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Abstract— Semi-supervised learning provides great
significance in left atrium (LA) segmentation model
learning with insufficient labelled data. Generalising
semi-supervised learning to cross-domain data is of
high importance to further improve model robustness.
However, the widely existing distribution difference and
sample mismatch between different data domains hinder
the generalisation of semi-supervised learning. In this
study, we alleviate these problems by proposing an
Adaptive Hierarchical Dual Consistency (AHDC) for the
semi-supervised LA segmentation on cross-domain data.
The AHDC mainly consists of a Bidirectional Adversarial
Inference module (BAI) and a Hierarchical Dual Consistency
learning module (HDC). The BAI overcomes the difference
of distributions and the sample mismatch between two
different domains. It mainly learns two mapping networks
adversarially to obtain two matched domains through
mutual adaptation. The HDC investigates a hierarchical
dual learning paradigm for cross-domain semi-supervised
segmentation based on the obtained matched domains.
It mainly builds two dual-modelling networks for mining

Manuscript received August 13, 2021; revised September 15, 2021;
accepted September 15, 2021. Date of publication September 17, 2021;
date of current version February 2, 2022. This work was supported in part
by the Key-Area Research and Development Program of Guangdong
Province under Grant 2019B010110001; in part by the Key Program for
International Cooperation Projects of Guangdong Province under Grant
2018A050506031; in part by the National Youth Talent Support Pro-
gram under Grant RC2020-01; in part by the Guangdong Natural Science
Funds for Distinguished Young Scholar under Grant 2019B151502031;
in part by the Natural Science Foundation of Guangdong Province
under Grant 2020B1515120061; in part by the National Natural Science
Foundation of China under Grant 61771464, Grant U1801265, and
Grant U1908211; in part by the British Heart Foundation under Project
TG/18/5/34111 and Project PG/16/78/32402; in part by the European
Research Council Innovative Medicines Initiative (DRAGON) under
Grant H2020-JTI-IMI2 101005122; in part by the AI for Health Imag-
ing Award (CHAIMELEON) under Grant H2020-SC1-FA-DTS-2019-1
952172; and in part by the U.K. Research and Innovation Future Lead-
ers Fellowship under Grant MR/V023799/1. (Corresponding authors:
Heye Zhang; Guang Yang.)

Jun Chen and Heye Zhang are with the School of Biomedical Engi-
neering, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
(e-mail: chenj657@mail2.sysu.edu.cn; zhangheye@mail.sysu.edu.cn).

Raad Mohiaddin, Tom Wong, David Firmin, Jennifer Keegan, and
Guang Yang are with the Cardiovascular Research Centre, Royal
Brompton Hospital, London SW3 6NP, U.K., and also with the
National Heart and Lung Institute, Imperial College London, London
SW7 2AZ, U.K. (e-mail: r.mohiaddin@rbht.nhs.uk; t.wong2@
rbht.nhs.uk; d.firmin@imperial.ac.uk; j.keegan@imperial.ac.uk;
g.yang@imperial.ac.uk).

Digital Object Identifier 10.1109/TMI.2021.3113678

the complementary information in both intra-domain and
inter-domain. For the intra-domain learning, a consistency
constraint is applied to the dual-modelling targets to exploit
the complementary modelling information. For the inter-
domain learning, a consistency constraint is applied to the
LAs modelled by two dual-modelling networks to exploit the
complementary knowledge among different data domains.
We demonstrated the performance of our proposed AHDC
on four 3D late gadolinium enhancement cardiac MR
(LGE-CMR) datasets from different centres and a 3D CT
dataset. Compared to other state-of-the-art methods, our
proposed AHDC achieved higher segmentation accuracy,
which indicated its capability in the cross-domain semi-
supervised LA segmentation.

Index Terms— Semi-supervised learning, cross-domain
study, hierarchical dual consistency, bidirectional adversar-
ial inference.

I. INTRODUCTION

SEMI-SUPERVISED learning provides great significance
in left atrium (LA) segmentation model learning with

insufficient labelled data. Automated and accurate LA seg-
mentation is a crucial task to aid the diagnosis and treatment
for the patients with atrial fibrillation (AF) [1]–[4]. Deep
learning based approaches have great potential for the LA
segmentation [5], [6]. However, it is expensive and laborious
to annotate large amounts of data by experienced experts
for training an accurate LA segmentation model based on
deep learning [7]. Since semi-supervised learning can alleviate
the need for the labelled data by effectively exploiting the
unlabelled data to learn deep models [8]. Semi-supervised
learning is able to overcome the insufficient labelled data
for advancing the accurate LA segmentation, benefiting the
subsequent diagnosis and treatment for the patients with AF.

Generalising semi-supervised learning to cross-domain data
for the LA segmentation is of high importance to improve
model robustness. Semi-supervised learning aims to mine
effective hidden information from unlabelled data to support
model learning [9]. Because of the noise interference and
the limited collection capabilities of data sources, a single
data domain cannot always provide sufficient high-quality
unlabelled data and abundant data characteristics for robust
semi-supervised LA segmentation. For example, the single
data domain is usually subject to the limited LA varieties
of contrast, shape and texture for robust model learning.
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Fig. 1. Our proposed adaptive hierarchical dual consistency overcomes
the difference of data distribution and sample mismatch in different
domains for the cross-domain semi-supervised segmentation.

Compared to the single data domain, cross-domain data not
only can provide more available high-quality data, but also can
provide complementary domain information and more compre-
hensive data characteristics to describe the LA of interest [10].
Therefore, it is important to effectively ensemble cross-domain
data for robust semi-supervised LA segmentation.

However, generalising semi-supervised to cross-domain data
is difficult due to the difference of distributions and the
sample mismatch as shown in Fig. 1: (1) The difference of
cross-domain data distributions. Semi-supervised learning with
the generative model, low-density separation and graph-based
method can work but relies on the consistent data distribu-
tion under certain model assumptions including smoothness
assumption, cluster assumption or manifold assumption [9].
Performance degradation of the semi-supervised model may
occur whenever the assumptions adopted for a particular task
do not match the characteristics of the data distribution [9].
In the real world, cross-domain data collected from different
sources exhibit heterogeneous properties [11], which can lead
to the difference in distributions. For example, in medical
image analysis, because of the different subject groups, scan-
ners, or scanning protocols, the distributions of cross-domain
data are different [12]. Therefore, generalising semi-supervised
learning to cross-domain data directly is not trivial. (2) Sam-
ple mismatch of cross-domain data. Semi-supervised learn-
ing with the disagreement-based method requires matched
samples from different domains, where the information of
different domains is regarded as the different characteristics
of matched samples [13]. Since the collection of cross-domain
data is independent, the samples in different domains are
not matched. This restricts the cross-domain generalisation of
semi-supervised learning.

