
1764 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 41, NO. 7, JULY 2022

Radiomic Deformation and Textural
Heterogeneity (R-DepTH) Descriptor to

Characterize Tumor Field Effect: Application
to Survival Prediction in Glioblastoma

Marwa Ismail , Prateek Prasanna, Kaustav Bera , Volodymyr Statsevych, Virginia Hill, Gagandeep
Singh, Sasan Partovi , Niha Beig, Sean McGarry, Peter Laviolette, Manmeet Ahluwalia,

Anant Madabhushi , Fellow, IEEE, and Pallavi Tiwari , Member, IEEE

Abstract— The concept of tumor field effect implies that
cancer is a systemic disease with its impact way beyond
the visible tumor confines. For instance, in Glioblastoma
(GBM), an aggressive brain tumor, the increase in intracra-
nial pressure due to tumor burden often leads to brain
herniation and poor outcomes. Our work is based on
the rationale that highly aggressive tumors tend to grow
uncontrollably, leading to pronounced biomechanical tis-
sue deformations in the normal parenchyma, which when
combined with local morphological differences in the tumor
confines on MRI scans, will comprehensively capture tumor
field effect. Specifically,we present an integrated MRI-based
descriptor, radiomic-Deformation and Textural Heterogene-
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ity (r-DepTH). This descriptor comprises measurements of
the subtle perturbations in tissue deformations throughout
the surrounding normal parenchyma due to mass effect.
This involves non-rigidly aligning the patients’ MRI scans to
a healthy atlas via diffeomorphic registration. The resulting
inverse mapping is used to obtain the deformation field
magnitudes in the normal parenchyma. These measure-
ments are then combined with a 3D texture descriptor,
Co-occurrence of Local Anisotropic Gradient Orientations
(COLLAGE), which captures the morphological heterogene-
ity and infiltration within the tumor confines, on MRI scans.
In this work, we extensively evaluated r-DepTH for survival
risk-stratification on a total of 207 GBM cases from 3 differ-
ent cohorts (Cohort 1 (n1 = 53), Cohort 2 (n2 = 75), and
Cohort 3 (n3 = 79)), where each of these three cohorts was
used as a training set for our model separately, and the other
two cohorts were used for testing, independently, for each
training experiment. When employing Cohort 1 for training,
r-DepTH yielded Concordance indices (C-indices) of 0.7 and
0.65, hazard ratios (HR) and Confidence Intervals (CI) of
10 (6 − 19) and 5 (3 − 8) on Cohorts 2 and 3, respectively.
Similarly, training on Cohort 2 yielded C-indices of 0.6 and
0.7, HR and CI of 1 (0.7 − 2) and 3 (2 − 5) on Cohorts 1 and 3,
respectively. Finally, training on Cohort 3 yielded C-indices
of 0.75 and 0.63, HR and CI of 24 (10− 57) and 12 (6 − 21) on
Cohorts 1 and 2, respectively.Our results show that r-DepTH
descriptor may serve as a comprehensive and a robust MRI-
based prognostic marker of disease aggressiveness and
survival in solid tumors.

Index Terms— Glioblastoma, survival, field-effect,
biomechanical deformations, LASSO.

I. INTRODUCTION

IT IS well recognized that cancer is not a bounded,
self-organized system [1], but a systemic disease. Most

malignant tumors have heterogeneous growth patterns, leading
to disorderly proliferation well beyond the visible surgical
margins. In fact, in solid tumors, depending on the malignant
phenotype, the impact of the tumor is observed not just within
the visible tumor, but also in the immediate peri-tumoral,
as well as in seemingly normal-appearing adjacent regions
[1], [2], a phenomenon known as ‘tumor field effect’ [3]. For
instance, Glioblastoma (GBM), one of the most aggressive
brain tumors, is known to extend several millimeters distal to
the tumor margins, which ultimately leads to recurrence in
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GBM patients [4]. Similarly, the herniation or gross distortion
of the brainstem, remote to the tumor location, is the proximal
cause of deaths in 61% of GBM studies [5]. The infiltrating
brain tumor mass pushes and displaces the surrounding tissue
structures (known as mass effect), leading to a mid-line
shift and an increase in the intracranial pressure [6], [7],
which ultimately results in destroying white matter tracts
and alterations of consciousness and other chronic conditions
such as seizures and headaches in GBM patients. While
tumor infiltration [8], [9] and mass effect [10], [11] have
both, to different extents, been shown to be associated with
more aggressive tumor behavior and poor prognosis, it may
be reasonable to assume that there might be latent disease-
specific information to quantify both phenomena on routine
imaging. Specifically, mass effect may be captured via the
subtle tissue deformations in the seemingly-normal brain
regions adjacent to tumor (also known as “brain around tumor
(BAT)”). The rationale being that more aggressive tumors may
exert increased intra-cranial pressure on the surrounding BAT
regions, resulting in pronounced structural deformations and
thus worse prognosis, as compared to less aggressive tumors.
Additionally, the pronounced deformations, when combined
with features from within the tumor confines that may quantify
intra-tumoral heterogeneity and tumor infiltration, may serve
as image-based prognostic markers of overall survival in GBM
tumors.

“Recently, ‘radiomics’ (i.e. extraction of quantitative image
features such as co-occurrence, gray-level dependence, direc-
tional gradients, and shape-based) has provided a surrogate
mechanism to non-invasively capture sub-visual cues of intra-
tumoral morphological heterogeneity on routine imaging, for
different prognostic and predictive applications. Many studies
in the literature have involved machine and deep-learning
approaches using routine magnetic resonance imaging (MRI)
sequences and have shown potential in survival prediction and
response assessment for brain tumors [12]–[20]. Specifically,
the recent works in [19], [20] attempted to segment the tumor
sub-compartments using pre-operative scans, then extracted
radiomic features from these sub-compartments and combined
them with clinical information such as age and resection status,
into machine learning algorithms to predict patient overall
survival. These studies have largely focused on capturing
local textural changes within the tumor and the peri-tumoral
regions [21], and their associations with patient survival [22].
However, a missing gap in previous work has been to leverage
the subtle tumor-induced deformations in the BAT regions as
measured on routine MRI scans, as a complementary radiomic
marker for prognosticating patient survival. In this context,
our group developed an integrated MRI-based descriptor, that
captures radiomic-Deformation and Textural Heterogeneity
(r-DepTH) [23], which accounts for both the tumor-induced
deformations in the BAT regions as well as the intra-tumoral
heterogeneity from within its visible confines. Overall, the
r-DepTH descriptor involves capturing phenotypic attributes
of tumor infiltration as well as mass effect, as both of these
aspects, to varying degrees, have been shown to be associated
with worse outcomes in GBM tumors. This is achieved
by computing Co-occurrence of Local Anisotropic Gradient

