designed our
preprocessing to produce a challenge dataset which is clearly
distinct from both the original dataset and other existing
datasets.

C. Anomalies

The training cases had no annotations and no conditions
that we considered to be abnormal. The test cases either

1MOOD currently is/was held in conjunction with MICCAI in 2020, 2021,
and 2022.
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Fig. 1. Anomaly categories. The seven different categories of anomalies
are presented here, divided in 4 global (affecting the whole scans) and
3 local (affecting only parts of the image) categories, visualized with brain
and abdominal scan examples (some anomalies have been exaggerated
for illustration purposes).

originated from the same training data distribution (normal
data samples with no abnormal conditions) or from a dif-
ferent distribution (OoD data samples, i.e., exhibiting nat-
ural and synthetic abnormal conditions). The corresponding
ground-truth labels for test cases were binary (0 = normal,
1 = abnormal/OoD).

The majority of the OoD data samples were generated by
artificially modifying normal data samples, thus providing
full information on the properties of the abnormality for
those cases. In addition, a few selected naturally occurring
conditions were excluded from the training set and added
to the test set of OoD samples for the sample-level task.
These conditions were checked multiple times by at least two
human raters using a consensus annotation protocol. Since we
plan to run new editions of the challenge and a continuous
online benchmark we refrain from giving exact details on the
anomalies.

We differentiated between local (specific location in the
image, used in the test set for the sample-level and pixel-
level task) and global (no specific location in the image, i.e.
only used in the test set for the sample-level task) anomalies
and sorted the anomalies into different (subjective) categories,
see Fig. 1.

For the pixel-level case, annotations were generated by
artificially introducing anomalies to the images locally. This
enabled perfect ground truth to be obtained in the pixel-level
scoring of the anomalies. For the local anomalies, we created
the following categories:

• Images: Similar to [9], we rendered natural images into
the scans.

• (local) Pathologies: We added different local pathologies
such as tumors or lesions, to the healthy images.

• Corruptions: Local corruptions to the image, such as
local contrast change or local pixel shuffling.

For the global anomalies, we created the following cate-
gories (sorted from strong to mild by level of corruption on
the images):

• Destructions: Operations performed on the scan makes
the complete scan corrupt or invalid, e.g. by omitting
slices.

• Alterations: Global level alteration to the scan, which
still results in a valid scan but should be directly notice-
able, e.g., heavy blurring.

• (global) Medical conditions: Rare occurring medical
conditions/variations were considered as global vari-
ations, as these abnormalities were often not to be
restrained to a certain area.

• Corruptions: Small corruptions in the image which pro-
duce a valid image and are only recognizable using a vast
amount of training data, such as deformations.

Despite our controlled setting, different sources of errors
are related to our annotations. True anomalies may appear in
the training set. This could potentially include cases such as
polyps that were not detected by a radiologist, or a patient with
an abnormal kidney that was overlooked since it was not the
indication for the examination. The system would thus learn
these cases and consider them to be normal since they are part
of the training distribution. It could also be that an artificially
introduced anomaly is, coincidentally, very similar to some
of the true abnormalities which are missed during inspection
of the training set. This is very unlikely, but if it does occur,
we believe it will not influence the overall results too much
given the size of the test set (and the fact that it is identical
for all participants). We generated the anomalies artificially
using software that undergoes stringent in-house testing with
full control over their shape and appearance. Thus, we strongly
believe that there are no errors in the annotation.

III. CHALLENGE SETUP

The MOOD Challenge was run as a MICCAI 2020 Chal-
lenge, and as such the challenge design was reviewed before-
hand according to the MICCAI Challenge guidelines (two
independent reviews and a meta review). The challenge design
document [32] is available online. The MOOD Challenge
consisted of two tasks, referred to as sample-level (or global)
and pixel-level (or local) task respectively:

A. Sample-Level

Analyzing different scans/samples and reporting a score for
each sample. The algorithm should process a single sample
and give a “probability” indicating how likely it is that this
sample is abnormal/OoD. The reported scores must be within
the range of [0-1], where 0 indicates no abnormality and
1 indicates the most abnormal input. In summary: one score
per sample. Scores outside [0-1] were clamped to [0-1].