In order to overcome the issues mentioned above, we pro-
pose an Adaptive Hierarchical Dual Consistency frame-
work called AHDC for semi-supervised LA segmentation on
cross-domain data as shown in Fig. 1. The AHDC consists
of two modules: (1) A Bidirectional Adversarial Inference
module (BAI), which performs the mutual domain adaptation
to align distributions and match samples for two different data
domains. The adapted domains and two corresponding source

domains are merged to obtain two matched domains. The
obtained matched domains not only expand the number of data
in a specific source domain, but also learns complementary
representation for the samples in the specific source domain.
(2) A Hierarchical Dual Consistency learning module (HDC),
which performs a hierarchical semi-supervised segmentation
with dual consistency on the obtained matched domains.
The HDC builds two dual-modelling networks applied to the
matched domains for mining the complementary information
in both intra-domain and inter-domain. Within a specific
domain, the segmentation task is represented as global mod-
elling and local modelling. Then we perform a consistency
between the complementary modelling LAs for intra-domain
semi-supervised learning. For the inter-domain, we build a
consistency between the outputs of dual-modelling networks
estimated from different domains to exploit the complementary
domain information.

Our main contributions are summarised as follows:
• We propose a semi-supervised LA segmentation frame-

work for generalising across domains. It provides a solu-
tion for generalising semi-supervised LA segmentation
to cross-domain data with effectiveness on both different
distributions and mismatched samples.

• We propose a paradigm of hierarchical dual consis-
tency learning to mine the effective information in both
inter-domain and intra-domain. It explicitly enforcing
consistency under complementary information.

• We have conducted comprehensive experiments on four
3D MR datasets from different centres and one 3D CT
dataset. The experiment results demonstrated the feasi-
bility and the superiority of our proposed cross-domain
semi-supervised segmentation framework.

II. RELATED WORK

A. Domain Adaptation

Domain adaptation, which aims to overcome the distribution
difference of different domains, has drawn great attention
in computer vision [14]. Because generative adversarial net-
work (GAN) has great superiority in capturing data distri-
bution, it has been widely used in domain adaptation for
aligning distributions of different domains [15]–[19]. There
are different GAN based structures for achieving domain
adaptation. For the domain adaptation with a single direction,
GAN usually leverages a generator and a discriminator to
improve the distribution of the source domain to approximate it
to the distribution of the target domain by adversarial learning.
To focus on the high-resolution image with emphasis on pixel-
level reconstruction, Pix2pixHD extends conditional GANs to
leverage a decomposed generator and three multi-scale dis-
criminators to achieve domain adaptation [20]. For the domain
adaptation with bi-direction, CycleGAN [21], DualGAN [22]
and DiscoGAN [23] concatenate two generators with two
discriminators to ensure two cyclic consistency for the bidirec-
tional domain adaptation of two different domains. ALI [24]
and BiGAN [25] employ two generators and a discriminator to
match joint distribution for different domains. However, ALI
and BiGAN do not focus on pixel-level reconstruction, thus
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Fig. 2. Overview of our proposed AHDC framework for cross-domain semi-supervised segmentation. The framework consists of a bidirectional
adversarial inference (BAI) module and a hierarchical dual consistency learning (HDC) module. The BAI module employs two mapping networks
to perform a mutual adaptation of two different domains of D1 and D2 to obtain matched domains of Dp1 and Dp2. The HDC module applies two
dual-modelling networks to the matched domains for performing semi-supervised segmentation tasks. Each dual-modelling network contains a
global-modelling branch (Sg1/Sg2) used to capture the global correlation of feature maps to estimate LA (̃yg1/̃yg2), and a local-modelling branch
(Sl1/Sl2) used to capture the local correlation of feature maps to estimate LA (̃yl1/̃yl2). In intra-domain, a consistency is performed between ỹl1/̃yl2 and
ỹg1/̃yg2 estimated by complementary modellings, respectively. In inter-domain, a consistency is performed between ỹl1/̃yg1 and ỹl2/̃yg2 estimated
by complementary domain networks, respectively.

cannot effectively capture the position, colour, and style of
targets. ALICE extends the ALI to exploit cycle-consistency to
focus on pixel-level reconstruction for the target domain [26].
It also proposes to enforce cycle-consistency using fully
adversarial learning with an extra discriminator. Our used
domain adaptation method is based on the ALICE frame-
work. We extended it to focus on bidirectional pixel-level
reconstruction for two domains simultaneously. In order to
reduce computing resources and difficulty of training while
using fully adversarial learning, we adopt the explicit cycle-
consistency, thus exploiting two generators and a discriminator
for bidirectional domain adaptation with pixel-level recon-
struction.

B. Semi-Supervised Learning

Semi-supervised learning alleviates the problem of the
lack of labelled data. Here we only discuss related
consistency-based and disagreement-based semi-supervised
learning. More information about semi-supervised learning
can be found in [9]. The consistency-based methods constrain
the prediction consistency under different perturbations and
ensembles. For example, the � model enforces the predic-
tion consistency under the input perturbations with different
Gaussian noise and the model perturbation with dropout oper-
ation [27]. Unsupervised data augmentation (UDA) replaces
the traditional noise perturbations with high-quality data aug-
mentations (e.g., RandAugment, Back-translation and TF-IDF)

to improve consistency learning [28]. FixMatch uses a sepa-
rate weak augmentation and a strong augmentation on input
data for consistency regularisation [29]. In contrast to these
methods, Temporal Ensembling (TE) penalises the inconsis-
tency between the current prediction and the integration of
previous predictions based on an exponential moving average
(EMA) [27]. Compared to the TE, the Mean Teacher proposes
to average the weights of a base model [30]. However, they
need multiple reasoning processes to provide predictions for
consistency learning, thus being subject to the computational
cost.

The disagreement-based semi-supervised learning exploits
the disagreement of predictions from multiple task learners
during the learning process [13] including co-training and co-
regularisation. Co-training leverages two sufficient and redun-
dant views of data to train two task models for annotating the
unlabelled data. Then the unlabelled data with high prediction
confidence is added to the training set for further improving the
model [31], [32]. Co-regularisation tries to directly minimise
the prediction disagreement of unlabelled samples on different
views [33].

III. METHOD

A. Overview

The overview of our proposed AHDC framework is illus-
trated in Fig. 2. The notations are summarised in TABLE I.
The AHDC framework consists of two modules: a BAI module
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TABLE I
SUMMARY OF NOTATIONS

and a HDC module. Given two different data domains denoted
by D1 and D2. D1 contains both labelled data Dl

1 and
unlabelled data Du

1 , where Dl
1 = {((xl

1)
i , yi )}n1

i=1 with n1

labelled samples and Du
1 = {(xu

1 )
i }n1+n2

i=n1+1 with n2 unlabelled
samples, respectively. The D2 only contains unlabelled data
denoted as Du

2 = {(xu
2 )

i }m1
i=1 with m1 unlabelled samples.