Orientations (COLLAGE) descriptor [24] from the tumor and
the surrounding peritumoral regions to quantify intra-tumoral
heterogeneity and tumor infiltration, as well as computing the
local biomechanical deformations to quantify mass effect and
its impact on the rest of the brain. This work expands on the
original implementation of r-DepTH [23] in several aspects,
including rigorous robustness analysis and registration strate-
gies across different data cohorts and extensive comparisons
with existing radiomic and deep-learning strategies, as well as
clinical parameters, as shown throughout the paper.

This paper is organized as follows. In Section 2, previous
work on characterizing field effect in survival prediction
of GBM tumors using routine MRI scans is discussed.
In Section 3, we describe the methodology for computation of
the r-DepTH descriptor. The experimental design and imple-
mentation details for the risk assessment model are provided in
Section 4, followed by results in Section 5. Section 6 provides
discussion and concluding remarks.

II. PREVIOUS WORK AND NOVEL CONTRIBUTIONS

The concept of interrogating the tumor field using routine
MRI scans has gained significant interest over the years, both
to study its impact on tumor growth as well as correlating
its impact on overall patient survival [25]–[27]. For instance,
works have previously developed deterministic mathematical
models that model cancerous growths from aggressive cellular
proliferation in GBM tumors [25], [28], [29]. Through these
models, studies investigated the induced significant mechanical
stress on the surrounding tissue that results in mass effect in
GBM tumors [25], [26]. These mathematical models consider
the cellular motility factor in GBMs, to account for its
invasiveness as well as the ability of its cells to migrate
and proliferate [25]. A mechanically coupled model was also
suggested in [27], to address the mechanical stress caused
by tumor expansion, while also incorporating a diffusion
coefficient that accounts for local tissue stress due to the
field effect. In addition to these deterministic mathematical
models, multiple studies have explored the utility of ‘data
driven’ approaches, such as radiomic features extracted from
GBM patients in survival prediction. For instance, [14] showed
that radiomic features outperformed clinical and radiologic
risk models in predicting overall survival in GBM tumors.
Similarly, the studies conducted by [15], [30]–[32] assessed
the utility of texture features extracted from the tumor and
peritumoral regions for survival prediction in GBM. Our
own group has developed a textural radiomic descriptor,
COLLAGE [24], that has demonstrated success in capturing
subtle differences between similar appearing disease pheno-
types on routine imaging, across different types of malig-
nant tumors [33], [34]. COLLAGE captures local anisotropic
differences in intra-tumoral heterogeneity by calculating per-
voxel gradient orientations, followed by obtaining statistics
of Gray-Level Co-Occurrence Matrix (GLCM) heterogeneity
to quantify patterns of local gradient alignment. However,
those existing prognostic studies in GBM have been limited
to interrogating texture representations from the enhancing
lesion, inner necrotic core, and peritumoral area, and have not



1766 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 41, NO. 7, JULY 2022

Fig. 1. Overview of r-DepTH framework. First, segmentation of tumor
compartments of interest (enhancing lesion (outlined in red), peri-tumoral
area (outlined in green), and necrotic core (outlined in orange)) is
performed. Following pre-processing, feature extraction is performed via
COLLAGE features to characterize the intra-tumoral textural heterogene-
ity, and deformation heterogeneity features to characterize the tumor
impact on BAT region. Next, the sets of COLLAGE and deformation
features are concatenated to compute the r-DepTH descriptor. The
r-DepTH descriptor could then be employed for classification/survival
analysis (in our case using a LASSO model for stratifying GBM patients
into low- and high-risk groups based on their overall survival).

explicitly accounted for any possible biomechanical deforma-
tional changes in the BAT region.

The key contribution of this work is the development of
r-DepTH descriptor that combines measurements of biome-
chanical and morphological features of the tumor regions, for
predicting patient survival. Briefly, we capture the biomechan-
ical deformations in the BAT regions by using diffeomorphic
registration between the GBM brain scans and a healthy atlas.
We then utilize the inverse mapping during registration to
calculate the deformation magnitudes within uniformly sized
annular sub-volumes that belong to the surrounding BAT
regions, both adjacent and distal to the tumor boundaries (as
close as 5mm and up to 60mm). In addition, we use 3D
COLLAGE features [24] to capture the textural heterogeneity
from within the tumor visible confines. The deformation
features from the normal parenchyma and the COLLAGE
features from the tumor confines, are finally combined to
obtain the integrated r-DepTH descriptor. Figure 1 provides
an overview of the r-DepTH framework.

III. METHODOLOGY

A. Notation

We define an image scene I as I = (C, f ), where I
is a spatial grid of voxels c ∈ C , in a 3-dimensional

TABLE I
LIST OF THE NOTATIONS AND ACRONYMS USED IN THIS PAPER

space, R3. Each voxel, c ∈ C , is associated with an
intensity value f (c). IT , IP , IN , and IB correspond to the
intra-tumoral, peri-tumoral, necrotic, and surrounding normal
parenchymal sub-volumes within every I respectively, such
that [IT , IP , IN , IB ] ⊂ I . We further divide the sub-volume
IB into uniformly sized annular sub-volumes IB j , where j
is the number of uniformly-sized annular bands, such that
j ∈ {1, . . . ,m}, and m is a user-defined proximity parameter
that is dependent on the distance from the tumor margin.
We extract each feature set F from each training St and test
Sv set, across the different cohorts employed in this study. The
common notations and acronyms employed in this paper are
listed in Table I.