B. Pixel-Level

Analyzing different scans and reporting a score for each
pixel of the sample (we use the term pixel here in analogy
to anomaly detection on natural images even if voxel would
be more appropriate). The algorithm should process a single
sample and give a “probability” indicating, for each pixel,
how likely it is that the pixel is abnormal/OoD. The reported
scores must be within the range of [0-1], where 0 indicates
no abnormality and 1 indicates the most abnormal input.
In summary: X × Y × Z scores per sample (where X × Y × Z
is the dimensionality of the data sample).
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1) Dataset Ratios: Since part of our test set was artificially
created, we were able to generate a high number of different
test cases. To prevent any fine-tuning of the scores on the
normal/abnormal ratio, we chose not to disclose the exact
number of cases. We roughly aimed for a 50%-50% split
between training and test data. Considering the number of
available samples and the time needed for evaluation, we opted
for 800 training, 688 sample-level and 542 pixel-level test
cases for the brain dataset, and for 550 training, 599 sample-
level and 358 pixel-level test cases for the abdominal dataset
(with each test set containing normal and abnormal samples
and having an individual and fixed normal/abnormal ratio).

2) Evaluation Process: The challenge submission was run
via the synapse platform [33]. Test set submissions were made
by submitting the inference code as a self-contained docker
container which was then applied to the test set. Detailed
submission explanations can be found on the challenge web-
site [34] Thus participants could not get access to the test data
at any time during the challenge. In case of a missing reported
score or failure during the processing of a sample, the lowest
possible anomaly score (=0) was assigned to that sample.
A runtime of 600 sec/case was allotted for the evaluation
during the evaluation. Teams were allowed 10 submissions
in total, however, only the most recent submission was con-
sidered, as previously announced.

A report of the submission was sent to the participants as
soon as the submission was processed. This report contained
the performance/scores on four toy-cases for each dataset and
the computation time needed to process them. The toy-cases
were not used in the challenge test set and consist of three
scans with toy anomalies, i.e. a sphere with random intensity
placed into a scan, and one normal scan. The toy-cases were
made publicly available. In addition to a challenge submission,
the participants could also make a submission on the toy
dataset for development purposes (both algorithmic as well
as containerized). Submitting to the toy-cases did not count
towards the challenge and only returned the report of the
toy-cases. This was done to eliminate “invalid” submissions,
since the participants had access to the toy-cases scores and
thus could validate the consistency of their submission on the
evaluation platform.

3) Metrics & Scoring: For each sample/pixel, the users
should have reported an anomaly score, indicating the like-
lihood of detecting the anomaly for the given sample/pixels.
We expected the scores to be in the interval [0-1], where
0 is the lowest score indicating no abnormality and 1 is
the highest score indicating the most abnormal input (scores
above and below the interval were clamped to [0-1]). We used
the predicted scores together with the ground truth labels to
calculate the Average Precision (AP) for the whole dataset.

AP, which “summarizes a precision-recall curve as the
weighted mean of the precisions achieved at each threshold,
with the increase in recall from the previous threshold used as
the weight” [35] and is calculated as follows:

AP =
∑

n

(Rn − Rn−1)Pn, (1)

where Rn is the recall and Pn is the precision at the
n-th threshold. This is basically a finite approximation of the
area under the precision-recall curve. For more information
see [35].

A key advantage of the AP compared to other metrics
is the fact that it does not require users to set a threshold
for an output to be in or out of distribution. Instead, the
metric integrates over all possible thresholds. Since it is more
robust than AUROC in terms of class imbalance and has been
suggested and used in many recent papers [11], [19], [23],
[27], [36], we opted to implement AP as the primary metric.

