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Embryo Grading With Unreliable Labels Due to
Chromosome Abnormalities by Regularized

PU Learning With Ranking
Masashi Nagaya and Norimichi Ukita , Member, IEEE

Abstract— We propose a method for human embryo grad-
ing with its images. This grading has been achieved by
positive-negative classification (i.e., live birth or non-live
birth). However, negative (non-live birth) labels collected in
clinical practice are unreliable because the visual features
of negative images are equal to those of positive (live birth)
images if these non-live birth embryos have chromosome
abnormalities. For alleviating an adverse effect of these
unreliable labels, our method employs Positive-Unlabeled
(PU) learning so that live birth and non-live birth are labeled
as positive and unlabeled, respectively, where unlabeled
samples contain both positive and negative samples. In our
method, this PU learning on a deep CNN is improved by
a learning-to-rank scheme. While the original learning-to-
rank scheme is designed for positive-negative learning,
it is extended to PU learning. Furthermore, overfitting in
this PU learning is alleviated by regularization with mutual
information. Experimental results with 643 time-lapse image
sequences demonstrate the effectiveness of our framework
in terms of the recognition accuracy and the interpretability.
In quantitative comparison, the full version of our pro-
posed method outperforms positive-negative classification
in recall and F-measure by a wide margin (0.22 vs. 0.69 in
recall and 0.27 vs. 0.42 in F-measure). In qualitative evalu-
ation, visual attentions estimated by our method are inter-
pretable in comparison with morphological assessments in
clinical practice.

Index Terms— Deep convolutional networks, positive-
unlabeled learning, learning-to-rank, mutual information.

I. INTRODUCTION

IN AN artificial fertilization process, medical doctors select
good embryos, each of which has a high probability of

live birth, based on their visual features. This process requires
expert skill because several embryo images of live birth and
non-live birth are similar to each other. Furthermore, we still
have insufficient knowledge about visual features for this
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classification [1]–[4]. The goal of this work is to identify
embryos each of which has a high probability of live birth
by visual features extracted from each embryo image. While
Deep Neural Networks (DNNs) improve such classification,
general DNNs require supervised training data. As with other
problems, the classification of embryos is achieved with super-
vised data [5]–[7]. In these papers, (I) the visual features of
embryo images are labeled by medical doctors [6] or (II) a
birth result (i.e., live birth or non-live birth) is used as a class
label for supervised learning [5]. However, both schemes have
the following unreliabilities:

1) Manual annotation [6], [7]: Medical doctors may
give inconsistent labels. This may happen due to
time-consuming difficult annotations for the embryo
grading.

2) Supervision by birth results [5]: In general, embryos
do not develop normally if they are visually graded
lower. However, even if an embryo has visual features
that are observed in those resulting in live birth, this
embryo cannot develop normally if it has chromo-
some abnormalities [8]–[10]. That is, visual features are
shared between live birth and non-live birth. This overlap
results in difficulty in utilizing the birth result as a label
for supervised learning.

To avoid these two unreliabilities, our method employs
semi-supervised classification with Positive-Unlabeled (PU)
learning [11]–[15]. This approach is further improved by
two more contributions, namely PU learning with efficient
ranking-based objectives and PU learning with unsupervised
regularization. Furthermore, the interpretation of our classifica-
tion result is visualized for supporting medical doctors. These
fourfold contributions are summarized as follows:

• PU learning for unreliable samples: Since many med-
ical image problems have a small amount of super-
vised training data, semi-supervised learning is widely
used [16]. PU learning [17] as semi-supervised learning
is useful for learning a limited number of labeled sam-
ples [11]–[15]. While an original scenario for PU learning
is that labeled positive samples and unlabeled samples are
provided for training, our proposed method employs PU
learning for suppressing an adverse effect of unreliably-
labeled samples.
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• PU learning with efficient ranking-based objectives:
Only a few PU learning methods are developed for DNNs
(e.g., [13], [14]), because of difficulty in designing proper
differentiable loss functions. We improve PU learning
on DNNs with learning-to-rank, which is validated with
classic machine learning methods [18].

• PU learning with unsupervised regularization: Over-
fitting is a major problem in PU learning [13]. We tackle
this problem with maximization of mutual information
(MI) [19]. Unlike [19], an end-to-end PU learning jointly
with all other losses is proposed.

• Visual interpretations of time-lapse embryo images:
Interpretability [20], [21] of DNNs is important in clinical
practice [22]–[24] as well as other real-world problems.
Our method refines such interpretability in time-lapse
images by a simple smoothness loss.

II. RELATED WORK

A. DNNs for Blastocyst Scores Given by Medical Doctors

As with many medical image problems, DNNs are useful
for the diagnosis of human preimplantation embryo viability.
In the current clinical practice, morphological assessments
such as Veeck criteria [25] and Gardner criteria [26] are used
in general. With the blastocyst score of each sample image
provided by medical doctors, DNNs are trained in [5], [6],
[27], [28], However, the blastocyst scores given by medical
doctors are inconsistent and insufficient for a better embryo
selection process.