B. r-DepTH Descriptor

1) Deformation Heterogeneity Features From the Normal
Parenchyma: Healthy T1-w MNI atlas (IAtlas) is used to
measure the tissue deformation in the normal appearing
brain regions of every patient volume I . IAtlas is first non-
rigidly aligned to I using mutual-information-based similarity
measure provided in ANTs (Advanced Normalization Tools)
SyN (Symmetric Normalization) toolbox [35]. This toolbox
is specifically used due to its proved efficiency in mapping
brain images containing lesions into healthy templates [36].
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It also efficiently handles the constrained cost-function mask-
ing approach, where the mapping within a tumor exclusive
region is determined by the solution of the negative tumor
mask region Imask . We employ Lagrangian diffeomorphic-
based registration [37], as it possesses symmetry properties
required for a geodesic connecting two images in the space
of diffeomorphic transformation that guarantees symmetry
regardless of the chosen similarity measure [35]. We also
wanted to ensure that only the intensity differences due to
structural deformations are accounted for, during registration,
while excluding the intensity differences within the tumor
area. Imask was hence removed from I during registration to
IAtlas . Given the reference (I ) and floating (IAtlas), the non-
rigid alignment can be formulated as: (I, Imask) = Tr(IAtlas),
where Tr(.) is the forward transformation of the composite
voxel-wise deformation field (including affine components)
that maps the displacements of the voxels between the refer-
ence and floating volumes. This transformation also propagates
the atlas brain mask (Iatlas) to the subject space, thereby skull
stripping the subjects. As ANTs SyN satisfies the conditions
of a diffeomorphic registration, an inverse Tr−1(.) exists, that
successfully maps I to the IAtlas space. This inverse mapping
yields the tissue deformation of I with respect to IAtlas ,
representing the deformations exerted on every c ∈ CB , due
to tumor mass effect. Considering (c′

t , c′
u, c′

v ) as new voxel
positions of I when mapped to IAtlas , the displacement vector
is given as [δt, δu, δv] where vector (c′

t , c′
u, c′

v ) = (ct , cu , cv )
+ (δt, δu, δv), and the magnitude of deformation is given by
calculating the Euclidean norm of the scalar values of the
deformation orientations as:

D(c) =
√
(δt)2 + (δu)2 + (δv)2, (1)

for every c ∈ CB j , and j ∈ {1, . . . ..,m}. First order
statistics (i.e. mean, median, standard deviation, skewness, and
kurtosis) are then calculated by aggregating D(c) for every
c within every sub-volume IB j yielding a feature descriptor
FB j for every annular sub-region CB j , where CB j ⊂ CB ,
j ∈ {1, . . . ,m}.

2) 3D COLLAGE Features From Within the Tumor Confines:
COLLAGE, a 3D gradient-based texture descriptor, captures
intra-tumoral heterogeneity by calculating local per-voxel gra-
dient orientations [24]. Briefly, for every voxel c, intensity
gradients in X,Y, Z directions are calculated, followed by
centering a 3D window around every c to compute the vector
gradient matrix F . Then, two principal orientations, θ(c) and
φ(c), can be obtained from F for every c, followed by com-
puting two separate co-occurrence matrices, Mθ and Mφ , that
capture orientation pairs between voxels in a local neighbor-
hood. From every co-occurrence matrix, a total of 13 Haralick
statistics are calculated for every c [38]. We finally obtain first
order statistics (mean, median, standard deviation, skewness,
and kurtosis) for every c ∈ {CP ,CT ,CN }, which yields a
feature descriptor FT for the enhancing lesion, FP for the
T2/FLAIR hyperintensities, and FN for the necrotic areas.
Additional details regarding COLLAGE computation can be
found in [24].

3) Construction of r-DepTH Descriptor: The r-DepTH
descriptor is obtained for every patient, by concatenating

the deformation descriptor, FB , along with COLLAGE
texture descriptors, FT , FP , and FN , as Fr DepT H =
[FB,FT ,FP ,FN ]. Fr DepT H descriptor can then be employed
within a supervised or an unsupervised approach for disease
characterization. The algorithm for computing r-DepTH is
provided in Algorithm 1.

Algorithm 1 Computation of r-DepTH Descriptor
Data: I , IAtlas , ROI Volume C
Result: Fr DepT H

begin
1- Obtain Deformation Features FB
for each patient volume I do

Remove Imask from I , align IAtlas to I to get
(I, Imask ) = T r(IAtlas )

end
for each c ∈ CB do

Get the deformation of I w.r.t. IAtlas , [δt, δu, δv], using
Tr−1(.).
Get deformation magnitude D(c) =

√
(δt)2 + (δu)2 + (δv)2.

end
for each annular sub-region CB j ⊂ CB do

Aggregate D(c) for every c within sub-volume IB j .
Calculate first order statistics for IB j to get FB j .

end
2- Obtain 3D COLLAGE Features FT ,FP
for each voxel c ∈ C do

Obtain gradients ∂ fi (c) along i-axes, ∂ fi (c) = ∂ f (c)
∂ i , i ∈ x, y, z.

end
Define N × N × N neighborhood centered around c ∈ C .
for each voxel c ∈ C do

Calculate gradient vectors
−→
∂ fi (ck ) in N ×N × N , i ∈ (x, y, z),

k ∈ {1, . . . ,N 3}, where
∂ fi (c) = [

∂ f i (c1) ∂ f i (c2) . ∂ f i (cN3 )
]T

Obtain localized gradient vector matrix−→F = [−−→∂ fX (ck )
−→
∂ fY (ck)

−→
∂ fZ (ck )]

Calculate dominant components ψ(ck11), ψ(ck12), and ψ(ck13),
k ∈ {1, . . . ,N 3}, by singular value decomposition of

−→F
Obtain dominant directions θ(ck ) and φ(ck ), using
θ3D(ck ) = tan−1 ψY (ck )

ψX (ck )
and

φ3D(ck ) = tan−1 ψZ (ck )√
ψ2

Y (ck )+ψ2
X (ck )

end
Compute co-occurrence matrices Mθ and Mφ from θ(ck ) and φ(ck )
for each voxel c ∈ {CP ,CT } do

Get 13 Haralick statistics [Sθb , Sφb ], b ∈ [1, 13] from Mθ and
Mφ

Calculate first order statistics to get FT ,FP , FN
end
3- Compute r-DepTH Fr DepT H
Concatenate FB , FT , FP , and FN to get Fr DepT H

end

IV. EXPERIMENTAL DESIGN

While the r-DepTH descriptor is generalizable, in this work,
we calculated the Fr DepT H from routine pre-treatment MRI
scans as a prognostic marker for overall survival in GBM
subjects. Details on experimental design are provided below.

