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Abstract— Glioma grading during surgery can help
clinical treatment planning and prognosis, but intraopera-
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tive pathological examination of frozen sections is limited
by the long processing time and complex procedures.
Near-infrared fluorescence imaging provides chances for
fast and accurate real-time diagnosis. Recently, deep learn-
ing techniques have been actively explored for medical
image analysis and disease diagnosis. However, issues of
near-infrared fluorescence images, including small-scale,
noise, and low-resolution, increase the difficulty of train-
ing a satisfying network. Multi-modal imaging can provide
complementary information to boost model performance,
but simultaneously designing a proper network and utilizing
the information of multi-modal data is challenging. In this
work, we propose a novel neural architecture search method
DLS-DARTS to automatically search for network architec-
tures to handle these issues. DLS-DARTS has two learnable
stems for multi-modal low-level feature fusion and uses a
modified perturbation-based derivation strategy to improve
the performance on the area under the curve and accuracy.
White light imaging and fluorescence imaging in the first
near-infrared window (650-900 nm) and the second near-
infrared window (1,000-1,700 nm) are applied to provide
multi-modal information on glioma tissues. In the exper-
iments on 1,115 surgical glioma specimens, DLS-DARTS
achieved an area under the curve of 0.843 and an accu-
racy of 0.634, which outperformed manually designed con-
volutional neural networks including ResNet, PyramidNet,
and EfficientNet, and a state-of-the-art neural architecture
searchmethod for multi-modalmedical image classification.
Our study demonstrates that DLS-DARTS has the poten-
tial to help neurosurgeons during surgery, showing high
prospects in medical image analysis.

Index Terms— Deep learning, glioma grading, intraop-
erative imaging, multi-modal imaging, neural architecture
search, NIR-II fluorescence imaging.

I. INTRODUCTION

GLIOMA is the primary central nervous system tumor
arising from glial or precursor cells and accounts for

70% of adult malignant primary brain tumors [1]. The
five-year relative survival rate for glioblastoma, the most
lethal glioma, is only 6.8% between 2012 and 2016 in
the United States [2]. World Health Organization (WHO)
classifies glioma into Grade I-IV according to the invasive
histopathology results. Diagnosis of glioma grades facilitates
clinical treatment planning and prognosis, providing benefits
to patients [3], [4].

Neurological microsurgery under white light (WL) is the
major treatment modality to improve patients’ survival. The
precise grading of gliomas during surgery can guide surgeons
to determine the maximum excision area during operation
[5], reducing tumor residual and early recurrence caused
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by less excision and damage to the normal physiological
function of the patient caused by over excision. However, it is
very challenging for neurosurgeons alone to determine glioma
grades directly during operation. Intraoperative pathological
examination of hematoxylin and eosin (H&E) stained frozen
tissue sections is reliable and widely used, but it is time-
consuming (at least 20 minutes) and requires complex proce-
dures and specialists to get pathological results [6]. Moreover,
freezing tens or hundreds of samples is not practical during
surgery. These issues limit the applications of pathological
examination of frozen tissues for real-time intraoperative
diagnosis, especially for numerous tissue samples. Therefore,
a fast and precise diagnosis of tumor tissues during surgery is
crucial.

Optical imaging combined with disease diagnosis and treat-
ment becomes a very promising strategy [7]–[13]. Optical
imaging methods have been used in many pre-clinical stud-
ies [14]–[19]. Recent studies suggest that near-infrared (NIR)
fluorescence imaging provides images that contain different
and more information than WL images, and to some extent,
it helps to guide the surgeons during the surgery in real-
time [20]–[22]. However, NIR fluorescence imaging for real-
time glioma grading has rarely been explored and achieved.

With the rapid development of deep learning, many
researchers have applied convolutional neural networks
(CNNs) to analyze a wide range of medical images, including
CT [23], MRI [24], ultrasound [25], and histopathological
images [26], and showed encouraging results. CNNs have
also been extensively studied to offer the grading [27]–[30]
and genetic information [31], assist pathological diagnosis
[32], [33], help determine prognosis and guide therapy [34].
However, deep learning techniques are rarely applied to intra-
operative NIR imaging of glioma. This may be explained by
that NIR images are harder to acquire compared with gener-
ally used intraoperative imaging methods such as ultrasound,
which limits the scale of the dataset. Besides, the quality of
intraoperative NIR images is severely degraded by ambient
light and background noise. The resolution of intraoperative
NIR images is low compared with pathology. These issues
increase the difficulty of training a satisfying neural network
for diagnosis. Multi-modal imaging provides more information
compared with single-modal imaging, which can alleviate
these issues. But designing a proper network to simultaneously
handle the problems of NIR images and use the information
of multi-modal data is challenging.

Neural Architecture Search (NAS) is a subarea of automated
machine learning [35], which is a newly rising technique in
artificial intelligence. This technique can automatically explore
and evaluate a large number of networks in the search space
that have never been studied before, and search for the appro-
priate network architectures for the target task. It has achieved
better performance than manually designed CNNs in image
classification [36], [37], object detection [38], and semantic
segmentation [39]. Some recent studies in the medical field
have also used NAS and achieved remarkable results in the
segmentation of MRI and CT images [40]–[42]. This technique
has a high potential to unleash the power of deep learning in

brand-new scenarios or on the application of images of new
imaging modalities.