B. DNNs for Live-Birth Probabilities

While real live birth and non-live birth embryo images are
used as training samples in [5], standard DNNs are just utilized
in these papers for feasibility studies. It is revealed that these
standard DNNs yield very low recall values (e.g., recall =
0.148 in [29]). Such low recall values are unacceptable in
clinical practice. One of the major reasons for the performance
degradation is unreliable and noisy labels included in live
birth and non-live birth results, which are unavoidable due
to chromosome abnormalities in embryos. On the other hand,
we propose a training scheme that is more appropriate for
a realistic case where reliable labels are unavailable. The
properties of these methods including our method, which are
described in this paragraph, are summarized in Table I.

C. Semi-Supervised Learning for a Small Amount of
Training Data

Since many medical problems have a small amount of super-
vised data, semi-supervised learning is useful [16]. In general
semi-supervised learning, a model trained by supervised data
(e.g., training data with positive and negative labels) is given.
This model is used for classifying unlabeled data, and then is
re-trained by the classified unlabeled data.

D. PU Learning as Semi-Supervised Learning

Unlike the aforementioned semi-supervised learning,
PU learning [11] assumes that only a part of the positive

data is labeled and the remaining positive and all negative
data are unlabeled. See a survey paper [17]. PU learning
works better than Positive-Negative (PN) supervised learning
empirically [13] and in theory in a specific condition [12].
This advantage motivates us to use PU learning (e.g., vascular
lesion detection [30], ROI localization [31] and video and vol-
ume segmentation [32]). While these methods simply follow a
general assumption of PU learning (i.e., only a part of positives
are labeled in training data), our proposed method employs
PU learning for suppressing an adverse effect of unreliably-
labeled data. While a huge number of methods are proposed
in order to cope with unreliably-labeled data (a.k.a training
data with noisy labels), they focus on loss functions [33],
noise modeling/estimation [34], and clean data selection [35].
Furthermore, all of these previous methods are designed for
PN learning. On the other hand, our proposed method is
designed so that PN learning with noisy labels is regarded
as PU learning.

However, due to the complexity of loss functions for
PU learning, its performance is still limited for DNNs. For
example, only a single type of loss, composite loss [36],
is applicable to DNNs in [15]. A non-negative risk estimator,
which estimates the risk of misclassification, proposed in [13]
allows us to use any losses for DNNs, while its performance
is limited due to its heuristic design. Instead of any risk
estimator, generalized expectation criteria [37] for posterior
regularization are used as an additional constraint in [14].

While PU learning is achievable by carefully-designed loss
functions and risk estimators as mentioned above, PU learning
can be improved also by reducing it to a ranking problem
defined by meaningful multivariate performance measures [11]
such as the balanced accuracy (i.e., Area Under Curve, AUC),
the precision-recall product (i.e., F-measure), and the mean
average precision (mAP) [11]. However, the AUC loss cannot
be used directly for DNNs because it is indifferentiable. This
problem is avoided by approximating the AUC loss with
differentiable ones [38]. While these approximate losses are
poor in performance and computationally expensive, the AUC
loss can be represented by more efficient approximations using
upper/lower bounds [39].

E. Regularized PU Learning

One of the major problems in PU learning is overfitting,
while unlabeled training data can be utilized for regulariza-
tion [40]. For example, unbiased PU learning [36] tends to
fall into overfitting so that most unlabeled data is classified as
negatives, as validated in [13] where a heuristic solution for
overfitting is proposed. While overfitting can be suppressed by
regularization, powerful regularization techniques such as the
contrastive loss [41] and the triplet loss [42] cannot be used
in PU learning because these techniques require all training
data to be labeled. Among various approaches for regular-
ization such as those with KL divergence, entropy, and self-
supervised teacher-student learning, mutual information [19]
is employed in our proposed method because mutual informa-
tion outperforms others in several scenarios, as demonstrated
in [19].
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TABLE I
SUMMARIZED PROPERTY COMPARISON BETWEEN PREVIOUS MACHINE LEARNING-BASED APPROACHES AND OUR PROPOSED METHOD. FROM A

VIEWPOINT OF MACHINE LEARNING, BETTER PROPERTIES ARE COLORED WITH RED

Fig. 1. PU learning for unreliable negative labels in embryo classification. Blue, red, and green rectangles indicate positive, negative, and unlabeled
samples, respectively. In (a) PN learning, samples labeled negative due to chromosome abnormalities (i.e., red dashed rectangles) are mixed with
positive samples in the feature space. In (b) PU learning, such negative samples (indicated by green dashed rectangles) are regarded as positive.

F. Visual Interpretability of DNNs

Interpretability (a.k.a. visual attention) of DNNs [20], [21] is
a major issue especially in clinical practice (e.g., Alzheimer’s
disease classification [22], 3D imaging data [23], and pathol-
ogy localization [24]). While these methods visualize atten-
tions in a still image, our method improves the consistency of
spatio-temporal visual attentions in time-lapse embryo images.

III. PROPOSED METHOD

Section III describes the proposed method as follows:
• Section III-A explains our basic strategy using PU learn-

ing for coping with unreliable positive-negative labels
observed due to chromosome abnormalities in embryos.

• Section III-B introduces two existing methodologies
closest to our method.