A. Data

A total of 207 cases were collected from 3 different
cohorts for this study, including the publicly available Cancer
Imaging Archive (TCIA) ([39]), Cleveland Clinic (CCF),
and Medical College of Wisconsin (MCW). TCIA is an
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TABLE II
DESCRIPTION OF PATIENT DEMOGRAPHICS FOR

THE THREE COHORTS USED IN THIS STUDY

open archive of radiological scans for different cancer types
including GBM consisting of MRIs and its associated clinical
metadata, with regulations and policies for the protection of
human subjects and approvals by institutional review boards
in place. Data analysis from CCF and MCW was approved
by the institutional Ethics Committee. Our inclusion criteria
included the availability of (1) 1.5 Tesla (T) routine MRI
sequences (Gadolinium (Gd)-contrast T1w, T2w, T2w-FLAIR)
for treatment-naive patients with diagnostic image quality,
and (2) Overall Survival (OS) information. This inclusion
criteria yielded a total of (1) 75 GBM studies from TCIA, (2)
53 studies from CCF, and (3) 79 studies from MCW. In our
experiments, we interchangeably used one of the three cohorts
for training (St ) and used the other two cohorts independently
for testing (Sv1 ,Sv2 ). Table II details the associated patient
demographics for each of the 3 cohorts.

B. Preprocessing

A total of three experts were asked to perform the manual
annotations on every MRI slice, via a hand-annotation tool
in 3D Slicer. The senior-most expert (V.H, >10-years of
experience in neuro-radiology) independently annotated the
studies obtained from CCF, while expert 2 (V.S) with 7 years
of experience in neuro-radiology supervised expert 3 (K.B,
with 3 years of radiology experience), to manually annotate
the TCIA and MCW cases. In rare cases with disagreement
across the two readers (expert 2 and expert 3), the senior-most
radiologist (V.H, expert 1) was consulted to obtain the final
segmentations. Every tumor was annotated into three regions:
enhancing lesion (IT ), T2w/FLAIR hyperintense peri-lesional
component (IP ), and necrotic core (IN ). T1w MRI scans were
used to delineate IT and IN , while both T2w and FLAIR scans
were used to annotate IP . Following segmentation, for every

patient study, the 3 MRI sequences, Gd-T1w MRI, T2w, and
FLAIR were co-registered to a brain atlas (MNI152; Montreal
Neurological Institute) using ANTs (Advanced Normalization
Tools) SyN (Symmetric Normalization) toolbox [35]. Skull
stripping was performed simultaneously during registration of
I with IAtlas , as detailed in Section 3.2.1. Finally, bias field
correction was conducted using a non-parametric non-uniform
intensity normalization technique [40].

C. Implementation Details

We calculated the deformation features FB j for j ∈
{1, 2, . . . , 12} annular regions that are equidistant to each
other at a distance of 5mm. Specifically, we created con-
centrated annular rings around the tumor mask boundaries,
using morphological operations, by dilating the tumor mask
at several distances that were 5 mm apart for a total distance
of 60 mm from the tumor mask boundaries, generating a
total of 12 annular rings. The choice for the size of the
annular rings was based on retrospective studies that have
recommended 5mm as safe clinical target volume margin for
GBM tumors [41]. This resulted in a 60 × 1 deformation
vector that included 5 statistics (mean, median, standard
deviation, skewness, and kurtosis) calculated for each of the
12 bands. This resulted in 12 × 5 = 60 features corresponding
to FB . In addition, the 5 statistics were similarly obtained
for each of the 13 Haralick statistics across each of the two
co-occurrence matrices, resulting in 13 × 5 × 2 = 130
COLLAGE features that are extracted from each of the three
compartments; FT , FP , and FN . The descriptor Fr DepT H was
finally obtained by aggregating FB , FT , FP , and FN . Hence
the Fr DepT H descriptor for every tumor included a total of
450 features.

D. Survival Risk Assessment

Following computation of Fα, where α = {T, P, N,
B, r DepT H }, feature selection (reduction) was conducted
using least absolute shrinkage and selection operator
(LASSO), along with a cox regression model [42] on St .
We used LASSO to utilize its capability in reducing variance
when shrinking features, while simultaneously not increasing
the bias. The top features selected by LASSO model were
then used to create a continuous survival risk score (Risc),
calculated as:

Risc(Fα) =
A∑

g=1

qgFg
α (2)

where A represents the number of selected imaging fea-
tures from LASSO, Fg

α is the gth feature for α =
{T, P, N, B, r DepT H } and qg is the respective coefficient.
An observation was deemed censored if the patient withdrew
from the study or there was no follow up available. All Risc
scores were obtained based on the threshold value provided
by the fitted cox model, to stratify patients into high-risk and
low-risk groups obtained from St . Log-rank test along with
Kaplan Meier (KM) survival analysis were then performed to
see how the survival rate varies between the two identified risk
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groups. Additionally, performance measures such as hazard
ratios (HR), 95% Confidence Interval (CI), and Concordance
index (C-index) were obtained to assess the performance of our
survival models. HR is defined as the risk of experiencing the
event of interest at a time point [43], whereas CI measures the
level of uncertainty about the point estimates [44]. C-index was
calculated using R (v4.0), and is commonly used to validate
the predictive ability of a survival model by calculating the
probability of concordance between the predicted and the
observed survival [45]. Finally, on Sv , the top features obtained
from St were used to calculate Risc for every patient, followed
by the log-rank test to obtain the level of significance between
the two identified risk groups (low-risk and high-risk).

E. Comparative Strategies

In order to evaluate the efficacy of r-DepTH for GBM
survival prediction, we performed the following compar-
isons: (1) Employing clinical features (age, gender, tumor
volume, molecular information), in uni-variate and multi-
variate settings, (2) Evaluating Risc(FT ,P,N ) using FT , FP ,
and FN , (3) Evaluating Risc(FB) using FB , (4) State-
of-the-art radiomics [46], and convolutional neural network
(CNN) [16] approaches previously used in the literature for
GBM prognosis, and (5) hybrid approaches where (a) age
and gender information were combined with Fr DepT H and
(b) deep features obtained via a CNN approach were combined
with Fr DepT H .

