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Abstract— Ultrasound localization microscopy (ULM)
based on microbubble (MB) localization was recently intro-
duced to overcome the resolution limit of conventional
ultrasound. However, ULM is currently challenged by the
requirement for long data acquisition times to accumulate
adequate MB events to fully reconstruct vasculature. In this
study, we present a curvelet transform-based sparsity pro-
moting (CTSP) algorithm that improves ULM imaging speed
by recovering missing MB localization signal from data with
very short acquisition times. CTSP was first validated in
a simulated microvessel model, followed by the chicken
embryo chorioallantoic membrane (CAM), and finally, in the
mouse brain. In the simulated microvessel study, CTSP
robustly recovered the vessel model to achieve an 86.94%
vessel filling percentage from a corrupted image with only
4.78% of the true vessel pixels. In the chicken embryo CAM
study, CTSP effectively recovered the missing MB signal
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within the vasculature, leading to marked improvement in
ULM imaging quality with a very short data acquisition.
Taking the optical image as reference, the vessel filling
percentage increased from 2.7% to 42.2% using 50ms of
data acquisition after applying CTSP. CTSP used 80% less
time to achieve the same 90% maximum saturation level
as compared with conventional MB localization. We also
applied CTSP on the microvessel flow speed maps and
found that CTSP was able to use only 1.6s of microbubble
data to recover flow speed images that have similar qualities
as those constructed using 33.6s of data. In the mouse
brain study, CTSP was able to reconstruct the majority
of the cerebral vasculature using 1-2s of data acquisition.
Additionally, CTSP only needed 3.2s of microbubble data to
generate flow velocity maps that are comparable to those
using 129.6s of data. These results suggest that CTSP can
facilitate fast and robust ULM imaging especially under the
circumstances of inadequate microbubble localizations.

Index Terms— Ultrasound localization microscopy,
curvelet transform, sparsity promoting, compressive
sampling, super-resolution imaging.

I. INTRODUCTION

SUPER-RESOLUTION ultrasound microvessel imaging,
based on microbubble (MB) localization, is a rapidly

growing field. Inspired by the optical localization microscopy
super-resolution techniques such as fPALM and STORM
[1], [2], Desailly et al. [3], Viessmann et al. [4],
and O’Reilly et al. [5] conducted several early studies on
super-resolution ultrasound imaging using injected MBs
as acoustically localizable point sources to overcome
the acoustic diffraction limit. More recent works from
Christensen-Jeffries et al. [6] and Errico et al. [7] demon-
strated successful applications using MB localization and
tracking techniques, collectively named ultrasound localization
microscopy (ULM), to image in-vivo microvasculature struc-
tures as well as map blood velocity at a super-resolution scale.
Various follow up studies have quickly emerged to improve
this technique, including MB signal denoising to reduce the
localization of noise and improve the accuracy of localization
[8], motion correction to account for sub-wavelength tissue
movement [9], improvements in localization techniques and
accuracy [10], and using high-order statistic model to enhance
spatial resolution [11].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-2706-1394
https://orcid.org/0000-0002-4151-4820
https://orcid.org/0000-0001-8098-7789
https://orcid.org/0000-0003-3460-127X
https://orcid.org/0000-0002-9103-6345
https://orcid.org/0000-0002-1125-4554


2386 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 41, NO. 9, SEPTEMBER 2022

Despite the great potential of ULM in a wide range of
preclinical and clinical applications, its practical value is still
challenged by several notable limitations such as the require-
ment for long-duration data acquisitions [12], [13] and the
expensive and complex post-processing algorithms involving
MB localization and tracking [14], [15]. To achieve successful
ULM with accurate vascular reconstruction, it is necessary
to accumulate ample amount of spatially isolated MB events
to facilitate robust localization. This requirement inevitably
imposes a trade-off between imaging speed and localization
accuracy: lowering the MB concentration by dilution results
in less MB signal overlap and higher localization accuracy,
but not without the cost of a longer required data acquisition
time to ensure complete MB perfusion of the microvasculature;
by comparison, higher MB concentrations lead to faster MB
saturation and imaging speed, but the increased amount of
superimposed MB signal are challenging for localization.
Pragmatically, since physiological movements (e.g. breathing)
and operator-induced motions (e.g., free-hand scanning in the
clinic) are common and inevitable, a faster imaging speed
with shorter data acquisition time is essential for successful
in-vivo implementation of ULM. As such, developing an image
reconstruction algorithm that can recover the microvasculature
by utilizing a short data acquisition with a small amount of
MB events is critical for widespread use of ULM.

To this end, our groups have introduced several tech-
niques that include MB separation post-processing [16] and
Kalman filter-based inpainting [17] to reduce ULM data
acquisition times and improve ULM imaging speed. The
MB separation technique [16] designed a set of 3D Fourier
domain filters to separate MB events with different spatiotem-
poral characteristics (e.g., movement speed, flow direction)
to improve MB localization and tracking performance at
high MB concentrations. However, this method aggravates
the computational burden of ULM due to the requirement
of independent localization and tracking of MB events for
each filter bandwidth. The Kalman filter-based inpainting
method [17] generates smooth and continuous microvascu-
lar images by imposing constraints to MB movement and
utilizing interpolation techniques to recover missing vessel
signal. However, this approach may be limited to deal with
complex flow patterns and tortuous vessels where MB move-
ment trajectory becomes abrupt and unpredictable. In addition,
a group of deep-learning-based ULM methods [18]–[22] have
been developed recently to improve the localization accuracy
and reconstruction speed. However, the deep-learning-based
method works as a black box and its performance is highly
related to the training dataset, which is usually difficult to
collect from in-vivo applications. Besides, a recent super-
resolution technique SUSHI [23] was developed to improve
the resolution of contrast enhanced ultrasound imaging by
exploiting the sparsity of the microvessel signal in spatial
domain. Inspired by these preceding studies, we discovered
an algorithm to improve the ULM imaging speed by using
only a small number of MBs.

For ULM, the reconstruction of a microvasculature from
an inadequate amount of MB locations is related to the
topic of “reconstruction from highly incomplete informa-

tion” or “compressive sampling” in the field of image and
signal processing [24]–[30]. The principle of compressive
sampling has been successfully applied in the field of seismic
and medical imaging, including magnetic resonance imag-
ing (MRI) and X-ray tomography with significantly under-
sampled source signal [26], [27], [30]. Similarly, in ULM, the
isolated MB locations can be considered as spatial samples of
a continuous microvessel structure. Sparse MB events caused
by low MB concentrations or short acquisition times result
in under-sampling of the vasculature, which can be recovered
using the same principles as in compressive sampling theory.