• Section III-C proposes our PU learning using learning-
to-rank extended by overfitting suppression.

• Section III-D describes how our PU learning exploits
unsupervised metric learning for regularization.

• Section III-E shows how we improve the interpretability
of classification results with temporal consistency.

A. PU Learning for Unreliable Labels

Live birth and non-live birth embryos are labeled as positive
and negative, respectively. As mentioned before, an embryo
results in non-live birth (i.e., negative) independently of its
visual features, if it has chromosome abnormalities [8]–[10].
Since such negative samples may have visual features that
are observed also in positive samples, PN learning leads to
poor performance on test data both with generalized and
overfitted boundaries, which are depicted by black solid and
black dashed curves in Figure 1 (a), respectively.

In our method, only positive labels are used, and all non-live
birth samples are regarded as unlabeled, as illustrated in Fig-
ure 1 (b). These unlabeled samples may include both visually-
positive and visually-negative samples, which are indicated by
green dashed and green solid rectangles, respectively. Assume
that these visually-positive non-live birth images are fewer
than visually-negative non-live birth images,1 the visually-
positive non-live birth images can be regarded as noisy out-
liers. Our proposed method neglects these noisy outliers for
avoiding undesirable overfitting, as illustrated in Figure 1 (b).
Under this assumption, we expect that our strategy with PU
learning improves the classification performance stochastically
rather than PN learning, even if the visually-positive non-live
birth embryos are misclassified to positive.

What happens with our strategy in clinical practice? For
implantation, in general, it is important not to miss any
embryos that have a high probability of live birth even though
false-positive embryos are detected. This is why our strategy
with PU learning is better than PN learning in terms of clinical
practice as well as classification performance.

B. Existing PU Learning Methods Improved by
Overfitting Suppression and Rank Learning

In [13], DNN (denoted by N(x) : R
d → R

c where x is
a d-dimensional query and c denotes the number of classes;
c = 2 for binary classification) is trained by the gradient of
a risk estimator, R, instead of directly using a loss function.
Given N(x):

R(N(x)) = π+ R++(N(x))

+ max
{
0, R−

u (N(x)) − π+ R−+(N(x))
}
,

1The literature [1] reported that only 6.8 % embryos each of whose
morphological quality is excellent are aneuploid.
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R++(N(x)) = 1

|S+|
∑

x∈S+
�s (N(x),+1) ,

R−+(N(x)) = 1

|S+|
∑

x∈S+
�s (N(x),−1) ,

R−
u (N(x)) = 1

|Su |
∑
x∈Su

�s (N(x),−1) , (1)

where R
cp
cq (N(x)) denotes the following marginal probability

of samples labeled as cq . S+ and Su are a set of positive
and unlabeled samples, respectively. Given a mini-batch for
learning, R

cp
cq (N(x)) is the mean of losses, �s , over each

mini-batch in the case that a sample labeled as cq is predicted
to be cp by N(x); cp ∈ {+,−} and cq ∈ {+, u} where +,−,
and u denote positive, negative, and unlabeled, respectively.
We use the sigmoid function as �s based on the holistic
analysis shown in [13]. π+ denotes the positive-class-prior
probability. R−

u (N(x)) − π+ R−+(N(x)) in the second term is
a transformation of the risk of negative samples, R−− . This
second term is clipped by zero, in order to avoid overfitting
where all unlabeled samples are regarded as negative samples.
The risk estimator (1) is named the non-negative PU (nnPU)
loss after the zero clipping. Refer to [13] for more details.
While the effectiveness of nnPU learning is validated with
simple shallow networks, (e.g., 6-layer perception and 13-layer
CNN at most), the risk estimator expressed by Eq. (1) is based
on a heuristic (i.e., zero clipping) for avoiding overfitting.

For more complex networks, we propose employing
ranking-based measures that have the following two prop-
erties. (I) The ranking-based measures allow us to directly
and accurately improve classification [38], [39] rather than
standard classification losses such as soft-max cross-entropy.
(II) Ranking-based measures can be employed to improve PU
learning [11].

Among several ranking-based measures, our method
employs the approximated AUC of a Precision-Recall
(AUCPR) curve [39]. This is because AUCPR is robust to
an imbalance between positive and negative samples [43].
This property is beneficial for artificial fertilization because
the number of negative samples (i.e., non-live birth) is much
more than the number of positive samples (i.e., live birth).
In addition, this approximated AUCPR [39] has advantages
in efficiency for learning and in applicability to any learning
architectures.

Given N(x), a PR curve is drawn by varying a threshold
of the score for binary classification. In a discrete manner,
(I) given a threshold for precision = α, its recall is computed,
and (II) the sum of the recalls of varying α is regarded as
AUCPR. For simplicity, α is varied at k regular intervals
between π+ and 1 so that αt = π+ + (1−π+)t

k where t =
{1, . . . , k}. The following saddle-point problem is resolved for
optimizing AUCPR:

min
N

max
λ1,...,λk

L(N, λ), (2)

L(N, λ) =
k∑

t=1

�t

(
(1 + λt )L

++ (N(x), bt )

Fig. 2. Examples of visual attentions.