Table III details the feature families for all the comparative
approaches as well as the total number of extracted features
from each feature family and the number of features that
were selected by the LASSO survival model for survival
prognostication. When employing the comparative radiomic
approach on CT ,CP ,CN regions using the CapTk software
as described in [46], this resulted in a total of 4376 features
(FRad) for every tumor region in St . This was followed by
feeding (FRad) to our LASSO model to calculate Risc(Frad)
for every patient.

Additionally, we compared the performance of the r-DepTH
descriptor to a CNN model previously utilized in the litera-
ture [16], to predict survival in GBM. This model is similar
to most of the models found in literature in the context of
survival prediction in GBM [17], [18], where transfer learning
has been exploited to stratify patients into risk groups in GBM.
Specifically, we extracted deep features from the GBM patients
using a pre-trained CNN model via transfer learning using
the strategy presented in [16]. We extracted deep features
from one single tumor image that included the largest tumor
region for each subject across all cohorts. The CNN acted
as a feature extractor only and the obtained deep features
from the CNN were then fed into the LASSO model for risk
stratification. The CNN contained 5 convolutional layers and
3 fully-connected layers. The model was trained on ImageNet
database with predetermined weights that are summarized in
Table III. The input to the model was the cropped tumor sub-
regions from the MR scans, obtained from the slice that had
the largest tumor area for every patient, followed by resizing
the sub-regions to 224 × 224 with bicubic interpolation.

TABLE III
COMPARATIVE STRATEGIES TO R-DEPTH

Deep features were computed by forward propagation, and
extracted from the second-last fully-connected layer (similar
to the implementation in [16]). A total of 4096 features (FDL)
were extracted from each patient, which were finally fed to
our LASSO model for survival prognostication, to compute
Risc(FDL) for every patient. We also conducted a hybrid
approach, where we combined FDL with Fr DepT H into the
survival model to assess if this combination will improve the
performance of Fr DepT H in survival prognostication.

V. RESULTS

In order to assess the robustness of r-DepTH features with
respect to intra-site variability, our experiments were set up
such that the survival models were once trained on each data
cohort and tested on the two other cohorts independently.
Hence, we report the survival results for 1) training with
CCF cohort (SCC F

t ) and testing on TCIA (ST C I A
v ) and MCW

cohorts (SMC W
v ), 2) training with TCIA cohort (ST C I A

t ) and
testing on CCF (SCC F

v ) and MCW cohorts (SMC W
v ), and 3)

training with MCW cohort (SMC W
t ) and testing on TCIA

(ST C I A
v ) and CCF cohorts (SCC F

v ).

A. Survival Risk Assessment Using r-DepTH

LASSO survival analysis while employing Risc(Fr DepT H )
yielded 10 features, listed in supplementary material, when
employing each of the 3 cohorts for training (ST C I A

t , SCC F
t ,

and SMC W
t ). Interestingly, there were 5 COLLAGE features

that were consistently picked by the regression model across
the three training cohorts (e.g., skewness of correlation in
enhancing lesion and median of correlation for necrotic core).
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Fig. 2. Kaplan Meier curves for estimating overall survival for 1) TCIA (STCIA
v ) and MCW (SMCW

v ) cohorts as independent test cohorts when using
CCF as the training cohort (SCCF

t ), 2) CCF (SCCF
v ) and MCW (SMCW

v ) as independent test cohorts when using TCIA as the training cohort (STCIA
t ),

and 3) TCIA (STCIA
v ) and CCF (SCCF

v ) as independent test cohorts when using MCW as the training cohort (SMCW
t ). Boxes 1, 2, 3 show the Kaplan

Meier curves for estimating survival using (a) the comparative radiomic approach, (b) the DL approach, (c) COLLAGE features, (d) deformation
features, and (e) r-DepTH features. X-axis represents the overall survival in days and Y-axis represents the estimated survival function.

The KM curves obtained for ST C I A
v and SMC W

v demon-
strated significant differences between the two risk groups
(Figure 2.1(e)), with p-value = 6.2 × 10−13 for ST C I A

v

and p-value = 4 × 10−9 for SMC W
v . Similarly, training

the model with TCIA cohort (ST C I A
t ) resulted in significant

differences between the two risk groups in SCC F
v and SMC W

v
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Fig. 3. Two subjects from SCCF
t ; a patient with poor survival (top row), OS = 30 days, and a patient with prolonged survival (bottom row), OS =

691 days. (a), (e) show the corresponding Gd-T1w MR scans of the two patients with their tumors segmented into 2 compartments: enhancing
lesion (outlined in black) and peri-tumoral area (outlined in red). (b), (f) demonstrate the COLLAGE heatmaps generated for each of the two subjects,
with higher values (red) being more prevalent in the patient with poor survival, compared to the patient with prolonged survival. (c), (g) illustrate
the extracted deformation field magnitudes respectively for each of the two patients. For the patient with poor survival (d), higher magnitude values
(represented in red) were observed in close proximity of the tumor, whereas lower values were observed (blue) for the patient with prolonged
survival (h).

(Figure 2.2(e)), with p-values of 0.05 and 9.2 × 10−5 for
SCC F
v and SMC W

v , respectively. Finally, training the model
with MCW cohort (SMC W

t ) resulted in significant differences
between the two risk groups in ST C I A

v and SCC F
v (Fig-

ure 2.3(e)), with p-values of 1.7 × 10−10 and 6.5 × 10−12

for ST C I A
v and SCC F

v , respectively. Additional measures for
all these experiments are provided in Table IV.

Qualitative differences for both COLLAGE and deforma-
tion fields for two GBM subjects, one with poor survival
(OS = 30 days) (top row) and one with prolonged survival
(OS = 691 days) (bottom row), are presented in Figure 3.
The patient with poor survival seemed to exhibit higher values
of the COLLAGE feature (Kurtosis of Energy) (Figure 3(b)),
compared to the patient with prolonged survival (Figure 3(f)).
Similarly, the deformation field magnitudes for Skewness
(measure of data asymmetry) at 10mm are visualized, and
seem to reflect higher values for the patient with worse survival
(Figure 3(d)), both in close proximity as well as distal to the
tumor, compared to that for the patient with improved survival
(Figure 3(h)).