To implement the compressive sampling theory in ULM,
three components need to be pre-defined: a sparsifying trans-
form, a random down-sampling strategy that confines aliasing,
and an effective recovery algorithm that promotes sparsity in
the transform domain. The existence of MB events in the
microvessels can be assumed to follow a Poisson distribu-
tion [18], [19] and thus satisfies the random down-sampling
requirement. Many studies [25], [26], [29]–[34] have proved
that recovery from compressive sampling can be achieved by
minimizing the l1 norm of the transformed signal, subjected
to an l2 norm data fidelity term. For the sparsifying trans-
form, many signal reconstruction studies [26], [29], [33]–[37]
based on compressive sampling chose multi-resolution analy-
sis (MRA) methods such as wavelet or curvelet transforms.
Among these MRA methods, the curvelet transform [33],
[37]–[41] attains high compression on curve-shaped structures
due to the large correlations between curvelets and curved
fronts. In addition, the sparsity-based super-resolution tech-
nique SUSHI [23] proposed a sparsifying transform based on
the assumption of spatially sparse microvessel signal. Inspired
by these previous studies, we propose a microvessel recon-
struction method that promotes the sparsity both in the curvelet
transform domain and the spatial domain, aiming to recover
the microvessel structure from under-sampled MB positions
while maintaining the spatial features of the microvessels.

The rest of the paper is organized as follows. In Section II,
we present the principle of curvelet transform-based sparsity
promoting (CTSP) algorithm, followed by the experiment
setup which includes the in-silico study, in-vivo chorioallantoic
membrane (CAM) study, and in-vivo mouse brain study.
In Section III, the results of all experiments are presented.
In Section IV, we finalize the paper with discussion and
conclusions.

II. MATERIALS AND METHODS

A. Principle of CTSP

1) Curvelet Transform: The curvelet transform was first
introduced in the field of multi-resolution analysis by
Candès et al [33], [37]–[41]. Similar as the wavelet and
Fourier transforms, the curvelet transform decomposes a signal
in spatial domain into a combination of a series of signal
bases, namely curvelets. The curvelets, notated as ϕ j,l,k(x),
are a series of waveforms defined with three parameters: scale
j , orientation l, and translation k. To detail the mathemat-
ical definition of curvelets, we start by defining a pair of
nonnegative and real-valued windows W (r) , r ∈ (1

�
2, 2) and
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V (t) , t ∈ [−1, 1]. A 2D curvelet ϕ j (x, y) with scale j is
defined in the Fourier domain as

ϕ j (r, θ) = F �
ϕ j (x, y)

� = 2− 3 j
4 W

�
2− j r

�
V

⎛
⎝2

	
j
2



θ

2π

⎞
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(1)

where (r, θ) represent the coordinates in the polar system,
F [·] represents the 2D Fourier transform, [ j/2] represents the
integer part of j/2. Then we define a sequence of rotation
angles as

θl = 2π · 2
−

	
j
2



· l, l = 0, 1, 2, · · · such that 0 ≤ θl < 2π,

(2)

and a rotation matrix as

Rθ =


cosθ sinθ
−sinθ cosθ

�
. (3)

Finally, we define a sequence of position vectors as�
x j,l

k , y j,l
k

�
= R−1

θl
·
�

k1 · 2− j , k2 · 2− j
2

�
, (4)

where k = (k1, k2) represents the translation vector in the 2D
space. With the above notations, we can define the 2D curvelet
with scale j , orientation l and translation k as:

ϕ j,l,k (x, y) = ϕ j

�
Rθl ·

�
x − x j,l

k , y − y j,l
k

��
. (5)

With the above definition of the 2D curvelet, a typical 2D
curvelet transform can be defined with the following equation:

c ( j, l, k) =
2�

R

f (x, y)ϕ j,l,k (x, y) dxdy, (6)

where f (x, y) represents the 2D signal in spatial domain
with function f ∈ R2. The definition of curvelets is further
illustrated with a simple 64 × 64.2D space case as shown in
Fig. 1. Take the curvelet ϕ2,1 in the red area in Fig. 1(a) as
an example: its Fourier transform ϕ2,1 (r, θ) is defined as the
red area in Fig. 1(a) and its waveform is shown as a wedged
wave in Fig. 1(e-g). When the scale parameter j increases,
the curvelet will move to the outside layer in Fourier domain
as shown in the green area in Fig. 1(a) and will become
sharper in the spatial domain as shown in Fig. 1(b-d). When
the orientation parameter l changes, the curvelet will rotate in
both the Fourier domain and the spatial domain as shown in
the blue area in Fig. 1(a) and Fig. 1(h-j). When the translation
parameter k changes, the curvelet waveform will move to the
corresponding position in 2D space. The curvelet coefficient
c ( j, l, k) is therefore the inner product or the correlation
coefficient between the 2D spatial signal and the corresponding
curvelet coefficient ϕ j,l,k (x, y) . The images in Fig. 1 (b-j)
were generated by setting the corresponding support in Fourier
domain (as shown in Fig. 1(a)) to a value of one followed by
an inverse Fourier transform.

An important feature of the curvelet transform is the intro-
duction of an orientation parameter into the curvelet bases.
This is demonstrated with a simulated vessel example in Fig. 2

Fig. 1. Curvelets defined in a 64 × 64.2D space. (a) Curvelets in
Fourier domain with different supports. (b-j) Curvelets waveforms in
spatial domain with different scale, orientation, and translation.

Fig. 2. A simulated vessel reconstructed from (a) 100% of the largest
curvelet coefficients (b) 1% of the largest curvelet coefficients (c) 2% of
the largest curvelet coefficients (d) 5% of the curvelet coefficients. The
orange ovals in (a) represent the shapes of two curvelet waveforms with
different orientations.

which has been reconstructed with a subset of curvelet coef-
ficients. As shown in the magnified local region in Fig. 2(a),
when the curvelet waveform has a similar orientation with the
curved structure, the curvelet coefficient becomes larger due
to the rising correlations whereas the curvelet coefficient will
decrease rapidly when the orientation of the curvelet and the
direction of the curved structure in the image do not match.
Fig. 2(b-d) demonstrates that a few of the largest curvelet
coefficients contain most of the structural information in the
spatial domain, which guarantees the sparsity of the vessel-
shaped structure in the curvelet domain.

2) Compressive Sampling-Based ULM: The MB
localization-based ULM can be described as a compressive
sampling model:

y = RST x, (7)

where x denotes the curvelet coefficients of the true vessel
intensity map or velocity map, ST denotes the inverse curvelet
transform, R denotes the spatial sampling matrix, and y
denotes the corrupted vessel intensity map or velocity map.
Eq. (7) represents the vessel intensity map generated from
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TABLE I
BLOCK-COORDINATE-RELAXATION WITH ITERATIVE THRESHOLD

MB localization, or the velocity map generated from MB
tracking trajectories, as the compressive spatial sampling of
true intensity or velocity map. To recover the true vessels x
from the corrupted vessel intensity or velocity map y, an l1
norm minimization problem is formed to promote sparsity in
the curvelet domain [25], [31]:

x̃ = argmin
x

�x�1

subject to
���y − RST x

���
2

< ε1,
���ST x

���
1

< ε2, (8)

where ε1 represents the l2 error in the measurement and ε2
represents the threshold to constrain the sparsity of the vessel
structure in the spatial domain. The constrained optimization
problem in Eq. (8) can be replaced by an unconstrained
penalized optimization [26], [29]:

x̃ = argmin
x

ζ1 �x�1 + ζ2

���ST x
���

1
+

���y − RST x
���

2

+ μTV
�

ST x
�
, (9)

where ζ1 and ζ2 are regularization parameters associated with
ε1 and ε2. TV{·} represents the total variation (TV) penalty
term, which is used for suppressing ringing artifacts and recov-
ering sharp edges [33]. Equation (8) can be iteratively solved
by using the block-coordinate-relaxation (BCR) method. The
details of the iterative algorithm are shown in Table I. Similar
approaches have been used to solve the optimization problems
with multiple data fidelity terms or penalty terms in the field of
image inpainting [29], seismic wave recovery [26], and MRI
reconstruction [43].