The BAI module employs two mapping networks of G1 and
G2 to generate complementary domains by adapting D1 and
D2 to each other, where the domain adapted from D1 to
D2 is denoted as D1t2 while the domain adapted from D2
to D1 is denoted as D2t1. Then the targeted domains (D1
and D2) and the corresponding adapted domains (D2t1 and
D1t2) merge to form two matched domains of Dp1 and Dp2.
Finally, two dual-modelling networks of S1 = {Sl1, Sg1} and
S2 = {Sl2, Sg2} are fed with matched samples sampled from
Dp1 and Dp2 to predict LAs, where the LAs predicted by the
local modelling Sl1 and the global modelling Sg1 are denoted
as ỹl1 and ỹg1 while the LAs predicted by the local modelling
Sl2 and the global modelling Sg2 are denoted as ỹl2 and ỹg2,
respectively.

B. Bidirectional Adversarial Inference for Distribution
Alignment and Sample Matching

Consider a D1 to D2 domain mapping network G1 : x1 →
x2. Meanwhile, consider a D2 to D1 domain mapping network
G2 : x2 → x1. We denote two domain marginal distributions
of D1 and D2 as p(x1) and q(x2). One domain can be
inferred based on the other using parameterised conditional
distributions, pϕ1(x2|x1) and qϕ2(x1|x2), where ϕ1 and ϕ2
denote the parameters of two distributions. Then, we have
the joint distributions of pϕ1(x1, x2) = pϕ1(x2|x1)p(x1)
and qϕ2(x1, x2) = qϕ2(x1|x2)q(x2). We aims to match
pϕ1(x2) = ∫

pϕ1(x2, x1)dx1 to q(x2) and match qϕ2(x1) =∫
qϕ2(x1, x2)dx2 to p(x1) by matching pϕ1(x1, x2) and

qϕ2(x1, x2). Then we use a discriminator network Tψ1(x1, x2)
parameterised using ψ1 to penalise mismatches in the joint
distributions of pϕ1(x1, x2) and qϕ2(x1, x2). Specifically, we

consider following objectives:
min
ϕ1,ϕ2

max
ψ1

Od (ϕ1, ϕ2, ψ1)

= E(x1,x2)∼pϕ1 (x1,x2)[log σ(Tψ1(x1, x2))]
+E(x1,x2)∼qϕ2 (x1,x2)[1 − log σ(Tψ1(x1, x2))] (1)

where the σ(·) denotes the sigmoid function.
Intuitively, if equation (1) is achieved, pϕ1(x1, x2) and

qϕ2(x1, x2) match each other, which not only implies that
pϕ1(x2) and q(x2) match each other, but also implies that
qϕ2(x1) and p(x1) match each other. However, the relation-
ship between random variables x1 and x2 is not specified
or constrained by equation (1). In order to obtain paired
samples, according to [26], we extend the conditional entropies
from single constraint to bi-direction constraints (H (x1|x2)
and H (x2|x1)), which imposes constraints on the conditionals
pϕ1(x2|x1) and qϕ2(x1|x2), simultaneously. Because there is
no explicit distributions to compute the conditional entropies.
According to [26], we bound the conditional entropies using
the cycle-consistency (Lx1→x̂1(ϕ1, ϕ2) and Lx2→x̂2(ϕ1, ϕ2)):

H (x1|x2)

= −Ex1∼p(x1),x2∼pϕ1 (x2|x1)[logpϕ1(x1|x2)]
= −Ex1∼p(x1),x2∼pϕ1 (x2|x1)[logqϕ2(x1|x2)]

−Ex1∼p(x1),x2∼pϕ1 (x2|x1)[logpϕ1(x1|x2)− logqϕ2(x1|x2)]
= −Ex1∼p(x1),x2∼pϕ1 (x2|x1)[logqϕ2(x1|x2)]

−Eqϕ2(x2)
[K L(pϕ1(x1|x2)||qϕ2(x1|x2))]

≤ −Ex1∼p(x1),x2∼pϕ1 (x2|x1)[logqϕ2(x1|x2)] = Lx1→x̂1(ϕ1, ϕ2)

(2)

Similarly,

H (x2|x1)

= −Ex2∼q(x2),x1∼qϕ2 (x1|x2)[logqϕ2(x2|x1)]
≤ −Ex2∼q(x2),x1∼qϕ2 (x1|x2)[logpϕ1(x2|x1)] = Lx2→x̂2(ϕ1, ϕ2)

(3)

where the x̂1 and x̂2 are denoted as the reconstructions of x1
and x2. KL denotes the Kullback-Leible divergence. According
to the equations of (2) and (3), on the one hand, we have a
function G3 : x1 → x̂1 defined by G3 = G1 ◦ G2, which
first generates x2 from x1 based on G1, then G2 produces
x̂1 from generated x2. On the other hand, we also have a
function G4 : x2 → x̂2 defined by G4 = G2 ◦ G1, which first
generates x1 from x2 based on G2, then G1 produces x̂2 from
generated x1. In contrast to the fully adversarial training for
solving Lx1→x̂1(ϕ1, ϕ2) and Lx2→x̂2(ϕ1, ϕ2), we employ the
reconstruction loss to reduce the difficulty of model training.
Specifically, we consider following object:

min
ϕ1,ϕ2

Ox1→x̂1(ϕ1, ϕ2)

= Ex̂1∼qϕ2 (x̂1|x2),x2∼pϕ1 (x2|x1) Lmae(x1, x̂1) (4)

min
ϕ1,ϕ2

Ox2→x̂2(ϕ1, ϕ2)

= Ex̂2∼pϕ1 (x̂2|x1),x1∼qϕ2 (x1|x2) Lmae(x2, x̂2) (5)
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Fig. 3. Structure of bidirectional adversarial inference network. The
mapping network G1 and the mapping network G2 have the same
structure.

where the Lmae(·) denotes the mean absolute error. Finally,
we have the following object for BAI:

min
ϕ1,ϕ2

max
ψ1

λd Od (ϕ1, ϕ2, ψ1)

+λr Ox1→x̂1(ϕ1, ϕ2)

+λr Ox2→x̂2(ϕ1, ϕ2) (6)

where λd and λr are hyperparameters to balance the adversar-
ial loss and the reconstruction loss.

C. Hierarchical Dual Consistency for
Semi-Supervised Segmentation

The BAI makes the cross-domain data adapt to each other
to produce matched domains. In detail, the domain D1 adapted
to source D2 is denoted as D1t2 = Dl

1t2 ∪ Du
1t2, where

Dl
1t2 = {((xl

1t2)
i , yi )}n1

i=1 with n1 labelled samples and Du
1t2 =

{(xu
1t2)

i }n1+n2
i=n1+1 with n2 unlabelled samples. The domain D2

adapted to source D1 is denoted as D2t1 = Du
2t1 = {(xu

2t1)
i }m

i=1
with m unlabelled samples. Then we merge two source
domains and two adapted domains to obtain the matched
domains of Dp1 and Dp2. The Dp1 = D1 ∪ D2t1 = Dl

1 ∪
Du

1 ∪ Du
2t1 = Dl

p1 ∪ Du
p1, where Dl

p1 = {((xl
p1)

i , yi )}n1
i=1 with

n1 labelled samples and Du
p1 = {(xu

p1)
i }n1+n2+m

i=n1+1 with n2 + m
unlabelled samples. The Dp2 = D2 ∪ D1t2 = Dl

1t2 ∪ Du
1t2 ∪

Du
2 = Dl

p2 ∪ Du
p2, where Dl

p2 = {((xl
p2)

i , yi )}n1
i=1 with n1

labelled samples and Du
p2 = {(xu

p2)
i }n1+n2+m

i=n1+1 with n2 + m

unlabelled samples. We denote two domain marginal distribu-
tions of Dp1 and Dp2 as p(x p1) and q(x p2), respectively. The
joint distribution of Dp1 and Dp2 is denoted as j (x p1, x p2).