B. Comparative Approaches

1) Risk-Scores Using Clinical Information: In a uni-variate
setting, each of age, gender, and tumor volume did not
demonstrate significant differences in the survival groups when
training the survival model using SCC F

t , ST C I A
t , and SMC W

t ,
Table IV. When combining age and gender in a multi-variate
setting, significant differences were not observed between the

two risk groups across all the cohorts as well, Table IV.
Additionally, when combining age and gender information
with Fr DepT H into the survival model to assess if it is going
to add value to our descriptor, results did not change when
training the model using SCC F

t . Interestingly, employing this
experiment using ST C I A

t and SMC W
t increased the statistical

significance between the two risk groups, Table IV. Addi-
tionally, we evaluated molecular markers including MGMT
(available for 84 subjects), and IDH (available for 128 sub-
jects), as well as extent of resection (EOR) (available for
120 subjects) for prognosis of GBM survival (the status of
the subjects for which the EOR and MGMT were available
are provided in the supplementary document). These clinical
and molecular parameters unfortunately were not available for
MCW and hence could not be evaluated. EOR and MGMT did
not demonstrate significant differences between the two risk
groups when training the survival model with subjects that had
the available information ( p-value = 0.13, C-index = 0.6 for
EOR, p-value = 0.3, C-index = 0.52 for MGMT). Similarly,
IDH did not demonstrate significant differences in the survival
groups when training the model using SCC F

t and ST C I A
t ,

Table IV. Additionally, in order to control for EOR parameter
during the survival analysis, we conducted an experiment
where we trained the LASSO survival model with Fr DepT H

using TCIA cohort cases that underwent GTR only (n = 64).
The test set for this experiment was the CCF cases that under-
went both NTR and GTR (n = 25). We excluded all the other
cases with different EOR information (e.g., subtotal resection
(STR)) from the analysis to ensure data balance, across the
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training and test sets. Results showed statistical significance
on ST C I A

t (p-value = 1.5 × 10−6, C-index = 0.62), but
not on SCC F

v (p-value = 0.53, C-index = 0.56). Similarly,
to control for the methylation status while predicting survival,
we conducted an additional experiment, where we trained
the survival model with Fr DepT H using the cases from CCF
cohort that were non-methylated (n = 30) and tested on non-
methylated TCIA cases (n = 15). Results showed statistical
significance on SCC F

t (p-value = 0.05, C-index = 0.64), but
not on ST C I A

v (p-value = 0.12, C-index = 0.54).

2) Survival Risk-Assessment Using COLLAGE FeaturesFrom
the Tumor and Peri-Tumoral Regions: When training the
LASSO model to obtain Risc(FT ,P,N ) using each of the
3 training cohorts, significant differences were observed when
employing SCC F

t , but not when employing ST C I A
t or SMC W

t .
Specifically, the KM curves (Figure 2.1 (c)) obtained from
Risc(FT ,P,N ) for SCC F

t demonstrated statistically signifi-
cant differences between the two risk groups for ST C I A

v

(p-value = 1.6 × 10−4) and SMC W
v (p-value = 4.7 ×

10−4). When employing ST C I A
t to obtain Risc(FT ,P,N ),

significant differences were not observed between the two
risk groups for SCC F

v (p-value = 0.87) and SMC W
v (p-

value = 0.8), Figure 2.2(c). Similarly, employing SMC W
t to

obtain Risc(FT ,P,N ) did not result in significant differences
between the two risk groups for ST C I A

v (p-value = 0.4) and
SCC F
v (p-value = 0.14), Figure 2.3(c). Additional measures

for all these experiments are listed in Table IV.

3) Survival Risk Assessment Using Deformation Features
From the Normal Parenchymal Regions: When training the
LASSO model to obtain Risc(FB) using each of the 3 training
cohorts, significant differences were observed when employing
SCC F

t , but not when employing ST C I A
t or SMC W

t . The KM
curves obtained for ST C I A

v and SMC W
v when employing

SCC F
t demonstrated significant differences between the two

risk groups (Figure 2.1 (d)), with p-values of 0.002 and
0.04 for ST C I A

v and SMC W
v , respectively. Additionally, when

training the LASSO model to obtain Risc(FB) using ST C I A
t ,

significant differences were not observed between the two
risk groups for SCC F

v (p-value = 0.54) and SMC W
v (p-

value = 0.7) (Figure 2.2(d)). Similarly, when training the
LASSO model to obtain Risc(FB) using SMC W

t , significant
differences were not observed between the two risk groups
for ST C I A

v (p-value = 0.4) and SCC F
v (p-value = 0.14)

(Figure 2.3(d)). Additional measures for these experiments are
listed in Table IV.

a) Sensitivity analysis on the number of annular bands for
deformation features extraction: As mentioned in Section IV.C,
the choice for the size of the annular rings in our experiments
(5mm) was based on retrospective studies that have recom-
mended 5mm as a safe clinical target volume margin for GBM
tumors [41]. However, for the sake of completeness, in the
supplementary document, we provide a comparative analysis
that shows the prognostication results using 20 annular bands
that were 3mm apart from each other. Results of this experi-
ment suggested that the measures derived from the 5mm band
seem to lead to improved metrics (i.e., p-values, C-indices),
as compared to the 3mm band measurements.

b) Extracting deformation features using another registration
approach: We have also compared the performance of the
deformation features obtained from ANTs to those obtained
using another registration approach, called Greedy [47],
to assess whether results obtained from the r-DepTH descriptor
would be affected as a function of the registration approach.
Our results demonstrated that both registration approaches
generated similar measures (p-values and C-indices) suggest-
ing that the r-DepTH descriptor may not specifically rely
on a certain registration approach to obtain the deformation
heterogeneity features. Results of this experiment are provided
in the supplementary document.

Additionally, box-plots for the 2 most discriminative COL-
LAGE and deformation features on SCC F

t , ST C I A
v , and SMC W

v
are shown in Figure 4. The top deformation features included
skewness at 10 mm as well as kurtosis at 15 mm. Similarly,
the top 2 COLLAGE features were median of sum average
and standard deviation of correlation.

4) Survival Risk Assessment Using Comparative Radiomic
and CNN Approaches: Risc(FRad) obtained from the LASSO
model when employing SCC F

t did not result in significant
differences on ST C I A

v (p-value = 0.9), or on SMC W
v (p-

value = 0.5), Figure 2.1 (a). Similarly, when training the
LASSO model using ST C I A

t (Figure 2.2 (a)) and using SMC W
t

(Figure 2.3(a)), significant differences were not observed
between the two risk groups on any of the test cohorts.
Table IV details all measures for these experiments.