+ λt
αt

1 − αt
L −− (N(x), bt ) − λt |S+|

)
, (3)

where λt and bt denote a Lagrange multiplier and a score
threshold for “precision ≥ α” at t-th interval, respectively.
L ++ (N, bt ) and L −− (N, bt ) denote the sum of errors on
positive and negative samples, respectively, as follows:

L ++ (N(x), bt ) =
∑

x∈S+
�h(N(x), bt ,+1),

L −− (N(x), bt ) =
∑

x∈S−
�h(N(x), bt ,−1),

�h(N(x), bt , y) = max (0, 1−y · (N(x) − bt )) (4)

where �h is the hinge loss of N(x) − bt with its label
y ∈ {−1, 1}. We can resolve the above saddle-point prob-
lem (3) by the following iterative stochastic gradient descent
updates using a subgradient method for approximate saddle-
points [44], if L ++ and L −− are convex, as proven in [39],
[45]:

N (i+1) = N (i) − γ∇L(N (t), λ(i)),

λ(i+1) = λ(i) − γ∇L(N (t+1), λ(i)),

where i and γ denote the number of iterations and a constant
stepsize, respectively.

C. PU Learning Improved by Extended Rank Learning

While Eq. (4) is satisfied in PN learning, S− denotes a set
of negative samples but the negative samples are unavailable
in PU learning. We need to modify Eq. (4) for unlabeled
samples. To this end, L −− (N(x), bt ) is replaced in accordance
with [13]:

L −− (N(x), bt ) = −L −+ (N(x), bt ) + L −
u (N(x), bt ),

L −
u (N(x), bt ) =

∑
x∈Su

�h(N(x),−1) (5)

By substituting Eq. (5) to Eq. (3), the following surrogate
function for optimizing AUCPR in PU learning is obtained:

max
λ1,...,λk

k∑
t=1

�t

(
(1 + λt )L

++ (N(x), bt )

+ λt
αt

1 − αt

(
L −

u (N(x), bt ) − L −+ (N(x), bt )
)

− λt |S+|
)
, (6)

However, the second term of the above AUCPR-PU loss,
Eq. (6), may tend to overfit so that most unlabeled samples
are classified as negative [13]. This overfitting is caused in a
way that

(
L −

u (N(x), bt ) − L −+ (N(x), bt )
)

in Eq. (6) keeps
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Fig. 3. Network for framewise processing in our method. Parts with a background colored with light orange come from the base network [21].

Fig. 4. Performance evaluation with AUCROC.

decreasing. This overfitting can be avoided by clipping this
term:

max
λ1,...,λk

k∑
t=1

�t

(
(1 + λt )L

++ (N(x), bt )

+ max

{
β, λt

αt

1 − αt

(
L −

u (N(x), bt ) − L −+ (N(x), bt )
)}

− λt |S+|
)
, (7)

where β is a hyperparameter for clipping. β = 4 in our experi-
ments. We call the loss expressed by Eq. (7) the AUCPR-nnPU
loss.

D. Regularization With Mutual Information Maximization

In our proposed method, PU learning is further improved
by metric learning. Metric learning [42], [46] allows us to
optimize the feature space so that samples in the same class
get close together and those in different classes depart from
each other. This property is also effective for our PU problem.
However, most metric learning methods are designed for
supervised learning so that all training data is labeled. This
assumption is not satisfied in our PU problem.

For metric learning in our PU problem, unsupervised metric
learning [19] can be employed. This metric learning [19]

makes the clusters of samples so that the distributions of
intra-cluster and inter-cluster distances are small and large,
respectively.

For this clustering, a sample z is slightly changed to a
new sample z�. For example, if z is an image, z is rotated,
noised, and/or blurred in order to generate z�, as with image
deformations for the general data augmentation. Since z and z�
should be close to each other in the feature space, the following
mutual information is maximized for the clustering:

I (z, z�) = H (z) − H (z|z�), (8)

where H (z) and H (z|z�) denote the entropy function and
the conditional entropy, respectively. While there should be
a trade-off between H (z) and H (z|z�), the feature space is
trained so that similar samples make the cluster and other
samples separate from each other. The mutual information
of two discrete random variables, X and Y , is expressed as
follows:

I (X, Y ) =
∑
x∈X

∑
y∈Y

p(x, y) · ln
p(x, y)

p(x)p(y)
, (9)

where p(x, y) denotes the joint distribution function of X and
Y . p(x) and p(y) are the marginal probability distribution
functions of X and Y , respectively.

Assume that C denotes the number of clusters, and 	(z) is a
set of C probability scores of z. The i -th score is a probability
that z belongs to i -th cluster. 	 is a DNN in our method.
With Eq. (9), the loss function for maximizing the mutual
information can be expressed as follows:

L M I = −I (z, z�) = −
NC∑
c=1

NC∑
c�=1

Pc,c� · ln
Pc,c�

Pc · Pc�
, (10)

P = 1

NB

NB∑
i=1

	(xi ) · 	(x �
i )

T
, (11)
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Fig. 5. Performance evaluation with AUCPR.

where P , NC , and NB denote a NC × NC matrix, the number
of the clusters, and the number of samples in a mini batch,
respectively. Pc and Pc� denote a sum of values in the c-th
row and the c�-th column of P , respectively.