Herein, we propose a NAS-based method for glioma grad-
ing intraoperatively, which we call Double-Learnable-Stem
DARTS (DLS-DARTS). We also apply multi-modal imaging
to offer more information for improving the performance.
Current manually designed CNNs use complex structures to
capture features of different modes in the multi-modal analysis
[43], [44], which requires expert experiences to design con-
crete modules to extract features of different modes to achieve
remarkable performance. By contrast, we design two learnable
stems that automatically learn the operations and connections
to process and combine low-level features of different modes,
and further fuse them in deeper layers. WL, the first NIR
fluorescence window (NIR-I, 700-900 nm), and the second
NIR fluorescence window (NIR-II, 1,000-1,700 nm) glioma
specimen images are collected simultaneously to construct a
multi-modal image dataset. Using this dataset, DLS-DARTS
can automatically search for the appropriate architectures of
network stems and cells, and establish a fast and accurate
grading model using the discovered architectures. The overall
pipeline of our method is illustrated in Fig. 1. The main
contributions of our work are summarized as follows:
• We develop a NAS method DLS-DARTS for intraop-

erative glioma grading. DLS-DARTS has two learnable
stems to fully utilize the features of multi-modal glioma
images and a modified perturbation-based derivation strat-
egy to improve the accuracy and AUC of derived archi-
tectures. Experimental results show that DLS-DARTS
achieves the highest accuracy and AUC compared with
manually designed CNNs and a state-of-the-art NAS
method for multi-modal medical image analysis.

• Multi-modal imaging, including WL, NIR-I, and NIR-II
imaging, has been employed to provide abundant and
complementary information for grading models to learn.
The usage of multi-modal imaging significantly improves
accuracy and AUC compared with single-modal imaging.

• DLS-DARTS shows high promise for intraoperative
glioma grading with rapid and effective diagnosis.
Besides, it offers real-time assistance to neurosurgeons
during surgery. Our study also shows the effectiveness of
NAS and its great prospects in medical imaging analysis.

II. METHODOLOGY

One of the widely used NAS methods is Differentiable
ARchiTecture Search (DARTS) [36]. DARTS is based on
gradient and shows remarkable results in classification tasks.
It contains two phases: the search phase and the training phase.
The former is to search for the appropriate architecture of
the network based on the input dataset, and the latter is to
train the searched network. We refer to the full network in the
search phase as supernet. The main structure of the supernet
of DARTS is composed of a stem for mapping input data to
features, a set of cells for feature extraction, and a head for
classification.

Inspired by this method, we propose Double-Learnable-
Stem DARTS (DLS-DARTS), which follows the design of
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Fig. 1. An illustration of the overall pipeline of DLS-DARTS for glioma grading on multi-modal images. The total number of cells L is 6 in the supernet.
Features of wight light (WL) and NIR fluorescence images are preliminarily processed by two learnable stems and further merged in the deeper
cells. Fluorescence images are normalized to range 0-255 for visualization.

DARTS, while designing two learnable stems for automatically
utilizing features of intraoperative multi-modal data. Besides,
a modified perturbation-based architecture selection strategy
is used to derive the architectures from the supernet of
DLS-DARTS. It should be noted that the original DARTS
only has a manually designed stem to map input data to
features, which treats every mode equally and neglects the
integration of different data modes when analyzing multi-
modal images. However, DLS-DARTS specifically designs
two learnable stems with similar architectures of cells in the
network, which preliminarily merges the low-level features of
different modes, and further fuses them in deeper layers to
boost the performance in multi-modal image analysis.

A. Search Space of DLS-DARTS

1) Macro Architecture of Supernet: Formally, DLS-DARTS
decomposes the supernet into L cells and two learnable
stems. The L cells include normal cells and reduction cells,
with the former mainly for calculation and the latter mainly
for downsampling. Both types of cells use a weight-sharing
strategy, which reduces the search overhead and helps the
supernet to converge. One learnable stem is for automatically
fusing features of all modes of images (WL, NIR-I and
NIR-II). Since fluorescence images share similar features,
we also design a learnable stem specially for extracting the
features of fluorescence images. The two learnable stems are
called Fusing Stem and FL Stem in the following. They both
have similar architectures to the cells while having different
connections that are specially designed for multi-modal low-
level feature fusion.

An illustration of the architecture of DLS-DARTS with L =
6 is shown in Fig. 1. Different from DARTS, the cells are
started with a reduction cell rather than a normal cell since the

learnable stems have already extracted the low-level features
from input data. The output of Fusing Stem is used as the input
of the first cell, while the one of FL Stem is used as the input of
the first two cells. This design allows the model to extract and
preliminarily merge different low-level features of different
modes, and further integrate them in deeper layers. The cells
are divided into 3 groups, with one reduction cell followed by
Ksearch normal cells in each group. They are used to construct
the main structure of the supernet. Thus, the number of cells in
the supernet can be denoted as L = 3×(Ksearch + 1). A head
with a global average pooling (GAP) and a fully connected
layer (FC) follows the cells for classification.

2) Micro Architecture of Cells: Due to the learnable stems
having similar architectures of cells, we first introduce the
micro architectures of cells. In general, each cell contains
N nodes to construct a directed acyclic graph (DAG), and
each node denotes some features. Define a set of pre-defined
operations O, where each operation o ∈ O is performed on
features. In the DAG, each edge that connects two nodes
represents a set of operations in O. Each operation o is
given a hyper-parameter αo to control the weight. The nodes,
except the first two nodes and the last one, are fully connected
with their precedents. Let (i, j) represent a node pair, where
0 ≤ i < j ≤ N −1. The core idea is to update all architecture
parameters α by formulating the information propagated from
i to j as a weighted sum of |O| operations, where |·| denotes
the number of operations in the set. This weighted sum fi j is
formulated by

fi j (xi ) =
∑
o∈O

ᾱo
i j o (xi ) , (1)

where xi denotes the output of node i , ᾱo
i j denotes the weight

of operation o between node i and j after softmax, which is
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formulated as

ᾱo
i j =

exp
(
αo

i j

)
∑

o�∈O exp
(
αo�

i j

) , (2)

where αo
i j is the architecture parameter of operation o between

node i and j . Node j outputs the sum of all input flows, where

x j =
∑
i< j

fi j (xi). (3)

Each cell has three types of nodes, including input nodes,
inner nodes, and output nodes. The first two nodes are input
nodes to a cell, and the last node, also the output of the
cell, is the concatenation of inner nodes. This design allows
both network parameters and architecture parameters α dif-
ferentiable, so searching for the network architecture can be
end-to-end.