For the adopted comparative CNN approach, the LASSO
analysis to obtain Risc(FDL) using SCC F

t demonstrated sig-
nificant differences between the two risk groups for ST C I A

v ,
(Figure 2.1 (b)), with p-value = 0.015. However, on SMC W

v ,
significant differences were not observed between the two
groups (Figure 2.1(b)), with p-value = 0.4. Similarly, when
training the LASSO model using ST C I A

t , significant differ-
ences were not observed between the two risk groups for
SCC F
v (p-value = 0.14) and for SMC W

v (p-value = 0.2)
(Figure 2.2 (b)). Interestingly, training the LASSO model using
SMC W

t demonstrated significant differences between the two
risk groups for ST C I A

v (p-value = 0.04), but not for SCC F
v (p-

value = 0.64) (Figure 2.3 (b)). Additional measures for these
experiments are listed in Table IV.

Additionally, combining FDL with Fr DepT H for survival
prognostication did not result in statistically significant dif-
ferences between the two risk groups across all experiments.
Specifically, using SCC F

t , a p-value of 0.38 was obtained
on ST C I A

v and a p-value of 0.62 was obtained on SMC W
v .

Similarly, when using ST C I A
t , a p-value of 0.67 was obtained

on SCC F
v and a p-value of 0.56 was obtained on SMC W

v .
Similarly, p-values of 0.75 and 0.86 were obtained for ST C I A

v
and SCC F

v when training the LASSO model using SMC W
t .

The poor results of this hybrid approach could be on account
of the poor results obtained from some of the experiments
that employed FDL alone. Additional measures for these
experiments are reported in Table IV.

VI. DISCUSSION

Highly aggressive tumors such as Glioblastoma (GBM)
tend to proliferate way beyond their visible tumor confines on



1774 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 41, NO. 7, JULY 2022

Fig. 4. Box plots of four statistically significantly different features between the high-risk and low-risk patients for (A) CCF cohort used for training
(SCCF

t ), (B) TCIA cohort used for testing (STCIA
v ), and (C) MCW cohort used for testing (SMCW

v ). The top row shows 2 deformation features and
their p-values for SCCF

t (A), STCIA
v (B), and SMCW

v (C). The first feature is skewness, a measure of data symmetry, at 10 mm and the second one
is kurtosis, a measure of the extreme values of a dataset, at 15 mm. The bottom row shows 2 COLLAGE features and their p-values for SCCF

t (A),
STCIA

v (B), and SMCW
v (C). The first feature is median of sum average, a measure of the mean of the gray level sum distribution of the image, and

the second one is standard deviation of correlation, a measure of the linear dependency of gray levels on those of neighboring voxels. The high-risk
group is in orange, whereas the low-risk group is in blue.

routine MRI scans. For instance, GBM tumors are known to
displace the surrounding tissue structures (phenomenon known
as mass effect), which often causes herniation in the normal
brain around tumor (BAT) parenchymal regions. Additionally,
extensive brainstem infiltration in GBM patients which
displaces the surrounding structures, is known to lead to
worse prognosis in end-stage patients [1], [3], [6]–[8].
In guided-surgery procedures, the additional use of
5-Aminolevulinic acid (5-ALA) has been explored in
many studies to assess its impact on overall survival and if it
can provide prognostic cues in GBM. For instance, the study
in [48] was conducted to assess the impact of additional use
of 5-ALA in intraoperative MRI (iMRI) assisted surgery of
GBMs on overall survival, and a significant increase of extent
of resection (EOR) was found when combining 5-ALA and
iMRI compared to use of iMRI alone but could not find any
correlations between increase of EOR and progression free
survival or overall survival. Also, the study in [49] showed a
small but significant increase in survival measures associated
with the use of 5-ALA-guided surgical resection with high
grade gliomas. Although promising, the use of 5-ALA is still
being explored. In the context of routine MR imaging, while
previous studies have employed radiomic (textural and shape
representations) and deep-learned features obtained from
within the visible peri-tumor confines alone [13], [14], [34],
no work to our knowledge has explicitly attempted to exploit
the quantifiable biomechanical deformation attributes from
the BAT regions, as a complementary radiomic feature,

in conjunction with features from the tumor and peri-tumoral
confines.

In this work, we presented r-DepTH, a radiomic descrip-
tor that leverages both morphological and biomechanical
attributes of the tumor regions, and employed it in the context
of survival prognostication in GBM. This was achieved by
combining measurements that capture subtle tissue deforma-
tion features occurring in the surrounding healthy BAT regions
due to mass effect, with 3D COLLAGE descriptor, which
measures local heterogeneity arising from tumor infiltration,
via higher order statistics of local gradient tensors on a voxel-
wise basis, from the tumor and peri-tumoral confines. This
integrated feature set was then employed to predict overall
survival in GBM tumors. The current work builds on the orig-
inal implementation of r-DepTH [23] and provides substantial
improvements in its performance and validation. Our previous
work employed a linear discriminant analysis (LDA) classifier
to obtain the top features to construct r-DepTH and classify
every GBM patient as belonging to poor or improved outcome.
In this work, the r-DepTH descriptor is evaluated for prog-
nosticating overall patient survival in GBM tumors using the
top features that were obtained using least absolute shrinkage
and selection operator (LASSO), along with a cox regression
model to stratify patients into low- or high-risk, based on their
overall survival (as a continuous variable). We also included
textural features from the necrotic core regions existing within
the visible tumor confines, in addition to the other two
compartments (enhancing lesion and peri-tumoral edema),
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into r-DepTH descriptor features, for survival prognostication.
Further, we conducted extensive comparative strategies to
demonstrate improved performance of r-DepTH compared to
other approaches in the context of survival prognostication
in GBM (radiomic-feature based [46] as well as deep-feature
based [16]). Additionally, we performed extensive comparative
experiments to assess if the performance of r-DepTH would
further improve, by combining r-DepTH features with deep
features [16] into the survival model as well as with clinical
features such as age and gender. We further evaluated the
robustness of the deformation features within r-DepTH across
two different registration approaches. Specifically, aside from
ANTs registration approach [35] that we used in our exper-
imental design, we evaluated the use of another registration
approach, namely, Greedy [47], to obtain the deformations
employed within r-DepTH to predict survival. Finally, our
evaluation of the r-DepTH descriptor in [23] was limited to a
total of n = 79 cases; 68 cases for training, and 11 cases for
testing. In this work, we evaluated the efficacy of the r-DepTH
descriptor on a total of n = 207 1.5 Tesla (T) MRI studies
(Gadolinium (Gd)-contrast T1w, T2w, T2w-FLAIR), obtained
from a multi-institutional cohort (with each cohort used once
for training and the other two being used independently for
testing (n1 = 53, n2 = 75, n3 = 79)).