While the original L M I is proposed to use any kind of
image deformations for making z� from z, some of them are
inappropriate for embryo classification. If z� is away from the
distribution of possible embryo images, metric learning using
the loss (10) is corrupted. Indeed, the importance of appropri-
ate image deformations for metric learning is validated in the
literature [47]. We empirically validated the appropriate image
deformations for embryo image classification; see Table III.

E. Temporal Visual Attentions

While our embryo grading is done in time-lapse images
rather than in each frame, an embryo is not changed signifi-
cantly in most sequential frames (see Figure 2 (a)), because an
embryo cleaves at around 12-24 hours intervals before implan-
tation. For this temporally-sparse embryo cleavage, dense
temporal attention is not beneficial. Instead of such temporal
attentions, our method focuses more on spatial attention.

In time-lapse images, spatial attentions on sequential frames
should be almost equal because these images are almost equal
visually. However, a framewise attention mechanism may
produce inconsistent results between the sequential frames,
as shown in Figure 2 (b). While these unreliable results can
be possibly resolved by more training samples, the availability
of medical data is often limited.

Our method achieves temporally-consistent spatial atten-
tions by smoothness constraint. This temporal smoothness loss
is given by the mean squared error between features used for
generating attention maps at t-th and (t + 1)-th frames:

L M S E = 1

NB

NB∑
i=1

(
	(xt+1

i ) − 	(xt
i )

)2
, (12)

where xt
i denotes i -th image captured at t-th frame. The results

of this loss are shown in Figure 2 (c).

F. Implementation Details

Figure 3 shows the architectures of our network. It consists
of the base network (including feature extractor, classifier, and
attentionor) and three branches for loss computation. An input
frame at t is fed into the feature extractor.

Fig. 6. Classification performance evaluation (threshold = 0.5).

1) Base: The feature extractor, classifier, and (framewise)
attentionor are constructed as with [21] as described below.



326 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 41, NO. 2, FEBRUARY 2022

ResNet56 [48] pretrained on ImageNet [49] is divided in
a 46-th layer into two parts. The front and back parts are
used as the feature extractor and classifier, respectively. While
ResNet with any layers is applicable in our proposed method,
a relatively-deep ResNet56 (e.g., deeper than ResNet34 and
ResNet50) is employed for improving the representation abil-
ity. Finally, the output of the classifier, which is a 2048-
dimensional feature, is fed into the global average pool-
ing (GAP) layer and the fully-connected (FC) layer in order
to get a 2D feature, Fct in Figure 3, from a t-th frame
(i.e., “Frame t” in the figure). The attentionor consists of
10 convolutional layers. The output of the attentionor, which
is also a 2048-dimensional feature, is fed into a 1 × 1 conv
layer and the GAP layer in order to get a 2D feature, Fat

in Figure 3. In addition to Fat , a visual-attention image
is produced from the output of the attentionor through a
1 × 1 conv layer, the batch normalization, and the sigmoid
activation.

2) Ours: Fct and Fat are used for computing Binary Cross-
Entropy (BCE), nnPU, AUCPR, and AUCPR-nnPU losses in
the C-branch (colored with the blue background in Figure 3)
and the A-branch (colored with the green background in
Figure 3), respectively. In all of Eq. (1) of nnPU loss, Eq.
(3) of AUCPR loss, and Eq. (7) of AUCPR-nnPU loss, these
features are represented as N(x). While PN learning uses only
BCE, the risk estimator R in Eq. (1), AUCPR loss in Eq. (3),
and AUCPR-nnPU loss in Eq. (7) are used for nnPU learning,
AUCPR learning, and our proposed AUCPR-nnPU learning,
respectively. The classifier and attentionor are augmented by
the temporal-smoothness loss. This loss is computed by MSEs
(indicated by “MSE loss” in the figure) between Fct and
Fct+1 and between Fat and Fat+1, as expressed by Eq.
(12). When updating the network weights with frame t , frame
at t + 1 is feed-forwarded to the network to get Fct+1 and
Fat+1, while the frame t + 1 itself is not used for the update.
For MI loss, the output of the classifier is also fed into
another branch consisting of the GAP layer and the FC layer.
While the structure of this MI-branch (colored with the yellow
background in Figure 3) is equal to that of the C-branch, these
two branches do not share their weights for optimizing each
branch for each loss.

Our code is available at https://github.com/masashi-
nagaya/embryo-analysys/tree/master.

IV. EXPERIMENTS

A. Dataset

All experiments were done with gray-scale time-lapse image
sequences. 9%, 69%, and 22% of patients are in their twenties,
thirties, and forties, respectively. All sequences were collected
in OB-GYNs under either of the two conditions below:

(A) A frame-capture interval is 10 mins. A frame size is
250 × 250 pixels.

(B) A frame-capture interval is 15 mins. A frame size is
500 × 600 pixels.