As shown in Table I, the BCR method splits Eq. (9) into
three separate parts and solves them independently using three
steps. Step 1 updates x with:

x = argmin
x

ζ1 �x�1 +
���y − RST x

���
2
, (10)

and is solved by using the soft thresholding [25]:

x = Tζ1

	
x + S

�
y − RST x

�

,

wi th Tζ [x] = sgn (x) · max (0, |x | − |ζ|)), (11)

where Tζ represents the soft threshold operator and sgn (x)
represents the signum function. Step 2 first reconstructs the

spatial image u from the curvelet coefficients x by u = ST x
and then updates u with:

u = argmin
x

ζ2 �u�1 + �y − Ru�2 , (12)

and can be also solved by the soft thresholding:
u = Ru + Tζ2 [u − Ru]. (13)

Step 3 minimizes the TV term by gradient descent [42] and
then calculate the curvelet coefficients by implementing the
curvelet transform x = Su. The regularization parameter μ is
empirically chosen as a moderate fixed value that guarantees
convergence. Step 4 performs steps (1-3) for M times, where
M is the iteration number that controls the convergence of x
under the current parameters ζ1 and ζ2. Then step 5 updates
the parameters ζ1 and ζ2 using the pre-defined updating
functions L1 and L2. All 5 steps compose one loop of iteration
and are performed N times, where the iteration number N is
chosen to allow the algorithm to achieve a practically useful
reconstruction.

In the proposed CTSP algorithm, the regularization parame-
ters ζ1 and ζ2 control the soft thresholding for curvelet sparsity
and spatial sparsity separately in every iteration. The parameter
updating functions L1 and L2 represent the updating strategy
of regularization parameters ζ1 and ζ2. In other studies [26],
[29], a common strategy is to design the updating function
L as a monotonically decreasing function to shrink curvelet
coefficients faster and generate more spatial connections in the
beginning. As L1 lowers ζ1, the convergence becomes slower
and more accurate. A simple linear decreasing function used
in the image inpainting study [29] is:

L (i) = 1 − i

N
. (14)

where i represents the iteration index and N represents the
number of iterations. In our study, we added several modifica-
tions to this linear model. First, the function L2 needs to be an
increasing function as we want the spatial sparsity to be grad-
ually promoted because the shrinkage of curvelet coefficients
introduces an increasing amount of ringing artifacts during
the iterations. Second, an adaptive amplitude parameter is
required to adjust the increasing or decreasing rate of L1 or L2
based on different initial images. Based on these requirements,
we designed the regularization parameter updating functions
L1 and L2 as:

L1 (i) = a1


1 − i

N

�
, L2 (i) = a2

i

N
. (15)

Here, the amplitude parameters a1 and a2 are chosen based
on the initial images of specific applications. In our study,
we first selected several ULM vessel images using data with
different acquisition times and then empirically determined
the parameters a1 and a2 to allow CTSP recovery to achieve
the visually optimal reconstructed images. Then, a power
regression is applied to fit the functions of a1 and a2 with
the average pixel intensity of the initial image:

a (a1ora2) = p1x p2 + p3, (16)
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where x is the average pixel intensity of the initial ULM
vessel image and (p1, p2, p3) are the power regression para-
meters. Together, equations (15-16) describe the procedure
of determining the adaptive regularization parameter updating
functions based on the initial ULM image to be recovered by
CTSP.

The whole procedure of the CTSP algorithm is shown in
Table I. There are five steps to implement in each iteration.
Step 1 shrinks the curvelet coefficients using the current
regularization parameter ζ1. After step 1, the zero pixels
around the isolated MB positions are filled, which recovers
the missing vessel signal and generates ringing artifacts near
the vessel boundaries. Step 2 minimizes the spatial sparsity
using the regularization parameter ζ2. This step resets some
of the newly filled pixels based on ζ2, which is proportional
to the maximum absolute intensity of the current vessel map.
Step 3 further adjusts the pixel intensities near the vessel
boundaries to reduce the blurring by minimizing the total
variation. After steps 2 and 3, the connection within the vessels
is preserved while the artifacts around the vessel boundaries
are removed. Step 4 repeats Steps 1-3 for M times to achieve a
local convergence based on current ζ1 and ζ2. Finally Step 5
updates ζ1 and ζ2 based on the current recovered vessel map
for the next iteration.

The performance of the proposed CTSP algorithm is subject
to several factors: first, noise and false MB localizations
can lead to compromised CTSP recovery. Applying a small
median filter (e.g., 2 × 2) to the CTSP recovered image can
mitigate this issue without blurring. Second, under the circum-
stances of high MB accumulations within dense microvessels
(i.e. capillaries), CTSP performance may deteriorate because
the assumption of sparsity for MB locations is violated, mak-
ing the recovery an ill-posed problem. Therefore, for data with
long durations of MB accumulation, it is more appropriate to
apply CTSP to short time segments of MB data, and then
accumulate all the CTSP recovered images on the short time
segments to generate the final image.

B. In-Silico Study

The performance of the proposed CTSP algorithm was
first tested on a simple simulated vessel model. As shown in
Fig. 3(a), the simulated vessel structure includes one artery and
several branches with radii ranging from 2 to 8 pixels. The MB
events at every pixel within the simulated vessel structure can
be modelled as independent and identical Poisson distributions
[18], [19], where the Poisson rate parameter is proportional to
the data acquisition time. The Poisson rate parameter does not
affect the performance of CTSP. In our study, we assumed
that the expected number of MB events per pixel and per
unit time was 0.05. This number was selected based on the
experimental observation, which nearly equals to the vessel
filling percentage of conventional localization using 100ms
acquisition in the CAM study. MB localization maps were
generated by randomly setting pixels within the vessel region
to nonzero values following the Poisson distribution, which
were then used as input to the CTSP algorithm. The true
vessels were recovered using the proposed CTSP algorithm

Fig. 3. (a) Simulated microvessel image; (b) Corrupted image with
random downsampling following a Poisson distribution (80.96% pixels
removed); (c) CTSP recovered image; (d-f) Corresponding curvelet
transforms of the images in (a-c).

from each MB localization image. The curvelet transform in
the CTSP algorithm is performed using the Curvelab toolbox
provided by Candès et al. [41].