Based on the matched domains, we investigate comple-
mentary LA modelling and complementary domain knowl-
edge learning to provide inherent prediction perturbation for
the consistency based cross-domain semi-supervised learn-
ing. Therefore, a hierarchical dual consistency is investi-
gated. Specifically, for the intra-domain, we consider two
dual-modelling networks S1 : x p1 → (ỹl1, ỹg1) parameterised
by θ1 = {θ f

1 , θ
l
1, θ

g
1 } and S2 : x p2 → (ỹl2, ỹg2) parameterised

by θ2 = {θ f
2 , θ

l
2, θ

g
2 } applied to the matched domains of Dp1

and Dp2, respectively. Each dual-modelling network estimates
two targets by considering local information and global infor-
mation of image, where S1 simultaneously performs the global

modelling of Sg1 : x p1 → ỹg1 parameterised by {θ f
1 , θ

g
1 }

and the local modelling of Sl1 : x p1 → ỹl1 parameterised by
{θ f

1 , θ
l
1}. Similarly, the S2 simultaneously performs the global

modelling of Sg2 : x p2 → ỹg2 parameterised by {θ f
2 , θ

g
2 }

and the local modelling of Sl2 : x p2 → ỹl2 parameterised
by {θ f

2 , θ
l
2}. Then we encourage the global modelling and

the local modelling of each dual-modelling network to predict
consistent targets via the consistency loss:

min
θ1

Ointra1(θ1) = Exu
p1∼p(x p1)Ld (Sl1(x

u
p1), Sg1(x

u
p1)) (7)

min
θ2

Ointra2(θ2) = Exu
p2∼q(x p2)Ld (Sl2(x

u
p2), Sg2(x

u
p2)) (8)

where Ld (·) denotes the dice loss function. For the dual
consistency in inter-domain, we maximise the agreement on
two matched domains. Therefore, we encourage S1 and S2 to
predict similar outputs by:

min
θ1,θ2

Ointer (θ1, θ2)

= E(xu
p1,x

u
p2)∼ j (x p1,x p2)Lc(S1(x

u
p1), S2(x

u
p2))

= E(xu
p1,x

u
p2)∼ j (x p1,x p2)(Lc(Sl1(x

u
p1), Sl2(x

u
p2))

+Lc(Sg1(x
u
p1), Sg2(x

u
p2))) (9)

where Lc(·) denotes the cross-entropy loss function. To avoid
that S1 and S2 gradually resemble each other, we encourage
the S1 and S2 to produce conditional independent features by
orthogonalising the weights of feature layers:

min
θ1,θ2

Oow(θ1, θ2) = 1

N

N∑
i=1

(
1

K 2
i

K 2
i∑

| (θ
f

1i)
T θ

f
2i

||θ f
1i ||||θ f

2i ||
|) (10)

where the N denotes the number of layers in S1 and S2.
Ki represents the number of features in i th layer. θ f

1i and
θ

f
2i denote the parameters of i th feature layer in S1 and S2,

respectively.
Beyond the consistency learning above, S1 and S2 can

explicitly learns from Dl
p1 and Dl

p2 with the supervision of
the labels:

min
θ1

Osuper1(θ1) = Exl
p1∼p(x p1)

Ls(S1(x
l
p1), y)

= Exl
p1∼p(x p1)

(Ls(Sl1(x
l
p1), y)

+ Ls(Sg1(x
l
p1), y)) (11)

min
θ2

Osuper2(θ2) = Exl
p2∼q(x p2)

Ls(S2(x
l
p2), y)

= Exl
p2∼q(x p2)

Ls(Sl2(x
l
p2), y)

+Ls(Sg2(x
l
p2), y)) (12)

where the y denotes the LA label. Ls(·) denotes the super-
vised loss functions (cross-entropy loss function and dice loss
function). Then the final training objective for the learning of
S1 and S2 is denoted as:

min
θ1,θ2

Ototal(θ1, θ2) = λsuper (O
super1 + Osuper2)

+λintra(O
intra1 + Ointra2)

+λinter Ointer + λowOow (13)

where the λsuper , λintra , λinter and λow are hyperparameters
to balance the loss terms.
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Fig. 4. Dual-modelling network for intra-consistency learning. The
local-modelling branch and global-modelling branch share a feature
extractor. For the global-modelling branch, the extracted feature maps
from input images are split into 8 × 8 patches. These 8 × 8 patches
are taken as a sequence of vectors to be fed to a self-attention based
global-modelling structure.

D. Network Configuration

The BAI module contains three subnetworks: two domain
mapping networks (G1, G2) and a discriminative network T .
We use the 2D U-Net with bilinear upsampling as network
backbones of both G1 and G2. T has six convolution layers
with the numbers of filters of 32, 64, 128, 256, 256, 1, respec-
tively. Each of the first five 3 × 3 convolutional layers with a
stride of 2 is followed by a batch normalisation layer and a
ReLU layer. The final 1 × 1 convolutional layer with a stride
of 1 is followed by a sigmoid layer.

Hierarchical dual-modelling network contains two
dual-modelling networks with the same structure. Each
dual-modelling network contains a 2D U-Net with bilinear
upsampling used to extract image features and two branch
networks used to estimate targets. The two branch networks
are the global modelling network and the local modelling
network. The global modelling network is based on the
self-attention [34]–[36] as shown in Fig. 4. In the global
modelling network, we use the sinusoidal position encoding
to emphasise the sequential relationship between input feature
patches [37]. The local modelling network consists of three
convolution blocks. The details are shown in Fig. 4.

IV. EXPERIMENTS

A. Overview of Experiments

Comprehensive experiments were performed to validate our
proposed AHDC.

1) The Feasibility of AHDC for Generalising Across Domains:
Our proposed AHDC was validated on four 3D late gadolinium
enhancement cardiac MR (LGE CMR) datasets and a 3D CT
dataset combined in pairs, which followed the independent val-
idation protocol. Furthermore, we also investigated the impact
of different ratios (r = {5%, 10%, 20%}) of the labelled data
for validating our proposed AHDC.