For the sample-level task, the score was simply computed
over all samples at once. Due to computational and time con-
straints in the pixel-level task, we computed the AP in batches
of 20 samples each (randomly chosen but fixed and consistent
across all submissions) instead of the whole dataset and then
averaged the AP over the batched AP values. To validate the
results and test the additional variance due to the division
in batches (which is equivalent to sub-sampling points from
the precision-recall curve and then calculating the mean AP,
instead of calculating the AP over the whole dataset i.e. all
points on the precision-recall curve), we validated the results
with an additional randomized iteration over the dataset.

As a last step, we combined the rankings corresponding
to the two datasets (brain and abdominal) by choosing a
consolidation ranking schema, i.e. “determining the ranking
that minimizes the sum of the distances of the separate
rankings” [37].

Our validation code to reproduce the results on the toy cases
can be found on our Github page [38].

IV. PARTICIPATING TEAMS

Overall, 65 participants registered with 11 actively partic-
ipating, which resulted in 8 valid submissions for each task.
All teams with valid submissions were invited to contribute
to this section. In the following, a description of the submis-
sions, as provided by the respective teams, is given. Teams
which chose not to participate were anonymized for the later
analysis (A1, A2).

A. Team: Canon Medical Research Europe

We propose an ensemble of two models. The first model
is a denoising Autoencoder neural network, in which we treat
the pixel-level reconstruction errors as the anomaly scores.
The second model is a segmentation neural network trained to
segment our diverse set of synthesised anomalies, for which
we treat the segmentation class probabilities as the anomaly
scores. The models are ensembled by averaging the respective
scaled anomaly scores to obtain the final pixel-level results.
We produce the sample-level results by averaging the pixel-
level anomaly scores in each sample.

B. Team: FPI

In medical imaging, outliers can contain hypo/hyper-
intensities, minor deformations, or completely altered
anatomy. To detect these irregularities it is helpful to learn
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the features present in both normal and abnormal images.
However, this is difficult because of the wide range of
possible abnormalities and also the number of ways that
normal anatomy can vary naturally. As such, we leverage
the natural variations in normal anatomy to create a range of
synthetic abnormalities. Specifically, the same patch region is
extracted from two independent samples and replaced with an
interpolation between both patches. The interpolation factor,
patch size, and patch location are randomly sampled from
uniform distributions. A wide residual encoder decoder is
trained to give a pixel-wise prediction of the patch and its
interpolation factor. This encourages the network to learn
which features to expect normally and to identify where
foreign patterns have been introduced. The estimate of the
interpolation factor lends itself nicely to the derivation of
an outlier score. Meanwhile, the pixel-wise output allows for
pixel- and subject-level predictions to be made using the same
model [39].

C. Team: Nina Tuluptceva

We based our solution on a Deep Perceptual Autoen-
coder [40] that had recently shown superior performance in the
anomaly detection task on medical images. The Autoencoder
was trained with the content-aware Perceptual Loss [41],
with the reconstruction error being treated as the abnormality
score. In this challenge, we applied the Deep Perceptual
Autoencoder to 2D slices of the 3D volumes and therefore
trained three separate models along each of the three axes.
The prediction outcomes along each axis were then averaged
to yield a single final abnormality score. The Perceptual Loss
calculates the difference between two images as the distance
between the deep features extracted by a pre-trained network.
We used the VGG19 network [42] as a feature extractor trained
using the unsupervised learning framework SimCLR [43] on
the concatenated set of all slices. To calculate pixel-level
abnormality scores, we averaged feature differences along the
depth axis and then rescaled the map to the original image size.

D. Team: NUDT

To tackle these problems provided in this challenge,
we opted for a reconstruction strategy to solve the anomaly
detection task. By observing the discriminative reconstruc-
tion errors, we noted that the biomedical images with high
reconstruction losses were most likely to be the abnormalities.
Therefore, we adopt an U-Net architecture, which has an
encoder-decoder structure with skip connections, to recon-
struct the image. Moreover, we combine the image with the
texture features extracted by a Canny operator and apply a
masking-and-in-painting task. The score consists of the recon-
struction errors, removing objects smaller than 100 voxels.