To evaluate the performance of the proposed CTSP
algorithm, we used the metric vessel filling percentage
(V F percentage) and vessel filling precision (V F precision)
defined as:

V F percentage = T P

T P + F N
, V F precision = T P

T P + F P
(17)

where true positives (TP) are pixels that are identified as true
vessels in both the CTSP recovered image and the reference
ground truth image, false negatives (FN) are pixels that are
identified as non-vessels in the CTSP recovered image but are
true vessel pixels in the reference ground truth image, and
false positive (FP) are pixels that are identified as vessels in
the CTSP recovered image but are non-vessels in the ground
truth image. A 40 dB dynamic range threshold was used in
the CTSP recovered image to distinguish vessel and non-
vessel pixels. V F percentage measures the percentage of the
vessels that are correctly reconstructed. V F precision measures
the percentage of the recovered vessels that are true vessels.

C. In-vitro Flow Phantom Study

An in-vitro flow phantom model was used to validate the
velocity recovery using CTSP algorithm. The flow phantom
model was used in a previous study [22], where the details
of manufacturing procedure were provided. The ultrasound
contrast agent (DEFINITY®, Lantheus Medical Imaging, Inc.)
was diluted 1000-fold with 0.9% saline and then perfused
through the flow channel. The estimated average speed of the
MB flow was around 8.4 mm/s by using a volume rate of
120 μL/min in the flow channel with the approximate diameter
of 550 μm.

The ultrasound signal was acquired using a Verasonics
Vantage 256 System (Verasonics, Kirkland, WA, USA). A
128-element high-frequency linear array transducer L35-16vX
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(Verasonics, Kirkland, WA, USA) was used, operating at
20MHz center frequency. Plane-wave compounding, using
steering angles from −4◦to 4◦with a step size of 1◦, was
performed to acquire signal at a post-compounding frame rate
of 1,000 Hz. A total of 21 acquisitions were gathered from
the CAM, with each acquisition including 1,600 frames of
in-phase quadrature (IQ) data. The ULM image reconstruction
was implemented as in previous studies [8], [13], [16]. A sin-
gular value decomposition (SVD) filter was first applied to the
IQ data to filter out the MB signal by removing the low motion
tissue signal and background noise [8]. A pre-acquired point
spread function (PSF) of a single MB was used to calculate the
2D normalized cross correlation with each group of MB signal.
An empirically chosen threshold was then used to reject small
values in the correlation coefficient map and the centroids of
the remaining sub-regions were used as the MB localizations.
Velocity maps were generated using a fast MB pairing and
tracking algorithm [45].

CTSP was compared with conventional ULM velocity
reconstruction using 1.6s, 3.2s and 4.8s of acquisition data.
The results were also compared with a reference velocity map
generated using 33.6s of MB acquisition.

D. In-Vivo CAM Study

An in-vivo chicken embryo CAM microvessel model was
also used to validate the proposed CTSP algorithm. Fertilized
chicken eggs were provided by the Poultry Research Farm
at University of Illinois and placed in an incubator (Digital
Sportsman Cabinet Incubator 1502, GQF manufacturing Inc.).
On the fourth day, the egg shells were opened with a
rotatory Dremel tool and the contents were transferred into
weigh boats. Then the chicken embryos were placed into
another humidified incubator (Darwin Chambers HH09-DA)
until ultrasound imaging on the eighteenth day.

For the MB injection, a glass needle was made by using
a PC-100 glass puller (Narishige, Setagaya City, Japan) to
pull a borosilicate glass tube (B120-69-10, Sutter Instru-
ments, Novato, CA, USA). The glass needle was then
attached to Tygon R-3603 laboratory tubing. A MB solution
was made with Vevo Micromarker (FUJIFILM VisualSonics)
reconstituted with 1mL saline, yielding a concentration of
2 × 109 MBs/mL. A total volume of 70 μL solution was
injected into the embryo for ULM imaging.

The optical image of the chicken embryo was acquired as
the reference ground truth image. A Nikon SMZ800 stereomi-
croscope (Nikon, Tokyo, Japan) with a DS-Fi3 digital micro-
scope camera (5.9-megapixel CMOS image sensor, Nikon)
was used to acquire the optical image.

The ultrasound scanning sequence was the same as what
was used in the flow phantom study. In the ULM processing,
the MB signal with different speed ranges and directions were
separated into three groups using 3D Fourier domain filters
and processed separately [16]. Velocity maps were generated
using a bipartite graph-based MB pairing and tracking algo-
rithm [8]. The final localization and velocity images were the
combination of the individual reconstruction images generated
from each acquisition.

To validate the CTSP, we used IQ data with data acquisition
times ranging from 50ms (50 frames) to 12.8s (12,800 frames),
with a step size of 50ms, to generate separate MB localization
images (i.e., MB location accumulations only without MB
tracking). The CTSP algorithm was applied to each 50ms
data subset to recover the corrupted vessel images, which
were then accumulated to generate the final CTSP recovered
image. V F percentage and V F precision were measured on both
the MB localization images and CTSP reconstructed images
with different acquisition times using both the MB localization
using long acquisition (33.6s) and the optical image as ground
truth. The intensity profiles of three vessels with different sizes
were measured to evaluate the performance of CTSP recovery.
In addition, a two-phase exponential wash-in function was
used to fit a saturation curve for both datasets:

S (t) = S1
�
1 − e−κ1t � + S2

�
1 − e−κ2t�. (18)

Here S (t) represents the saturation level with acquisition time,
t is the acquisition with unit of seconds. S1 and κ1 in Eq. (18)
characterize the saturation rate and the maximum level of
saturation of larger vessels. S2 and κ2 in the second term char-
acterize a much slower secondary saturation in smaller vessels
with slower MB perfusion. The total maximum saturating level
Sm is defined as Sm = S1 + S2. CTSP-recovered ULM images
are expected to have significantly higher κ1 as compared with
conventional localization since CTSP provides a much faster
filling rate for larger vessels. CTSP is expected to have a
similar κ2 as conventional localization due to physiological
constraints of slow MB perfusion in smaller vessels. The 90%
saturation [12], [13] was used to evaluate the performance
of the proposed algorithm. In addition to MB localization
for vascular structure reconstruction, the CTSP was also used
to recover the ULM velocity maps using 1.6s, 4.8s, and 8s
of acquisition data. The results were compared with ULM
velocity maps generated with a conventional MB tracking
algorithm [8] using 33.6s of MB data.

E. In-Vivo Mouse Brain Study

The mouse brain dataset used to test CTSP was obtained
from a previous study [44], where the details of the animal
procedure were provided. All the experiments were approved
by the Institutional Animal Care and Use Committee (IACUC)
at the University of Illinois Urbana-Champaign. Mice were
housed in an animal care facility approved by the Association
for Assessment and Accreditation of Laboratory Animal Care.
A cranial window was opened on the skull of the mouse using
a rotary Dremel tool for ultrasound imaging. The surgery was
implemented under anesthesia using 4% isoflurane mixed with
medical oxygen and 1% lidocaine applied intradermally to the
scalp.