2) The Superiority of AHDC for Generalising Across Domains:
We compared to widely used and state-of-the-art semi-
supervised methods on cross-domain data for comparison,

including mean teacher (MT) method [30], uncertainty-aware
self-ensembling model (UA-MT) [7], Dual-Task consistency
(DTC) [38] and Dual-Teacher [39]. It is of note that MT,
UA-MT and DTC were proposed for the single-domain
semi-supervised learning while the Dual-Teacher method was
proposed for the cross-domain learning. Besides, the Dual-
Teacher required the labelled data from both cross-domain
data for model learning. For a fair comparison, MT, UA-MT
and DTC were performed on one of the matched domains,
i.e., Dp1. We also compared with the joint training method
that combining the cross-domain data directly for the LA
segmentation based on our proposed semi-supervised method.

3) The Effectiveness of the Components in AHDC: Firstly,
we compared the performance between different architec-
tures of the BAI module. On the one hand, to validate the
effectiveness of bidirectional reconstruction for specifying the
relationship of matched samples, an experiment was per-
formed on bidirectional adversarial inference without using
bidirectional reconstruction (BAIwbr /ALI/BiGAN). On the
other hand, to validate the effectiveness of skip connection
of domain mapping network for keeping target structure
consistent, an experiment was performed on bidirectional
adversarial inference without using skip connection in domain
mapping network (BAIeds). Then, we further validated the
performance of BAI by comparing it with the fully adversarial
ALICE [26] on the downstream semi-supervised tasks. Finally,
for validating the effectiveness of HDC, we decomposed the
HDC into independent intra-domain dual consistency learning
(HDCintra ) by removing a dual-modelling network and inter-
domain dual consistency learning (HDCinter ) by removing
global modelling branch but retaining local modelling branch.

4) The Effectiveness of the BAI for Matching Domains: Firstly,
we performed the principal components analysis to show the
data distributions of source domains (D1 and D2) and the
adapted domains (D1t2 and D2t1). The data distributions of
source domains and the adapted domains were compared to
validate the effectiveness of AHDC for aligning distributions.
Then, we made a qualitative visualisation of images before
and after the bidirectional adversarial inference to validate the
effectiveness of AHDC for matching samples.

5) The Effectiveness of the HDC for the Availability of
Complementary Information: To validate the availability
of complementary modelling information in the intra-
domain, we compared the segmentation performance of
dual modelling network (local-global modelling structure)
to the ones without using dual-modelling structures. Specif-
ically, we replaced the local-modelling branch with the
global-modelling branch (global-global modelling struc-
ture) and replaced the global-modelling branch with the
local-modelling branch (local-local modelling structure) in
dual modelling network for experiments. To validate the
availability of complementary domain information in inter-
domain, we compared the segmentation performance of HDC
with/without using the orthogonal weight constraint (WOW
and WOOW).

6) The Effects of Parameter Settings on Model Performance:
We explored two important parameter settings. (i) The impact
of different patch sizes (4 × 4, 8 × 8 and 16 × 16) for global
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TABLE II
COMPARISON OF FOUR LGE-CMRI DATASETS FROM DIFFERENT CENTRES. ABBREVIATIONS: TE, ECHO TIME; TR, REPETITION TIME;

CARMA, COMPREHENSIVE ARRHYTHMIA RESEARCH AND MANAGEMENT

modelling. (ii) The impact of different values of λow (0.0, 0.1,
and 1.0 ) for inter-domain learning.

B. Datasets

To evaluate the performance of our proposed AHDC, four
3D LGE-MRI datasets (C1, C2, C3 and C4) and a 3D CT
dataset (C5) were collected as a retrospective study. In our
experiments, the collected datasets of C1 and C2 included
segmentation of the LA epicardium and LA endocardium
while the collected datasets of C3, C4 and C5 included seg-
mentation of the LA endocardium. We have summarised the
characteristics of the four 3D LGE-MRI datasets to emphasise
their differences as shown in TABLE II.

LGE-MRI scanning sequence of centre 1 (C1): Cardiac
MR data were acquired in patients with longstanding persis-
tent atrial fibrillation (AF) on a Siemens Magnetom Avanto
1.5T scanner (Siemens Medical Systems, Erlangen, Germany).
Transverse navigator-gated 3D LGE-CMRI [40] was per-
formed using an inversion prepared segmented gradient echo
sequence (TE/TR 2.2ms/5.2ms) 15 minutes after gadolin-
ium administration (Gadovist-gadobutrol, 0.1mmol/kg body
weight, BayerSchering, Berlin, Germany) [41]. The inversion
time was set to null the signal from normal myocardium.
The acquired resolution parameter of LGE-CMRI data was
(1.4 − 1.5) × (1.4 − 1.5) × 4 mm3 (reconstructed to
(0.7 − 0.75) × (0.7 − 0.75) × 2 mm3). LGE-CMRI data
were acquired during free-breathing using a crossed-pairs nav-
igator positioned over the dome of the right hemi-diaphragm
with navigator acceptance window size of 5mm and CLAWS
respiratory motion control [42], [43]. The LGE CMR data
were collected from the Royal Brompton Hospital. In total,
165 scans were used in this study.

LGE-MRI scanning sequence of centre 2 (C2): Cardiac
MR data were obtained on a 1.5 Tesla Avanto scanners
or a 3.0 Tesla Vario (Siemens Medical Solutions, Erlan-
gen, Germany). The scan is acquired 20–25 minutes after
0.1 mmol/kg gadolinium contrast (Multihance, Bracco Diag-
nostics Inc., Princeton, NJ) using a 3D respiratory navigated,
inversion recovery prepared gradient echo pulse sequence.
Typical acquisition parameters are free breathing using navi-
gator gating, a transverse imaging volume with voxel size =
1.25 × 1.25 × 2.5 mm3 (reconstructed to 0.625 × 0.625 ×
2.5 mm3), TR/TE = 5.4/2.3 ms, inversion time (TI) =
270-310 ms. The TI value for the LGE-MRI scan is identified
using a scout scan. Typical scan times for the LGE-MRI
study were between 8 and 15 min at 1.5 T and 6–11 min

using the 3T scanner (for Siemens sequences) depending on
subject respiration and heart rates. The LGE CMR data were
collected from the Comprehensive Arrhythmia Research and
Management, University of Utah. In total, 153 scans were used
in this study.

LGE-MRI scanning sequence of center 3 (C3): C3 is from
the ISBI 2012 Left Atrium Fibrosis and Scar Segmentation
Challenge [44], [45]. The LGE CMR data were collected from
the Beth Israel Deaconess Medical Center. In total, 20 scans
were used in this study.

LGE-MRI scanning sequence of center 4 (C4): C4 is also
from the ISBI 2012 Left Atrium Fibrosis and Scar Segmenta-
tion Challenge [44], [45]. The LGE CMR data were collected
from the Imaging Sciences at King’s College. In total, 20 scans
were used in this study.

CT scanning sequence of centre 5 (C5): C5 is from
the Multi-modality Whole Heart Segmentation (MM-WHS)
2017 dataset [46]–[49]. In total, 60 CT scans were used in
this study.