Previous radiomic studies have investigated extracting
features from the intra-tumor and peri-tumoral boundaries,
for survival prediction or improving disease diagnosis. For
instance, the study in [21] exploited radiomic shape and
texture features extracted from both intra- and perinodular
regions (where annular rings were generated around the
nodule), to differentiate between cancerous lung nodules and
benign masses. Similarly, another study, [22], attempted to
prognosticate survival in GBM patients using radiomic texture
features extracted from the peritumoral brain parenchyma.
The COLLAGE features employed within r-DepTH have
previously demonstrated success in characterizing tumor het-
erogeneity from tumor and peritumoral regions to distinguish
similar-appearing pathologies, as well as prognosticate sur-
vival, across different applications such as brain, lung, and
prostate cancer [34], [50], [51]. In line with our findings, most
of these works have reported improvement in their diagnos-
tic/prognostic models with inclusion of both intra and peri-
lesion textural features to characterize disease heterogeneity.
Our work builds on these previous findings by combining
deformation features from brain around tumor region with the
textural features from the lesion and peri-lesional compart-
ments, into our descriptor, to further improve the prognostic
model for GBM survival. Results of our work from employ-
ing COLLAGE features or deformation features in a siloed
manner, to prognosticate survival across different cohorts,
demonstrated significant differences between the two risk
groups when training the model with one cohort (CCF), but
not when training with TCIA or MCW cohorts. Interestingly,
combining both feature sets into r-DepTH descriptor yielded
statistically significant differences across all training and test
cohorts, which demonstrates the impact of the proposed
descriptor in predicting survival as well as its generalizability
across different sites, through the feature combination that

allows for capturing mass effect (via deformation features)
as well as tumor infiltration (via COLLAGE features), with
both phenomena being associated with more aggressive tumor
behavior as well as poor prognosis.

Apart from radiomic features, a few DL approaches in lit-
erature have investigated survival prediction in GBM by inter-
rogating features from the visible tumor confines [16]–[18].
When replicating one such model in [16] for GBM survival
prognosis on our cohort, the results did not yield significant
differences between the high-risk and low-risk groups on some
of our experiments (e.g. p-value = 0.4, C-index = 0.58 when
training with CCF set and testing on MCW cohort). This,
we posit, could be on account of training the model on a
single slice as compared to the entire 3D volume. Further,
the scanner-specific variations in our multi-institutional cohort
are likely impacting the results of the adopted CNN approach,
similar to previous works demonstrating the same drawback
when applying CNN approaches on data collected from
multiple institutions [52]. Additionally, when the CNN model
was combined with r-DepTH to prognosticate survival, some
of our results were not significantly different between the
two risk groups, which could be on account of the average
performance of the DL approach alone. Also, when combining
clinical information, e.g., age and gender, into our descriptor
for survival analysis, results showed that this information
might aid in improving survival prognostication.

The closest work to our work on exploring structural
brain deformations was performed by [53], where structural
deformations were obtained from different parcellations in
the brain, which were then associated with overall survival
in GBM patients. Decreased survival time was found to be
associated with increased deformations in certain cognitive
and motor-control brain areas. Uniquely, our study found
statistically significant structural deformation changes around
the tumor boundaries up to 55mm, both in the training and
the test sets, that contributed to the prognostic signature
for distinguishing between high- and low-risk GBM patients.
As shown in Figure 4, some of our top deformation features
included skewness, an indicator of lack of data symmetry,
at 10mm. The higher skewness values exhibited by the high-
risk group with poor survival (Figure 4) could be linked to
the way such aggressive tumors proliferate and exert pressure
on BAT, and hence may lead to more lopsidedness in the
frequency distribution of the deformation magnitude values at
these regions, compared to the group with prolonged survival.
Kurtosis, a measure of the extreme values in a dataset,
at 15mm also turned out to be a top prognostic feature of
the two risk groups, where it showed higher values for the
high-risk group (Figure 4). This could be on account of the
higher heterogeneity of BAT in patients with poor survival, due
to active proliferation and herniation beyond tumor confines,
leading to higher deformation magnitudes with extreme values.

Our study did have some limitations. One limitation is
that we did not explicitly account for direction (i.e phase)
attributes of tissue deformations obtained in the BAT region.
Further, while r-DepTH in this study was hypothesized to
serve as a surrogate measure for the pressure/force exerted
by the tumor, this can only be affirmed via controlled in-vivo
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experiments in a pre-clinical setting. Lastly, molecular and
clinical information (i.e IDH, MGMT, EOR) was not available
for one of the three cohorts used, and hence could not be used
to control for clinical parameters, molecular status, and EOR,
while building our prognostic risk assessment models.

VII. CONCLUSION

In this work, we presented r-DepTH, an integrated radiomic
descriptor that aimed at comprehensively characterizing the
field effect from tumor, peri-tumor, and brain around tumor
regions, towards predicting overall survival in glioblastoma
patients. Our results suggest that combining measurements that
quantify subtle biomechanical deformations from the brain
around tumor, along with morphological features within the
tumor and peri-tumor confines allowed for improved prognos-
tic models for predicting overall survival in GBM, as compared
to using clinical variables, as well as using radiomic and deep-
learning features from the tumor confines alone. Future work
will involve integrating the direction (i.e. phase) attributes
of the tissue deformation along with deformation magnitude
features to build an integrated prognostic signature of the
tumor regions. Additionally, we plan to extend our analysis
to a large multi-site retrospective cohort, and eventually to
prospectively collected scans, for validation of r-DepTH as a
prognostic marker for GBM and other solid tumors.
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