As with the in-vivo chicken embryo study, a Verasonics
Vantage 256 System and a L35-16vX transducer were used
to acquire the ultrasound data. The transducer was positioned
approximately 3mm caudal to bregma and situated to make
an imaging field of view that covered the entire coronal
hemisphere of the mouse brain. Imaging was performed using
plane-wave compounding with steering angles from −4◦ to
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4◦ with a step size of 1◦ at a post-compounding frame rate of
1,000 Hz. A total of 81 acquisitions of IQ data were acquired,
where one acquisition includes 1,600 frames (1.6s) of data.
A 50 μL bolus of ultrasound contrast agent (DEFINITY®,
Lantheus Medical Imaging, Inc.) was injected into the mouse
tail vein for every 10 acquisitions. The ULM signal processing
was similar to that used in the chicken embryo study. The
microbubble pairing and tracking was performed using a fast-
tracking algorithm [45].

Similarly, IQ data with acquisition times ranging from 50ms
(50 frames) to 12.8s (12,800 frames), with a step size of
50ms, was used to generate localization images and for CTSP
reconstruction. The final CTSP recovered image was obtained
by accumulating all the individually recovered vessel images
and applying a 2 × 2 median filter. Velocity maps using
3.2s, 6.4s, and 12.8s of acquisition data were recovered by
CTSP and compared with the velocity map generated from all
81 acquisitions (129.6s).

III. RESULTS

A. In-Silico Study

Figure 3 (a-c) shows a simulated vessel map, a randomly
downsampled version of this vessel map (following a Poisson
distribution) with 80.96% of the pixels removed, and the
CTSP recovered image from this downsampled example. The
corresponding curvelet coefficients of Fig. 3(a-c) are shown
in Fig. 3(d-f), where the curvelet transform parameters ( j, l),
as described in Eq. (6), were selected as (0,0), (1,16), and
(2,32). This corresponds to three layers with different scales
from inner to outer in the illustration in Fig. 1(a). In Fig. 3(e),
the additional high frequency coefficients caused by the dis-
continuities between vessel segments can be seen over all
scales and orientations in the curvelet domain. After CTSP
recovery, Fig. 3(f) shows significant shrinkage of the additional
high frequency components, while the major coefficients that
represent the vessel structure remain the same. Figure 3(c)
shows the CTSP recovery in the spatial domain, where the
discontinuities between vessel segments are filled in and the
vessel shape is correctly recovered.

Figure 4 (a) shows the simulated microvessel maps using
different amounts of acquisition time, where every vessel pixel
follows the Poisson distribution with an expected value of
0.05 × T (where T represents a unit of acquisition time).
Figure 4 (b) shows the CTSP recovery corresponding to the
microvessel maps in Fig. 4(a). As described in Eqs. (14-15),
we used an adaptive method to select the parameter updating
functions L1 and L2 for microvessel maps with different
initial pixel densities. Six sets of parameter updating functions
were first empirically selected for CTSP recovered microvessel
maps using 1, 2, 4, 10, 15, and 20 units of acquisition time.
Then according to Eq. (16), the regression parameters were
calculated as: L1 : p1 = 8.3e−4, p2 = −0.73, p3 = −0.009;
L2 : p1 = 0.42, p2 = 0.12, p3 = −0.18. Figure 5 shows
the V F percentage measurement of the incomplete microvessel
map and the CTSP recovery according to Eq. (17). Using
1 unit of acquisition time, CTSP can recover 86.94% of the
true vessels, which is a significant improvement over the

Fig. 4. (a) Simulated microvessel image using different acquisition times
(corresponding to different vessel filling percentages); (b) Corresponding
CTSP recovered image from (a).

Fig. 5. Evaluation of the CTSP performance using different metrics in
the in-silico study. (a) The vessel filling percentage and (b) vessel filling
precision of CTSP recovery and the corrupted vessel image with different
acquisition times.

simulated accumulation microvessel map. In addition, CTSP
was able to recover nearly 100% of the true vessels using
7 units of acquisition time, while the simulated accumulation
microvessel map needed 100 units of acquisition time to
achieve the same V F percentage, indicating a more than 14-fold
increase of imaging speed. The precision measurement shows
an approximate 25% of false recovered vessels on average,
which was largely caused by the blurring near the vessel
boundaries.

B. In-Vitro Flow Phantom Study

Figure 6 shows the velocity map using MB tracking and
CTSP recovery with different acquisition times. Figure 7
shows the velocity profiles of the selected vessel location
in Figure 6. Three sets of data with acquisition times of
1.6s, 3.2s, and 4.8s were used to reconstruct each velocity
map, with a reference image reconstructed from 33.6s of
MB data. It can be seen that the velocity map reconstructed
using conventional MB tracking method with short acquisition
has inaccurate velocity estimation and large gaps between
velocity trajectories. The velocity map recovered by CTSP
shows much smoother velocity profile and more accurate flow
speed estimation using less data acquisition time.

C. In-Vivo CAM Study

Figure 8 shows an optical image, ULM images, and the
corresponding CTSP recovered vessel images of a chicken
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Fig. 6. (a) Velocity maps of flow phantom using data with different
acquisition times, (b) corresponding CTSP recovered velocity maps
from (a). The flow direction is from the left side to the right side of
the image. All the velocity maps used the identical colormap displaying
velocity magnitude ranging from 0-15 mm/s. The blue line in velocity map
using 33.6s acquisition marks the velocity profiles shown in Fig. 7.

Fig. 7. Velocity profiles of the line segment marked by the blue line in
Fig. 6 (a) using 1.6s acquisition (b) using 3.2s acquisition (c) using 4.8s
acquisition.

embryo CAM. The gaps in the small vessel trajectories of the
short data acquisition localization map in Fig. 8(a) could be
successfully filled using CTSP recovery as seen in Fig. 8(b).
The vessel structure in the CTSP recovered image was also
preserved as compared to the long data acquisition time
accumulation map in Fig. 8(c). Using the optical image as
the reference ground truth (Figs. 8(d-e)), the CTSP recov-
ered image using 100ms of acquisition (Fig. 8(b)) recovered
53.32% of the vessels, while the original ULM image without
CTSP (Figs. 8 (a)) only revealed 5.16% of the vasculature.
Even with 5 times more data (1.6s), the filling rate was
still only at 32.11% (Fig. 8(c)), which is still significantly
lower than CTSP with shorter data acquisition. This result
demonstrates that CTSP provides a significantly faster vessel
filling speed of major vessels using small number of MB
events (e.g., a 100ms acquisition).