Normal cells and reduction cells have the same micro
architectures. Besides, they both use a weight-sharing strategy
to reduce search overhead and help the supernet to converge.
However, the architecture parameters αn and αr are learned
separately to ensure the searched architectures of the two cells
are different.

3) Micro Architecture of Learnable Stems: As illustrated in
Fig. 1, both Fusing Stem and FL Stem have input nodes,
inner nodes, and an output node, which are similar to the
micro architectures of cells. The difference is that Fusing Stem
integrates both WL and NIR fluorescence data, while FL Stem
integrates NIR fluorescence data only.

Specifically, the Fusing Stem contains Ns+4 nodes, includ-
ing 3 input nodes, Ns inner nodes, and 1 output node. The
input nodes are Csin features of WL, NIR-I, and NIR-II
data after mapped by manually designed stems, where a
manually designed stem has a 3 × 3 convolution and a batch
normalization layer (BN). The inner nodes are the same as
mentioned in Section II.A.2, except the last one that concate-
nates all precedents. The output node compresses the number
of features to Csout using a 1× 1 convolution. The FL Stem
shares the same micro architecture as Fusing Stem, except that
it only has 2 input nodes.

B. Search for the Network Architecture

To search for the appropriate architectures for the multi-
modal dataset, optimization strategy, loss function, and strat-
egy to derive architectures from supernet should be considered.
In DLS-DARTS, one-step gradient-based bi-level optimization
[36] is used to speed up the process of updating architecture
parameters. Focal loss [45] is used to alleviate the impact
of imbalanced data distribution in glioma data. In addi-
tion, a modified perturbation-based derivation strategy is
applied to derive the architecture with a greedy decision from
supernet.

1) One-Step Gradient-Based Bi-Level Optimization: The bi-
level optimization strategy is a standard searching strategy
for many gradient-based NAS methods [37], [41], [46].
Our DLS-DARTS also follows this framework. In partic-
ular, the search process can be represented as a nested

optimization of

min
α

Lval
(
w∗, α

)
s.t . w∗ = arg min

w
Ltrain (w, α), (4)

where Lval denotes the loss on validation dataset, w denotes
network parameters, and α denotes architecture parameters.
However, the inner loop to calculate the optimal w∗ consumes
time, which makes the optimization slow and inefficient.
To speed up the process, one-step gradient optimization is used
to approximate w∗, which can be represented as

w∗ ≈ w − ξ
∂Ltrain (w, α)

∂w
, (5)

where ξ denotes the learning rate of w. Thus, the optimization
becomes a joint optimization of α and w when using gradient
descending.

2) Search for the Architecture Parameters: To achieve one-
step gradient-based bi-level optimization, the original training
dataset should be split into two halves. One is called training
dataset for training the network parameters w, and the other is
called validation dataset for updating architecture parameters
α. w and α are updated alternatively each iteration.

Since the distribution of grades of intraoperative glioma
data is imbalanced, focal loss [45] is introduced to reduce
the impact of category imbalance. The formula of focal loss
for a single sample is given by the following equation

F L (p) = −
c∑

i=1

α f ocal (1− pi)
γ · (yi · log (pi )), (6)

where F L is short for focal loss, p denotes the prediction
vector of possibilities that the sample belongs to every class
after softmax, pi denotes the i th element of p, yi denotes
the i th element of the one-hot label vector, c is the number
of classes, α f ocal and γ are hyper-parameters to control the
impact of label imbalance. With larger α f ocal and γ , the
impact of the minor classes to the network training will be
more obvious.

To further improve the performance of DLS-DARTS, Drop-
Path [47] during searching is also included in this study.
Guo et al. [48] points out that the weights in the supernet
are deeply coupled in weight-sharing approaches, which could
mislead the architecture search process. To alleviate the weight
coupling problem, DropPath randomly drops part of the oper-
ations in the cells to reduce the frequency of joint optimization
of different subnetworks in the supernet.

3) Derive the Architecture From Supernet: DARTS derives
the architecture from the supernet with the largest architecture
parameter on each edge and keeps the two precedents with the
largest αo

i j of each node. This strategy is intuitive, as archi-
tecture parameters are expected to be the weights to show the
importance of the operations. However, DARTS tends to assign
larger architecture parameters to skip connection, which results
in worse generalization ability of derived architecture [49],
[50]. Wang et al. [51] proposed a perturbation-based architec-
ture selection strategy (PT) to derive the architectures that have
the largest effect on the performance of the supernet. However,
PT introduces random factors to the derived architectures that
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might influence the performance, and the total cost of the fine-
tuning processes of each trial can be expensive.

Algorithm 1 Modified Perturbation-Based Derivation Strategy
(MPDS)

Input:
A pretrained supernet S
Pretrained architecture parameters α = {α f using , α f l , αn, αr }
Set of edges E = {E f using, E f l ,En,Er } from S
# precedents to keep of each node k = {

k f using, k f l , kn, kr
}

Set of inner nodes N = {N f using,N f l ,Nn,Nr } from S
Evaluation metric m

Functions:
Onehot function OneHot (·)
Index function Idx(·)
Top-k worst function T opK (·, k)
Zeroize function Zero(·)