101 and 542 sequences were collected under (A) and (B),
respectively. While these different conditions are useful for
validating the robustness of each method against the domain

TABLE II
THE NUMBER OF IMAGE SEQUENCES IN EACH GROUP FOR THE

CROSS VALIDATION

gap, it is better to guarantee spatial and temporal alignment
between different sequences. In our experiments, spatial align-
ment is done, so that (I) a rectangle enclosing an embryo is
annotated at each frame and (II) this rectangle is cropped out
and rescaled to 224 × 224 pixels, which is the input size of
our network shown in Figure 3. By extracting frames every
60 mins (i.e., every six and four frames from sequences in
(A) and (B), respectively), six and four sub-sequences are
produced from original sequences in (A) and (B), respectively.
Since these sub-sequences have the same frame-capture inter-
val (60 mins), they are roughly aligned temporally. In total,
(6 × 101 = 606) and (4 × 542 = 2, 168) sub-sequences were
produced from the original sequences in (A) and (B), respec-
tively. In each original sequence, the first sub-sequence begins
around 25 hours after fertilization. The number of frames in
each original sequence varies between around 100 and 700.
While the visually-similar temporal frames of each embryo
are useless for representing a temporal history, even subtle
variations in these frames are useful for data augmentation.
This idea is supported by Figure 2 (b) where almost equal
frames produce different attentions probably because a DNN
finds subtle differences between these frames (i.e., t and
t + 1) due to overfitting. For suppressing this overfitting, all
sub-sequences were used as independent training sequences
in our experiments. These sub-sequences are flipped and
rotated for further data augmentation. In what follows, these
sub-sequences are called sequences.

The sequences are randomly divided into five groups for
the cross-validation, as shown in Table II. A fifth group
was always used as validation data. The validation data was
used for optimizing parameters (i.e., learning rate, epochs, the
dimension of a feature vector = 2048, optimizer = Adam)
before evaluation on test data. The learning rate and the
number of epochs differ among the variants of our method
(i.e., (a) – (k) in Section IV-B). Each of the remaining four
groups was used as test data, while the other three groups were
used as training data. All embryo images are automatically
annotated based on their birth results. While images labeled
as non-live birth in the training data are used as unlabeled
samples in our PU learning, those in the validation and test
data are used as negative samples for evaluation. The mean of
these four trials is shown in Section IV-B.

B. Classification Performance Evaluation

We conducted evaluation experiments with the following
10 variants of our method, (b) – (k). All of these 10 variants
are implemented on our proposed network shown in Figure 3.
For comparison, a previous PN classifier (a) is also evaluated.

(a) F-PN-CNN [5]: A CNN-based PN classifier [5].
(b) F-PN: Framewise PN learning trained by BCE.
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(c) F-nnPU: Framewise nnPU learning trained by the nnPU
loss expressed by Eq. (1).

(d) F-AUCPR: Framewise PU learning trained by the
AUCPR loss expressed by Eq. (3).

(e) F-AUCPR-nnPU: Framewise PU learning trained by
Eq. (7).

(f) F-PN-MI: (b) + the MI loss expressed by Eq. (10).
(g) F-nnPU-MI: (c) + the MI loss expressed by Eq. (10).
(h) F-AUCPR-MI: (d) + the MI loss expressed by Eq. (10).
(i) F-AUCPR-nnPU-MI: (e) + the MI loss expressed by

Eq. (10).
(j) S-Mean: The classification probabilities of all time-

lapse features in each sequence are averaged with
weights for classifying this sequence. The weight of each
frame is equal to its frame number (i.e., the weight of
f -th frame is f ). The feature vector (i.e., Fct ) is trained
by PU learning in (i).

(k) S-GRU: The feature vector (i.e., Fct ) trained by our
PU learning (i) is extracted from each frame in the
sequence. These feature vectors are sequentially fed into
a Gated Recurrent Unit (GRU) [50]. The output of the
GRU at the last frame is fed into a fully-connected layer
followed by the softmax layer to get the classification
probabilities.

Except for (a) and (b), all of these variants used PU learning.
While binary classification is done framewise (i.e., in all
frames independently) in (a) – (i), all frames in each sequence
are used for its classification in (j) and (k).

Figures 4 and 5 show classification results evaluated by
AUCPR and AUC of a Receiver Operating Characteristic
(AUCROC), which is independent of a binarization threshold
for the classification probability, respectively. In these results,
we can see the following observations:

• In both metrics, all PU learning methods (c) – (e) and
(g) – (i) work better than PN learning (a) and (b).

• In both metrics, each method with MI is superior to the
one without MI.

• In general, a sequence of time-lapse frames has rich
information for a recognition task. However, in our exper-
iments, classification methods using time-lapse image
sequences (i.e., (j) and (k)) are not superior to those with
frames (i.e., (b) – (i)). This might be because the variation
of sequences is larger compared to the amount of training
data.

• In both metrics, (f), (g), (h), and (i) are almost compara-
ble.

While AUCPR and AUCROC are appropriate for evaluating
the performance of each method independently of a threshold,
medical doctors may require binarized classification results
(i.e., live birth or non-live birth) in clinical practice. Figure 6
shows the precision, recall, F-measure, false-positive rate, and
negative-predictive rate provided with a binarization threshold
= 0.5 (i.e., the mid value of 0 and 1).