Figure 9 shows the vessel intensity profiles of the three
vessels marked by the red lines in Fig. 8. It can be seen that
CTSP reconstruction using short acquisition (250ms) already
had similar intensity profiles as compared with those obtained
from localization using long acquisition time (33.6s). In addi-
tion, the V F percentage in Fig. 10(a) shows that using optical
image as the ground truth, the maximum saturation level Sm

as described in Eq. (18) is 67.20% for MB localization and
85.34% for the CTSP recovery. The 90% saturation time of

Fig. 8. In-vivo optical and ULM image of a CAM vessel: localization
images using (a) 100 ms (100 frames) of data acquisition; (c) 1.6s
(1600 frames) of data acquisition; (b) CTSP recovered vessel image
based on (a); (d) reference optical image segmentation; and (e) the
original optical image. The three vessel profiles marked by red lines
in (b-d) were used for evaluating the vessel width in Fig. 9.

Fig. 9. Vessel intensity profiles of the three vessels marked in
Fig. 8 (b-d). The three columns represent the different acquisition times
used for reconstruction. The optical segmentation image and the long
accumulation (33.6s) ULM image were used as ground truth. The vessel
profile based on the optical segmentation image (purple) was set at
0.5 intensity value for better visual comparison.

the MB localization is 2.4s, while CTSP only needs 0.2s to
achieve the same level of saturation, indicating a 12-fold faster
imaging speed. In addition, CTSP demonstrates the ability to
recover the major vessels (42.2% of the true vessels) using
a very short acquisition time (50ms), while MB localization
recovered 2.7% using the same 50ms acquisition time. Similar
level of improvement can be also seen in Fig. 10(b) using long
acquisition localization as the ground truth. In Fig. 10(c), the
precision measurement using optical image as ground truth
shows about 50% false positive rate in both CTSP recovery and
localization images. This level of false positive rate was largely
caused by the misalignment between the optical and ultrasound
image. As shown in Fig. 10(d), the false recovery rate dropped
to 20-30% when CTSP was compared with MB localization
using long data acquisition (33.6s), which was similar to
the simulation results shown in Fig. 5(b). Figure 11 shows
ULM images of the same local region in Fig. 8 of the CAM
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Fig. 10. Evaluation of the CTSP performance using different metrics in
the in-vivo CAM study. The vessel filling percentage with different data
acquisition times (a) using optical image as ground truth (b) using MB
localization (33.6s) as ground truth. The vessel filling precision curve with
different data acquisition times (c) using optical image as ground truth
(d) using MB localization (33.6s) as ground truth.

Fig. 11. (a) In-vivo ULM image of a CAM vessel using data of different
acquisition times (frame rate = 1000 Hz); (b) Corresponding CTSP
recovered image from (a).

vessel using different data acquisition times along with the
corresponding CTSP recovered images. Six sets of parameter
updating functions were first selected for CTSP recovery
using 50, 100, 150, 500, 1000, and 1500ms of acquisition
time. Then the regression parameters were calculated for the
adaptive parameter updating function as: L1 : p1 = 1.56e−4,
p2 = −1.26, p3 = −0.0023; L2 : p1 = 0.35, p2 = 0.60,
p3 = 0.01.

Figure 12 shows velocity maps of CAM vasculature recon-
structed via conventional MB tracking and the corresponding

Fig. 12. (a) Velocity maps of CAM vasculature using data with different
acquisition times, (b) corresponding CTSP recovered velocity maps
from (a). All the velocity maps use the identical colormap with the velocity
range from −10 to 10 mm/s. The three vessel profiles marked by white
lines in are used for evaluating the velocity recovery in Fig. 13.

CTSP recovered results. Three data subsets with acquisition
times of 1.6s, 4.8s, and 8s, were used to reconstruct velocity
maps. A reference image was reconstructed with 33.6s of
acquisition time. As shown in Fig. 12(a), with 1,600 frames
(1.6s) of data, the velocity map generated by MB tracking
is very noisy, which is likely due to unreliable flow speed
estimation from using limited number of MB localization
samples. As the amount of data increases, the velocity maps
become smoother with less fluctuations within local regions
of the vessel. The velocity measurement fluctuations caused
by insufficient MB data also lead to additional high frequency
components in the curvelet domain, as shown in Fig. 14(a,d).
Therefore, by suppressing the excessive high frequency com-
ponents in the curvelet domain, as shown in Fig. 14(b,e), CTSP
was able to remove the noise in vessel flow velocity estimation
and restore high quality flow velocity maps. It can be seen
from Fig. 12(b) that after CTSP recovery, the velocity map
becomes smoother and is closer to the reference image shown
in Fig. 12(a). In addition, as shown in Fig. 13, CTSP was
able to reconstruct the vessel cross-section velocity profiles to
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Fig. 13. Velocity profiles of the line segments marked by the white line
in Fig. 12 using different acquisition time.

Fig. 14. Velocity maps of a local region of CAM vasculature from
Fig. 12 (a) MB-tracking using 1.6s acquisition time; (b) CTSP recovery
using 1.6s acquisition time; (c) MB-tracking using 33.6s acquisition time,
(d-f) corresponding curvelet transforms of the images in (a-c). All the
velocity maps use the identical colormap displayed in (c) with the velocity
range from −10 to 10 mm/s.

nearly identical with that from the 33.6s reference acquisition,
despite only using only 4.8s of acquisition time.

D. In-Vivo Mouse Brain Study
Figure 15 shows the ULM images of a mouse brain using

different data acquisition times and the corresponding CTSP
recovered images. Similar to the chicken embryo CAM study,
ten sets of parameter updating functions were empirically
chosen for CTSP recovery using 100, 200, 300, 700, 1000,
1500, 2500, 5000, 7500, and 12500ms of acquisition times.
The regression parameters were calculated for the adaptive
parameter updating function as: L1 : p1 = 5.18e−4, p2 =
−0.97, p3 = −5.76e−4; L2 : p1 = 0.23, p2 = 0.44,
p3 = 0.03. Fig. 15(b) demonstrates that CTSP can connect
the large vessel branches from the sparse MB locations in
Fig. 15(a) using only 500ms of acquisition data. In Fig. 15(b),
it is shown that CTSP can reconstruct most of the vasculature

Fig. 15. (a) In-vivo ULM image of a mouse brain vessel using data
of different acquisition time (frame rate = 1000 Hz), (b) corresponding
CTSP recovered image from (a).

using just 1-2s of acquisition data, with MB localization image
using 129.6s as a reference.

Figure 16 shows the velocity maps of the mouse brain from
using conventional MB-tracking and the corresponding CTSP
recovered velocity maps. Three sets of data with acquisition
times of 3.2s, 6.4s, and 9.6s were used to reconstruct each
velocity map, with a reference image reconstructed with a total
of 129.6s of data. Similar to the velocity map of the CAM, the
velocity map generated by MB tracking using an inadequate
amount of data (e.g., 3.2s -9.6s acquisitions) lacks precision
on the velocity estimations. CTSP can recover the velocity
value by removing additional high frequency components and
promoting the sparsity in the curvelet domain. It can be seen
from Fig. 16(b) that CTSP recovery can recover the velocity
maps in Fig. 16(a) and make the velocity values closer to the
reference velocity image generated using 129.6s of acquisition,
as shown in Fig.16(a). In addition, the velocity profiles in
Fig. 17 show that CTSP can correct the inaccurate velocity
values caused by a short data acquisition time. These results
show that CTSP is able to reconstruct high-fidelity ULM
velocity maps with much less MB data than conventional
tracking algorithms, leading to significantly reduced imaging
time and subsequently higher temporal resolution for ULM.