Output:
Derived architecture
Geno = {Geno f using, Geno f l, Genon, Genor }

forall x in { f using, f l, n, r} do
# Derive operation on each edge
forall edge e in Ex do

forall operation on edge oe in Oe do
evaluate the metric m\oe of S when removing oe

end
select oe with the worst m\oe : o∗e ← arg min

oe
m\oe

discretize edge e to o∗e : α∗xe ← OneHot (Idx (oe))
end
# Derive precedents of each inner node
forall node n in Nx do

forall precedent pn of n do
evaluate the metric m\pn of S when removing pn

end
select pns with the worst Top-kx m\pn :
{p∗n} ← T opK

({m\pn }, kx
)

prune out all other precedents: α∗xn ← Zero
({pn}\{p∗n }

)
end
derive Genox based on α∗x

end

Our DLS-DARTS adopts PT in a sequential derivation
manner, which means the derivation of operation on each edge
is started from the first node to the last precedent of each node,
and the operation selection is started from the first inner node
to the last one. Meanwhile, the fine-tuning process is removed.
Our modified perturbation-based deriving strategy (MPDS)
follows the core idea of PT, which is to derive the architecture
that has the most impact on the model performance in a
greedy manner. Besides, removing fine-tuning on the small-
scale intraoperative glioma data avoids heavy overfitting on
the validation dataset, which assists the derivation process.

The modified perturbation-based algorithm works as fol-
lows: For both heads and cells, the operation selected on each
edge depends on its impact on the supernet, without which the
supernet will have the worst evaluation metric (e.g., accuracy).
The operations are selected in a greedy manner, which means
that the selection is done edge by edge. After operation
selection on each edge, precedents selection of each node goes
on. The number of selected precedents of each node is the
same as the number of input nodes of heads or cells. The
selected precedents depend on their impact on the supernet,
without which the supernet will have the worst evaluation

metric. Only inner nodes select precedents, except the last
node of Learnable Stems. See the pseudocode of our modified
perturbation-based derivation algorithm in Algorithm 1.

C. Generate the NAS-Based Model From Searched
Architectures

After derivation, only the architectures of heads and cells
are maintained, and a new network is constructed based on
these found architectures. The constructed network is called
the NAS-based model in the following. The training pipeline
of the NAS-based model is the same as that of manually
designed CNNs.

The NAS-based model has the same macro architecture
design as DLS-DARTS, but the depth is controlled by a new
parameter Ktrain rather than Ksearch , which determines the
number of normal cells in each group. The micro architec-
tures are pruned versions of the original stems and cells in
DLS-DARTS.

It should be noted that the NAS-based model only inherits
the architectures of stems and cells found in the training
phase. The network weights are reinitialized, and architecture
parameters are removed. Besides, the test dataset is appeared
neither in the search phase nor the training phase. As a result,
the training phase done on the original training dataset, which
is the union set of training dataset and validation dataset in
the search phase, does not arouse the problem of severer
overfitting, and the evaluation is fair.

III. EXPERIMENTAL SETTINGS

A. Data

Imaging modalities in this study included WL and fluo-
rescence in the NIR-I and the NIR-II window. A system
composed of an imaging unit and a controlling unit [21] was
used to acquire all three modes of images. The imaging unit
has a laser generator sub-system and a multi-spectral (visible,
NIR-I, and NIR-II) imaging instrument. The laser generator
sub-system generated excitation light for fluorescence imag-
ing, with an output wavelength of 808 nm, while the visible
and NIR-I/II multi-spectral imaging instrument was set to
capture white light and excitation light and form images. The
controlling unit was used to precisely control the working
distance and reduce the touching of the imaging unit.

Indocyanine green (ICG), which is a safe NIR dye and
approved by the Food and Drug Administration (FDA) for
routine clinical use, was used as the imaging agent [52] for
NIR imaging. Specifically, ICG was injected into patients at
a dose of 1 mg/kg 48 hours before anesthesia started. Then,
the multi-spectral imaging instrument was used to take multi-
modal images of resected surgical specimens simultaneously
during surgery. The study was approved by the Ethics Com-
mittee of Beijing Tiantan Hospital, Capital Medical University.
All patients were given informed consent for their agreement.
This study on patients with glioma was also explored in a
clinical trial (ChiCTR2000029402) in China.

In this study, WL, NIR-I, and NIR-II images were collected
from 1,115 specimens from surgery of 24 glioma patients.
All specimens had all three modes of images to construct the
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multi-modal dataset. Histopathologic results were used as the
gold standard. Note that the specimens from one patient were
not of the same grade, therefore the labels were given as the
sample-level, not patient-level. Of all specimens, 302 (27.1%)
were Grade I, 482 (43.2%) were Grade II, 228 (20.4%) were
Grade III, and 103 (9.2%) were Grade IV. Data of 5 patients
were randomly split from all to construct the test dataset
(Grade I:II:III:IV=34:62:57:10), and the rest constructed the
training dataset (Grade I:II:III:IV=268:420:171:93). No sepa-
rate validation dataset was split from the all, and the validation
dataset in the search phase was a split with half of the original
training data.

The value of each pixel of fluorescence images produced
by the fluorescence imaging system represented the intensity
of the fluorescence signal and did not range from 0 to 255 like
natural images (RGB and grayscale images). Therefore, pixel
values of fluorescence images required a non-linear normal-
ization to cope with the image classification pipeline. Besides,
to reduce the influence of the inconsistent distribution of pixel
values of different images caused by noise and ambient light,
auto-contrast algorithms were applied to normalize the whole
contrast of the images. The preprocessing was done using
ImageJ [53]. In addition, to reduce the impact of noises in
the fluorescence images, low-pass filtering in the frequency
domain with filter size half the width and height of input
resolution was applied before training and evaluation. Input
data were 0-1 normalized before sending to the network.