E. Team: Sergio Naval Marimont et al.

We propose an Out-of-Distribution detection method that
combines density and restoration-based approaches using
Vector-Quantized Variational Autoencoders (VQ-VAEs) [44].
The VQ-VAE model learns to encode images in a categorical

TABLE I
THE RANKING OF SAMPLE-LEVEL TASK WITH THE

PERFORMANCE ON EACH DATASET GIVEN AS AP

latent space. The prior distribution of latent codes is then mod-
elled using an Auto-Regressive (AR) model [45]. We found
that the prior probability estimated by the AR model can be
useful for unsupervised anomaly detection and enables the
estimation of both sample and pixel-wise anomaly scores. The
sample-wise score is defined as the negative log-likelihood
of the latent variables above a threshold. Additionally, OoD
images are restored as in-distribution images by replacing
unlikely latent codes with samples from the prior model and
decoding to pixel space. The average L1 distance between the
generated restorations and the original image is used as the
pixel-wise anomaly score [46].

F. Team: Victor Saase

We use a simple projection method which is equivalent
to PCA and Linear Gaussian Process Regression. We first
affinely register images to the MNI space and perform sample-
wise z-normalization across all brain mask voxels. Then we
executed a voxel-wise z-transformation with the mean and
standard deviation estimated on the training samples. The
resulting images are used to build a “healthy” vector space
over the brain mask voxels and a testing sample is linearly
projected on that space. The voxel-wise or sample-wise norm
of the residual vector (test vector minus projection vector),
after transforming it back from MNI space, is used as the
score for pathology [47].

V. RESULTS

This section provides an overview of the 8 valid submissions
for the sample-level and the pixel-level tasks. We first present
the final challenge results, and then question whether the toy
examples alone already provide for a representative proxy
ranking. Next, we investigate the performance of the algo-
rithms across different anomaly sizes and color contrasts and
across different anomaly types and judge the current state of
the submitted OoD algorithms in a clinical application setting.

A. Challenge Ranking

1) Sample-Level Results: The sample-level results for each
dataset and the corresponding consensus ranking obtained
for the two target structures can be seen in Table I. While
relatively large differences in performance can be observed
for the brain, the best ranked teams perform comparably well
for the abdomen.
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TABLE II
THE RANKING OF PIXEL-LEVEL TASK WITH THE PERFORMANCE

ON EACH DATASET GIVEN AS AP

TABLE III
KENDALL TAU RANK DISTANCE BETWEEN THE RANKINGS ON THE

TOY-ISH TEST SET AND THE CHALLENGE TEST SET

2) Pixel-Level Results: The pixel-level results for each
dataset and the following consensus ranking can be seen
in Table II.

B. Toy Samples as Predictive Validation Set

We further investigated the predictability of toy examples
in performance of the final task. We aimed to explore whether
very simple toy examples alone already enable a fair and
representative comparison of the approaches, without the need
for a big, extensive test set with high anomaly variability.
Therefore, we generated 100 abnormal examples using the
same mechanism as the toy examples provided to the par-
ticipants, i.e., adding either spheres or cubes with random
intensity to the scans (e.g. see Fig. 2, 3rd row). We call
these samples the toy-ish samples. These toy-ish samples vary
greatly from most of our challenge test set anomalies.