C. Experimental Setup

1) Data Partitioning: For C1, the 3D LGE-MRI dataset with
165 scans was randomly split into a training set with 99 scans
and a testing set with 66 scans (33 pre-ablation scans and
33 post-ablation scans). The training set then was randomly
split into a labelled training set with 20 scans (20%) and
an unlabelled training set with 79 scans (80%). For C2,
the 3D LGE-MRI dataset with 153 scans was randomly split
into a training set with 91 scans and a testing set with
62 scans (31 pre-ablation scans and 31 post-ablation scans).
The training set then was randomly split into a labelled training
set with 18 scans (20%) and an unlabelled training set with
73 scans (80%). For C3 and C4, each 3D LGE-MRI dataset
with 20 scans was randomly split into a training set with
12 scans and a testing set with 8 scans (4 pre-ablation scans
and 4 post-ablation scans). The training set then was randomly
split into a labelled training set with 4 scans and an unlabelled
training set with 8 scans. Because C5 only provides 60 CT
scans including 20 labelled scans and 40 unlabelled scans,
we randomly selected 15 scans from 20 labelled scans as a
testing set. The remaining 5 labelled scans (labelled training
set) and 40 unlabelled scans (unlabelled training set) together
as a training set. Since each patient may contain multiple 3D
LGE-MRI scans, the 3D LGE-MRI datasets were split under
the strategy that all scans from each unique patient were only
in one of the training or testing sets.
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2) Implementation Details: Experiments were performed on
five datasets combined in pairs for cross-centre study (C1 and
C2, C3 and C4) and cross-modality study (C2 and C5).
To reduce the dependence of models on annotated data and
to avoid the impact of label variations from different centres,
there were two kinds of experiment settings for each cross-
domain data. Take experiments on C1 and C2 as an example:
one used C1 to support C2 that the model was trained using the
labelled training set (18 labelled cases) of C2, the unlabelled
training set (73 unlabelled cases) of C2 and the whole training
set (99 unlabelled cases) of C1. The other one used C2 to
support C1 that the model was trained using the labelled
training set (20 labelled cases) of C1, the unlabelled training
set (79 unlabelled cases) of C1 and the whole training set
(91 unlabelled cases) of C2. We denoted the results obtained
by the fully supervised model trained with the labelled train-
ing set from C1 (20 cases), C2 (18 cases), C3 (4 cases),
C4 (4 cases) and C5 (5 cases) as the baseline and the results
obtained by the fully supervised model trained with the whole
training set from C1 (99 cases), C2 (91 cases), C3 (12 cases)
and C4 (12 cases) as the upper bound.

We pre-processed the data with the normalisation. Smaller
patches of 256 × 256 centred on the LA region were cropped.
To avoid overfitting, we applied data augmentations with
random rotation. The training time of our model is about
17.17 hours while the testing time for one 3D case is about
0.259 seconds. For the learning of the BAI network, we used
the Adam method to perform the optimisation of two mapping
networks with an initial learning rate of 0.001 and a decayed
rate of 0.98. The optimiser used in the discriminative network
was Adam with a fixed learning rate of 0.0001. For the learn-
ing of two dual-modelling networks, we also used the Adam
method with an initial learning rate of 0.001 and a decayed rate
of 0.98. The current statistics of batch normalisation were used
for both training and testing. All experiments were performed
with an independent test. For the dual consistency learning,
in each iteration, we first performed the intra-consistency
with both labelled and unlabelled data simultaneously, then
performed the inter-consistency with both labelled and unla-
belled data simultaneously, performed supervised learning
with labelled data in the last. Our deep learning model was
implemented using Tensorflow 1.2.1 on an Ubuntu 16.04
machine (The code will be released publicly once the manu-
script is accepted for publication via https://github.com/Heye-
SYSU/AHDC). It was trained and tested using an Nvidia RTX
8000 GPU (48GB GPU memory).

The coefficients λd and λr used to balance the adversarial
loss and the reconstruction loss, were automatically learned
based on the strategy of uncertainty [50]. The coefficient
λintra was dynamically changed over time with the function
of f (t) = e−5∗(1− t

tmax
)2 . The coefficients λinter , λsuper and

λow were set to the values of 1.0, 0.5 and 0.1, respectively.
3) Evaluation Criteria: To evaluate the segmentation perfor-

mance, we used region-based metrics [51], [52], e.g., the Dice
Similarity Coefficient (DSC) and the Jaccard Index (JI), to val-
idate the predicted segmentation map against the manually
defined ground-truth. We also used a surface-based metric
called Average Surface Distance (ASD) to provide the distance

in mm to quantify the accuracy of the predicted mesh (S)
compared to the ground-truth mesh (S�) [52].

V. RESULTS AND ANALYSIS

In this section, we demonstrate the results of the above
mentioned experiments to validate our proposed AHDC for
the cross-domain semi-supervised segmentation.

A. The Feasibility Analysis of AHDC for Generalising
Across Domains

TABLE III and TABLE IV summarises the quantitative
segmentation results of AHDC on multi-centre data and multi-
modality data. As we can see, our proposed AHDC obtains
consistent improvements in terms of the DSC, JI and ASD
against the baselines. Furthermore, as the experiment results
are summarised in TABLE V, one can see that our proposed
AHDC obtains consistent improvements against the fully
supervised learning under the 5%, 10%, 20% labelled data
setting. Fig. 5 and Fig. 6 provide the 2D and 3D qualitative
LAs estimated by AHDC compared to the ground truth. It is
observed that our proposed AHDC has the ability to segment
LA accurately. These quantitative and qualitative results indi-
cate the feasibility of our proposed AHDC for generalising
across domains.

B. The Superiority Analysis of AHDC for
Generalising Across Domains

TABLE III and TABLE IV summarises the experiment
results on multi-centre data and multi-modality data combined
in pairs for comparison. It is observed that the widely used
semi-supervised method of MT improves the segmentation
accuracy of LA compared to the baseline. One can see that
after adding uncertainty information to the MT, the perfor-
mance of the MT is improved (UA-MT). The DTC method
further improves the segmentation accuracy, indicating the
effectiveness of dual task consistency for semi-supervised
learning. Although these methods have the ability to mine
effective information from unlabelled data to support task
learning, they have no proper mechanism to exploit the cross-
domain information, thus leading to limited segmentation
results. Compared to these methods, Dual-Teacher leverages
two teacher models to guide a student model for the learning of
both intra-domain and inter-domain knowledge, thus achieving
big improvements in terms of segmentation accuracy. Notably,
our proposed AHDC obtains the best segmentation accuracy
over these widely used and state-of-the-art semi-supervised
methods, which shows its superiority for generalising across
domains. Furthermore, it is observed that our proposed AHDC
generally improves the segmentation accuracy compared to the
joint training, which combines the cross-domain data directly
for the semi-supervised LA segmentation. This demonstrates
that our proposed AHDC can leverage cross-domain infor-
mation to improve the model performance. We also provide
qualitative comparison between different methods in Fig. 5.
It is observed that the LAs estimated by other methods present
fragmentary parts and unsmooth boundaries. While the LAs
estimated by our proposed method are closer to the ground
truth with smoother boundaries.
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TABLE III
QUANTITATIVE COMPARISON BETWEEN OUR PROPOSED AHDC AND OTHER METHODS ON MULTI-CENTRE DATA. ABBREVIATIONS:

DSC, DICE SIMILARITY COEFFICIENT; JI, JACCARD INDEX; ASD, AVERAGE SURFACE DISTANCE. (a) EXPERIMENTS

ON C1 (MR) AND C2 (MR). (b) EXPERIMENTS ON C3 (MR) AND C4 (MR)

TABLE IV
QUANTITATIVE COMPARISON BETWEEN OUR PROPOSED AHDC AND OTHER METHODS ON MULTI-MODALITY DATA. ABBREVIATIONS:

DSC, DICE SIMILARITY COEFFICIENT; JI, JACCARD INDEX; ASD, AVERAGE SURFACE DISTANCE

TABLE V
THE PERFORMANCE OF AHDC ON DIFFERENT PERCENTAGES OF

LABELLED DATA. ABBREVIATIONS: LX (%): LX (%): THE RATIO OF

LABELLED DATA IN THE TRAINING SET OF CENTRE X; UX (%):
THE RATIO OF UNLABELLED DATA IN THE TRAINING SET

OF CENTRE X; DSC, DICE SIMILARITY COEFFICIENT; JI,
JACCARD INDEX; ASD, AVERAGE SURFACE DISTANCE

C. Ablation Studies

We performed ablation studies on C1 and C2 (C1 supports
C2) to validate the effectiveness of our proposed AHDC for
the cross-domain semi-supervised segmentation.

1) Model Variation Study for Bidirectional Adversarial Infer-
ence: As the experimental results are summarised in

TABLE VI, the bidirectional adversarial inference with bidi-
rectional reconstruction improves the LA segmentation accu-
racy in terms of DSC, JI and ASD compared with the
BAIwbr/ALI/BiGAN. The reason behind the improvements
is that bidirectional reconstruction makes the relationship
between matched samples specified and constrained. It guaran-
tees that the matched samples are one-to-one correspondence
for subsequent effective hierarchical dual consistency learning
on cross-domain data. It is also observed that the segmentation
accuracy is dropped while removing the skip connection from
the domain mapping network. The reason behind this is
that the domain mapping network (UNet structure) employs
the skip connection to deliver the low-level information.
It allows the samples adapted to another domain to main-
tain the same LA structures, which makes subsequent dual
consistency learning effective. Furthermore, one can see that
our proposed BAI has better performance for the downstream
semi-supervised LA segmentation task compared to the fully
adversarial ALICE method, which indicates the superiority of
our proposed BAI.
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Fig. 5. 2D visual comparisons on LA segmentation results estimated by different methods. It is observed that our estimated LAs (AHDC) are more
similar to the ground truth (GT) than others (DSC based segmentation accuracies of AHDC for the 2D slices from row 1 to row 4 are 0.859, 0.897,
0.907 and 0.949, respectively). Abbreviations: DSC, Dice Similarity Coefficient.

Fig. 6. 3D visualization of LA segmentation results estimated by
AHDC. Each DSC score is calculated for the whole 3D LGE-MRI image
(The DSC based segmentation accuracies of AHDC for the 3D slices
from column 1 to column 3 are 0.936, 0.917, and 0.898, respectively).
Abbreviations: DSC, Dice Similarity Coefficient.

2) Model Variation Study for Hierarchical Dual Consistency:
As the experiment results are summarised in TABLE VI,
the independent intra-domain and inter-domain dual consis-
tency learning can both improve the LA segmentation accuracy
compared to the lower-bound model. This indicates that the
intra-domain dual consistency learning and the inter-domain
dual consistency learning are effective to exploit the unla-
belled data from cross-domain data. Furthermore, it is also
observed that the intra-domain dual consistency and the
inter-domain dual consistency can promote each other for
the cross-domain semi-supervised segmentation. These results

TABLE VI
MODEL VARIATION STUDY ON C1 AND C2 (C1 SUPPORTS C2).
ABBREVIATIONS: LX (%): THE RATIO OF LABELLED DATA IN THE

TRAINING SET OF CENTRE X; UX (%): THE RATIO OF

UNLABELLED DATA IN THE TRAINING SET OF CENTRE X;
DSC, DICE SIMILARITY COEFFICIENT; JI, JACCARD

INDEX; ASD, AVERAGE SURFACE DISTANCE

demonstrate the effectiveness of the hierarchical dual consis-
tency for semi-supervised segmentation on cross-domain data.

D. The Effectiveness Analysis of BAI
for Matching Domains

The effectiveness of the bidirectional adversarial inference
is further validated by the qualitative results on distribution
alignment and sample matching in the testing set.

1) Distribution Alignment: In Fig. 7, we color samples from
different domains and adapted domains to highlight their
correspondence (brown and blue for the samples from domains
of D2 and D1, respectively. Peru and green for the samples
from the domain D2t1 adapted from D2 to D1 and the domain
D1t2 adapted from D1 to D2, respectively). It is observed
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Fig. 7. Principal components analysis based visualisation for the data
distribution of the testing tests of C1 and C2. (a) The data distribution
of domain D1. (b) The data distribution of domain D2. (c) The data
distribution of domain D1 and the domain D2t1 adapted from D2 to D1.
(d) The data distribution of domain D2 and the domain D1t2 adapted from
D1 to D2.

Fig. 8. Qualitative visualisation of images and corresponding adapted
images in the testing tests of C1 and C2. Abbreviations: x1, image from
domain D1; x1t2, image adapted from domain D1 to domain D2; x2, image
from domain D2; x2t1, image adapted from domain D2 to domain D1.

that the domains of D1 and D2 have different distributions
as shown in Fig. 7 (a) and Fig. 7 (b). Besides, as shown in
Fig. 7 (c) and Fig. 7 (d), after the bidirectional adversarial
inference, the distribution of the domain D2t1 adapted from
D2 to D1 is consistent with the distribution of D1. Meanwhile,
the distribution of the domain D1t2 adapted from D1 to D2
is consistent with the distribution of D2. One also can find
the adapted domains of D1t2 and D2t1 make the distribution
spaces of D1 and D2 more complete. These results indicate
the effectiveness of BAI for the distribution alignment.

2) Sample Matching: Fig. 8 provides 2D visualisation of
some examples before and after bidirectional adversarial infer-
ence. The images of the first two columns are from the domain
D1 and the domain adapted from D1 to D2. The images of
the last two columns are from the domain D2 and the domain

TABLE VII
PERFORMANCE COMPARISON BETWEEN DUAL STRUCTURE

(LOCAL-GLOBAL) AND NON-DUAL STRUCTURES (LOCAL-LOCAL AND

GLOBAL-GLOBAL) IN TERMS OF DCS, JI AND ASD. THE RESULTS

ARE PRESENTED IN THE FORM OF THE MEAN (STANDARD DEVIATION).
ABBREVIATIONS: DSC, DICE SIMILARITY COEFFICIENT; JI, JACCARD

INDEX; ASD, AVERAGE SURFACE DISTANCE; LOCAL, LOCAL

MODELLING NETWORK; GLOBAL, GLOBAL MODELLING NETWORK

adapted from D2 to D1. It is observed that the target shape
and structure in corresponding images are consistent. However,
the texture and the brightness in corresponding images are dif-
ferent. These results illustrate that the bidirectional adversarial
inference is effective to produce the matched samples.