B. Implementation Details

The operation set had 10 operations, which added 3×3 and
5× 5 convolutions to the candidate operation set of DARTS.
All operations were of stride one, except the ones inside
reduction cells to achieve downsampling. All convolutional
operations followed the order “ReLU-convolution-BN”, and
each separable convolution was applied twice [54], [55]. The
input of each mode had 3 channels (for fluorescence images
duplicated three times). The output of manually designed
stems had Csin = 48 channels during searching while Csin =
144 during training, and the output of the learnable stems had
Csout = 2×Csin channels. Besides, each head had Ns = 2, and
each cell had N = 6, including 2 input nodes, 3 inner fully
connected nodes, and 1 channel-concatenation output node.
The first two nodes were the output of the previous two cells
respectively, with 1× 1 convolution inserted if necessary. The
number of normal cells per group Ksearch and Ktrain were
both set to 1.

The input resolution of DLS-DARTS was 64 × 64 since
images in the multi-modal intraoperative glioma dataset had
similar sizes. While for comparison methods, the resolution
varied according to the model structure. Besides, to increase
the diversity of input data, basic data augmentation with
random cropping zero-padded by 8 pixels on each edge,
random horizontal flipping, and random vertical flipping, were
applied both in the search and training phase. CutMix [56]
with β = 1.0 was also added during the training phase.
A fixed DropPath with probability 0.2 was applied during
searching, while a linearly increased DropPath [47], [55] with
maximum probability 0.2 was introduced during training as a

regularization technique to help the network learn and prevent
it from overfitting.

To search for the appropriate architecture of both heads
and cells, epochs of 50, batch size of 16, learning rate for
network parameters of 2.5 × 10−3, and architecture learning
rate for architecture α of 6 × 10−4 were initially set. SGD
optimizer with momentum 0.9, weight decay of 3×10−4, and a
cosine annealing schedule down to 10−5 was used for updating
network parameters, and Adam optimizer with weight decay
of 1× 10−3, β1 of 0.5, and β2 of 0.999 was used for updat-
ing architecture α. After obtaining the architecture of cells,
we changed epoch to 110 and batch size to 128 in the training
phase for better training. SGD optimizer with momentum 0.9,
weight decay of 1×10−5, and a cosine annealing schedule
down to 10−5 was used for training the NAS-based model.
Focal loss with γ = 2.0 and α = 1.0 was used both in
searching and training. Hyperparameters of DLS-DARTS and
other methods for comparison were tuned to the best. All the
evaluations were conducted on the test dataset.

In this work, Google Colab TPU Runtime (v2, 8 Cores,
64 GB Memory) was used under the environment of Python
3.6 to perform the experiments of all grading models. TPU was
used for speeding up the training process, including the search
phase of NAS models and training of all models. TensorFlow
[57] (version 2.3) was used for image preprocessing, network
building, training, and evaluation.

C. Evaluation Metrics

To evaluate the performance of all the classification models,
accuracy (ACC) and AUC were used as the evaluation metrics.
AUC is the area under the receiver operating characteris-
tic (ROC) curve, which takes true positive rate (TPR) as the
y-axis and false positive rate (FPR) as the x-axis. The metrics
are defined as:

ACC =
∑c

i=1 T Pi

#T otalSamples
, (7)

T P R =
∑c

i=1 T Pi∑c
i=1 (T Pi + F N i )

, (8)

F P R =
∑c

i=1 F Pi∑c
i=1 (F Pi+T N i )

, (9)

AUC =
∫ 1

0
f (x) dx, (10)

where c is number of grades, #T otal Samples is the number
of samples for evaluation, T Pi is the true positive number
of the i th class, T N i is the true negative number of the i th
class, F Pi is the false positive number of the i th class, F N i

is the false negative number of the i th class, and f (x) is the
corresponding TPR when FPR is x . In this study, T P , T N ,
F P , F N , and AUC were calculated using a micro average
that treated each element of the label indicator matrix as a
label [58].

IV. RESULTS

A. Comparison of NAS With Manually Designed CNNs

To evaluate the effectiveness of DLS-DARTS, here
four methods in classification tasks were introduced for



2576 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 41, NO. 10, OCTOBER 2022

comparison, including three manually designed CNNs ResNet
[59], PyramidNet [60] with ShakeDrop regularization [61], and
EfficientNet [62], and a state-of-the-art NAS-based method
MMNAS [41] for PET-CT multi-modal classification in med-
ical image analysis.

ResNet is one of the most classical CNN models, and the
proposed residual connection has a deep influence on the
design of the model architecture afterward. It has been used
as a baseline in MedMNIST [63], a classification benchmark
based on medical images for testing NAS methods. ResNet-18
with input resolution 224 has shown competitive results to
NAS methods on BreastMNIST [64], a dataset that also
has features of low-resolution, heavy noise, and small scale.
EfficientNet strikes a balance between speed and performance
through adjusting the depth, width, and resolution of the
model carefully, and becomes one of the state-of-the-art CNNs
in the classification task. It has also been used to analyze
the boundary of glioma intraoperatively [22]. Besides, the
weights pretrained on ImageNet [65], a large-scale natural
image dataset, are publicly available for transfer learning.1

PyramidNet with ShakeDrop regularization is one of the state-
of-the-art methods on CIFAR [66], a natural image dataset that
also has the feature of low-resolution. Since these manually
designed CNNs have shown remarkable results on tasks that
have similar features to the intraoperative glioma dataset,
we selected them as comparisons to evaluate the effectiveness
of our DLS-DARTS.

MMNAS is a state-of-the-art DARTS-based method for the
classification of soft-tissue sarcomas on PET-CT images. The
method shows many similarities to our DLS-DARTS, with a
normal cell at the beginning to merge the low-level features
of PET and CT and the gradient-based updating strategy to
search for the architectures, thus also being compared with
our DLS-DARTS. To adapt this method in our multi-modal
intraoperative glioma images, we modified the elementwise
sum of two input modes to concatenation, because PET and
CT are complementary but optical imaging modalities are not.
We also added a stem for fluorescence images. The NIR-I and
NIR-II images were first concatenated and then be seen as an
entirety in the network.