In the F-measure (i.e., the harmonic mean of the precision
and recall), our proposed methods (e) and (i) get the best
performance in scores without and with MI, respectively. It can
also be seen that (i) with MI is superior to (e) without MI;

Fig. 7. Classification performance evaluation. The best threshold was
determined based on the validation data.

0.423 vs. 0.405. However, we pay more attention to the recall.
This is because it is more important to find positive-class
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Fig. 8. Feature distributions. The features are visualized with their 2D
representations obtained by t-SNE. The left and right figures show the
results of PN learning (b) and our proposed method (i), respectively. Blue
and red marks indicate ground-truth live birth and non-live birth embryos,
respectively. Predicted live birth and non-live birth embryos are indicated
by · and ×, respectively.

embryos, which have a high probability of being live birth,
in order not to miss the pregnancy opportunity, as described
in Section III-A. In the recall, our proposed method (i) can
outperform others with large margins.

While the aforementioned results are obtained with a
manually-given threshold (= 0.5), we can select a thresh-
old based on the validation data so that the F-measure is
the highest with the selected threshold. The best thresholds
were selected in each method independently. These thresholds
were used for evaluating the classification results, shown in
Figure 7. While margins between our proposed method and
others is not large in this case, our proposed method (i) with
MI is still the best among all variants in terms of the recall
and the F-measure.

Since our focus is to detect embryos each of which has
a high probability of live birth, the false-positive rate is
inevitably increased. However, the increase can be suppressed
with a threshold given by the validation data; “0.04 in (c) vs.
0.41 in (i) with a threshold = 0.5” and “0.58 in (c) vs. 0.66 in
(i) with a threshold given by the validation data.” On the other
hand, the negative-predictive rate is successfully gained by our
method (i) compared with other framewise methods (i.e., (a) –
(h)) in both of Figures. 6 and 7.

1) Run-Time Analysis: The run time for inference with the
proposed network architecture shown in Figure 3 (i.e., methods
(b) – (i)) is 0.0045 seconds per frame, which is sufficiently
fast for analyzing many sequential frames.

C. Feature Distribution Analysis

In order to visually see the effect of PU learning compared
to PN learning, the distributions of positive and negative test
samples are visualized by t-distributed Stochastic Neighbor
Embedding (t-SNE) [51]. t-SNE obtained the 2-D feature
vectors from the 2048-D feature vectors used in our network.
Figure 8 shows the obtained distributions of the features in
PN learning (b) and our proposed PU learning (i), which are
shown in the left and right figures, respectively. These results
are obtained with the binarization threshold determined based
on the validation data.

In PN learning, positive and negative test samples (i.e.,
blue and red marks) are almost uniformly distributed. As a

result, only a few test samples are classified to be positive
(i.e., indicated by dots in Figure 8). In our proposed method,
on the other hand, many positive samples are located where
test samples are classified to be positive (i.e., indicated by
dots in Figure 8). In our proposed method, while many false-
positives (indicated by red dots) are detected, many true-
positives (indicated by blue dots) are also detected, as enclosed
by a solid black ellipse in the figure. This is a big difference
between the results of PN learning and our proposed method.
This observation is identical to the results shown in Figure 7.
That is, the recall of our proposed method (i) is much better
than that of PN learning (b).

D. Effect of Image Deformations on the MI Loss

As described in Sec. III-D, the types of image deformations
used in the MI loss, expressed by Eq. (10), affect the perfor-
mance of the MI loss. Table III shows the performance change
depending on the image deformations. We verified two types
of the image deformations:

V1: Only random image rotation and random image
flipping were given to training images.

V2: In addition to V1, random color jittering was
also provided. We used the Gaussian blur (σ ∈
[0.1, 2.0]) and changed brightness (×[0.2, 1.8]), con-
trast (×[0.2, 1.8]), saturation (×[0.2, 1.8]), and hue
(×[−0.2, 0.2]).

Our motivation in this experiment was to verify whether or
not the color jittering schemes in V2 change positive/negative
images so that they deviate from the real distribution of the
positive/negative images.

In Table III, we can see the following observations:
• In our proposed method (i), the threshold-independent

measures (i.e., AUCPR and AUCROC) and the threshold-
dependent measures (i.e., recall and F-measure) are better
in V2 and V1, respectively. This suggests that image
jittering should not be used in clinical practice where
medical doctors require the binary classification results
obtained by a threshold.

• Compared with the threshold-dependent measures where
binarization is done only with better thresholds chosen,
difficult binarization where positive and negative samples
are mixed is required in other thresholds in the threshold-
independent measures. Therefore, our interpretation about
the superiority of V2 in the threshold-independent mea-
sures is that, for such mixed positive and negative sam-
ples, color jittering schemes in V2 might produce embryo
images that are useful for correct binarization.