IV. DISCUSSION

This paper presented a curvelet transform-based sparsity
promoting (CTSP) algorithm for fast ultrasound localization
microscopy (ULM) imaging. The proposed method uses a
compressive sampling model to describe the problem of
microvessel reconstruction from sparse MB localizations.
In addition, the proposed CTSP method was based on several
characteristics of ULM imaging: first, ULM imaging recon-
structs microvessel structure by accumulating MB locations
in the blood flow under the assumption that MBs do not
extravasate from the blood pool and can mimic the rheology
of red blood cells; two features that are well established in
the literatures [3]–[8]. In addition, the relatively low MB
concentration in the blood implies that each detected MB
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Fig. 16. (a) Velocity maps of a mouse brain vessel using data of different
acquisition time, (b) corresponding CTSP recovered velocity maps from
(a). All the velocity maps use the identical colormap with the velocity
range from -8 to 8 mm/s. One vessel profile marked by white lines in are
used for evaluating the velocity recovery in Fig. 17.

Fig. 17. Velocity profile of the line segment marked by the white line in
Fig. 16 using different acquisition time.

location at a fixed time point can be considered as a random
spatial sampling of the true vessel location(s). Second, the
microvessel structure can be considered sparse in both the
curvelet domain and the spatial domain, which is substantiated
by the low reported vascular volume fractions in tissues [23].
This sparsity guarantees the possibility of recovering the
microvessel structure from an inadequate amount of MB
locations. Under these axioms, CTSP is theoretically able
to recover the microvessel structure from sparse spatial sig-
nal including MB locations and/or MB tracking trajectories.

Therefore, the proposed method can be applied to any MB
localization or tracking techniques that are using an inadequate
amount of MB signal. In our study, it was demonstrated that
CTSP can achieve a faster and more accurate reconstruction of
the microvessel structure than conventional ULM techniques
in both simulation and in-vivo experimental data.

The presented results showed that CTSP has several distinct
advantages over existing ULM strategies. First, CTSP recovers
the major branches of the microvasculature using very little
MB signal. This was demonstrated in the chicken embryo
CAM vasculature, where CTSP could recover the principal
vessels from very sparse MB distributions accumulated in just
50 frames (50ms of acquisition time), which corresponds to
a 48.1% vessel filling rate (Fig. 10). Using 200ms or 300ms
acquisition time, the smallest vessels that can be resolved from
CTSP recovered images have a width of around 20-50 μm
(Fig. 11). In the mouse brain study shown in Fig. 15, CTSP
could reconstruct most of the vessels in the whole brain cross-
section using just 500 to 1000 frames of MB data (0.5s to
1s of acquisition time). The vasculature in the mouse brain is
more complex than that in the chicken embryo CAM, therefore
a longer acquisition time was necessary to review the entire
vasculature. One strategy to leverage the high imaging speed
of CTSP recovery is to use it as a scouting technique to
confirm the targeted tissue vasculature before executing a long
data acquisition sequence for ULM. For example, short test
acquisitions of MB data can be quickly reconstructed using
CTSP to reveal the tissue microvasculature, which could aid
in confirming the placement of the ultrasound transducer to
best capture the region of interest. CTSP is also more efficient
at utilizing the spatially sparse MB localizations present in
small vessels that may otherwise need a large amount of
data acquisition time to completely scout using conventional
localization techniques. This feature is most evident in the sat-
uration curves presented in Fig. 10, where CTSP increased the
maximum saturation level of MB accumulation data relative to
the optical imaging reference on CAM microvasculature - the
saturation curve of CTSP recovery converged to 90% of the
microvessels present in the optical image while the saturation
curve of localization reconstructed 67% of the vessels in
the reference. In the simulation study (Fig. 5), CTSP very
rapidly reconstructed the majority of the vasculature in the
first few time steps and then proceeded at a much slower
rate in comparison to the more gradual perfusion evident in
conventional ULM accumulation. We posit that the gain which
CTSP exhibits in the saturation curves is due, in part, to a
compensation for perfusion statistics: CTSP can efficiently
recover sparse MB events in well perfused vasculature, which
accelerates the early phase of saturation, but the late phase is
still dictated by the physiological constraints of rarely perfused
microvessels [12].

Secondly, CTSP has also shown the ability to recover veloc-
ity map information using MB data with a short acquisition
time due to the signal denoising effect after curvelet sparsity
promotion. Typically, an accurate estimation of blood flow
velocity requires a large amount of MB signal [7] to fully
characterize the flow velocity profiles. As shown in Fig. 14,
the velocity map estimated using an inadequate amount of
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MB signal has noisy velocity measurements and cross-section
profiles. In the curvelet domain, these velocity fluctuations
lead to additional high frequency components that are not
present in the curvelet transform of the reference velocity
map. CTSP can effectively remove these additional frequency
components by promoting sparsity in the curvelet domain,
which generates velocity maps that have similar qualities as
the reference image. The improvement in ULM velocity map
reconstructions based on CTSP was validated on both chicken
embryo CAM (Fig. 12) and mouse brain studies (Fig. 16).

Finally, it is worth noting that the computational cost of
CTSP is primarily associated with the method used to solve the
optimization problem in Eq. (9). We followed previous studies
[26], [29] and implemented the block-coordinate-relaxation
(BCR) method to solve Eq. (9). The BCR method normally
requires a large number of iterations to converge, and thus
a regularization parameter updating strategy is also needed to
improve the converging speed. Herrmann and Hennenfent [26]
initialized the regularization parameter as the maximum value
in the sparsifying domain and then used a decreasing function
for updating. Elad et al. [29] designed the regularization
parameter updating function to linearly decrease with the
iteration index as described in Eq. (14). Both studies required
dozens to hundreds of iterations to generate their results, and
these updating functions have the significant drawback of a
lack of flexibility for different initiation signal. In our study,
the initial ULM images using data from different acquisition
times had different vessel densities in both the spatial and
the curvelet domain. Therefore, an adaptive regularization
parameter updating strategy, as designed in Eqs. (14-15), was
introduced to achieve the optimal converging speed and recon-
struction accuracy for various initiations. In both the simula-
tion study and the in-vivo study, the CTSP algorithm using the
proposed adaptive regularization parameter updating strategy
took 10-20 iterations in total to generate the reconstruction
results. In addition, the scales of the curvelet transform also
needs to be carefully chosen to balance the computing cost and
the performance of CTSP. In our study, we chose the number
of scales as Nscale = ceil(log2 (min (N1, N2) − 3)) and the
number of orientations as Norientat ion = 16 ∗ 2ceil(Nscale /2),
where N1 and N2 represent the size of the spatial image,
ceil(∗) represents the operator that takes the nearest integer
greater than or equal to the input number. The number of
translation k was decided by the correlation between the
specific curvelet and the 2D image. These curvelet trans-
form parameters were chosen based on the fast discrete
curvelet transform proposed by Candès et al [41] and proved
to be appropriate for the CTSP algorithm proposed in this
study. Using a computing platform with a single Intel CPU
(i9-10900K, 10 cores, 5.2GHz frequency), reconstructing a
1000 × 800 image with CTSP took 10-20s. Further improve-
ment of computational speed could be expected from parallel
implementation using GPUs.