DLS-DARTS was compared with ResNet-18, EfficientNet-
B0, EfficientNet-B0 with transfer learning, PyramidNet-
ShakeDrop, and MMNAS to show its advantages. Note that
the architecture of the MMNAS-based model was searched
using our multi-modal dataset. All manually designed CNNs
had an input channel of 9, which concatenated the images
of WL, NIR-I, and NIR-II. Although EfficientNet-B0 had the
least number of parameters and the simplest architecture in the
EfficientNet family, it outperformed B1 to B3 in intraoperative
glioma grading. This result might be caused by the small
resolution of the dataset that did not match the design of
larger models in the family. Since larger EfficientNets required
larger input resolution, the input images required to be scaled
to a larger size by interpolation. Thus, useful information
contained in the original images became sparse in larger
resolutions, which possibly made the models focus more on

1https://github.com/tensorflow/tensorflow

Fig. 2. The architecture of the discovered Fusing Stem, FL Stem, normal
cells, and reduction cells of DLS-DARTS on multi-modal intraoperative
glioma dataset. Nodes represent features in the network. nor_conv_3×3
denotes 3× 3 convolution operation.

the interpolated redundant information. The low-level features
of original images were desalted and the performance of larger
models was hurt. For transfer learning based on EfficientNet-
B0, the stem of the transferred model was dropped out
and reinitialized to match the input with 9 channels. All
the input images applied data augmentations dynamically,
so every epoch the input from the same original image was
different. Due to the CNNs being fine-tuned to their best
state, the comparison was relatively fair. The search phase of
DLS-DARTS cost 0.75 GPU hours on a single Tesla P100.
The searched architectures of both learnable stems and cells
are shown in Fig. 2. Note that the derived architecture had
3 × 3 convolution operations inside (nor_conv_3× 3 in the
figure), indicating that the expansion of the search space for
candidate operations was effective.

The results of DLS-DARTS and comparing methods eval-
uated on the test dataset on 5 runs are shown in Table I.
The ROC curve of DLS-DARTS with 95% Confidence Inter-
val (CI) and ROC curves of each grade of DLS-DARTS is
shown in Fig. 3 a) and b), respectively. The comparison of
the ROC curves of DLS-DARTS and comparing methods are
shown in Fig. 3 c). The number of parameters, the number
of floating-point operations (FLOPs), and throughput were
used to evaluate the complexity, computation of models, and
inference time, respectively. DLS-DARTS achieved the best
ACC (0.634, 95% CI 0.602∼0.669) and AUC (0.843, 95% CI
0.820∼0.864), which outperformed MMNAS and manually
designed CNNs. Besides, DLS-DARTS showed remarkable
ability to distinguish Grade I, but was weaker for higher
grades. This might be due to the diffusion characteristics
of glioma of Grade II to IV that increase the difficulty
in distinguishing the details of the tissues. In addition, the
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Fig. 3. The ROC curves of a) DLS-DARTS with 95% confidence inter-
val (CI) of DLS-DARTS; b) each grade of DLS-DARTS; c) DLS-DARTS
and comparing methods; d) DLS-DARTS on single-modal and multi-
modal datasets. The confidence interval was calculated based on
1000 iterations of the bootstrap methods. All the ROC curves were drawn
on the concatenation of the results of 5 runs using the micro average. All
AUCs (mean±std) were evaluated on 5 runs.

TABLE I
PERFORMANCE OF DLS-DARTS AND COMPARING METHODS

INCLUDING MMNAS AND MANUALLY DESIGNED CNNS AVERAGED

FROM 5 RUNS. NUMBERS IN BRACKETS INDICATE 95% CONFIDENCE

INTERVALS USING 1000 TRIALS OF THE BOOTSTRAP METHOD. SD IS
SHORT FOR SHAKEDROP. THROUGHPUT WAS EVALUATED ON A

SINGLE TESLA P100 GPU AVERAGED FROM 50 BATCHES WITH

BATCH SIZE OF 128

number of parameters of DLS-DARTS was only more than
EfficientNet-B0, indicating the effectiveness of the parameters
in the model.

TABLE II
PERFORMANCE OF DLS-DARTS USING DIFFERENT MODES OF

IMAGES AVERAGED FROM 5 RUNS. NUMBERS IN BRACKETS INDICATE

95% CONFIDENCE INTERVALS USING 1000 TRAILS OF THE

BOOTSTRAP METHOD

Although MMNAS was also a gradient-based NAS method
for multi-modal medical image analysis, it was designed for
PET-CT rather than intraoperative optical images. Besides,
the normal cell in MMNAS also fused low-level features of
different modes, which was similar to our learnable stems.
However, the remaining structures of MMNAS were only
reduction cells, which limited the diversity of the network,
and further limited its ability to fuse and extract features in
deeper layers. These results explained why our DLS-DARTS
outperformed MMNAS. PyramidNet-ShakeDrop showed com-
petitive performance on AUC to DLS-DARTS, but the net-
work structure was obviously more complex, and the number
of FLOPs was ∼10 times of DLS-DARTS. EfficientNet-B0
had a balanced performance on network characteristics and
evaluation metrics, but the ACC is worse than DLS-DARTS.
Although DLS-DARTS had obviously larger FLOPs and the
throughput was only half of EfficientNet-B0, it met the
demand for real-time diagnosis. ResNet-18 had similar FLOPs
to DLS-DARTS, but with an obvious AUC gap. Interestingly,
pretrained EfficientNet-B0 showed worse performance com-
pared to the one without pretrained weights. This might be
explained by that the multi-modal optical images had obvious
differences over natural images, therefore transfer learning
strategy showed poor improvement in intraoperative glioma
grading. Similar results are reported in [67]. Besides, since
the weight of the pretrained stem was dropped out to match
the multi-modal dataset, the ability of the model to extract
low-level features was severely influenced. This change also
caused the performance gap. The results also indicated the
importance of low-level features in distinguishing the grades
of intraoperative optical glioma images. Meanwhile, the ROC
curve of DLS-DARTS was the nearest to the upper left corner,
which indicated the best overall prediction performance as
well.