• While the threshold-independent measures are superior in
V2 than V1 in our proposed method (i), it is possible that
this effect is obtained not by image jittering for the MI
loss but by general data augmentation. In order to identify
the cause of the performance gain in V2, the performance
measures in (e) are also shown in Table III. Since (i) with
V2 is better than (e) with V2 in all cases except precision
(i.e., 0.311 in (i) vs. 0.315 in (e)), we conclude that the
performance gain with V2 is mainly obtained by the MI
loss.
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Fig. 9. Visual attentions of true-positives, true-negatives, false-positives, and false-negatives obtained by our proposed method (i). Upper and lower
rows in each case show observed images and their corresponding visual attentions, respectively. Regions enclosed by orange, black, and green
lines indicate dense inner cell mass, nutrient ectoderm, and fragments, respectively. A value overlaid in each image is a probability score of being
positive.

TABLE III
PERFORMANCE CHANGE DEPENDING ON THE IMAGE DEFORMATIONS USED IN THE MI LOSS. THE HIGHEST SCORE IN EACH COLUMN IS

COLORED WITH RED

E. Visualization Results

As described in Sec. III-F, a visual-attention image is
produced in the base network [21]. In order to validate the
reasonability of the visual attentions, those of true-positives,
true-negatives, false-positives, and false-negatives are shown
in Figure 9.

1) True-Positives: While the images are significantly differ-
ent depending on the cleavage stage, dense inner cell mass and
nutrient ectoderm are highly activated in the visual attentions
of the left two examples. The rightmost example might be
classified to be positive because the blast is uniform and no
fragments are observed. In that sense, we can interpret this
result so that no fragments are observed in highly-activated
regions where fragments are likely to appear.

2) True-Negatives: In the right two examples, fragments are
highly activated as the evidence of being negative in early
cleavage stages. In the leftmost example, since the visual
attentions are activated around the boundary of the embryo,
the density of the inner cell mass might be considered to be
not dense enough.

3) False-Positives: In the left two examples, inner cell
mass might be considered to be dense by mistake. Since
these misrecognitions might be avoided by medical doctors,
more training images allow our proposed method to correctly
visualize the evidences. The rightmost example is a negative
test sample, while its appearance seems to be positive. This
negative test sample might have a chromosome abnormality,
or it is too difficult to classify this test sample as negative
because it is still in the early cleavage stage.
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4) False-Negatives: While all of these test samples are
positive, there are fragment-like regions in these images. These
regions might confuse the classifier.

V. CONCLUDING REMARKS

A. Summary and Discussions

This paper proposed a method for embryo classification by
PU learning improved by learning-to-rank. Since our proposed
method employs real live birth and non-live birth results
as labels given to training data, the training data can be
efficiently collected with no manual annotations. While such
birth results are unreliable/noisy for classification using visual
features, PU learning allows us to alleviate an adverse effect
of unreliable/noisy labels in our method unlike a general usage
of PU learning. Experimental results demonstrate the positive
impacts of our proposed loss function for PU learning (i.e.,
loss expressed by Eq. (7)), unsupervised metric learning for
PU learning (i.e., achieved by loss expressed by Eq. (10)), and
appropriate data augmentation for this metric learning.

In binary classification (i.e., live birth or non-live birth) for
supporting medical doctors in clinical practice, the recall value
is important in order to not miss good embryos. Our proposed
method gets a higher recall value than PN classification
(0.87 vs. 0.68), while the precision value is also improved
a little, as shown in Figure 7.

Visual attentions can be also improved even in an insuf-
ficient number of training images by our temporal smooth-
ness loss (Eq. (12)), as shown in Figure 2. Its effectiveness
is validated in comparison with well-known morphological
assessments [25], [26], as shown in Figure 9. This consistency
between the decisions of medical doctors and our proposed
method allows the doctors to confirm the reliability of each
classification result.

B. Limitations and Future Work

Although our proposed method outperforms previous ones,
its performance is expected to be further improved. While
our proposed method employs only positive and unlabeled
samples, the effectiveness of a combination of positive, neg-
ative, and unlabeled samples are demonstrated recently [52].
Such negative samples are available in the artificial fertilization
process also so that discarded embryos, which are selected as
apparently low-quality ones by medical doctors, are regarded
as negative samples.

Embryo grading with time-lapse images is done in clin-
ical practice [53]. The time-lapse images are employed for
automatic embryo grading using graphical models [54] and
DNNs [55], [56], while the effectiveness of the time-lapse
image evaluation is not clear yet [3], [4]. For the time-lapse
analysis, while a recurrent network using features extracted
by our proposed method (i.e., (k) S-GRU in Section IV-B) is
also evaluated in our experiments, it is inferior to framewise
classification. Our future work includes more exploration of
effective time-lapse analyses.

In experiments shown in our paper, every embryo region
was manually extracted as a rectangle. This manual annotation
should be avoided in clinical practice. In addition, the rectangle

contains background pixels as well as embryo pixels. Such
background pixels are irrelevant to the embryo classification
task. These problems can be avoided by employing pixelwise
region segmentation such as [57], [58] instead of the manual
annotation.

An essential limitation of our proposed method is that it
cannot discriminate live birth embryos from visually-positive
non-live birth embryos including chromosome abnormalities.
In order to resolve this problem, another approach is required.
For example, a larger number of embryo images might reveal
subtle visual differences between embryos with and without
the chromosome abnormality. For finding such subtle visual
differences, genetic analysis such as Preimplantation Genetic
Diagnosis probably provides us with reliable supervised data
about the chromosome abnormality.
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