Interestingly, in all cases (for each dataset & task), the
challenge test set ranking and the toy-ish test set rankings
had 2 of the top 3 approaches in common. Furthermore,
the winning algorithm was also the same algorithm for both
the total test set and the toy-ish test set. To quantify the
results, we also calculated Kendall tau rank distance, as seen
in Table III. Kendall’s tau is a correlation coefficient that
compares correlations between rankings. We used the tau-b
version of Kendall’s tau which can handle ties and results in
a value of 1.0 for a completely positive correlation, 0.0 for no
correlation, and −1.0 for a completely negative correlation.
Here, Kendall’s tau indicates that there is some correlation
between the challenge ranking and the toy-ish dataset ranking,
given the limited data. There is a stronger correlation for
the abdominal dataset in particular. We assume that this
is because the toy cases proved more difficult to analyze
overall in the abdominal dataset (see Fig. 8 for example). For
both datasets, the toy-ish samples elicited a higher level of
predictive accuracy for the pixel-level task. This raises the
question whether a quite simple validation dataset can be
used to develop generic anomaly detection algorithms. This is
also strengthened by the performance of Team Sergio Naval
Marimont et al. (2nd and 3rd place), which, in contrast to the

Fig. 2. Pixel-level result heatmap visualizations for the different valid
submissions for exemplary and representative brain samples (some of
these were solely created for this illustration). Each row corresponds to
one example. The first column shows a raw image slice, the second
column the ground-truth annotation and the next columns delineate
predictions by different submissions (sorted by their pixel-level challenge
ranking).

other top ranking teams that developed their own sophisticated
evaluation datasets, only used the three provided toy cases to
evaluate their own submission performance.

C. Analysis

1) Contrast & Size: Our hypothesis was that the size and
contrast of anomalies would affect the anomaly detection
performance. To test this hypothesis, we varied the color-
contrast as well as the size for a toy-ish example and outline
the results in Fig. 4. While performing this analysis on a more
natural or sophisticated anomaly might have given slightly
different results, this would require a very comprehensive
time- and computing intensive analysis in order to prevent
bias. Instead, we chose a simple but nonetheless informative
analysis based on toy examples. As expected, the bigger the
anomaly size, the better most submissions were able to detect
the anomaly. Similarly, the more the contrast differs from the
mean (0.5), the better the submissions performed. The top
ranking submissions were particularly successful and show the
expected bathtub curve. Interestingly, most algorithms tended
to perform better on very bright (pixel value ≈ 1) anomalies
compared to very dark (pixel value ≈ 0) anomalies, which
is likely due to the background which was also assigned the
value 0, but was also noted in [48].

2) Anomaly Classes: Some anomaly categories proved more
challenging than other anomaly classes. Exemplary (pixel-
level) anomalies and submission outputs are shown in Fig. 2
and Fig. 3. To procure a quantitative comparison, we chose a
dedicated test set with an exact 50%-50% normal-abnormal
data sample split with a fixed and consistent number of
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Fig. 3. Pixel-level result heatmap visualizations for the different valid
submissions for exemplary and representative abdominal samples (some
of these were solely created for this illustration). Each row corresponds
to one example. The first column shows a raw image slice, the second
column the ground-truth annotation and the next columns delineate
predictions by different submissions (sorted by their pixel-level challenge
ranking).

Fig. 4. AP for anomalies of different sizes and levels of contrast. Each
line corresponds to a submitted algorithm (S1-S7). The top line of graphs
shows the performance for a single toy-ish example which is always in
the same position but varies in size from a radius of 0-80 pixels and
0-160 pixels for the brain and abdominal datasets respectively. In the
bottom row, the performance for a toy-ish example which is always at
the same position with a varying color value, and as such contrast from
0.0 to 1.0 in 0.05 steps, is shown.

samples for each subcategory in order to make the metrics
as comparable as possible.

a) Sample-level: The median sample-level performances
for the reported categories in Sec. 2.3 are shown in Fig. 5.
A clear difference in the performances for the local and
global anomalies can be seen. The median performance on
the global categories is better than that for the local categories
in all cases. Furthermore, the median performances across all
algorithms are better than the constant (always predicting the
label ‘0’, i.e. no anomaly) and a random (randomly predicting

Fig. 5. Median sample-level AP for the different anomaly categories
across all submissions. The top row shows the mean of the grouped
categories, and the second row gives more detailed results for the
subcategories, i.e. the top row categories split up in fine-grained sub-
categories. The median submission performance was used as a base
for the subcategories.