B. Comparison of Single-Modal and Multi-Modal Imaging

To study the potential advantages of multi-modal imaging,
we then evaluated DLS-DARTS on both single-modal images
and multi-model images. Models of each mode shared the
same hyperparameters for a fair comparison.

The results of the four models are shown in Table II,
and the comparison of ROC curves is shown in Fig. 3 d).
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The model trained on multi-modal images achieved the best
ACC (0.634, 95% CI 0.602∼0.669) and AUC (0.843, 95%
CI 0.820∼0.864), which had a significant advantage over the
other three models trained on single-modal images. Notably,
the model trained on multi-modal images also had the least
number of FLOPs (1.99 G). This phenomenon indicated that
multi-modal images contained richer information than single-
modal images, thus the model could capture sufficient useful
features with fewer calculations. Interestingly, the NAS-based
model searched from NIR-II images had the least number
of parameters. This indicated that NIR-II imaging might
provide more information than other modes, thus requiring
less parametric operations to extract the features. Experimental
results demonstrated that multi-modal images contained more
information for the NAS- based model to learn than single-
modal images. We also noted that the models searched on
fluorescence images generally performed better than the model
searched on WL images, while the model searched on NIR-II
images performed significantly better than the ones on NIR-I
and WL. This indicated that fluorescence imaging could better
reflect some features of biological tissues, especially NIR-II
imaging that showed advantages over NIR-I imaging to reflect
these features.

C. Gradient-Weighted Class Activation Mapping

Gradient-weighted class activation mapping (GCAM) [68],
known as a technology for visualizing and explaining the
decision of CNN models, was also implemented in this study
for a better understanding of DLS-DARTS. This technology
calculated the contributions of different parts in an image when
the model was finally predicting a specific class. Heatmap was
used to display the attention of the searched model, with red
illustrating the most concerning part, while dark blue the least.

After the training phase of DLS-DARTS, some multi-modal
images were randomly picked up with different grades. GCAM
was implemented to check the model’s focusing part when
predicting the grades of these images. Since the multi-modal
images could not be displayed directly, we split the input
images and mixed the heatmap of their specific grades.
WL images were selected as representations of mixed images
to display the result in a salience way in Fig. 4. Here, the
fluorescence images were normalized to range 0 to 255, so they
could be seen directly. The result showed that the NAS model
automatically found out the important and distinguishable
parts on specimens that could hardly be recognized by human
eyes, which might explain its ability to determine the grades
of different inputs.

D. Ablation Studies for Analyzing DLS-DARTS

To further understood how every part of DLS-DARTS
influenced its performance, ablation studies on strategies for
derivation and the learnable stems were conducted. All the
hyperparameters were the same as the ones in Section IV.A,
and the evaluation was performed on the test dataset. For the
study of derivation strategy, the architectures were searched
separately. However, for studies of learnable stems, we used
the same architectures in Fig. 2. The input features of the

TABLE III
ABLATION STUDIES OF DLS-DARTS ON DERIVATION STRATEGY AND

LEARNABLE STEMS AVERAGED FROM 5 RUNS. THE ABLATION PARTS

WERE REMOVED FROM DLS-DARTS. NUMBERS IN BRACKETS

INDICATE 95% CONFIDENCE INTERVALS USING 1000 TRAILS OF THE

BOOTSTRAP METHOD. Δ IS THE INCREMENT OF AVERAGE

PERFORMANCE. MPDS DENOTES THE MODIFIED

PERTURBATION-BASED DERIVATION STRATEGY

Fig. 4. The GCAM results of the NAS-based model on multi-modal
intraoperative glioma images. The first three columns are WL, NIR-I
and NIR-II images, respectively. The GCAM column is the heatmap that
displays the attention of the model when making the final prediction of a
specific grade. The last column is the mixture of GCAM and the original
WL image.

ablated stems were concatenated and a 1 × 1 convolution
was performed afterward to keep the channels the same as
the original DLS-DARTS. The results are shown in Table III.
Both MPDS and the two learnable stems contributed to the
good performance on AUC and ACC. The results indicated the
novelty of our DLS-DARTS in intraoperative glioma grading
using multi-modal optical imaging.

E. Impact of Hyperparameters for Supernet Design

To explore the impact of hyperparameters for supernet
design, we evaluated three important hyperparameters, includ-
ing the selection of candidate operation set, the number of
normal cells per group, and the number of total reduction cells.
We evaluated the AUC and ACC to show the impact.

In particular, we evaluated the following three candidate
operation sets of a) DARTS (8 operations); b) DARTS without
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TABLE IV
IMPACT OF DIFFERENT CANDIDATE OPERATION SETS AVERAGED

FROM 5 RUNS. NUMBERS IN BRACKETS INDICATE 95% CONFIDENCE

INTERVALS USING 1000 TRIALS OF THE BOOTSTRAP METHOD

TABLE V
IMPACT OF DIFFERENT NUMBERS OF NORMAL CELLS PER GROUP

AVERAGED FROM 5 RUNS. NUMBERS IN BRACKETS INDICATE 95%
CONFIDENCE INTERVALS USING 1000 TRIALS OF THE

BOOTSTRAP METHOD

TABLE VI
IMPACT OF DIFFERENT NUMBERS OF TOTAL REDUCTION CELLS

AVERAGED FROM 5 RUNS. NUMBERS IN BRACKETS INDICATE 95%
CONFIDENCE INTERVALS USING 1000 TRIALS OF THE

BOOTSTRAP METHOD

5× 5 dilated convolution but with 1 × 1 and 3× 3 convolu-
tions (9 operations), and; c) DARTS with 3 × 3 and 5 × 5
convolutions (10 operations), which was also the candidate
operation set of MMNAS with 2D convolutions. Set b) had a
receptive field no larger than 5 for a single operation, while
the added convolutions had competitive parameters compared
to convolutions already in the set. As shown in Table IV,
set c) showed the best performance and was chosen in our
experiments. The superiority of set c) might be contributed to
the normal convolution and operations with a larger receptive
field.