E. The Effectiveness Analysis of HDC for the Availability
of Complementary Information

1) Availability of the Complementary Modelling Information:
TABLE VII summarises the experiment results on different
modelling structures (Local-Global, Local-Local and Global-
Global) for the intra-domain semi-supervised learning. It is
observed that the dual-modelling structure (Local-Global)
achieved higher segmentation accuracy. The reason behind
this is that the dual modelling can complement each other
during the model training, thus can provide effective prediction
perturbation for consistency-based learning. We also visualize
the examples estimated by local modelling branch and global
modelling branch in different training epochs as shown in
Fig. 9. One can see that the absolute difference between
the local modelling and global modelling demonstrates that
the local modelling branch and local modelling branch are
modelled separately, which can provide effective prediction
perturbation for consistency based learning.

2) Availability of Complementary Domain Information:
Fig. 10 (a) provides the experiment results on hierarchical
dual consistency learning with/without orthogonal weight con-
straint. Fig. 10 (b) provides examples of feature correlations
between corresponding layers of two dual-modelling networks
with/without orthogonal weight constraint. It is observed that
while removing the orthogonal weight constraint for inter-
domain semi-supervised learning, the model segmentation
performance is dropped. Meanwhile, the feature correlations
between two dual-modelling networks become higher. The
reason behind this is that the inter-domain semi-supervised
learning with the orthogonal weight constraint can provide
more effective prediction perturbation for consistency based
learning. It is also observed that while removing the orthogonal
weight constraint for inter-domain semi-supervised learning,
the feature correlations between two dual-modelling networks
are not high (< 0.3). In this case, two dual-modelling networks
also can learn the complementary domain knowledge for
providing effective prediction perturbation, thus achieving a
high segmentation accuracy of 0.907 in terms of DSC.
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Fig. 9. Visualization for the evolution of dual-modelling results (first row
and second row) and their absolute difference (third row). The second
to fourth columns correspond to the estimated LAs from 5, 25 and
50 epochs during model learning.

Fig. 10. Segmentation performance comparison and feature correlation
analysis between AHDC without orthogonal weights (WOOW) and AHDC
with orthogonal weights (WOW). The experiments were performed on
C1 and C2 (C1 supports C2). DMN1 and DMN2 represent two dual-
modelling networks, respectively. The grape and asparagus bars denote
the mean values with standard deviations.

F. The Effects of Parameter Settings on Model
Performance

TABLE VIII presents the performances of our model for
the LA segmentation using different parameter settings. It is
observed that our model achieves the best performance when
the patch size and the λow are set as 8 × 8 and 0.1,
respectively.

TABLE VIII
PARAMETER VALIDATION FOR AHDC FRAMEWORK. THE RESULTS ARE

PRESENTED IN THE FORM OF MEAN ± STANDARD DEVIATION.
ABBREVIATIONS: DSC, DICE SIMILARITY COEFFICIENT;

JI, JACCARD INDEX; ASD, AVERAGE SURFACE DISTANCE

VI. DISCUSSION

In this study, we have developed a semi-supervised LA
segmentation framework for generalising across domains. The
semi-supervised LA segmentation framework comprises a
BAI module and a HDC module. The effectiveness of each
module has been validated in our ablation study presented
in TABLE VI. It is of note that self-attention based global
modelling requires more computational resources, which are
proportional to the dimensions of the image. In our pro-
posed framework, we performed the self-attention based global
modelling branch on the image feature maps for correlating
8 × 8 patches instead of all pixels, which greatly reduces the
requirements of computational resources during model train-
ing. Besides, during the testing phase or the practical appli-
cations, the self-attention based global modelling branches
will be removed from our proposed framework. Then, the LA
targets will be only predicted by the local-modelling branch
with low computational resources.

The AHDC requires the complementary domain information
for inter-domain learning. For multi-centre studies, although
the domains from different sources exhibit heterogeneous
properties [11], they still share some specific information
because they come from the same image modality of LGE.
To make the model focus on the heterogeneous properties
of different domains for the inter-domain learning, we use
an orthogonal weight constraint to extract the conditional
independent features of different domains for subsequent target
modelling. We have explored the effectiveness of the orthogo-
nal weight constraint together with its weight coefficient λow

for the inter-domain learning. As the experiment results are
shown in TABLE VIII, one can see that the orthogonal weight
constraint generally improves the segmentation accuracy. Fur-
thermore, the performance of AHDC is not very sensitive to
the λow values of 0.1 and 1.0 while using the orthogonal
weight constraint. Therefore, the orthogonal weight constraint
could exploit the heterogeneous properties among different
domains for inter-domain learning.

Considering the data annotation scarcity in medical image
analysis, our proposed method only requires the labelled
data from one of the multiple centres during cross-domain
learning, thus further reducing the dependence of the model
on annotated data. As the experiment results are shown in
TABLE III and TABLE IV, our proposed method is able
to generalise across two different domains simultaneously.
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TABLE IX
PERFORMANCE COMPARISON BETWEEN THE VANILLA MODEL AND

OUR PROPOSED AHDC USING ALL THE DATA AVAILABLE FROM FOUR

CENTRES. ABBREVIATIONS: LX (�): THE RATIO OF LABELLED DATA

IN THE TRAINING SET OF CENTRE X; UX (�): THE RATIO OF

UNLABELLED DATA IN THE TRAINING SET OF CENTRE X;
DSC, DICE SIMILARITY COEFFICIENT; JI, JACCARD INDEX;

ASD, AVERAGE SURFACE DISTANCE

We further explore how the task model generalises across
multiple domains. Specifically, we have applied our proposed
method to the LGE CMRI data available from four centres.
We also trained a vanilla model (U-Net) with the LGE CMRI
data available from a single target centre and all the LGE
CMRI data available from four centres for comparison. As the
experiment results are shown in TABLE IX, compared with
the results obtained by using all annotated data from a single
domain, using all the data available from four centres only
makes small improvements in the segmentation accuracy due
to the domain shift and the label variations from different
centres. While our proposed AHDC generally improves the
segmentation accuracy, which indicates its ability for cross-
domain semi-supervised learning.

VII. CONCLUSION

In this paper, we proposed an adaptive hierarchical dual
consistency for the cross-domain semi-supervised LA seg-
mentation. The adaptive hierarchical dual consistency firstly
overcomes the distribution difference and sample mismatch
of different domains by the bidirectional adversarial infer-
ence. Then, it explores the complementary modelling and
domain information in intra-domain and inter-domain for
semi-supervised LA segmentation based on the hierarchical
dual consistency. Comprehensive experiments on four 3D LGE
CMR datasets and one CT dataset demonstrated the feasibility
and superiority of our proposed method for the cross-domain
semi-supervised LA segmentation.
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