Fig. 6. Median submission performance on sub-classes of two different
anomaly categories. The sub classes (classes 1-6, 1-8) are sorted by
human perceived difficulty in descending order, i.e. class 1 is the class
which was perceived as the hardest and classes 6 (and 8) are the classes
perceived as being easiest.

the label ‘0’ or ‘1’) algorithm. As an additional analysis,
we also investigated whether the submitted algorithms perform
in correlation with the difficulty of the anomalies, according
to how they are judged subjectively. Therefore, we sorted
the subclasses of some anomaly classes by human-perceived
difficulty and show the median performance in Fig. 6. Addi-
tionally, in Fig. 5, we show the median performance on
all subcategories, sorted by median performance. Again, the
performance on global anomalies is almost always better than
on local anomalies. The performance in almost all classes
is better than a constant guess and is generally similar for
the brain and the abdominal dataset. These results raise the
question: can these approaches be translated and bring value
to a clinical setting now?

b) FPR@0.95TPR: To investigate a further important
aspect of the clinical applicability of the proposed approaches,
we analyzed the ‘FPR@0.95TPR’ metric, which shows a
false-positive rate at 95% true-positive rate. In our setting,
a score of 0 would mean that an algorithm could detect
95% of the anomalies without diagnosing a single normal
sample as abnormal, thus allowing physicians to accelerate
their diagnostic processes greatly. A score of 0.5 would mean
that prefiltering with an approach would still result in every
second image being normal, thus giving a rough acceleration
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Fig. 7. False positive rate at 95% true positive rate for the different
anomaly sub classes of the abdominal dataset (top) and the brain
dataset (bottom). The median submission performance, the performance
of the best sample-level submission and the maximal performance of
algorithms (i.e. picking the best algorithm for each subclass) are shown.

of just 1
4 . A score of 1.0 would mean that in order to detect

95% of the abnormal samples, the physician would have to
inspect every sample, providing no acceleration. Whether a
TPR of 95% is actually clinically relevant or a higher TPR
would be required remains a topic for discussion, however
this metric was often used in other OoD work [14], [27]
and discussions with physicians have indicated this to be a
metric of interest. We present the sample-level results with the
FPR@0.95TPR metric in Fig. 7, using the same order as that
in Fig. 5. The median performance is shown, along with the
individual top subcategory performance, which is determined
by choosing the best submission for each subcategory, and
the overall best performing algorithm as realistic performance
estimates of anomaly detection algorithms respectively. The
results here mirror the results in the section above, i.e. for some
classes with global destruction or corruptions, the performance
is very good, in the best case, the model is able to find 95%
of the anomalies without inspecting a single normal image.
However for most cases, and especially the the local and
medical cases, the amount of cases that would have to undergo
inspection in order to find 95% of anomalies could not even
be reduced by half.

We do not extend this FPR@0.95TPR analysis to a pixel-
or object-level as this requires binarization and connect-
component analysis, which might introduce some bias and has
not yet been used or evaluated in this context in prior work.
Thus, for the pixel-level task, we opt for conventional metrics
only.

c) Pixel-level: The median submission performance for
pixel-level anomaly categories can be seen in Fig. 8 (qual-
itative examples are shown in Fig. 2 and Fig. 3). In the
pixel-level case especially, the submissions perform better
than a constant algorithm in almost all cases. However, the
performance differences between the abdominal and brain
dataset are vast. While the top (median) performance on the
toy-ish dataset is around 0.8 AP on the brain dataset, it is
around 0.4 AP on the abdominal dataset. A performance
analysis of the categories with subcategories is detailed in the
second row of Fig. 8. Interestingly, while some benefits can
be observed on most subcategories for the brain dataset, only
a few selected types (mostly corruptions) seem to show great

Fig. 8. Pixel-level AP for the different anomaly categories. The top row
shows the mean of the grouped categories, and the second row gives
more detailed results of subcategories, i.e. the top row categories split
up in fine-grained subcategories. Median submission performance was
used as the basis for the subcategories.

improvement compared to a constant guess on the abdominal
dataset.