One limitation in the CAM study is the comparison between
optical image and ultrasound image. Because the surface of the
CAM was not entirely flat, some vessels shown in the optical
image of the CAM (e.g., the vessels close to the transducer sur-
face) were out of the ultrasound imaging plane. In addition, the

optical image was not acquired simultaneously with the ultra-
sound scanning, which leaded to the misalignment between the
ultrasound image and optical image. In our study, images from
these two modalities were registered using normalized cross
correlation before comparison. However, it is still difficult
to achieve a pixel-to-pixel alignment between optical and
ultrasound images. The misalignment and missing vessels will
lead to a degraded performance in the precision measurement
using optical image as ground truth.

An important feature of CTSP is that the recovery of
microvessel structure is only based on current MB localiza-
tions. Although CTSP can recover localization images using
data from short acquisition times, it cannot generate new MB
signal and locations. As can be seen in Figs. 8(b) and (d),
CTSP recovery could connect most of vessel branches using
100 frames of data but was not able to recover the vessel
branches near the top edge of the image. The reason for this
limitation is that the compressive sampling theory applied by
CTSP requires that the spatial image have a lower limit of
sampling rate. In our study, when the spatial sampling of
microvessel structure (MB locations) is too sparse to generate
enough curvelet coefficients that contain the spatial structure
information, the true vessels are no longer recoverable by
CTSP, and the recovery of these vessels is dictated by rare
perfusion events. In addition, under the circumstances of long
MB acquisition in dense microvasculature, the assumption
of sparsity is violated, which results in suboptimal CTSP
recovery. Generally, CTSP has the best performance for MB
signal within a specific range of acquisition time. The MB
acquisition time can be empirically chosen so that the input
MB density is appropriate for CTSP. In our CAM and mouse
brain studies, CTSP was proved to be most effective for
short MB signal acquisitions from 50ms to 100ms, which
equals to the MB concentration of 600 to 3300 counts/mm2.
For longer data acquisitions, we applied CTSP to short time
segments (e.g., 50ms) of data ensembles and accumulated all
the individually recovered CTSP images to generate the final
image. Moreover, the performance of CTSP is also dependent
on the fidelity of MB localization signal. For example, noise
contaminated and false MB localizations can lead to com-
promised CTSP recovery performance. Pre-localization filters
such as the non-local means filtering [8] is effective with
improving the CTSP recovered image quality. In this study,
we used the microbubble separation technique [16], which also
improves microbubble signal quality. However, in addition to
noise, false MB localization can still happen because of tissue
motion, overlap MB events, and distorted PSFs. The false
localizations will inevitably generate artifacts in the CTSP
recovered images. Therefore, we elected to use a small median
filter (2 × 2) in this study to alleviate the issue of noise and
false MB localizations to facilitate robust CTSP. Based on the
results the median filter was effective with the noise and false
MB location removal while introducing negligible blurring to
the final super-resolved ULM images.

Another drawback of CTSP is that the recovered microves-
sel image using short acquisition does not exactly match
the images reconstructed using conventional ULM with
long data acquisition. First, the shrinkage of the curvelet
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coefficients leads to overfilling (e.g., blurring, false posi-
tives, etc.) in the image domain, leading to false positive
recoveries. In our study, CTSP consistently showed 20-30%
false positive rates in regions close to the vessels. However,
with the constraints from spatial sparsity and total varia-
tion regularization, false positive rates were low for non-
vessel regions (e.g., the dark background between visible
vessels), which is an important feature of the CTSP algo-
rithm and essential in practice for not creating artificial
vessels.

Secondly, CTSP recovery could shrink some of the curvelet
coefficients that contain the information of the small vessels,
which could make the small vessels undiscernible. The blur-
ring can be controlled by choosing the optimized Lagrange
multipliers ζ1 and ζ2 in Eq. (9) that balance the sparsity
promoting in the l1 norm term and the data fidelity in the
l2 error term. However, the tradeoff between vessel recovery
and blurring still exist in the CTSP recovery and needs to
be carefully balanced based on different applications. In our
study, we used the adaptive parameter update function in
Eq. (15) to select the best ζ1 and ζ2 based on visual judgment
of the recovered image quality. In addition, the reconstruction
parameters are always adjustable based on the requirements
for the specific applications.

The above spatial feature changes brought by CTSP will
commonly exist in the compressive sampling reconstruction
algorithm. An appropriated regularization term (e.g., total vari-
ation) can eliminate this effect by stabilizing the uncertainty
with respect to residual components in the curvelet recon-
structed image [46], [47]. In addition, it is essential to choose
the sparsifying transform that can best represent the spatial fea-
ture of the original image. As shown in Figs. 1-2, the curvelet
bases have similar shape as vessels in the spatial domain and
their orientation property guarantees the sparsity in curvelet
domain. Therefore, even though curvelet transform is not
orthogonal transform, which means it can cause uncertainty
during reconstruction [48], it still showed to be highly effective
in recovering corrupted vessel and velocity map. Although
the other more commonly used transforms (e.g., wavelet and
2D Fourier transform) could recover the missing vessels to
a certain extent, they do not offer as good performance as
CTSP. One possible reason for the suboptimal performance of
wavelet and 2D Fourier transform is that neither was designed
to preserve vascular morphologies, which is an important
feature of the curvelet transform. Other oriented frames such
as shearlets [49] may have similar properties as curvelets and
also be applicable to the sparsity promoting recovery for ULM,
which will be investigated in a future study.

V. CONCLUSION

This paper presents a curvelet transform-based sparsity
promoting (CTSP) algorithm aimed at improving the image
speed of the ultrasound localization microscopy (ULM) by
recovering missing MB localization signal from short data
acquisitions. The proposed CTSP method consists of a com-
pressive sampling-based ULM model and an iterative method
that can effectively solve the l1 sparsity optimization problem.
The in-silico simulations, in-vivo chicken embryo CAM, and

in-vivo mouse brain studies have validated that CTSP could
effectively recover the missing vessel signal and markedly
improve the quality of the ULM velocity maps using very short
MB signal accumulations. This technique provides a robust
solution for practical implementations of ULM where fast
reconstructions of vascular images with short data acquisitions
is essential.
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