We then set the number of normal cells Ktrain to 1, 2,
and 3, respectively. The results are shown in Table V, where
L denotes the total number of cells in DLS-DARTS. The
searched model yielded the best performance when Ktrain =
1. The experimental results showed that a shallow model was
enough for the multi-modal intraoperative glioma grading,
which might be due to that the model was easier to get

overfitted on the small-scale dataset as the depth of the model
increased.

Finally, we evaluated the impact of the number of total
reduction cells Kr . We set Kr to 2, 3, and 4, respectively. The
input resolution of all models was set to 64× 64. The results
are shown in Table VI. The NAS-based model performed the
best when Kr= 3, with feature size 8×8 before global average
pooling. The results are consistent with classification models
designed for small-resolution natural images like CIFAR,
indicating the proper size of features that contain beneficial
information to distinguish different grades.

V. DISCUSSION AND CONCLUSION

In this study, we develop a NAS method DLS-DARTS
for intraoperative glioma grading using multi-modal imaging.
The multi-modal dataset is constructed by WL, NIR-I, and
NIR-II images that are simultaneously obtained during surgery.
Our method achieves the best performance, proving the effec-
tiveness and advancement of automatically searched network
architectures over manually designed networks for intraoper-
ative glioma grading. It also gains significant improvement
over models trained on single-modal imaging, showing its high
potential to be used in real-time diagnosis.

There are three major frameworks in NAS methods, includ-
ing evolution algorithms, reinforcement learning, and gradient
optimization. Compared with evolution algorithms and rein-
forcement learning, gradient optimization is more efficient
and simpler to be used. Although evolution algorithms and
reinforcement learning show higher upper bounds for the
performance in natural image classification [68], they usually
require a huge amount of GPU time compared to gradient
optimization, which limits their wide applications in new areas
such as medical image analysis. DARTS, as the most classical
gradient optimization method, has been used in medical image
analysis and shows compelling performance [41], [70]. There-
fore, we adopted DARTS as our main architecture to achieve
real-time intraoperative glioma grading.

Since NAS models are explored from a large and compli-
cated search space that may be hard for humans to imagine,
there exist chances for good network architectures that are
superior to currently designed manual CNNs. Besides, NAS
provides a method to explore architectures rather than offering
concrete architectures, thus the NAS-explored architectures
may be better-suited to the target task compared with manually
designed CNNs. These advantages of NAS motivate us to
use this powerful technique to deal with challenges caused
by the deficiencies of NIR images, and fully utilize multi-
modal information. Our work demonstrates that DLS-DARTS
can extract features from multi-modal images more effec-
tively, which yields better performance on AUC and ACC
compared with manually designed CNNs. In addition, the
comparison between DLS-DARTS trained on multi-modal
images and single-modal images proves that WL, NIR-I, and
NIR-II images contain different and complementary features
for models to learn. Multi-modal imaging indeed provides
more abundant information than single-modal imaging and
boosts the performance of DLS-DARTS. These results show
great prospects of NAS in medical image analysis. We believe
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NAS can be used as a new pipeline to cope with difficulties in
more situations such as lesion segmentation and pathological
analysis.

Previous works on glioma grading mainly focus on patient-
level preoperative imaging and postoperative pathology. They
build automated pipelines for diagnosis and treatment plan-
ning, aiming at saving time, resources, and labor. Unlike
these works, we concentrate on the real-time sample-level
diagnosis of glioma during surgery for precise resection
guidance. DLS-DARTS can grade one specimen into four
grades within 1 s, which guarantees both low latency and high
throughput. Therefore, it can provide diagnoses for even tens
or hundreds of specimens that better meet the demand of
neurosurgeons during surgery. It also has the potential to help
decide the dosage of drugs and radiation early after surgery.
Compared with neurosurgeons who fail to grade the glioma
tissues using WL/NIR-I/NIR-II images, our DLS-DARTS pro-
vides a new pipeline to grade the glioma tissues during surgery.
While compared with conventional intraoperative pathology,
our method is much simpler and does not require pathologist
for manual grading. It also avoids sampling error of intra-
operative frozen sections [71] since the diagnosis is in real-
time. However, we should admit that the accuracy currently
DLS-DARTS achieves is a bit lower than commonly used
frozen sections in the clinical practice [72], [73]. It warrants
for further improvement.

This work shows the potential of NAS for intraoperative
glioma grading. However, there are some limitations as well.
NAS does not provide concrete architectures before search-
ing, which increases the difficulty of understanding it. The
architectures searched by NAS are also complicated compared
with manually designed CNNs. As a result, people tend to use
manually designed CNNs that are easier to tune rather than
NAS when they deal with new tasks. Besides, DLS-DARTS
is sensitive to hyperparameters for both search and training
on small-scale datasets, which may limit its generalization
performance. The intraoperative imaging techniques also need
further improvement for better performance. In addition, multi-
modal imaging is more difficult than single-modal imaging
due to higher acquisition costs and requirements for advanced
equipment.

To overcome these drawbacks, we plan to collect a larger
dataset from multiple centers to improve the generalization
performance of the model, and better assess the value of our
method in clinical practice. Using a black box or keeping
imaging equipment in a low-temperature environment when
imaging might reduce negative environmental effects and
improve imaging quality. Besides, since the area of NAS
evolves fast, advanced NAS methods might be tried to search
for architectures that can better extract features from the
datasets.
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