VI. DISCUSSION

The objective of the challenge was to compare different
approaches for OoD detection, to find how matured anomaly
detection algorithms are and to measure their capabilities in
a controlled yet realistic setting. We were also interested in
assessing potential applicability and reliability in a clinical
setting. We found some OoD cases/categories which could
readily be detected with very high reliability by the best
submitted solutions. However, the clinical relevance of these
easy-to-detect cases is debatable: these cases mostly contain
very prominent global anomalies which mimic failures during
the imaging process and corruption of the image files. These
kinds of anomalies could be detected by a trained physician
without much time and effort. Harder to detect were the local
synthetic anomalies for which we can control properties of
the anomaly such as intensity, contrast, and texture and can
get a more detailed analysis when most approaches might
fail. This performance analysis might not directly translate
to a clinical setting but believe that this has clear benefits
to a setting with only a certain kind of anomaly (e.g. brain
tumors). Especially since in practice the type and properties of
an anomaly (by definition) should not be known beforehand
(which they were not before the challenge), this might give
more indication of general performance than a dataset with few
common types of pathologies/anomalies. There are submitted
algorithms whose performance on harder semantic anomaly
cases [11] and on cases with local anomalies (especially
for the brain dataset) show very promising performance on
some subcategories. Still, there is often great inter-subcategory
variability in the anomaly categories and in the qualitative
samples shown in Fig. 2 & Fig. 3. Evidently, inter-case and
inter-participant variability is still quite high. We believe this
high variance makes it hard to recommend a specific algo-
rithm for general OoD detection in practice, and still leaves
room for further improvements in OoD techniques in the
future.
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An interesting point in the results is the difference in
performance between the abdominal and brain dataset. First,
we included a quite homogeneous brain dataset as most
papers published on medical anomaly detection focus on brain
datasets. However, to test the robustness and generalizability
we opted to include a more heterogeneous, not symmetrical,
and closer to clinical practice dataset, the abdominal dataset.
While the basic algorithms for creating the synthetic anom-
aly were kept consistent (with the size ranges adapted to
the relevant data-samples’ size accordingly), there are some
differences between the datasets which might explain the
performance gaps. The first point is that most participants
developed their algorithm on the brain dataset and then
extended it to the abdominal dataset. Similarly, brain datasets
have established themselves as the main medical dataset for
anomaly detection algorithms [19], [20], [22], [23], probably
due to the number of available scans, high data quality, low
inter-patient variance and homogeneity of the data samples.
Here, the brain dataset contains young healthy patients whose
scans were all recorded using the same scanner, whereas
the abdominal dataset consists of scans from 18 different
sites with elderly people who had a large number of varying
anatomical (and pathological) conditions, both natural and
unnatural. Furthermore, the brain samples were registered and
contain less anatomical variance than abdominal scans by
default. Additionally, a data sample of the abdominal dataset
is 4 times bigger than a sample from the brain dataset and
contains multiple organs and structures. This increased data
sample size and complexity might necessitates a larger training
sample size to achieve similar absolute performance, which
we are unable to provide. We believe that these differences in
the dataset characteristics and the fact that primary focus is
placed on the brain dataset are the major factors behind the
performance differences.

The deviating performance for global and local anom-
alies was also apparent in the sample-level results. For this
case, [11] described a similar notion of semantic vs non-
semantic OoD. Semantic OoD describes scenarios in which the
OoD samples are contextually similar and roughly originate
from the same domain, but contain semantic differences, while
non-semantic samples stem from a different domain. The con-
cept in [49], where they differ between near, i.e. from the same
domain, and far, i.e from a different domain, OoD samples
is similar to this. In our case, no abnormal sample stems
from an entirely different domain. However, we would classify
most global anomalies as near but nonetheless non-semantic
outliers, while most local anomaly samples, e.g. which only
have a small gorilla rendered into the image, still contain
most of the contextual and statistical properties of the original
scans and only exhibit semantic differences, and as such would
be classified as near and semantic outliers. They would thus
constitute the most interesting cases described in [11], [49].
This division is also broadly reflected in the performance of
the algorithms. The subjectively harder the problem is and the
more localized the anomalies are, the worse the performance
of the algorithms will be. While the submitted algorithms can
already almost entirely sort out abnormal inputs for certain
categories of global anomalies, the benefit is more unclear

for the more interesting and potentially medically relevant
cases. In some settings these models can potentially enable
the specialist supervision required to be reduced, however in
other cases no relevant medical benefit would be expected as
of today. Another interesting point raised by our analysis and
in [48] is the correlation between intensity and localization
performance. In [48], [50] the authors claim that often anomaly
detection methods default to simple threshold-based intensity
detectors. We do not believe this is in general the case here for
all methods, especially with methods such as the winning FPI
method, and also is often an inherent property of the datasets
used during method development, but this further necessitates
a “controlled” setting as in this challenge and [50].

One joint property of all submissions was that instead of
processing a whole 3D sample at once, they processed 2D
slices instead and then aggregated the anomaly scores to a
sample-level score. While 3D processing has in many cases
shown some benefits for segmentation [51], the additional
compute and time constraints may have been the limiting fac-
tors in this case. This, however, can result in slice processing
artifacts (see Fig. 3), and the additional information on the
complete context and global position might show some poten-
tial for further medical OoD detection algorithm research.

Across all submissions, one trend, that is reflected in core
machine learning and computer vision research, is the rise
of self-supervised methods [43], [52]. Similarly, three of the
top submissions here employed self-supervised techniques,
either as pretraining to initialize the models or as a proxy
task during training of the algorithm. The extent to which
these self-supervised tasks are beneficial is not entirely clear:
perhaps, performance gains might also stem from the dedicated
(synthetic) validation sets used by all teams or the (coinci-
dental) similarity of the self-supervised tasks to our synthetic
anomalies (but, these approaches still show top performance
on naturally occurring anomalies). However, the follow-up
papers on these approaches showed that the performance
translates to other medical datasets as well [40], [53], [54].
Here, in contrast to the two purely self-supervised proxy
task methods, the two other top performing methods use
Autoencoder-based methods, which are another main direction
in anomaly detection [19], [21], [23] and follow-up and
consecutive work has also extended the methods to other
datasets with great success [46], [55].

One finding which might be of interest for the further devel-
opment of anomaly detection algorithms is that the simple toy
dataset was a capable proxy for more generalized anomaly
detection. We do not believe that an algorithm which is tuned
on the toy test set and does well on this set will automatically
generalize and perform well in other, more general anomaly
settings. However, all submitted approaches still struggled
to detect the toy examples perfectly (especially as the size
decreased and the color contrast in relation to the context got
worse) and as such they can be seen as an upper performance
limit on the general anomaly detection performance. In addi-
tion, we were able to find some correlations between the final
performance on the test set and the toy task. We believe that
creating and using such a simple validation set might offer an
easy way to benchmark anomaly detection algorithms during
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development, as most of the top teams did this during their
development phase.

VII. CONCLUSION

We have presented the Medical-Out-of-Distribution-
Analysis-Challenge 2020. The goal of the challenge was to
create a standardized and comprehensive benchmark for OoD
detection and anomaly detection algorithms in a controlled
and fair medical setting. With eight valid and novel submitted
algorithms, the challenge also provided the scope for an
analysis of the strengths and weaknesses of current OoD
approaches. While the results were quite promising for the
global and ‘easy’ tasks, especially on a pixel level and on
low-variance data, we still see room for improvement in
clinical real-world scenarios.
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